Rhamnocitrin (BioDeep_00000270530)

Main id: BioDeep_00000000833

 

PANOMIX_OTCML-2023 Antitumor activity natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-

化学式: C16H12O6 (300.0634)
中文名称: 羟基芫花素, 鼠李柠檬素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c1(cc(c2c(c1)oc(c(c2=O)O)c1ccc(cc1)O)O)OC
InChI: InChI=1S/C16H12O6/c1-21-10-6-11(18)13-12(7-10)22-16(15(20)14(13)19)8-2-4-9(17)5-3-8/h2-7,17-18,20H,1H3

描述信息

Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol.
Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available.
A monomethoxyflavone that is the 7-methyl ether derivative of kaempferol.
Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2].
Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2].
Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].
Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].

同义名列表

29 个代谢物同义名

4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-; 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one; 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one; 3,5-Dihydroxy-2-(4-hydroxy-phenyl)-7-methoxy-chromen-4-one; 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-chromen-4-one; 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one; Flavone, 3,4,5-trihydroxy-7-methoxy-; 3,5,4-trihydroxy-7-methoxyflavone; 3,4,5-Trihydroxy-7-methoxyflavone; 3,5,4-TRIHYDROXY-7-METHOXYFLAVONE; KAEMPFEROL-7-O-METHYL ETHER; kaempferol-7-methyl ether; KAEMPFEROL 7-METHYL ETHER; Luteolin 7-methylether; 7-o-methylkaempferol; 7-Methylkaempferol; Hydroxygenkwanin; UNII-BZ59ZB4HBU; Rhamnocitrin; BZ59ZB4HBU; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-; 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-chromenone; 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-chromone; ZINC02549348; 20243-59-8; 569-92-6; 3,5-Dihydroxy-2- (4-hydroxyphenyl) -7-methoxy-4H-1-benzopyran-4-one; 7-O-Methylluteolin; Rhamnocitrin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

