Lutein (BioDeep_00000000574)
Secondary id: BioDeep_00000018740, BioDeep_00000227840, BioDeep_00000402745
human metabolite PANOMIX_OTCML-2023 blood metabolite Antitumor activity natural product
代谢物信息卡片
化学式: C40H56O2 (568.428)
中文名称: 叶黄素
谱图信息:
最多检出来源 Homo sapiens(blood) 36.02%
Last reviewed on 2024-07-12.
Cite this Page
Lutein. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/lutein (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000000574). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C[C@H](CC1(C)C)O)/C=C/C=C(\C)/C=C/[C@H]1C(=C[C@@H](CC1(C)C)O)C
InChI: InChI=1S/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-25,35-37,41-42H,26-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35-,36+,37-/m0/s1
描述信息
Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002).
Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene.
Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis.
Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available.
Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals.
A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA.
See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ...
Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye
Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].
Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].
同义名列表
96 个代谢物同义名
(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol; (1R,4R)-4-((1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-((4R)-4-HYDROXY-2,6,6-TRIMETHYL-1-CYCLOHEXEN-1-YL)-3,7,12,16-TETRAMETHYL-1,3,5,7,9,11,13,15,17-OCTADECANONAEN-1-YL)-3,5,5-TRIMETHYL-2-CYCLOHEXEN-1-OL; (1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1R,4R)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethylcyclohex-3-en-1-ol; (1R,4R)-4-((1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-((R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl)-3,5,5-trimethylcyclohex-2-enol; 4-(18-(4-hydroxy-2,6,6-trimethyl-1-cyclohex-2-enyl)-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl)-3,5,5-trimethyl-cyclohex-3-en-1-ol; .BETA.,.BETA.-CAROTENE-3,3-DIOL, 4,5-DIDEHYDRO-5,6-DIHYDRO-, (3R,3R,6R)-; Lutein, Pharmaceutical Secondary Standard; Certified Reference Material; (3R,3R,6R)-4,5-DIDEHYDRO-5,6-DIHYDRO-.BETA.,.BETA.-CAROTENE-3,3-DIOL; beta,beta-CAROTENE-3,3-DIOL, 4,5-DIDEHYDRO-5,6-DIHYDRO-, (3R,3R,6R)-; (3R,3R,6R)-4,5-DIDEHYDRO-5,6-DIHYDRO-.BETA.,.BETA.-CAROTIN-3,3-DIOL; (3R,3R,6S)-4,5-DIDEHYDRO-5,6-DIHYDRO-BETA,BETA-CAROTENE-3,3-DIOL; (3R,3R,6R)-4,5-didehydro-5,6-dihydro-beta,beta-carotene-3,3-diol; (3R,3R,6R)-4,5-DIDEHYDRO-5,6-DIHYDRO-beta,beta-CAROTIN-3,3-DIOL; (3R,3r,6S)-4,5-DIDEHYDRO-5,6-dihydro-b,b-carotene-3,3-diol; (3R,3r,6S)-4,5-DIDEHYDRO-5,6-dihydro-β,β-carotene-3,3-diol; 4,5-Didehydro-6-hydro-.beta.-carotene-3,3-diol #; .beta.,.epsilon.-Carotene-3,3-diol, (3R,3R,6R)-; beta,epsilon-Carotene-3, 3-Diol, (3R,3R,6S)-; 6’-Hydro-4’,5’-dehydro-β-carotene-3,3’-diol; beta,epsilon-Carotene-3,3-diol, (3R,3R,6R)-; beta,epsilon-Carotene-3,3-diol, (3S,3R,6S)-; 6-Hydro-4,5-dehydro-beta-carotene-3,3-diol; (3R,3R,6R)-beta,epsilon-carotene-3,3-diol; 6-Hydro-4,5-dehydro-β-carotene-3,3-diol; ( inverted exclamation markA)-Lutein; (3R,3’R,6’R)-β,ε-Carotene-3,3’-diol; .beta.,.epsilon.-Carotene-3,3-diol; (invertedexclamationmarkA)-Lutein; (3R,3R,6R)-β,ε-Carotene-3,3-diol; (3R,3R)-dihydroxy-alpha-carotene; beta,epsilon-Carotene-3,3-diol; 3,3-Dihydroxy-alpha-carotene; Lutein, analytical standard; Xanthophyll, all-trans-(+)-; Lutein from tagetes erecta; Xanthophyll, from marigold; all-trans-(+)-Xanthophyll; xanthophyll from alfalfa; |A,|A-carotene-3,3-diol; Xanthophyll, tech grade; all-trans-Xanthophyll; Lutein (Xanthophyll); Xanthophyll (~80\\%); e-carotene-3,3-diol; (3R,3’R,6’R)-Lutein; Lutein, all-trans-; XANTOFYL [WHO-DD]; (3R,3R,6R)-Lutein; XANTHOPHYLL [MI]; Vegetable luteol; all-trans-Lutein; BCBcMAP01_000190; Vegetable lutein; FloraGLO Lutein; UNII-X72A60C9MT; LUTEIN (USP-RS); LEUTEIN [VANDF]; LUTEIN [USP-RS]; LUTEIN [MART.]; (all-E)-Lutein; LUTEIN [VANDF]; LUTEIN (MART.); Lutein - 20\\%; Lutein, gamma; Lutein - 10\\%; Noon for Kids; LUTEIN [FCC]; gamma Lutein; trans-Lutein; Tox21_112594; LUTEIN [DSC]; Lutein ester; Lutein - 5\\%; XANTHOPHYLL; SMP1_000317; X72A60C9MT; carotenoid; Oro Glo 7; ()-Lutein; Lutein G; Lutein F; Xantofyl; Lutein A; FloraGLO; Lutamax; Leutein; Luteine; e 161b; Lutein; Bo-Xan; Leutin; OS 24; β, ε-carotene-3,3-diol; β, ε-carotene; α-Carotene-3,3-diol; Lutein
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:28838
- KEGG: C08601
- PubChem: 5281243
- HMDB: HMDB0003233
- Metlin: METLIN41491
- Metlin: METLIN3601
- DrugBank: DB00137
- ChEMBL: CHEMBL173929
- Wikipedia: Lutein
- LipidMAPS: LMPR01070274
- MeSH: Lutein
- ChemIDplus: 0000127402
- MetaCyc: CPD1F-119
- KNApSAcK: C00003776
- foodb: FDB015471
- chemspider: 4444655
- CAS: 127-40-2
- MetaboLights: MTBLC28838
- LipidMAPS: LMPR01070030
- 3DMET: B02256
- NIKKAJI: J5.394E
- RefMet: Lutein
- medchemexpress: HY-N6947
- PubChem: 10794
- KNApSAcK: 28838
- LOTUS: LTS0205297
分类词条
相关代谢途径
Reactome(0)
代谢反应
466 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
WikiPathways(0)
Plant Reactome(216)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
INOH(0)
PlantCyc(247)
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
δ-carotene ⟶ α-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
δ-carotene ⟶ α-carotene
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- lutein biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + zeinoxanthin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + lutein
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
15-cis-phytoene + a plastoquinone ⟶ 15,9'-di-cis-phytofluene + a plastoquinol
- lutein biosynthesis:
α-carotene + H+ + NADPH + O2 ⟶ H2O + NADP+ + zeinoxanthin
- superpathway of carotenoid biosynthesis in plants:
prephytoene diphosphate ⟶ 15-cis-phytoene + diphosphate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
693 个相关的物种来源信息
- 85782 - Acanthella: LTS0205297
- 85783 - Acanthella acuta: 10.1016/0305-0491(84)90180-9
- 85783 - Acanthella acuta: LTS0205297
- 4022 - Acer: LTS0205297
- 66201 - Acer palmatum: 10.1271/BBB1961.49.1211
- 66201 - Acer palmatum: LTS0205297
- 186623 - Actinopteri: LTS0205297
- 7898 - Actinopterygii: LTS0205297
- 13817 - Adiantum: LTS0205297
- 13818 - Adiantum capillus-veneris: 10.1016/0305-1978(85)90030-4
- 13818 - Adiantum capillus-veneris: LTS0205297
- 43363 - Aesculus: LTS0205297
- 43364 - Aesculus hippocastanum: 10.1002/(SICI)1522-2675(19981007)81:10<1815::AID-HLCA1815>3.0.CO;2-R
- 43364 - Aesculus hippocastanum: LTS0205297
- 39130 - Agastache: LTS0205297
- 39269 - Agastache foeniculum: 10.1080/10412905.1992.9698114
- 39269 - Agastache foeniculum: LTS0205297
- 55597 - Ageratum: LTS0205297
- 2653732 - Ageratum corymbosum: 10.1016/0031-9422(92)83647-H
- 2653732 - Ageratum corymbosum: LTS0205297
- 4678 - Allium: LTS0205297
- 4679 - Allium cepa: 10.1021/JF00023A019
- 4679 - Allium cepa: LTS0205297
- 3563 - Amaranthaceae: LTS0205297
- 4668 - Amaryllidaceae: LTS0205297
- 25624 - Amentotaxus: LTS0205297
- 89479 - Amentotaxus yunnanensis: 10.1021/NP030117B
- 89479 - Amentotaxus yunnanensis: LTS0205297
- 3108 - Ankistrodesmus: LTS0205297
- 6340 - Annelida: LTS0205297
- 22140 - Annonaceae: LTS0205297
- 4037 - Apiaceae: LTS0205297
- 6499 - Aplysia: LTS0205297
- 76186 - Aplysia depilans: 10.1016/0305-0491(84)90180-9
- 76186 - Aplysia depilans: LTS0205297
- 144767 - Aplysia fasciata: 10.1016/0305-0491(84)90180-9
- 144767 - Aplysia fasciata: LTS0205297
- 71498 - Aplysia punctata: 10.1016/0305-0491(84)90180-9
- 71498 - Aplysia punctata: LTS0205297
- 6498 - Aplysiidae: LTS0205297
- 3701 - Arabidopsis: LTS0205297
- 3702 - Arabidopsis thaliana: 10.1016/J.PHYTOCHEM.2009.03.021
- 3702 - Arabidopsis thaliana: LTS0205297
- 4454 - Araceae: LTS0205297
- 4246 - Arnica: LTS0205297
- 436207 - Arnica montana: 10.1055/S-0028-1099449
- 436207 - Arnica montana: LTS0205297
- 193297 - Aronia: LTS0205297
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1989.TB04709.X
- 661339 - Aronia melanocarpa: LTS0205297
- 4219 - Artemisia: LTS0205297
