Trimethylamine N-oxide (BioDeep_00000002996)
Secondary id: BioDeep_00000400339, BioDeep_00001867959
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C3H9NO (75.0684104)
中文名称: 无水三甲基胺 N-氧化物, 氧化三甲胺, 三甲胺 N-氧化物, 三甲胺氧化物
谱图信息:
最多检出来源 Mus musculus(blood) 0.52%
Last reviewed on 2024-09-13.
Cite this Page
Trimethylamine N-oxide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/trimethylamine_n-oxide (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000002996). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CN(C)(C)=O
InChI: InChI=1/C3H9NO/c1-4(2,3)5/h1-3H3
描述信息
Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine and a common metabolite in animals and humans. In particular, trimethylamine-N-oxide is biosynthesized endogenously from trimethylamine, which is derived from choline, which can be derived from dietary lecithin (phosphatidylcholines) or dietary carnitine. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood. TMAO is an osmolyte that the body will use to counteract the effects of increased concentrations of urea (due to kidney failure) and high levels can be used as a biomarker for kidney problems. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Fish odor syndrome or trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3) causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor. The concentration of TMAO in the blood increases after consuming foods containing carnitine or lecithin (phosphatidylcholines), if the bacteria that convert those substances to TMAO are present in the gut (PMID:23614584). High concentrations of carnitine are found in red meat, some energy drinks, and certain dietary supplements; lecithin is found in eggs and is commonly used as an ingredient in processed food. High levels of TMAO are found in many seafoods. Some types of normal gut bacteria (e.g. species of Acinetobacter) in the human gut convert dietary carnitine and dietary lecithin to TMAO (PMID:21475195). TMAO alters cholesterol metabolism in the intestines, in the liver and in arterial wall. When TMAO is present, cholesterol metabolism is altered and there is an increased deposition of cholesterol within, and decreased removal of cholesterol from, peripheral cells such as those in the artery wall (PMID:23563705). Urinary TMAO is a biomarker for the consumption of fish, especially cold-water fish. Trimethylamine N-oxide is found to be associated with maple syrup urine disease and propionic acidemia, which are inborn errors of metabolism. TMAO can also be found in Bacteroidetes, Ruminococcus (PMID:26687352).
Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine and a common metabolite in animals and humans. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood. TMAO is an osmolyte that the body will use to counter-act the effects of increased concentrations of urea (due to kidney failure) and can be used as a biomarker for kidney problems. Fish odor syndrome or trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3) causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor.; Trimethylamine N-oxide, also known by several other names and acronyms, is the organic compound with the formula (CH3)3NO. This colorless solid is usually encountered as the dihydrate. It is an oxidation product of trimethylamine and a common metabolite in animals. It is an osmolyte found in saltwater fish, sharks and rays, molluscs, and crustaceans. Along with free amino acids, it reduces the 3\\\% salinity of seawater to about 1\\\% of dissolved solids inside cells. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood.; Trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3),, causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor. Urinary TMAO is a biomarker for the consumption of fish, especially cold-water fish.
Acquisition and generation of the data is financially supported in part by CREST/JST.
D009676 - Noxae > D016877 - Oxidants
KEIO_ID T051
Trimethylamine N-oxide is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide induces inflammation by activating the ROS/NLRP3 inflammasome. Trimethylamine N-oxide also accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway[1][2][3].