264 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AIMP2, EGFR, MAPK1, MAPK3, NFKBIA, PIK3CA, PPARG, PTGS2, SIRT1, SMAD2, SMAD3, SOD1, TNK1
Peripheral membrane protein 3 GORASP1, PTGS2, TNK1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 2 EGFR, PTGS2
Nucleus 12 AIMP2, CCN5, EGFR, MAPK1, MAPK3, MMP2, NFKBIA, PPARG, SIRT1, SMAD2, SMAD3, SOD1
cytosol 10 AIMP2, MAPK1, MAPK3, NFKBIA, PIK3CA, PPARG, SIRT1, SMAD2, SMAD3, SOD1
centrosome 1 MAPK1
nucleoplasm 8 MAPK1, MAPK3, NFKBIA, PPARG, SIRT1, SMAD2, SMAD3, SOD1
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 1 EGFR
Cytoplasmic side 1 GORASP1
lamellipodium 1 PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 GORASP1
Synapse 1 MAPK1
cell junction 1 EGFR
cell surface 1 EGFR
glutamatergic synapse 2 EGFR, MAPK3
Golgi apparatus 4 CCN2, GORASP1, MAPK1, MAPK3
Golgi membrane 2 EGFR, GORASP1
neuronal cell body 1 SOD1
Cytoplasm, cytosol 1 AIMP2
endosome 1 EGFR
plasma membrane 9 CCN2, EGFR, MAPK1, MAPK3, MMP2, NFKBIA, PIK3CA, SMAD3, TNK1
Membrane 4 AIMP2, EGFR, SMAD2, TNK1
apical plasma membrane 1 EGFR
axon 1 CCK
basolateral plasma membrane 1 EGFR
caveola 3 MAPK1, MAPK3, PTGS2
extracellular exosome 3 MMP9, SOD1, SOD2
endoplasmic reticulum 1 PTGS2
extracellular space 7 CCK, CCN2, CCN5, EGFR, MMP2, MMP9, SOD1
perinuclear region of cytoplasm 3 EGFR, PIK3CA, PPARG
intercalated disc 1 PIK3CA
mitochondrion 6 MAPK1, MAPK3, MMP2, SIRT1, SOD1, SOD2
protein-containing complex 4 EGFR, PTGS2, SMAD2, SOD1
intracellular membrane-bounded organelle 2 CCN2, PPARG
Microsome membrane 1 PTGS2
chromatin silencing complex 1 SIRT1
Single-pass type I membrane protein 1 EGFR
Secreted 3 CCK, CCN2, CCN5
extracellular region 6 CCK, CCN2, MAPK1, MMP2, MMP9, SOD1
Mitochondrion matrix 1 SOD2
mitochondrial matrix 2 SOD1, SOD2
transcription regulator complex 2 SMAD2, SMAD3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
nuclear membrane 1 EGFR
Secreted, extracellular space, extracellular matrix 2 CCN2, MMP9
cytoplasmic vesicle 1 SOD1
nucleolus 1 SIRT1
axon cytoplasm 1 SOD1
Early endosome 2 MAPK1, MAPK3
heterochromatin 1 SIRT1
Membrane raft 1 EGFR
Cell junction, focal adhesion 2 MAPK1, MAPK3
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 3 EGFR, MAPK1, MAPK3
spindle 1 MAPK1
cis-Golgi network 1 GORASP1
extracellular matrix 3 CCN2, CCN5, MMP2
mitochondrial nucleoid 1 SOD2
Peroxisome 1 SOD1
intracellular vesicle 1 EGFR
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
mitochondrial intermembrane space 1 SOD1
collagen-containing extracellular matrix 2 MMP2, MMP9
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 3 PTGS2, SIRT1, SMAD3
nuclear outer membrane 1 PTGS2
dendrite cytoplasm 1 SOD1
Late endosome 2 MAPK1, MAPK3
sarcomere 1 MMP2
receptor complex 3 EGFR, PPARG, SMAD3
neuron projection 1 PTGS2
chromatin 4 PPARG, SIRT1, SMAD2, SMAD3
mitotic spindle 1 MAPK1
cytoskeleton 2 MAPK1, MAPK3
fibrillar center 1 SIRT1
nuclear envelope 2 MAPK3, SIRT1
Membrane, caveola 2 MAPK1, MAPK3
euchromatin 1 SIRT1
pseudopodium 2 MAPK1, MAPK3
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 2 MAPK1, MMP9
endoplasmic reticulum lumen 3 MAPK1, MAPK3, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
tertiary granule lumen 1 MMP9
[Isoform 1]: Secreted, extracellular space, extracellular matrix 1 MMP2
azurophil granule lumen 1 MAPK1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
clathrin-coated endocytic vesicle membrane 1 EGFR
heteromeric SMAD protein complex 2 SMAD2, SMAD3
SMAD protein complex 2 SMAD2, SMAD3
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
activin responsive factor complex 1 SMAD2