- 637489 - Artemisia sylvatica: 10.4268/CJCMM20141334
- 637489 - Artemisia sylvatica: LTS0205297
- 6656 - Arthropoda: LTS0205297
- 30275 - Ascidia: LTS0205297
- 107392 - Ascidia zara: 10.1016/0305-0491(85)90174-9
- 107392 - Ascidia zara: LTS0205297
- 7713 - Ascidiacea: LTS0205297
- 30274 - Ascidiidae: LTS0205297
- 4890 - Ascomycota: LTS0205297
- 40552 - Asparagaceae: LTS0205297
- 4685 - Asparagus: LTS0205297
- 4686 - Asparagus officinalis: 10.1021/JF00023A019
- 4686 - Asparagus officinalis: LTS0205297
- 41972 - Aspleniaceae: 10.1016/0305-1978(85)90030-4
- 41972 - Aspleniaceae: LTS0205297
- 32071 - Asplenium: LTS0205297
- 147934 - Asplenium aethiopicum: LTS0205297
- 29642 - Asplenium nidus: 10.1016/0305-1978(85)90030-4
- 29642 - Asplenium nidus: LTS0205297
- 1352538 - Asplenium obovatum: 10.1016/0305-1978(85)90030-4
- 1521210 - Asplenium sulcatum: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: LTS0205297
- 4210 - Asteraceae: LTS0205297
- 20400 - Astragalus: LTS0205297
- 47038 - Astragalus falcatus: 10.1023/B:CONC.0000003427.89093.1F
- 47038 - Astragalus falcatus: LTS0205297
- 1203520 - Athyriaceae: LTS0205297
- 32109 - Athyrium: LTS0205297
- 32110 - Athyrium filix-femina: 10.1016/0305-1978(85)90030-4
- 32110 - Athyrium filix-femina: LTS0205297
- 21563 - Averrhoa: LTS0205297
- 28974 - Averrhoa carambola: 10.1016/S0031-9422(00)84040-6
- 28974 - Averrhoa carambola: LTS0205297
- 45118 - Axinellidae: LTS0205297
- 33849 - Bacillariophyceae: LTS0205297
- 25692 - Balsaminaceae: LTS0205297
- 31345 - Bangiaceae: LTS0205297
- 2797 - Bangiophyceae: LTS0205297
- 79556 - Barringtonia: LTS0205297
- 79557 - Barringtonia asiatica: 10.1248/CPB.59.778
- 79557 - Barringtonia asiatica: LTS0205297
- 3681 - Begonia: LTS0205297
- 78253 - Begonia nantoensis:
- 78253 - Begonia nantoensis: 10.1002/CHIN.200434239
- 78253 - Begonia nantoensis: 10.1248/CPB.52.345
- 78253 - Begonia nantoensis: LTS0205297
- 3680 - Begoniaceae: LTS0205297
- 3554 - Beta: LTS0205297
- 161934 - Beta vulgaris: 10.1021/JF00023A019
- 161934 - Beta vulgaris: LTS0205297
- 3555 - Beta vulgaris subsp. vulgaris: 10.1021/JF00023A019
- 3555 - Beta vulgaris subsp. vulgaris: LTS0205297
- 6544 - Bivalvia: LTS0205297
- 29600 - Blechnaceae: LTS0205297
- 29605 - Blechnum: LTS0205297
- 32073 - Blechnum occidentale: 10.1016/0305-1978(85)90030-4
- 32073 - Blechnum occidentale: LTS0205297
- 7091 - Bombyx Mori L.: -
- 38879 - Botryococcaceae: LTS0205297
- 38880 - Botryococcus: LTS0205297
- 38881 - Botryococcus braunii: LTS0205297
- 3705 - Brassica: LTS0205297
- 3707 - Brassica juncea: 10.1271/BBB1961.49.1211
- 3707 - Brassica juncea: LTS0205297
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1021/JF00023A019
- 3712 - Brassica oleracea: 10.1271/BBB1961.49.1211
- 3712 - Brassica oleracea: LTS0205297
- 3700 - Brassicaceae: LTS0205297
- 41495 - Calendula: LTS0205297
- 41496 - Calendula officinalis: 10.1016/0031-9422(80)85055-2
- 41496 - Calendula officinalis: LTS0205297
- 4071 - Capsicum: LTS0205297
- 4072 - Capsicum annuum:
- 4072 - Capsicum annuum: LTS0205297
- 4305 - Celastraceae: LTS0205297
- 85180 - Celastrus: LTS0205297
- 85181 - Celastrus orbiculatus: 10.1016/J.PHYTOCHEM.2009.04.018
- 85181 - Celastrus orbiculatus: LTS0205297
- 78063 - Cetraria: LTS0205297
- 78064 - Cetraria islandica: 10.1016/0305-1978(87)90002-0
- 78064 - Cetraria islandica: LTS0205297
- 95628 - Cetraria islandica subsp. islandica: 10.1016/0305-1978(87)90002-0
- 95628 - Cetraria islandica subsp. islandica: LTS0205297
- 124737 - Cetraria nigricans: 10.1016/0305-1978(87)90002-0
- 124737 - Cetraria nigricans: LTS0205297
- 1804623 - Chenopodiaceae: LTS0205297
- 3071 - Chlorella: 10.1016/S0031-9422(00)81494-6
- 3071 - Chlorella: LTS0205297
- 3077 - Chlorella vulgaris:
- 3077 - Chlorella vulgaris: 10.1016/S0021-9673(00)00987-0
- 3077 - Chlorella vulgaris: 10.1016/S0031-9422(00)81494-6
- 3077 - Chlorella vulgaris: LTS0205297
- 35461 - Chlorellaceae: LTS0205297
- 35429 - Chlorodendraceae: LTS0205297
- 1524962 - Chlorodendrophyceae: LTS0205297
- 3082 - Chloroidium saccharophilum: 10.1016/S0031-9422(00)81494-6
- 1463548 - Chlorolobion: LTS0205297
- 34112 - Chlorolobion braunii: 10.1016/S0031-9422(00)81494-6
- 34112 - Chlorolobion braunii: LTS0205297
- 3166 - Chlorophyceae: LTS0205297
- 3041 - Chlorophyta: LTS0205297
- 7711 - Chordata: LTS0205297
- 173869 - Christella: LTS0205297
- 714463 - Christella parasitica: LTS0205297
- 13422 - Chrysanthemum: LTS0205297
- 41568 - Chrysanthemum × morifolium: 10.1016/J.PHYTOCHEM.2004.08.038
- 7718 - Ciona: LTS0205297
- 7719 - Ciona intestinalis: 10.1016/0305-0491(85)90174-9
- 7719 - Ciona intestinalis: LTS0205297
- 7717 - Cionidae: LTS0205297
- 2706 - Citrus: LTS0205297
- 43166 - Citrus aurantium: 10.1021/JF00087A017
- 135197 - Citrus junos: 10.1007/BF00598603
- 135197 - Citrus junos: LTS0205297
- 37656 - Citrus × paradisi: 10.1021/JF00087A017
- 5199 - Cladonia: LTS0205297
- 174044 - Cladonia arbuscula: LTS0205297
- 174050 - Cladonia cenotea: 10.1016/0305-1978(85)90064-X
- 174050 - Cladonia cenotea: LTS0205297
- 174051 - Cladonia cervicornis: LTS0205297
- 184202 - Cladonia cervicornis subsp. cervicornis: 10.1016/0305-1978(85)90064-X
- 184202 - Cladonia cervicornis subsp. cervicornis: LTS0205297
- 184094 - Cladonia cornuta: 10.1016/0305-1978(85)90064-X
- 184094 - Cladonia cornuta: LTS0205297
- 184097 - Cladonia deformis: 10.1016/0305-1978(85)90064-X
- 184097 - Cladonia deformis: LTS0205297
- 184101 - Cladonia foliacea: 10.1016/0305-1978(88)90082-8
- 184101 - Cladonia foliacea: LTS0205297
- 174060 - Cladonia furcata: 10.1016/0305-1978(85)90064-X
- 174060 - Cladonia furcata: LTS0205297
- 174061 - Cladonia glauca: 10.1016/0305-1978(85)90064-X
- 174061 - Cladonia glauca: LTS0205297
- 111668 - Cladonia gracilis:
- 111668 - Cladonia gracilis: 10.1016/0305-1978(85)90064-X
- 111668 - Cladonia gracilis: 10.1016/0305-1978(87)90002-0
- 111668 - Cladonia gracilis: LTS0205297
- 196765 - Cladonia macilenta: 10.1016/0305-1978(85)90064-X
- 196765 - Cladonia macilenta: LTS0205297
- 195774 - Cladonia mitis: 10.1016/0305-1978(85)90064-X
- 195774 - Cladonia mitis: LTS0205297
- 184109 - Cladonia phyllophora: 10.1016/0305-1978(85)90064-X
- 184109 - Cladonia phyllophora: LTS0205297
- 50943 - Cladonia portentosa: 10.1016/0305-1978(85)90064-X
- 50943 - Cladonia portentosa: LTS0205297
- 2031061 - Cladonia ramulosa: 10.1016/0305-1978(85)90064-X
- 2031061 - Cladonia ramulosa: LTS0205297
- 111670 - Cladonia rangiferina: 10.1016/0305-1978(87)90002-0
- 111670 - Cladonia rangiferina: LTS0205297
- 174071 - Cladonia scabriuscula: 10.1016/0305-1978(85)90064-X
- 174071 - Cladonia scabriuscula: LTS0205297
- 5198 - Cladoniaceae: LTS0205297
- 41218 - Colchicaceae: LTS0205297
- 3954 - Combretaceae: LTS0205297
- 29597 - Coniogramme: LTS0205297
- 29598 - Coniogramme japonica: 10.1016/0305-1978(85)90030-4
- 29598 - Coniogramme japonica: LTS0205297
- 48525 - Corallorhiza: LTS0205297
- 451881 - Corallorhiza trifida: 10.1016/S0031-9422(00)85811-2
- 451881 - Corallorhiza trifida: LTS0205297
- 45948 - Corbicula: LTS0205297
- 141464 - Corbicula japonica: 10.1021/JF058088T
- 141464 - Corbicula japonica: LTS0205297
- 141465 - Corbicula sandai: 10.1021/JF058088T
- 141465 - Corbicula sandai: LTS0205297
- 7958 - Ctenopharyngodon: LTS0205297
- 7959 - Ctenopharyngodon idella: 10.1016/0305-0491(81)90400-4
- 7959 - Ctenopharyngodon idella: LTS0205297
- 3655 - Cucumis: LTS0205297
- 3659 - Cucumis sativus:
- 3659 - Cucumis sativus: 10.1021/JF00023A019
- 3659 - Cucumis sativus: 10.1055/S-0028-1088338
- 3659 - Cucumis sativus: 10.1248/CPB.55.133
- 3659 - Cucumis sativus: LTS0205297
- 869827 - Cucumis sativus var. sativus:
- 869827 - Cucumis sativus var. sativus: 10.1021/JF00023A019
- 869827 - Cucumis sativus var. sativus: 10.1055/S-0028-1088338
- 869827 - Cucumis sativus var. sativus: LTS0205297
- 3660 - Cucurbita: LTS0205297
- 3661 - Cucurbita maxima: 10.1016/S0031-9422(00)83753-X
- 3661 - Cucurbita maxima: LTS0205297
- 3663 - Cucurbita pepo: 10.1021/JF00023A019
- 3663 - Cucurbita pepo: LTS0205297
- 3650 - Cucurbitaceae: LTS0205297
- 3367 - Cupressaceae: LTS0205297
- 32180 - Cyclosorus: LTS0205297
- 714463 - Cyclosorus parasiticus: 10.1016/0305-1978(85)90030-4
- 4264 - Cynara: LTS0205297
- 4265 - Cynara cardunculus: 10.1021/JF00023A019
- 4265 - Cynara cardunculus: LTS0205297
- 7953 - Cyprinidae: LTS0205297
- 1176409 - Cyrenidae: LTS0205297
- 84613 - Cyrtomium: LTS0205297
- 84614 - Cyrtomium falcatum: 10.1016/0305-1978(85)90030-4
- 84614 - Cyrtomium falcatum: LTS0205297
- 31412 - Cystocloniaceae: LTS0205297
- 257570 - Cystoclonium: LTS0205297
- 257571 - Cystoclonium purpureum: 10.1016/S0031-9422(00)85526-0
- 257571 - Cystoclonium purpureum: LTS0205297
- 1203500 - Cystopteridaceae: LTS0205297
- 32111 - Cystopteris: LTS0205297
- 1328777 - Cystopteris bulbifera: 10.1016/0305-1978(85)90030-4
- 1328777 - Cystopteris bulbifera: LTS0205297
- 32112 - Cystopteris fragilis: 10.1016/0305-1978(85)90030-4
- 32112 - Cystopteris fragilis: LTS0205297
- 872508 - Cystopteris sudetica: 10.1016/0305-1978(85)90030-4
- 872508 - Cystopteris sudetica: LTS0205297
- 4038 - Daucus: LTS0205297
- 4039 - Daucus carota:
- 4039 - Daucus carota: 10.1021/JF00023A019
- 4039 - Daucus carota: 10.1271/BBB1961.49.1211
- 4039 - Daucus carota: LTS0205297
- 6042 - Demospongiae: LTS0205297
- 32084 - Dennstaedtiaceae: LTS0205297
- 77547 - Desmodesmus abundans: 10.1016/S0031-9422(00)81494-6
- 85793 - Dictyonellidae: LTS0205297
- 13492 - Diospyros: LTS0205297
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1007/BF00575777
- 35925 - Diospyros kaki: 10.1007/BF00597795
- 35925 - Diospyros kaki: 10.1016/S0031-9422(00)80801-8
- 35925 - Diospyros kaki: LTS0205297
- 455304 - Diphasiastrum: LTS0205297
- 34168 - Diphasiastrum complanatum: LTS0205297
- 37432 - Diphasiastrum tristachyum: 10.1016/0305-1978(85)90030-4
- 37432 - Diphasiastrum tristachyum: LTS0205297
- 6510 - Dolabella: LTS0205297
- 6511 - Dolabella auricularia: 10.2331/SUISAN.57.277
- 6511 - Dolabella auricularia: LTS0205297
- 106722 - Dorstenia: LTS0205297
- 29607 - Dryopteridaceae: LTS0205297
- 3287 - Dryopteris: LTS0205297
- 239547 - Dryopteris affinis: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: LTS0205297
- 239555 - Dryopteris carthusiana: 10.1016/0305-1978(85)90030-4
- 239555 - Dryopteris carthusiana: LTS0205297
- 239607 - Dryopteris wallichiana: 10.1016/0305-1978(85)90030-4
- 239607 - Dryopteris wallichiana: LTS0205297
- 19955 - Ebenaceae: LTS0205297
- 7586 - Echinodermata: LTS0205297
- 449979 - Epipogium: LTS0205297
- 449980 - Epipogium aphyllum: 10.1016/S0031-9422(00)85811-2
- 449980 - Epipogium aphyllum: LTS0205297
- 3256 - Equisetaceae: LTS0205297
- 3257 - Equisetum: LTS0205297
- 3258 - Equisetum arvense: 10.1016/0305-1978(85)90030-4
- 3258 - Equisetum arvense: LTS0205297
- 231680 - Equisetum fluviatile: 10.1016/0305-1978(85)90030-4
- 231680 - Equisetum fluviatile: LTS0205297
- 3262 - Equisetum hyemale: 10.1016/0305-1978(85)90030-4
- 3262 - Equisetum hyemale: LTS0205297
- 113538 - Equisetum palustre: 10.1016/0305-1978(85)90030-4
- 113538 - Equisetum palustre: LTS0205297
- 231681 - Equisetum pratense: 10.1016/0305-1978(85)90030-4
- 231681 - Equisetum pratense: LTS0205297
- 231679 - Equisetum sylvaticum: 10.1016/0305-1978(85)90030-4
- 231679 - Equisetum sylvaticum: LTS0205297
- 3260 - Equisetum telmateia: 10.1016/0305-1978(85)90030-4
- 3260 - Equisetum telmateia: LTS0205297
- 4345 - Ericaceae: LTS0205297
- 53876 - Erythrophleum: LTS0205297
- 568080 - Erythrophleum fordii: 10.1016/J.BMC.2008.09.021
- 568080 - Erythrophleum fordii: LTS0205297
- 3466 - Eschscholzia: LTS0205297
- 3467 - Eschscholzia californica: 10.1021/NP0000670
- 3467 - Eschscholzia californica: LTS0205297
- 2759 - Eukaryota: LTS0205297
- 4306 - Euonymus: LTS0205297
- 212708 - Euonymus japonicus: 10.1271/BBB1961.49.1211
- 212708 - Euonymus japonicus: LTS0205297
- 13516 - Eupatorium: LTS0205297
- 102770 - Eupatorium cannabinum: 10.1055/S-2006-962665
- 102770 - Eupatorium cannabinum: LTS0205297
- 3803 - Fabaceae: LTS0205297
- 2806 - Florideophyceae: LTS0205297
- 4751 - Fungi: LTS0205297
- 114476 - Gardenia jasminoides Ellis: -
- 6448 - Gastropoda: LTS0205297
- 3310 - Ginkgo: LTS0205297
- 3311 - Ginkgo biloba: 10.1111/J.1438-8677.1992.TB00261.X
- 3311 - Ginkgo biloba: LTS0205297
- 3309 - Ginkgoaceae: LTS0205297
- 29811 - Ginkgoopsida: LTS0205297
- 3846 - Glycine: LTS0205297
- 3847 - Glycine max: 10.1271/BBB1961.49.1211
- 3847 - Glycine max: LTS0205297
- 32115 - Gymnocarpium: LTS0205297
- 32116 - Gymnocarpium dryopteris: 10.1016/0305-1978(85)90030-4
- 32116 - Gymnocarpium dryopteris: LTS0205297
- 7728 - Halocynthia: LTS0205297
- 7729 - Halocynthia roretzi:
- 7729 - Halocynthia roretzi: 10.1016/0305-0491(85)90174-9
- 7729 - Halocynthia roretzi: 10.1248/CPB.32.4309
- 7729 - Halocynthia roretzi: LTS0205297
- 47605 - Hibiscus: LTS0205297
- 106335 - Hibiscus syriacus: 10.1021/JF60182A030
- 106335 - Hibiscus syriacus: LTS0205297
- 7684 - Holothuria: LTS0205297
- 7685 - Holothuria tubulosa: 10.1016/0305-0491(84)90180-9
- 7685 - Holothuria tubulosa: LTS0205297
- 7683 - Holothuriidae: LTS0205297
- 7705 - Holothuroidea: LTS0205297
- 9606 - Homo sapiens: -
- 37428 - Huperzia: LTS0205297
- 70001 - Huperzia selago: 10.1016/0305-1978(85)90030-4
- 70001 - Huperzia selago: LTS0205297
- 35939 - Impatiens: LTS0205297
- 127129 - Impatiens noli-tangere: 10.1002/HLCA.19760590440
- 127129 - Impatiens noli-tangere: LTS0205297
- 50557 - Insecta: LTS0205297
- 161755 - Isatis: LTS0205297
- 161756 - Isatis tinctoria: 10.1016/J.PHYTOCHEM.2009.04.019
- 161756 - Isatis tinctoria: LTS0205297
- 4235 - Lactuca: LTS0205297
- 4236 - Lactuca sativa: 10.1021/JF00023A019
- 4236 - Lactuca sativa: LTS0205297
- 75943 - Lactuca serriola: 10.1271/BBB1961.49.1211
- 75943 - Lactuca serriola: LTS0205297
- 122809 - Lagerstroemia: LTS0205297
- 122810 - Lagerstroemia speciosa: 10.1080/10286020310001596024
- 122810 - Lagerstroemia speciosa: LTS0205297
- 4136 - Lamiaceae: LTS0205297
- 147547 - Lecanoromycetes: LTS0205297
- 3642 - Lecythidaceae: LTS0205297
- 4469 - Lemna: LTS0205297
- 89585 - Lemna aequinoctialis: 10.1271/BBB1961.50.2053
- 89585 - Lemna aequinoctialis: LTS0205297
- 161103 - Lemna perpusilla: 10.1271/BBB1961.50.2053
- 4677 - Liliaceae: LTS0205297
- 4447 - Liliopsida: LTS0205297
- 6739 - Lithodidae: LTS0205297
- 32137 - Lomariopsidaceae: LTS0205297
- 980636 - Lophanthus: LTS0205297
- 2668598 - Lophanthus chinensis: LTS0205297
- 3963 - Loranthaceae: LTS0205297
- 3250 - Lycopodiaceae: LTS0205297
- 1521260 - Lycopodiopsida: LTS0205297
- 3251 - Lycopodium: LTS0205297
- 3252 - Lycopodium clavatum: 10.1016/0305-1978(85)90030-4
- 3252 - Lycopodium clavatum: LTS0205297
- 3928 - Lythraceae: LTS0205297
- 3398 - Magnoliopsida: LTS0205297
- 6681 - Malacostraca: LTS0205297
- 3629 - Malvaceae: LTS0205297
- 41873 - Mamiellaceae: LTS0205297
- 1035538 - Mamiellophyceae: LTS0205297
- 13607 - Mantoniella: LTS0205297
- 13608 - Mantoniella squamata: 10.1016/0305-1978(95)00075-5
- 13608 - Mantoniella squamata: LTS0205297
- 3276 - Matteuccia: LTS0205297
- 3277 - Matteuccia struthiopteris: 10.1016/0305-1978(85)90030-4
- 3277 - Matteuccia struthiopteris: LTS0205297
- 3370 - Metasequoia: LTS0205297
- 3371 - Metasequoia glyptostroboides: 10.1016/0305-1978(87)90003-2
- 3371 - Metasequoia glyptostroboides: LTS0205297
- 33208 - Metazoa: LTS0205297
- 21013 - Mimosa: LTS0205297
- 148708 - Mimosa aculeaticarpa: LTS0205297
- 148709 - Mimosa aculeaticarpa var. biuncifera: 10.1007/BF00596768
- 6447 - Mollusca: LTS0205297
- 176248 - Monotropa hypopitys: 10.1016/S0031-9422(00)85811-2
- 166981 - Montanoa: LTS0205297
- 167005 - Montanoa speciosa: 10.1016/0031-9422(91)83196-R
- 167005 - Montanoa speciosa: LTS0205297
- 2364055 - Monteverdia: LTS0205297
- 3487 - Moraceae: LTS0205297
- 3931 - Myrtaceae: LTS0205297
- 50949 - Navicula: LTS0205297
- 67474 - Naviculaceae: LTS0205297
- 48533 - Neottia: LTS0205297
- 48534 - Neottia nidus-avis: 10.1016/S0031-9422(00)85811-2
- 48534 - Neottia nidus-avis: LTS0205297
- 32151 - Nephrolepidaceae: LTS0205297
- 32152 - Nephrolepis: LTS0205297
- 32153 - Nephrolepis cordifolia: 10.1016/0305-1978(85)90030-4
- 32153 - Nephrolepis cordifolia: LTS0205297
- 34165 - Nephrolepis exaltata: 10.1016/0305-1978(85)90030-4