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
I-kappaB/NF-kappaB complex 1 NFKBIA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
homomeric SMAD protein complex 1 SMAD2
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Yanyuan Zhou, Huan Lan, Zhewen Dong, Wanying Li, Bo Qian, Zhen Zeng, Wen He, Jia-Le Song. Rhamnocitrin Attenuates Ovarian Fibrosis in Rats with Letrozole-Induced Experimental Polycystic Ovary Syndrome. Oxidative medicine and cellular longevity. 2022; 2022(?):5558599. doi: 10.1155/2022/5558599. [PMID: 35663203]
  • Yin-Sheng Quan, Xiao-Yong Zhang, Xiu-Mei Yin, Si-Hong Wang, Li-Li Jin. Potential α-glucosidase inhibitor from Hylotelephium erythrostictum. Bioorganic & medicinal chemistry letters. 2020 12; 30(24):127665. doi: 10.1016/j.bmcl.2020.127665. [PMID: 33152378]
  • Tong Lin, Wenwei Luo, Ziqing Li, Lili Zhang, Xinghan Zheng, Liting Mai, Wanqi Yang, Guimei Guan, Ziren Su, Peiqing Liu, Zhuoming Li, Youliang Xie. Rhamnocitrin extracted from Nervilia fordii inhibited vascular endothelial activation via miR-185/STIM-1/SOCE/NFATc3. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Dec; 79(?):153350. doi: 10.1016/j.phymed.2020.153350. [PMID: 33002827]
  • Seung Cheol Baek, Mi Hyeon Park, Hyung Won Ryu, Jae Pil Lee, Myung-Gyun Kang, Daeui Park, Chul Min Park, Sei-Ryang Oh, Hoon Kim. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorganic chemistry. 2019 03; 83(?):317-325. doi: 10.1016/j.bioorg.2018.10.051. [PMID: 30396116]
  • Rebai Ben Ammar, Tomofumi Miyamoto, Leila Chekir-Ghedira, Kamel Ghedira, Marie-Aleth Lacaille-Dubois. Isolation and identification of new anthraquinones from Rhamnus alaternus L and evaluation of their free radical scavenging activity. Natural product research. 2019 Jan; 33(2):280-286. doi: 10.1080/14786419.2018.1446135. [PMID: 29533086]
  • Yong Zhao, Chang-An Geng, Chang-Li Sun, Yun-Bao Ma, Xiao-Yan Huang, Tuan-Wu Cao, Kang He, Hao Wang, Xue-Mei Zhang, Ji-Jun Chen. Polyacetylenes and anti-hepatitis B virus active constituents from Artemisia capillaris. Fitoterapia. 2014 Jun; 95(?):187-93. doi: 10.1016/j.fitote.2014.03.017. [PMID: 24685503]
  • Catheleeya Mekjaruskul, Michael Jay, Bungorn Sripanidkulchai. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug metabolism and disposition: the biological fate of chemicals. 2012 Dec; 40(12):2342-53. doi: 10.1124/dmd.112.047142. [PMID: 22961680]
  • Shan-Shan Wang, Xiao-Jing Zhang, Sheng Que, Guang-Zhong Tu, Dan Wan, Wei Cheng, Hong Liang, Jia Ye, Qing-Ying Zhang. 3-Hydroxy-3-methylglutaryl flavonol glycosides from Oxytropis falcata. Journal of natural products. 2012 Jul; 75(7):1359-64. doi: 10.1021/np300292f. [PMID: 22775441]
  • Haiping Liu, Zhimao Chao, Xiaoyi Wu, Zhigao Tan, Chun Wang, Wen Sun. [Chemical constituents contained in Populus tomentosa]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 May; 37(10):1422-5. doi: . [PMID: 22860454]
  • Li Zhang, Chen-chen Zhu, Zhong-xiang Zhao, Chao-zhan Lin. [Simultaneous determination of seven flavonoids in Nervilia fordii with HPLC]. Yao xue xue bao = Acta pharmaceutica Sinica. 2011 Oct; 46(10):1237-40. doi: . [PMID: 22242457]
  • Wissem Bhouri, Mohamed Ben Sghaier, Soumaya Kilani, Ines Bouhlel, Marie-Geneviève Dijoux-Franca, Kamel Ghedira, Leila Chekir Ghedira. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2011 May; 49(5):1167-73. doi: 10.1016/j.fct.2011.02.011. [PMID: 21338653]
  • Long Huang, Junshan Yang, Yong Peng, Peigen Xiao. [Chemical constituents of Iris dichotoma]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Dec; 35(23):3168-71. doi: . [PMID: 21355241]