- 34165 - Nephrolepis exaltata: LTS0205297
- 2682465 - Nephroselmidaceae: LTS0205297
- 1242998 - Nephroselmidophyceae: LTS0205297
- 31311 - Nephroselmis: LTS0205297
- 344402 - Nephroselmis rotunda: 10.1016/0305-1978(95)00075-5
- 344402 - Nephroselmis rotunda: LTS0205297
- 2696291 - Ochrophyta: LTS0205297
- 4145 - Olea: LTS0205297
- 4146 - Olea europaea: 10.1002/0471684228.EGP08791
- 4146 - Olea europaea: LTS0205297
- 4144 - Oleaceae: LTS0205297
- 3280 - Onoclea: LTS0205297
- 3281 - Onoclea sensibilis: 10.1016/0305-1978(85)90030-4
- 3281 - Onoclea sensibilis: LTS0205297
- 693794 - Onocleaceae: LTS0205297
- 3070 - Oocystaceae: LTS0205297
- 4747 - Orchidaceae: LTS0205297
- 174657 - Oreopteris: LTS0205297
- 174658 - Oreopteris limbosperma: 10.1016/0305-1978(85)90030-4
- 174658 - Oreopteris limbosperma: LTS0205297
- 204150 - Orthosiphon: LTS0205297
- 204151 - Orthosiphon aristatus: 10.1007/BF00596668
- 4033 - Oxalidaceae: LTS0205297
- 4726 - Pandanus tectorius: 10.1079/PHN2005892
- 694376 - Panzerina: LTS0205297
- 694377 - Panzerina lanata: 10.1007/S10600-011-0065-4
- 694377 - Panzerina lanata: LTS0205297
- 3465 - Papaveraceae: LTS0205297
- 6740 - Paralithodes: LTS0205297
- 174403 - Paralithodes brevipes: 10.1248/CPB.54.1462
- 174403 - Paralithodes brevipes: LTS0205297
- 1259760 - Parlibellus delognei: 10.1021/NP50035A010
- 78060 - Parmeliaceae: LTS0205297
- 48385 - Perilla: LTS0205297
- 48386 - Perilla frutescens: 10.1271/BBB1961.49.1211
- 48386 - Perilla frutescens: LTS0205297
- 179837 - Perilla frutescens var. crispa: 10.1016/J.FCT.2009.10.009
- 179837 - Perilla frutescens var. crispa: LTS0205297
- 4042 - Petroselinum: LTS0205297
- 4043 - Petroselinum crispum: 10.1007/BF02258976
- 4043 - Petroselinum crispum: LTS0205297
- 663597 - Petroselinum crispum: 10.1007/BF02258976
- 3883 - Phaseolus: LTS0205297
- 3885 - Phaseolus vulgaris:
- 3885 - Phaseolus vulgaris: 10.1021/JF00023A019
- 3885 - Phaseolus vulgaris: 10.1021/JF00034A017
- 3885 - Phaseolus vulgaris: LTS0205297
- 218619 - Phlebodium: LTS0205297
- 218620 - Phlebodium aureum: 10.1016/0305-1978(85)90030-4
- 218620 - Phlebodium aureum: LTS0205297
- 3328 - Picea: LTS0205297
- 3329 - Picea abies: 10.1016/S0021-9673(01)84605-7
- 3329 - Picea abies: LTS0205297
- 3318 - Pinaceae: LTS0205297
- 58019 - Pinopsida: LTS0205297
- 13215 - Piper: LTS0205297
- 130377 - Piper aduncum: 10.1021/NP50103A003
- 130377 - Piper aduncum: LTS0205297
- 16739 - Piperaceae: LTS0205297
- 164273 - Pityrogramma: LTS0205297
- 1868143 - Pityrogramma sulphurea: 10.1016/0305-1978(85)90030-4
- 1868143 - Pityrogramma sulphurea: LTS0205297
- 33090 - Plants: -
- 4479 - Poaceae: LTS0205297
- 6341 - Polychaeta: LTS0205297
- 3275 - Polypodiaceae: LTS0205297
- 241806 - Polypodiopsida: LTS0205297
- 3278 - Polystichum: 10.1016/0305-1978(85)90030-4
- 3278 - Polystichum: LTS0205297
- 207866 - Polystichum luctuosum: 10.1016/0305-1978(85)90030-4
- 207866 - Polystichum luctuosum: LTS0205297
- 207876 - Polystichum tsus-simense: 10.1016/0305-1978(85)90030-4
- 207876 - Polystichum tsus-simense: LTS0205297
- 6040 - Porifera: LTS0205297
- 2784 - Porphyra: LTS0205297
- 51281 - Protula: LTS0205297
- 363316 - Protula tubularia: 10.1016/0305-0491(84)90180-9
- 363316 - Protula tubularia: LTS0205297
- 3754 - Prunus: LTS0205297
- 122119 - Prunus angustifolia: 10.1021/JF00087A017
- 36596 - Prunus armeniaca:
- 36596 - Prunus armeniaca: 10.1016/J.FOODRES.2010.11.014
- 36596 - Prunus armeniaca: 10.1021/JF403644R
- 36596 - Prunus armeniaca: LTS0205297
- 3758 - Prunus domestica: 10.1021/JF00087A017
- 3758 - Prunus domestica: LTS0205297
- 3760 - Prunus persica: 10.1016/S0031-9422(00)81842-7
- 3760 - Prunus persica: LTS0205297
- 3759 - Prunus yedoensis: 10.1271/BBB1961.49.1211
- 3759 - Prunus yedoensis: LTS0205297
- 120289 - Psidium: LTS0205297
- 120290 - Psidium guajava: 10.1021/JF980405R
- 120290 - Psidium guajava: LTS0205297
- 25443 - Psychotria: LTS0205297
- 1129518 - Psychotria correae: 10.1016/0031-9422(94)00823-C
- 13819 - Pteridaceae: LTS0205297
- 32100 - Pteridium: LTS0205297
- 32101 - Pteridium aquilinum: 10.1016/0305-1978(85)90030-4
- 32101 - Pteridium aquilinum: LTS0205297
- 13820 - Pteris: LTS0205297
- 262952 - Pteris tremula: 10.1016/0305-1978(85)90030-4
- 262952 - Pteris tremula: LTS0205297
- 7727 - Pyuridae: LTS0205297
- 56479 - Ramalina: LTS0205297
- 859456 - Ramalina capitata: 10.1006/LICH.1995.0012
- 859456 - Ramalina capitata: LTS0205297
- 56478 - Ramalinaceae: LTS0205297
- 3440 - Ranunculaceae: LTS0205297
- 3445 - Ranunculus: LTS0205297
- 3447 - Ranunculus acris: 10.1002/HLCA.19760590440
- 3447 - Ranunculus acris: LTS0205297
- 286908 - Ranunculus granatensis: 10.1002/HLCA.19760590440
- 3725 - Raphanus: LTS0205297
- 3726 - Raphanus sativus:
- 3726 - Raphanus sativus: 10.1271/BBB1961.49.1211
- 3726 - Raphanus sativus: LTS0205297
- 4346 - Rhododendron: LTS0205297
- 75581 - Rhododendron indicum: 10.1271/BBB1961.49.1211
- 75581 - Rhododendron indicum: LTS0205297
- 2763 - Rhodophyta: LTS0205297
- 3764 - Rosa: LTS0205297
- 74635 - Rosa canina:
- 74635 - Rosa canina: 10.1016/S0731-7085(97)00099-X
- 74635 - Rosa canina: 10.1111/J.1365-2621.1989.TB04709.X
- 74635 - Rosa canina: LTS0205297
- 74645 - Rosa rugosa: 10.1111/J.1365-2621.1989.TB04709.X
- 74645 - Rosa rugosa: LTS0205297
- 267261 - Rosa villosa: 10.1002/HLCA.19830660211
- 267261 - Rosa villosa: LTS0205297
- 3745 - Rosaceae: LTS0205297
- 24966 - Rubiaceae: LTS0205297
- 23513 - Rutaceae: LTS0205297
- 61863 - Sandersonia: LTS0205297
- 61864 - Sandersonia aurantiaca: 10.1016/S0304-4238(97)00124-6
- 61864 - Sandersonia aurantiaca: LTS0205297
- 3958 - Santalaceae: LTS0205297
- 23672 - Sapindaceae: LTS0205297
- 3086 - Scenedesmaceae: LTS0205297
- 3087 - Scenedesmus: LTS0205297
- 104103 - Scenedesmus acutus: LTS0205297
- 3089 - Scenedesmus quadricauda: 10.1016/S0031-9422(00)81494-6
- 3089 - Scenedesmus quadricauda: LTS0205297
- 4549 - Secale: LTS0205297
- 4550 - Secale cereale: 10.1515/ZNC-1993-11-1212
- 4550 - Secale cereale: LTS0205297
- 35466 - Selenastraceae: LTS0205297
- 51280 - Serpulidae: LTS0205297
- 30989 - Siluridae: LTS0205297
- 94992 - Silurus: LTS0205297
- 30991 - Silurus asotus: 10.1248/CPB.59.140
- 30991 - Silurus asotus: LTS0205297
- 4703 - Smilacaceae: LTS0205297
- 49656 - Smilax: LTS0205297
- 1402161 - Smilax: 10.1007/BF00598698
- 4070 - Solanaceae: LTS0205297
- 4107 - Solanum: LTS0205297
- 329782 - Solanum lanceolatum: 10.1055/S-2001-11496
- 329782 - Solanum lanceolatum: LTS0205297
- 4081 - Solanum lycopersicum: 10.1021/JF00023A019
- 4081 - Solanum lycopersicum: LTS0205297
- 45837 - Solanum pseudocapsicum: 10.1055/S-2001-11496
- 45837 - Solanum pseudocapsicum: LTS0205297
- 4113 - Solanum tuberosum:
- 4113 - Solanum tuberosum: 10.1021/JF00023A019
- 4113 - Solanum tuberosum: 10.1021/JF0257953
- 4113 - Solanum tuberosum: LTS0205297
- 3561 - Spinacia: LTS0205297
- 3562 - Spinacia oleracea: 10.1021/JF00023A019
- 3562 - Spinacia oleracea: LTS0205297
- 1965351 - Spinulum: LTS0205297
- 13840 - Spinulum annotinum: LTS0205297
- 29026 - Staphylinidae: LTS0205297
- 29601 - Stenochlaena: LTS0205297
- 32079 - Stenochlaena palustris: 10.1016/S0031-9422(98)00352-5
- 32079 - Stenochlaena palustris: LTS0205297
- 50937 - Stereocaulaceae: LTS0205297
- 50938 - Stereocaulon: LTS0205297
- 405089 - Stereocaulon botryosum: 10.1016/0305-1978(87)90002-0
- 405089 - Stereocaulon botryosum: LTS0205297
- 50940 - Stereocaulon paschale: 10.1016/0305-1978(87)90002-0
- 50940 - Stereocaulon paschale: LTS0205297
- 35493 - Streptophyta: LTS0205297
- 114457 - Struthiopteris spicant: 10.1016/0305-1978(85)90030-4
- 7724 - Styela: LTS0205297
- 7725 - Styela clava: 10.1016/0305-0491(85)90174-9
- 7725 - Styela clava: LTS0205297
- 7726 - Styela plicata: 10.1016/0305-0491(85)90174-9
- 7726 - Styela plicata: LTS0205297
- 7721 - Styelidae: LTS0205297
- 13707 - Tagetes: LTS0205297
- 13708 - Tagetes erecta:
- 13708 - Tagetes erecta: 10.1016/S0367-326X(99)00044-1
- 13708 - Tagetes erecta: 10.1016/S0926-6690(97)10005-X
- 13708 - Tagetes erecta: 10.1016/S1383-5718(96)00151-9
- 13708 - Tagetes erecta: 10.1021/JF980823W
- 13708 - Tagetes erecta: LTS0205297
- 55843 - Tagetes patula:
- 55843 - Tagetes patula: 10.1016/S0367-326X(99)00044-1
- 55843 - Tagetes patula: 10.1016/S0926-6690(97)10005-X
- 55843 - Tagetes patula: LTS0205297
- 25623 - Taxaceae: LTS0205297
- 25628 - Taxus: LTS0205297
- 147273 - Taxus wallichiana: LTS0205297
- 147275 - Taxus wallichiana var. wallichiana: 10.1021/NP030117B
- 147275 - Taxus wallichiana var. wallichiana: LTS0205297
- 32443 - Teleostei: LTS0205297
- 39992 - Terminalia: LTS0205297
- 39993 - Terminalia catappa: 10.1111/J.1365-2621.2001.TB15182.X
- 39993 - Terminalia catappa: LTS0205297
- 34493 - Tethya: LTS0205297
- 281732 - Tethya aurantium: 10.1016/0305-0491(84)90180-9
- 281732 - Tethya aurantium: LTS0205297
- 45120 - Tethyidae: LTS0205297
- 91192 - Tetradesmus: LTS0205297
- 3088 - Tetradesmus obliquus: LTS0205297
- 3164 - Tetraselmis: 10.1016/0305-1978(95)00075-5
- 3164 - Tetraselmis: LTS0205297
- 1689752 - Tetraselmis wettsteinii: 10.1016/0305-1978(95)00075-5
- 1689752 - Tetraselmis wettsteinii: LTS0205297
- 29616 - Thelypteridaceae: LTS0205297
- 29617 - Thelypteris: LTS0205297
- 29618 - Thelypteris palustris: 10.1016/0305-1978(85)90030-4
- 29618 - Thelypteris palustris: LTS0205297
- 58023 - Tracheophyta: LTS0205297
- 75966 - Trebouxiophyceae: LTS0205297
- 87270 - Umbilicaria: LTS0205297
- 87282 - Umbilicaria rigida: 10.1016/0305-1978(87)90002-0
- 87282 - Umbilicaria rigida: LTS0205297
- 392743 - Umbilicaria torrefacta: 10.1016/0305-1978(87)90002-0
- 392743 - Umbilicaria torrefacta: LTS0205297
- 87287 - Umbilicaria vellea: 10.1016/0305-1978(87)90002-0
- 87287 - Umbilicaria vellea: LTS0205297
- 87265 - Umbilicariaceae: LTS0205297
- 174969 - Uvaria: LTS0205297
- 225837 - Uvaria lucida: 10.1016/S0031-9422(96)00448-7
- 225837 - Uvaria lucida: LTS0205297
- 13749 - Vaccinium: LTS0205297
- 13750 - Vaccinium macrocarpon: 10.1021/JF00087A017
- 13750 - Vaccinium macrocarpon: LTS0205297
- 180763 - Vaccinium myrtillus: 10.1016/S0168-9452(97)00241-0
- 180763 - Vaccinium myrtillus: LTS0205297
- 13757 - Viola: LTS0205297
- 214053 - Viola tricolor: 10.1016/0031-9422(80)87027-0
- 214053 - Viola tricolor: LTS0205297
- 24921 - Violaceae: LTS0205297
- 33090 - Viridiplantae: LTS0205297
- 1003255 - Viscaceae: LTS0205297
- 3971 - Viscum: LTS0205297
- 3972 - Viscum album: 10.1055/S-1999-14089
- 3972 - Viscum album: LTS0205297
- 3602 - Vitaceae: LTS0205297
- 3603 - Vitis: LTS0205297
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 29760 - Vitis vinifera: 10.1021/JF00087A017
- 29760 - Vitis vinifera: 10.1021/JF034275K
- 29760 - Vitis vinifera: LTS0205297
- 246271 - Woodsiaceae: LTS0205297
- 2743745 - Xenocyprididae: LTS0205297
- 4575 - Zea: LTS0205297
- 4577 - Zea mays: 10.1271/BBB1961.49.1211
- 4577 - Zea mays: 10.3390/NU5041169
- 4577 - Zea mays: LTS0205297
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Zhilei Qin, Mengsu Liu, Xuefeng Ren, Weizhu Zeng, Zhengshan Luo, Jingwen Zhou. De Novo Biosynthesis of Lutein in Yarrowia lipolytica.
Journal of agricultural and food chemistry.
2024 Mar; 72(10):5348-5357. doi:
10.1021/acs.jafc.3c09080
. [PMID: 38412053] - Jolanta Flieger, Natalia Żuk, Sylwia Pasieczna-Patkowska, Marcin Kuśmierz, Rafał Panek, Wojciech Franus, Jacek Baj, Grzegorz Buszewicz, Grzegorz Teresiński, Wojciech Płaziński. Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063152
. [PMID: 38542125] - María Dolores Requena-Ramírez, Cristina Rodríguez-Suárez, Dámaso Hornero-Méndez, Sergio G Atienza. Lutein esterification increases carotenoid retention in durum wheat grain. A step further in breeding and improving the commercial and nutritional quality during grain storage.
Food chemistry.
2024 Mar; 435(?):137660. doi:
10.1016/j.foodchem.2023.137660
. [PMID: 37832338] - Veronika Gunjević, Mirta Majerić Musa, Dora Zurak, Zlatko Svečnjak, Marija Duvnjak, Darko Grbeša, Kristina Kljak. Carotenoid degradation rate in milled grain of dent maize hybrids and its relationship with the grain physicochemical properties.
Food research international (Ottawa, Ont.).
2024 Feb; 177(?):113909. doi:
10.1016/j.foodres.2023.113909
. [PMID: 38225147] - Jiawen Yan, Zhihui Liu, Tongtong Wang, Ruoman Wang, Shuya Wang, Weijie Chen, Jinwei Suo, Jingwei Yan, Jiasheng Wu. TgLUT1 regulated by TgWRKY10 enhances the tolerance of Torreya grandis to drought stress.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108436. doi:
10.1016/j.plaphy.2024.108436
. [PMID: 38367388] - Weidong Chen, Yuanqing Li, Min Li, Hai Li, Caifang Chen, Yanzhao Lin. Association between dietary carotenoid intakes and abdominal aortic calcification in adults: National Health and Nutrition Examination Survey 2013-2014.
Journal of health, population, and nutrition.
2024 Feb; 43(1):20. doi:
10.1186/s41043-024-00511-9
. [PMID: 38303096] - Grzegorz Dąbrowski, Sylwester Czaplicki, Marcin Szustak, Eliza Korkus, Edyta Gendaszewska-Darmach, Iwona Konopka. The impact of selected xanthophylls on oil hydrolysis by pancreatic lipase: in silico and in vitro studies.
Scientific reports.
2024 02; 14(1):2731. doi:
10.1038/s41598-024-53312-9
. [PMID: 38302772] - Emilia Reszczyńska, Anna Wiśniewska-Becker, Mariusz Duda, Alicja Sęk, Wiesław I Gruszecki, Agnieszka Hanaka. The presence of free palmitic acid modulates the effects of lutein on structural and dynamic properties of lipid membranes.
Archives of biochemistry and biophysics.
2024 Feb; 752(?):109883. doi:
10.1016/j.abb.2024.109883
. [PMID: 38211638] - Sharayah Carter, Alison M Hill, Catherine Yandell, Jonathan D Buckley, Alison M Coates. Study protocol for a 15-week randomised controlled trial assessing the independent effects of high-cholesterol and high-saturated fat diets on LDL cholesterol.
BMJ open.
2024 01; 14(1):e081664. doi:
10.1136/bmjopen-2023-081664
. [PMID: 38272555] - Hideo Takekoshi, Masaki Fujishima, Taiki Miyazawa, Ohki Higuchi, Takahiko Fujikawa, Teruo Miyazawa. Simultaneous Intake of Chlorella and Ascidian Ethanolamine Plasmalogen Accelerates Activation of BDNF-TrkB-CREB Signaling in Rats.
Molecules (Basel, Switzerland).
2024 Jan; 29(2):. doi:
10.3390/molecules29020357
. [PMID: 38257270] - Qing Liu, Chenyun Miao, Fangxuan Lin, Han Zhang, Qin Zhang. A case-control retrospective study for the effect of Shoutai Wan on IVF-ET pregnancy outcome.
Medicine.
2024 Jan; 103(1):e36846. doi:
10.1097/md.0000000000036846
. [PMID: 38181258] - Yang Meng, Yuanhui Wang, Weimin Guo, Ke Lei, Zuxiao Chen, Hang Xu, Aiguo Wang, Qiang Xu, Jianjun Liu, Qiang Zeng. Analysis of the relationship between color and natural pigments of tobacco leaves during curing.
Scientific reports.
2024 01; 14(1):166. doi:
10.1038/s41598-023-50801-1
. [PMID: 38167588] - Zhenhua Xu, Haiying Liu, Yanmin Yu, Dawei Gao, Chunxu Leng, Shuli Zhang, Ping Yan. MWCNTs Alleviated saline-alkali stress by optimizing photosynthesis and sucrose metabolism in rice seedling.
Plant signaling & behavior.
2023 Dec; 18(1):2283357. doi:
10.1080/15592324.2023.2283357
. [PMID: 38053501] - Serafino Suriano, Pasquale Codianni, Anna Iannucci. Carotenoids and tocols comparison in different Subspecies of Triticum turgidum and aestivum.
Food research international (Ottawa, Ont.).
2023 Dec; 174(Pt 1):113620. doi:
10.1016/j.foodres.2023.113620
. [PMID: 37986473] - Shaohua Yan, Siyu Chen, Yumiao Liu, Hongbin Liang, Xinlu Zhang, Qiuxia Zhang, Jiancheng Xiu. Associations of serum carotenoids with visceral adiposity index and lipid accumulation product: a cross-sectional study based on NHANES 2001-2006.
Lipids in health and disease.
2023 Nov; 22(1):209. doi:
10.1186/s12944-023-01945-6
. [PMID: 38037060] - Jadwiga Hamulka, Agnieszka Sulich, Magdalena Górnicka, Marta Jeruszka-Bielak. Changes in Plasma Carotenoid Concentrations during the AntioxObesity Weight Reduction Program among Adults with Excessive Body Weight.
Nutrients.
2023 Nov; 15(23):. doi:
10.3390/nu15234890
. [PMID: 38068747] - Dieudonné M Dansou, Han Chen, Yanan Yu, Youyou Yang, Isabelle N Tchana, Liyuan Zhao, Chaohua Tang, Qingyu Zhao, Yuchang Qin, Junmin Zhang. Enrichment efficiency of lutein in eggs and its function in improving fatty liver hemorrhagic syndrome in aged laying hens.
Poultry science.