  • Ying-Nan Li, Lian-Hong Yin, Li-Na Xu, Jin-Yong Peng. A simple and efficient protocol for large-scale preparation of three flavonoids from the flower of Daphne genkwa by combination of macroporous resin and counter-current chromatography. Journal of separation science. 2010 Jul; 33(14):2168-75. doi: 10.1002/jssc.201000054. [PMID: 20535750]
  • Hari Prasad Devkota, Masato Watanabe, Takashi Watanabe, Shoji Yahara. Flavonoids from the aerial parts of Diplomorpha canescens. Chemical & pharmaceutical bulletin. 2010 Jun; 58(6):859-61. doi: 10.1248/cpb.58.859. [PMID: 20523001]
  • Wenwen Jiang, Junping Kou, Zhi Zhang, Boyang Yu. The effects of twelve representative flavonoids on tissue factor expression in human monocytes: structure-activity relationships. Thrombosis research. 2009 Dec; 124(6):714-20. doi: 10.1016/j.thromres.2009.04.010. [PMID: 19604541]
  • Rong-hua Liu, Chong-ye Mei, Feng Shao, Gang Ren, Hui-lian Huang, Shi-sheng Chen, Wu-liang Yang. [Studies on the chemical constituents from Daphne tangutica]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2009 Dec; 32(12):1846-7. doi: . [PMID: 20432900]
  • Li-Wen Tian, Ying Pei, Ying-Jun Zhang, Yi-Fei Wang, Chong-Ren Yang. 7-O-methylkaempferol and -quercetin glycosides from the whole plant of Nervilia fordii. Journal of natural products. 2009 Jun; 72(6):1057-60. doi: 10.1021/np800760p. [PMID: 19422205]
  • Guang-Xiong Zhou, Chuan-Li Lu, Heng-Shan Wang, Xin-Sheng Yao. An acetyl flavonol from Nervilia fordii (Hance) Schltr. Journal of Asian natural products research. 2009 Jun; 11(6):498-502. doi: 10.1080/10286020902893074. [PMID: 20183281]
  • Jing-Ting Hong, Jui-Hung Yen, Lisu Wang, Ya-Hsuan Lo, Zong-Tsi Chen, Ming-Jiuan Wu. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicology and applied pharmacology. 2009 May; 237(1):59-68. doi: 10.1016/j.taap.2009.02.014. [PMID: 19265714]
  • Chuan-Li Lu, Guang-Xiong Zhou, Heng-Shan Wang, Yao-Lan Li, Xin-Sheng Yao. [Studies on the chemical constituents of Nerviliae fordii]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2009 Mar; 32(3):373-5. doi: . [PMID: 19565714]
  • H Jiang, J R Hu, W Q Zhan, X Liu. Screening for fractions of Oxytropis falcata Bunge with antibacterial activity. Natural product research. 2009; 23(10):953-9. doi: 10.1080/14786410902906934. [PMID: 19521909]
  • H Jiang, W Q Zhan, X Liu, S X Jiang. Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge. Natural product research. 2008 Dec; 22(18):1650-6. doi: 10.1080/14786410701875686. [PMID: 19085423]
  • Ai-Lin Liu, Hai-Di Wang, Simon MingYuen Lee, Yi-Tao Wang, Guan-Hua Du. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorganic & medicinal chemistry. 2008 Aug; 16(15):7141-7. doi: 10.1016/j.bmc.2008.06.049. [PMID: 18640042]
  • Shih-Hua Fang, Yerra Koteswara Rao, Yew-Min Tzeng. Anti-oxidant and inflammatory mediator's growth inhibitory effects of compounds isolated from Phyllanthus urinaria. Journal of ethnopharmacology. 2008 Mar; 116(2):333-40. doi: 10.1016/j.jep.2007.11.040. [PMID: 18187278]
  • Yi-Chen Tu, Tzi-Wei Lian, Jui-Hung Yen, Zong-Tsi Chen, Ming-Jiuan Wu. Antiatherogenic effects of kaempferol and rhamnocitrin. Journal of agricultural and food chemistry. 2007 Nov; 55(24):9969-76. doi: 10.1021/jf0717788. [PMID: 17973448]
  • Han-shen Zhen, Yan-yuan Zhou, Ye-fei Yuan, Huan-heng Mo, Zhen-guo Zhong, Chen-yan Liang. [Studies on the chemical constituents of the ethyl acetate portion of Nervilia fordii]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2007 Aug; 30(8):942-5. doi: . [PMID: 18074840]