2023 Nov; 103(2):103286. doi:
10.1016/j.psj.2023.103286
. [PMID: 38100949] - Yang Liu, Guanlin Yang, Shiqiao Huo, Jiabi Wu, Ping Ren, Yonggang Cao, Jingquan Gao, Liquan Tong, Dongyu Min. Lutein suppresses ferroptosis of cardiac microvascular endothelial cells via positive regulation of IRF in cardiac hypertrophy.
European journal of pharmacology.
2023 Nov; 959(?):176081. doi:
10.1016/j.ejphar.2023.176081
. [PMID: 37797674] - Altevir Rossato Viana, Isadora Nicola, Camila Franco, Patrícia Acosta Caetano, Eduardo Jacob-Lopes, Leila Queiroz Zepka, Daniel Santos, Erico Marlon Moraes Flores, Bruno Stefanello Vizzotto, Katianne Wolf, Aline Ferreira Ourique, Sergio Roberto Mortari, Cristiano Rodrigo Bohn Rhoden, Luciana Maria Fontanari Krause. Phytochemical characterization and toxicological activity attributed to the acetonic extract of South American Vassobia breviflora.
Journal of toxicology and environmental health. Part A.
2023 Nov; 86(21):816-832. doi:
10.1080/15287394.2023.2254316
. [PMID: 37667472] - Kodai Ueno, Tetsuya Matsushita, Monami Sugihara, Kohei Yamada, Hideyuki Sato, Satomi Onoue. Solid lipid nanoparticles of lutein with improved dissolution behavior and oral absorption.
Pharmaceutical development and technology.
2023 Nov; 28(9):877-883. doi:
10.1080/10837450.2023.2270032
. [PMID: 37828716] - Xiangdong Wang, Xiaojie Liu, Xiaowen Wang, Haiying Wang, Li-Hua Zhang, Huijuan Yu, Wenzhi Yang, Hong-Hua Wu. Carotenoid-derived norsesquiterpenoids and sesquiterpenoids from Tagetes erecta L.
Phytochemistry.
2023 Nov; 215(?):113860. doi:
10.1016/j.phytochem.2023.113860
. [PMID: 37714249] - Neha Tanwar, James E Rookes, David M Cahill, Sangram K Lenka. Carotenoid Pathway Engineering in Tobacco Chloroplast Using a Synthetic Operon.
Molecular biotechnology.
2023 Nov; 65(11):1923-1934. doi:
10.1007/s12033-023-00693-3
. [PMID: 36884112] - Kristina Likkei, Marcus Moldenhauer, Neslihan N Tavraz, Eugene G Maksimov, Nikolai N Sluchanko, Thomas Friedrich. Lipid composition and properties affect protein-mediated carotenoid uptake efficiency from membranes.
Biochimica et biophysica acta. Biomembranes.
2023 Oct; ?(?):184241. doi:
10.1016/j.bbamem.2023.184241
. [PMID: 37866690] - Li Liang, Yu Liu, Junlong Zhu, Chaoting Wen, Xiaofang Liu, Jixian Zhang, Youdong Li, Guoyan Liu, Xin Xu. Improving the Physicochemical Stability of Soy Phospholipid-Stabilized Emulsions Loaded with Lutein by the Addition of Sphingomyelin and Cholesterol: Inspired by a Milk Fat Globule Membrane.
Journal of agricultural and food chemistry.
2023 Oct; ?(?):. doi:
10.1021/acs.jafc.3c04770
. [PMID: 37815121] - Maria Sulli, Luca Dall'Osto, Paola Ferrante, Zeno Guardini, Rodrigo Lionel Gomez, Paola Mini, Olivia Costantina Demurtas, Giuseppe Aprea, Alessandro Nicolia, Roberto Bassi, Giovanni Giuliano. Generation and physiological characterization of genome-edited Nicotiana benthamiana plants containing zeaxanthin as the only leaf xanthophyll.
Planta.
2023 Oct; 258(5):93. doi:
10.1007/s00425-023-04248-3
. [PMID: 37796356] - Hongtao Wang, Yuchen Tian, Yuxing Li, Jiaqi Wei, Fengwang Ma, Wei Liang, Cuiying Li. Analysis of Carotenoids and Gene Expression in Apple Germplasm Resources Reveals the Role of MdCRTISO and MdLCYE in the Accumulation of Carotenoids.
Journal of agricultural and food chemistry.
2023 Oct; ?(?):. doi:
10.1021/acs.jafc.3c04453
. [PMID: 37796201] - Corinne N Cannavale, Shelby A Keye, Laura M Rosok, Shelby G Martell, Tori A Holthaus, Lauren R Raine, Sean P Mullen, Hannah D Holscher, Charles H Hillman, Arthur F Kramer, Neal J Cohen, Billy R Hammond, Lisa Renzi-Hammond, Naiman A Khan. Macular Pigment Optical Density and Skin Carotenoids in a Childhood Sample.
The Journal of nutrition.
2023 10; 153(10):3144-3151. doi:
10.1016/j.tjnut.2023.06.006
. [PMID: 37315793] - Anil Kumar Patel, Akash Pralhad Vadrale, Reeta-Rani Singhania, Chiu-Wen Chen, Jo Shu Chang, Cheng-Di Dong. Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16.
Bioresource technology.
2023 Oct; 386(?):129477. doi:
10.1016/j.biortech.2023.129477
. [PMID: 37437816] - Gaoshuai Zhang, Meijing Zhang, Yiqiao Pei, Kun Qian, Jiao Xie, Qun Huang, Suwen Liu, Na Xue, Yujiao Zu, Hao Wang. Enhancing stability of liposomes using high molecular weight chitosan to promote antioxidative stress effects and lipid-lowering activity of encapsulated lutein in vivo and in vitro.
International journal of biological macromolecules.
2023 Sep; ?(?):126564. doi:
10.1016/j.ijbiomac.2023.126564
. [PMID: 37714230] - Nancy E Moran, Joshua Wade, Rachel Stroh, Barbara Stoll, Gregory Guthrie, Amy B Hair, Douglas G Burrin. Preterm Pigs Fed Donor Human Milk Have Greater Liver Beta-carotene Concentrations than Pigs Fed Infant Formula.
The Journal of nutrition.
2023 Sep; ?(?):. doi:
10.1016/j.tjnut.2023.08.026
. [PMID: 37666415] - Jia-Yi Lin, I-Son Ng. Enhanced carbon capture, lipid and lutein production in Chlamydomonas reinhardtii under meso-thermophilic conditions using chaperone and CRISPRi system.
Bioresource technology.
2023 Sep; 384(?):129340. doi:
10.1016/j.biortech.2023.129340
. [PMID: 37343802] - Stephanie Bethmann, Ann-Kathrin Haas, Michael Melzer, Peter Jahns. The impact of long-term acclimation to different growth light intensities on the regulation of zeaxanthin epoxidase in different plant species.
Physiologia plantarum.
2023 Sep; 175(5):e13998. doi:
10.1111/ppl.13998
. [PMID: 37882279] - Yuanyuan Li, Bingxue Liu, Xiaoxue Zhang, Yanjie Liu, Siying Wang, Shujun Li, Xiuhua Zhao. Lutein-stachyose (LS) amphiphilic oligosaccharide derivatives improve the oral bioavailability of lutein.
Food chemistry.
2023 Aug; 418(?):136032. doi:
10.1016/j.foodchem.2023.136032
. [PMID: 36996657] - Mari Carmen Ruiz-Domínguez, María Robles, Lidia Martín, Álvaro Beltrán, Riccardo Gava, María Cuaresma, Francisco Navarro, Carlos Vílchez. Ultrasound-Based Recovery of Anti-Inflammatory and Antimicrobial Extracts of the Acidophilic Microalga Coccomyxa onubensis.
Marine drugs.
2023 Aug; 21(9):. doi:
10.3390/md21090471
. [PMID: 37755084] - Justyna Widomska, Witold K Subczynski, Renata Welc-Stanowska, Rafal Luchowski. An Overview of Lutein in the Lipid Membrane.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612948
. [PMID: 37629129] - Fahrul Nurkolis, Nurpudji Astuti Taslim, Hardinsyah Hardinsyah. The importance of lutein-plant based nanoencapsulation studies - An effort to improve clinical studies on the stability and bioaccessibility of lutein for health vision.
Clinical nutrition ESPEN.
2023 08; 56(?):81-82. doi:
10.1016/j.clnesp.2023.05.008
. [PMID: 37344087] - Ramóna Pap, Edina Pandur, Gergely Jánosa, Katalin Sipos, Ferenc Rómeó Fritz, Tamás Nagy, Attila Agócs, József Deli. Protective Effects of 3'-Epilutein and 3'-Oxolutein against Glutamate-Induced Neuronal Damage.
International journal of molecular sciences.
2023 Jul; 24(15):. doi:
10.3390/ijms241512008
. [PMID: 37569384] - Eun-A Kim, Nalae Kang, Seong-Young Heo, Jae-Young Oh, Seung-Hong Lee, Seon-Heui Cha, Won-Keun Kim, Soo-Jin Heo. Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species.
Marine drugs.
2023 Jun; 21(7):. doi:
10.3390/md21070369
. [PMID: 37504900] - Galina Brychkova, Cleiton Lourenço de Oliveira, Luiz Antonio Augusto Gomes, Matheus de Souza Gomes, Antoine Fort, Alberto Abrantes Esteves-Ferreira, Ronan Sulpice, Peter C McKeown, Charles Spillane. Regulation of Carotenoid Biosynthesis and Degradation in Lettuce (Lactuca sativa L.) from Seedlings to Harvest.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210310
. [PMID: 37373458] - Rihui Li, Qinyu Zeng, Xiangxiang Zhang, Jing Jing, Xiaoyu Ge, Lun Zhao, Bin Yi, Jinxing Tu, Tingdong Fu, Jing Wen, Jinxiong Shen. Xanthophyll esterases in association with fibrillins control the stable storage of carotenoids in yellow flowers of rapeseed (Brassica juncea).
The New phytologist.
2023 May; ?(?):. doi:
10.1111/nph.18970
. [PMID: 37194444] - Ming-Hua Liang, Shan-Rong Xie, Hao-Hong Chen, Jian-Guo Jiang. DbMADS regulates carotenoid metabolism by repressing two carotenogenic genes in the green alga Dunaliella sp. FACHB-847.
Journal of cellular physiology.
2023 Apr; ?(?):. doi:
10.1002/jcp.31017
. [PMID: 37087727] - Wenjing Su, Wenhao Xu, Enshuo Liu, Weike Su, Nikolay E Polyakov. Improving the Treatment Effect of Carotenoids on Alzheimer's Disease through Various Nano-Delivery Systems.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087652
. [PMID: 37108814] - Wason Parklak, Sakaewan Ounjaijean, Kanokwan Kulprachakarn, Kongsak Boonyapranai. In Vitro α-Amylase and α-Glucosidase Inhibitory Effects, Antioxidant Activities, and Lutein Content of Nine Different Cultivars of Marigold Flowers (Tagetes spp.).
Molecules (Basel, Switzerland).
2023 Apr; 28(8):. doi:
10.3390/molecules28083314
. [PMID: 37110550] - Rudy Kurniawan, Fahrul Nurkolis, Nurpudji Astuti Taslim, Dionysius Subali, Reggie Surya, William Ben Gunawan, Darmawan Alisaputra, Nelly Mayulu, Netty Salindeho, Bonglee Kim. Carotenoids Composition of Green Algae Caulerpa racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties.
Molecules (Basel, Switzerland).
2023 Apr; 28(7):. doi:
10.3390/molecules28073267
. [PMID: 37050034] - Petar Šušnjara, Zrinka Mihaljević, Ana Stupin, Nikolina Kolobarić, Anita Matić, Ivana Jukić, Zlata Kralik, Gordana Kralik, Anđelina Miloloža, Tihana Pavošević, Vatroslav Šerić, Zdenko Lončarić, Darko Kerovec, Olivera Galović, Ines Drenjančević. Consumption of Nutritionally Enriched Hen Eggs Enhances Endothelium-Dependent Vasodilation via Cyclooxygenase Metabolites in Healthy Young People-A Randomized Study.
Nutrients.
2023 Mar; 15(7):. doi:
10.3390/nu15071599
. [PMID: 37049437] - Corinne N Cannavale, Caitlyn G Edwards, Ruyu Liu, Shelby A Keye, Samantha J Iwinski, Hannah D Holscher, Lisa Renzi-Hammond, Naiman A Khan. Macular pigment is inversely related to circulating C-reactive protein concentrations in school-aged children.
Nutrition research (New York, N.Y.).
2023 Mar; 114(?):13-19. doi:
10.1016/j.nutres.2023.03.003
. [PMID: 37149925] - Shuang Han, Yunjing Wang, Qingchen Zhang, Wenjing Wang, Dongli Pei. Chrysanthemum morifolium β-carotene hydroxylase overexpression promotes Arabidopsis thaliana tolerance to high light stress.
Journal of plant physiology.
2023 Mar; 284(?):153962. doi:
10.1016/j.jplph.2023.153962
. [PMID: 36940578] - Caterina D'Ambrosio, Adriana Lucia Stigliani, José L Rambla, Sarah Frusciante, Gianfranco Diretto, Eugenia M A Enfissi, Antonio Granell, Paul D Fraser, Giovanni Giorio. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts.
Plant science : an international journal of experimental plant biology.
2023 Mar; 328(?):111575. doi:
10.1016/j.plantsci.2022.111575
. [PMID: 36572066] - Xin Shu, Liang Zhang, Wenyan Liao, Jinfang Liu, Like Mao, Fang Yuan, Yanxiang Gao. Nanostructured lipid carriers (NLCs) stabilized by natural or synthetic emulsifiers for lutein delivery: Improved physicochemical stability, antioxidant activity, and bioaccessibility.
Food chemistry.
2023 Mar; 403(?):134465. doi:
10.1016/j.foodchem.2022.134465
. [PMID: 36358082] - Jan Neelissen, Per Leanderson, Lena Jonasson, Rosanna W S Chung. The Effects of Dairy and Plant-Based Liquid Components on Lutein Liberation in Spinach Smoothies.
Nutrients.
2023 Feb; 15(3):. doi:
10.3390/nu15030779
. [PMID: 36771485] - Mahsa Mekanik, Reza Fotovat, Ehsan Motamedian, Vahab Jafarian. Improvement of Lutein Production in Auxenochlorella protothecoides Using Its Genome-Scale Metabolic Model and a System-Oriented Approach.
Applied biochemistry and biotechnology.
2023 Feb; 195(2):889-904. doi:
10.1007/s12010-022-04186-y
. [PMID: 36222987] - Fatemeh Ghasemi, Fatemeh Navab, Mohammad Hossein Rouhani, Pegah Amini, Nafiseh Shokri-Mashhadi. The effect of lutein and Zeaxanthine on dyslipidemia: A meta-analysis study.
Prostaglandins & other lipid mediators.
2023 Feb; 164(?):106691. doi:
10.1016/j.prostaglandins.2022.106691
. [PMID: 36336325] - Akash Pralhad Vadrale, Cheng-Di Dong, Dibyajyoti Haldar, Chien-Hui Wu, Chiu-Wen Chen, Reeta Rani Singhania, Anil Kumar Patel. Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12.
Bioresource technology.
2023 Feb; 370(?):128583. doi:
10.1016/j.biortech.2023.128583
. [PMID: 36610481] - Qi Bian, Xue Jiao, Ye Chen, Hongwei Yu, Lidan Ye. Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis.
Biotechnology and bioengineering.
2023 02; 120(2):536-552. doi:
10.1002/bit.28286
. [PMID: 36369967] - Veronika Nagy, Attila Agócs, Viktória L Balázs, Dragica Purger, Rita Filep, Viktor Sándor, Erika Turcsi, Gergely Gulyás-Fekete, József Deli. Lutein Isomers: Preparation, Separation, Structure Elucidation, and Occurrence in 20 Medicinal Plants.
Molecules (Basel, Switzerland).
2023 Jan; 28(3):. doi:
10.3390/molecules28031187
. [PMID: 36770852] - Antonela Ninčević Grassino, Suzana Rimac Brnčić, Marija Badanjak Sabolović, Jana Šic Žlabur, Roko Marović, Mladen Brnčić. Carotenoid Content and Profiles of Pumpkin Products and By-Products.
Molecules (Basel, Switzerland).
2023 Jan; 28(2):. doi:
10.3390/molecules28020858
. [PMID: 36677916] - Sowmya Shree Gopal, Shinde Vijay Sukhdeo, Baskaran Vallikannan, Ganesan Ponesakki. Lutein ameliorates high-fat diet-induced obesity, fatty liver, and glucose intolerance in C57BL/6J mice.
Phytotherapy research : PTR.
2023 Jan; 37(1):329-341. doi:
10.1002/ptr.7615
. [PMID: 36086831] - C Laurent, H Caillat, C L Girard, A Ferlay, S Laverroux, J Jost, B Graulet. Impacts of production conditions on goat milk vitamin, carotenoid contents and colour indices.
Animal : an international journal of animal bioscience.
2023 Jan; 17(1):100683. doi:
10.1016/j.animal.2022.100683
. [PMID: 36610084] - Nisha Chouhan, Ranay Mohan Yadav, Jayendra Pandey, Rajagopal Subramanyam. High light-induced changes in thylakoid supercomplexes organization from cyclic electron transport mutants of Chlamydomonas reinhardtii.
Biochimica et biophysica acta. Bioenergetics.
2023 01; 1864(1):148917. doi:
10.1016/j.bbabio.2022.148917
. [PMID: 36108725] - Sajad Pirsa, Mitra Mahmudi, Ali Ehsani. Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: Physicochemical properties and lutein controlled release.
International journal of biological macromolecules.
2023 Jan; 224(?):1588-1599. doi:
10.1016/j.ijbiomac.2022.10.244
. [PMID: 36346259] - Farouk K El-Baz, Abeer Salama, Sami I Ali, Rania Elgohary. Lutein isolated from Scenedesmus obliquus microalga boosts immunity against cyclophosphamide-induced brain injury in rats.
Scientific reports.
2022 12; 12(1):22601. doi:
10.1038/s41598-022-25252-9
. [PMID: 36585479] - Petar Šušnjara, Nikolina Kolobarić, Anita Matić, Zrinka Mihaljević, Ana Stupin, Saška Marczi, Ines Drenjančević. Consumption of Hen Eggs Enriched with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E and Lutein Incites Anti-Inflammatory Conditions in Young, Healthy Participants - A Randomized Study.
Frontiers in bioscience (Landmark edition).
2022 12; 27(12):332. doi:
10.31083/j.fbl2712332
. [PMID: 36624951] - Wei Chen, Hua Zhang, Guishan Liu, Ji Kang, Biao Wang, Jilite Wang, Jing Li, Hao Wang. Lutein attenuated methylglyoxal-induced oxidative damage and apoptosis in PC12 cells via the PI3K/Akt signaling pathway.
Journal of food biochemistry.
2022 12; 46(12):e14382. doi:
10.1111/jfbc.14382
. [PMID: 36017617] - Nikolai N Sluchanko, Yury B Slonimskiy, Nikita A Egorkin, Larisa A Varfolomeeva, Sergey Yu Kleymenov, Mikhail E Minyaev, Yaroslav V Faletrov, Anastasia M Moysenovich, Evgenia Yu Parshina, Thomas Friedrich, Eugene G Maksimov, Konstantin M Boyko, Vladimir O Popov. Structural basis for the carotenoid binding and transport function of a START domain.
Structure (London, England : 1993).
2022 12; 30(12):1647-1659.e4. doi:
10.1016/j.str.2022.10.007
. [PMID: 36356587] - Shanyong Wang, Wenhua Gao, Yuhan Wang, Tao Song, Haisong Qi, Zhouyang Xiang. Emulsifying properties of naturally acetylated xylans and their application in lutein delivery emulsion.
Carbohydrate polymers.
2022 Nov; 296(?):119927. doi:
10.1016/j.carbpol.2022.119927
. [PMID: 36088023] - Alexander Montoya-Arroyo, Camilo Toro-González, Nadine Sus, Jorge Warner, Patricia Esquivel, Víctor M Jiménez, Jan Frank. Vitamin E and carotenoid profiles in leaves, stems, petioles and flowers of stinging nettle (Urtica leptophylla Kunth) from Costa Rica.
Journal of the science of food and agriculture.
2022 Nov; 102(14):6340-6348. doi:
10.1002/jsfa.11985
. [PMID: 35527679] - Anil Kumar Patel, Prashant Kumar, Chiu-Wen Chen, Vaibhav Sunil Tambat, Thanh-Binh Nguyen, Chih-Yao Hou, Jo-Shu Chang, Cheng-Di Dong, Reeta Rani Singhania. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass.
Bioresource technology.
2022 Nov; 363(?):128009. doi:
10.1016/j.biortech.2022.128009
. [PMID: 36162780] - Raphaela A Mantovani, Ana Augusta O Xavier, Guilherme M Tavares, Adriana Z Mercadante. Lutein bioaccessibility in casein-stabilized emulsions is influenced by the free to acylated carotenoid ratio, but not by the casein aggregation state.
Food research international (Ottawa, Ont.).
2022 11; 161(?):111778. doi:
10.1016/j.foodres.2022.111778
. [PMID: 36192875] - Hamdy Elsayed Ahmed Ali, Fritz Vorisek, Scot E Dowd, Stephanie Kesner, Yang Song, Dali Qian, Mark Crocker. Formation of Lutein, β-Carotene and Astaxanthin in a Coelastrella sp. Isolate.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206950
. [PMID: 36296546] - Zilong Zhao, Jing Chen, FangFang Ci, He Pang, Ning Cheng, Aijia Xing. α-Carotene: a valuable carotenoid in biological and medical research.
Journal of the science of food and agriculture.
2022 Oct; 102(13):5606-5617. doi:
10.1002/jsfa.11966
. [PMID: 35478460] - Liyan Zhu, Hui Gao, Linpin Li, Yong Zhang, Yongteng Zhao, Xuya Yu. Promoting lutein production from the novel alga Acutodesmus sp. by melatonin induction.
Bioresource technology.
2022 Oct; 362(?):127818. doi:
10.1016/j.biortech.2022.127818
. [PMID: 36041678] - Ningxiang Yu, Shengxin Shao, Weiwei Huan, Qin Ye, Xiaohua Nie, Yuanchao Lu, Xianghe Meng. Preparation of novel self-assembled albumin nanoparticles from Camellia seed cake waste for lutein delivery.
Food chemistry.