  • Ilina Krasteva, Stefan Platikanov, Stefan Nikolov, Maki Kaloga. Flavonoids from Astragalus hamosus. Natural product research. 2007 May; 21(5):392-5. doi: 10.1080/14786410701236871. [PMID: 17487608]
  • XinFeng Zhang, Tran Manh Hung, Phuong Thien Phuong, Tran Minh Ngoc, Byung-Sun Min, Kyung-Sik Song, Yeon Hee Seong, KiHwan Bae. Anti-inflammatory activity of flavonoids from Populus davidiana. Archives of pharmacal research. 2006 Dec; 29(12):1102-8. doi: 10.1007/bf02969299. [PMID: 17225458]
  • S Singh, R K Upadhyay, M B Pandey, J P Singh, V B Pandey. Flavonoids from Echinops echinatus. Journal of Asian natural products research. 2006 Apr; 8(3):197-200. doi: 10.1080/1028602042000324826. [PMID: 16864424]
  • Hui-min Gao, Zhi-min Wang, Juan Tian. [Pharmacokinetics and metabolites of scutellarin in normal and model rats]. Yao xue xue bao = Acta pharmaceutica Sinica. 2005 Nov; 40(11):1024-7. doi: NULL. [PMID: 16499088]
  • Jian-guang Luo, Ling-yi Kong. [Study on flavonoids from leaf of Ipomoea batatas]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Apr; 30(7):516-8. doi: . [PMID: 16011096]
  • Filippo Cottiglia, Laura Casu, Leonardo Bonsignore, Mariano Casu, Costantino Floris, Silvio Sosa, Gianmario Altinier, Roberto Della Loggia. Topical anti-inflammatory activity of flavonoids and a new xanthone from Santolina insularis. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2005 Jan; 60(1-2):63-6. doi: 10.1515/znc-2005-1-212. [PMID: 15787246]
  • N D Martini, D R P Katerere, J N Eloff. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). Journal of ethnopharmacology. 2004 Aug; 93(2-3):207-12. doi: 10.1016/j.jep.2004.02.030. [PMID: 15234754]
  • Nurgul Sultanova, Talat Makhmoor, Amsha Yasin, Z A Abilov, V B Omurkamzinova, Atta-ur-Rahman, M Iqbal Choudhary. Isotamarixen - a new antioxidant and prolyl endopeptidase-inhibiting triterpenoid from Tamarix hispida. Planta medica. 2004 Jan; 70(1):65-7. doi: 10.1055/s-2004-815458. [PMID: 14765296]
  • Young-Kyoon Kim, Young Sup Kim, Sang Un Choi, Shi Yong Ryu. Isolation of flavonol rhamnosides from Loranthus tanakae and cytotoxic effect of them on human tumor cell lines. Archives of pharmacal research. 2004 Jan; 27(1):44-7. doi: 10.1007/bf02980044. [PMID: 14969337]
  • Elita Scio, Antônia Ribeiro, Tânia M A Alves, Alvaro J Romanha, José Dias de Souza Filho, Geoffrey A Cordell, Carlos L Zani. Diterpenes from Alomia myriadenia (Asteraceae) with cytotoxic and trypanocidal activity. Phytochemistry. 2003 Nov; 64(6):1125-31. doi: 10.1016/s0031-9422(03)00529-6. [PMID: 14568079]
  • Pierre Kamnaing, Apollinaire Tsopmo, Eric A Tanifum, Marguerite H K Tchuendem, Pierre Tane, Johnson F Ayafor, Olov Sterner, Donna Rattendi, Maurice M Iwu, Brian Schuster, Cyrus Bacchi. Trypanocidal diarylheptanoids from Aframomum letestuianum. Journal of natural products. 2003 Mar; 66(3):364-7. doi: 10.1021/np020362f. [PMID: 12662093]
  • N C Kim, A E Desjardins, C D Wu, A D Kinghorn. Activity of triterpenoid glycosides from the root bark of Mussaenda macrophylla against two oral pathogens. Journal of natural products. 1999 Oct; 62(10):1379-84. doi: 10.1021/np9901579. [PMID: 10543897]
  • S Máñez, M C Recio, I Gil, C Gómez, R M Giner, P G Waterman, J L Ríos. A glycosyl analogue of diacylglycerol and other antiinflammatory constituents from Inula viscosa. Journal of natural products. 1999 Apr; 62(4):601-4. doi: 10.1021/np980132u. [PMID: 10217718]
  • L Cai, C D Wu. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. Journal of natural products. 1996 Oct; 59(10):987-90. doi: 10.1021/np960451q. [PMID: 8904847]