2022 Sep; 389(?):133032. doi:
10.1016/j.foodchem.2022.133032
. [PMID: 35490515] - Ishani Bhat, R J Madhura, Murali Badanthadka, Bangera Sheshappa Mamatha. Cow ghee as an efficient carrier to improve oral bioavailability of lutein.
Food chemistry.
2022 Sep; 389(?):133046. doi:
10.1016/j.foodchem.2022.133046
. [PMID: 35487081] - Ioulia Georgiopoulou, Soultana Tzima, Vasiliki Louli, Kostis Magoulas. Supercritical CO2 Extraction of High-Added Value Compounds from Chlorella vulgaris: Experimental Design, Modelling and Optimization.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185884
. [PMID: 36144617] - Sachin Vyas, Alok Patel, Eric Nabil Risse, Eleni Krikigianni, Ulrika Rova, Paul Christakopoulos, Leonidas Matsakas. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation.
Bioresource technology.
2022 Sep; 359(?):127494. doi:
10.1016/j.biortech.2022.127494
. [PMID: 35724910] - Canying Li, Jie Zhu, Yuan Cheng, Jiabao Hou, Lei Sun, Yonghong Ge. Acibenzolar-S-methyl activates mitogen-activated protein kinase cascade to mediate chlorophyll and carotenoid metabolisms in the exocarp of Docteur Jules Guyot pears.
Journal of the science of food and agriculture.
2022 Aug; 102(11):4435-4445. doi:
10.1002/jsfa.11797
. [PMID: 35092628] - Lu He, Lu Cheng, Junjie Wang, Jing Liu, Jinjin Cheng, Zhirong Yang, Rui Cao, Yuanhuai Han, Hongying Li, Bin Zhang. Carotenoid Cleavage Dioxygenase 1 Catalyzes Lutein Degradation To Influence Carotenoid Accumulation and Color Development in Foxtail Millet Grains.
Journal of agricultural and food chemistry.
2022 Aug; 70(30):9283-9294. doi:
10.1021/acs.jafc.2c01951
. [PMID: 35876162] - Yong-Moon Mark Park, Jenna Lilyquist, Thomas J Van't Erve, Katie M O'Brien, Hazel B Nichols, Ginger L Milne, Clarice R Weinberg, Dale P Sandler. Association of dietary and plasma carotenoids with urinary F2-isoprostanes.
European journal of nutrition.
2022 Aug; 61(5):2711-2723. doi:
10.1007/s00394-022-02837-8
. [PMID: 35253072] - Yury B Slonimskiy, Nikita A Egorkin, Aleksandr A Ashikhmin, Thomas Friedrich, Eugene G Maksimov, Nikolai N Sluchanko. Reconstitution of the functional Carotenoid-Binding Protein from silkworm in E. coli.
International journal of biological macromolecules.
2022 Aug; 214(?):664-671. doi:
10.1016/j.ijbiomac.2022.06.135
. [PMID: 35753519] - Rao Yao, Wen Fu, Ming Du, Zi-Xi Chen, An-Ping Lei, Jiang-Xin Wang. Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis.
Marine drugs.
2022 Jul; 20(8):. doi:
10.3390/md20080496
. [PMID: 36005499] - Mariane Meurer, Beatriz M M de Oliveira, Benhur J Cury, Daniele T Jerônimo, Larissa Venzon, Tauani C S França, Marihá Mariott, Ruan Silva-Nunes, Ana C Santos, Walter A Roman-Junior, Ruberlei G Oliveira, Karuppusamy Arunachalam, José Roberto Santin, Larissa Benvenutti, Priscila Souza, Jennyfer A Aldana-Mejía, Luisa da Silva. Extract of Tagetes erecta L., a medicinal plant rich in lutein, promotes gastric healing and reduces ulcer recurrence in rodents.
Journal of ethnopharmacology.
2022 Jul; 293(?):115258. doi:
10.1016/j.jep.2022.115258
. [PMID: 35378194] - Caitlyn G Edwards, Anne M Walk, Sharon V Thompson, Ginger E Reeser, Ryan N Dilger, John W Erdman, Nicholas A Burd, Hannah D Holscher, Naiman A Khan. Dietary lutein plus zeaxanthin and choline intake is interactively associated with cognitive flexibility in middle-adulthood in adults with overweight and obesity.
Nutritional neuroscience.
2022 Jul; 25(7):1437-1452. doi:
10.1080/1028415x.2020.1866867
. [PMID: 33448903] - Rijo Hayashi, Shimmin Hayashi, Shigeki Machida. Changes in Aqueous Humor Lutein Levels of Patients with Cataracts after a 6-Week Course of Lutein-Containing Antioxidant Supplementation.
Current eye research.
2022 07; 47(7):1016-1023. doi:
10.1080/02713683.2022.2059811
. [PMID: 35392749] - Christian Emmanuel Mahavy, Adeline Mol, Blandine Andrianarisoa, Pierre Duez, Mondher El Jaziri, Marie Baucher, Tsiry Rasamiravaka. The Xanthophyll Carotenoid Lutein Reduces the Invasive Potential of Pseudomonas aeruginosa and Increases Its Susceptibility to Tobramycin.
International journal of molecular sciences.
2022 Jun; 23(13):. doi:
10.3390/ijms23137199
. [PMID: 35806201] - Minu S Thomas, Lindsey Huang, Chelsea Garcia, Junichi R Sakaki, Christopher N Blesso, Ock K Chun, Maria Luz Fernandez. The Effects of Eggs in a Plant-Based Diet on Oxidative Stress and Inflammation in Metabolic Syndrome.
Nutrients.
2022 Jun; 14(12):. doi:
10.3390/nu14122548
. [PMID: 35745278] - Nagashree Shamarao, Mukunda Chethankumar. Antiobesity drug-likeness properties and pancreatic lipase inhibition of a novel low molecular weight lutein oxidized product, LOP6.
Food & function.
2022 Jun; 13(11):6036-6055. doi:
10.1039/d1fo04064b
. [PMID: 35615990] - Selly D Msungu, Arnold A Mushongi, Pavithravani B Venkataramana, Ernest R Mbega. Status of carotenoids in elite and landrace maize genotypes: Implications for provitamin A biofortification in Tanzania.
Food research international (Ottawa, Ont.).
2022 06; 156(?):111303. doi:
10.1016/j.foodres.2022.111303
. [PMID: 35651063] - May A Beydoun, Hind A Beydoun, Marie T Fanelli-Kuczmarski, Jordan Weiss, Sharmin Hossain, Jose Atilio Canas, Michele Kim Evans, Alan B Zonderman. Association of Serum Antioxidant Vitamins and Carotenoids With Incident Alzheimer Disease and All-Cause Dementia Among US Adults.
Neurology.
2022 05; 98(21):e2150-e2162. doi:
10.1212/wnl.0000000000200289
. [PMID: 35508396] - Minu S Thomas, Michael Puglisi, Olga Malysheva, Marie A Caudill, Maria Sholola, Jessica L Cooperstone, Maria Luz Fernandez. Eggs Improve Plasma Biomarkers in Patients with Metabolic Syndrome Following a Plant-Based Diet-A Randomized Crossover Study.
Nutrients.
2022 May; 14(10):. doi:
10.3390/nu14102138
. [PMID: 35631279] - Xinyao Dai, Huanhuan Yin, Jing Zhang, Fang Tian, Xiaokun Cai, Yingyi Mao, Hanxiao Sun, He Wang, Xiang Li, Hui-Lian Zhu, Lishi Zhang, Jinyao Chen, Yanrong Zhao. Carotenoid Profile in Maternal/Cord Plasma and Changes in Breast Milk along Lactation and Its Association with Dietary Intake: A Longitudinal Study in a Coastal City in Southern China.
Nutrients.
2022 May; 14(9):. doi:
10.3390/nu14091989
. [PMID: 35565956] - Anil Kumar Patel, Akash Pralhad Vadrale, Yi-Sheng Tseng, Chiu-Wen Chen, Cheng-Di Dong, Reeta Rani Singhania. Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production.
Bioresource technology.
2022 May; 351(?):126928. doi:
10.1016/j.biortech.2022.126928
. [PMID: 35257880] - Jia-Yi Lin, Sefli Sri Wahyu Effendi, I-Son Ng. Enhanced carbon capture and utilization (CCU) using heterologous carbonic anhydrase in Chlamydomonas reinhardtii for lutein and lipid production.
Bioresource technology.
2022 May; 351(?):127009. doi:
10.1016/j.biortech.2022.127009
. [PMID: 35304253] - Donatella Carbonera, Alessandro Agostini, Marco Bortolus, Luca Dall'Osto, Roberto Bassi. Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet-Triplet Energy Transfer.
International journal of molecular sciences.
2022 Apr; 23(9):. doi:
10.3390/ijms23094812
. [PMID: 35563202] - Ramaraj Sathasivam, Nam Su Kim, Minsol Choi, Haejin Kwon, Bao Van Nguyen, Jae Kwang Kim, Dae Hui Jeong, Eung Jun Park, Hong Woo Park, Sang Un Park. Identification, In Silico Characterization, and Differential Expression Profiles of Carotenoid, Xanthophyll, Apocarotenoid Biosynthetic Pathways Genes, and Analysis of Carotenoid and Xanthophyll Accumulation in Heracleum moellendorffii Hance.
International journal of molecular sciences.
2022 Apr; 23(9):. doi:
10.3390/ijms23094845
. [PMID: 35563233] - Nami Yamano, Peng Wang, Feng-Qin Dong, Jian-Ping Zhang. Lipid-Enhanced Photoprotection of LHCII in Membrane Nanodisc by Reducing Chlorophyll Triplet Production.
The journal of physical chemistry. B.
2022 04; 126(14):2669-2676. doi:
10.1021/acs.jpcb.1c10557
. [PMID: 35377647] - Daniela Diaz-MacAdoo, Maria Teresa Mata, Carlos Riquelme. Influence of Irradiance and Wavelength on the Antioxidant Activity and Carotenoids Accumulation in Muriellopsis sp. Isolated from the Antofagasta Coastal Desert.
Molecules (Basel, Switzerland).
2022 Apr; 27(8):. doi:
10.3390/molecules27082412
. [PMID: 35458610] - Fenghui Pan, Wenxia Cui, Lei Gao, Xiaoting Shi, Haiyan Yang, Yun Hu, Man Li. Serum lutein is a promising biomarker for type 2 diabetes mellitus and diabetic kidney disease in the elderly.
Journal of clinical laboratory analysis.
2022 Apr; 36(4):e24350. doi:
10.1002/jcla.24350
. [PMID: 35293029] - Haiyan Luo, Zhengze Li, Chad R Straight, Qi Wang, Jiazhi Zhou, Yukun Sun, Chia-Yu Lo, Lingxiao Yi, Yanyan Wu, Jingyuan Huang, William Wolfe, Dianne Z Sutherland, Mark S Miller, David Julian McClements, Eric A Decker, Hang Xiao. Black pepper and vegetable oil-based emulsion synergistically enhance carotenoid bioavailability of raw vegetables in humans.
Food chemistry.
2022 Mar; 373(Pt B):131277. doi:
10.1016/j.foodchem.2021.131277
. [PMID: 34799132] - Hyun Gi Koh, Yong Tae Jeong, Bongsoo Lee, Yong Keun Chang. Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009.
Journal of microbiology and biotechnology.
2022 Mar; 32(3):378-386. doi:
10.4014/jmb.2108.08021
. [PMID: 34584038]