同义名列表
19 个代谢物同义名
Trimethylamine N-oxide dihydrate; N,N-Dimethylmethanamine N-oxide; N,N-dimethylmethanamine oxide; Trimethylammonium oxide; Trimethylamine N-oxide; Trimethylamine-N-oxide; Trimethylamine oxide; Trimethylaminoxid; Trimethyloxamine; Me3n(+)O(-); TMA-oxide; (CH3)3NO; N(CH3)3O; Me3n(O); Triox; TMAO; Trimethylamine-N-oxide; Trimethylamine N-oxide; Trimethylamine oxide
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:15724
- KEGG: C01104
- PubChem: 1145
- HMDB: HMDB0000925
- Metlin: METLIN3773
- Wikipedia: Trimethylamine_oxide
- MetaCyc: TRIMENTHLAMINE-N-O
- foodb: FDB010413
- chemspider: 1113
- CAS: 1184-78-7
- MoNA: KO004179
- MoNA: KO004176
- MoNA: PS096103
- MoNA: KO004177
- MoNA: KO004180
- MoNA: PR100384
- MoNA: KO004178
- MoNA: PS096101
- MoNA: PS096102
- MoNA: PS096104
- PMhub: MS000007661
- PubChem: 4338
- PDB-CCD: TMO
- 3DMET: B01382
- NIKKAJI: J7.304K
- RefMet: Trimethylamine N-oxide
- medchemexpress: HY-116084
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-756
- KNApSAcK: 15724
分类词条
相关代谢途径
Reactome(4)
BioCyc(3)
PlantCyc(0)
代谢反应
75 个相关的代谢反应过程信息。
Reactome(54)
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- FMO oxidises nucleophiles:
H+ + Oxygen + TMA + TPNH ⟶ H2O + TMAO + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
BioCyc(19)
- trimethylamine degradation:
H+ + NADPH + O2 + dimethylamine ⟶ H2O + NADP+ + formaldehyde + methylamine
- superpathway of trimethylamine degradation:
H+ + NADPH + O2 + dimethylamine ⟶ H2O + NADP+ + formaldehyde + methylamine
- hydrogen to trimethylamine N-oxide electron transfer:
H2 + H+ + MQ ⟶ H+ + MQH2
- formate to trimethylamine N-oxide electron transfer:
H+ + MQH2 + trimethylamine N-oxide ⟶ H2O + MQ + trimethylamine
- NADH to trimethylamine N-oxide electron transfer:
H+ + MQH2 + trimethylamine N-oxide ⟶ H2O + MQ + trimethylamine
- hydrogen to trimethylamine N-oxide electron transfer:
H2 + H+ + MQ ⟶ H+ + MQH2
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- NADH to trimethylamine N-oxide electron transfer:
H+ + MQH2 + trimethylamine N-oxide ⟶ H2O + MQ + trimethylamine
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- NADH to trimethylamine N-oxide electron transfer:
H+ + MQH2 + trimethylamine N-oxide ⟶ H2O + MQ + trimethylamine
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- respiration (anaerobic)-- electron acceptors reaction list:
nitrite ⟶ ammonia
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- NADH to trimethylamine N-oxide electron transfer:
H+ + MQH2 + trimethylamine N-oxide ⟶ H2O + MQ + trimethylamine
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
- NADH to trimethylamine N-oxide electron transfer:
H+ + MQH2 + trimethylamine N-oxide ⟶ H2O + MQ + trimethylamine
- formate to trimethylamine N-oxide electron transfer:
H+ + MQ + formate ⟶ CO2 + H+ + MQH2
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(2)
- N-Oxide Electron Transfer:
Electron + Formic acid + Hydrogen Ion + menaquinone-8 ⟶ Carbon dioxide + Hydrogen Ion + Menaquinol 8
- N-Oxide Electron Transfer:
Electron + Hydrogen Ion + Menaquinol 8 + Trimethylamine N-oxide ⟶ Hydrogen Ion + Trimethylamine + Water + menaquinone-8
PharmGKB(0)
4 个相关的物种来源信息
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yuan He, Ying Zhu, Xiaorong Shui, Zufeng Huang, Kongwei Li, Wei Lei. Gut microbiome and metabolomic profiles reveal the antiatherosclerotic effect of indole-3-carbinol in high-choline-fed ApoE-/- mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155621. doi:
10.1016/j.phymed.2024.155621
. [PMID: 38678950] - Mingxiao Luo, Peng Chen, Ye Tian, Norbu Rigzin, Jigme Sonam, Feihu Shang, Chuang Tai, Tingting Li, Haiquan Sang. Hif-1α expression targets the TMA/Fmo3/TMAO axis to participate in gallbladder cholesterol stone formation in individuals living in plateau regions.
Biochimica et biophysica acta. Molecular basis of disease.
2024 Jun; 1870(5):167188. doi:
10.1016/j.bbadis.2024.167188
. [PMID: 38657913] - Chenyu Jiang, Song Wang, Yihan Wang, Ketao Wang, Chunying Huang, Fei Gao, Huang Peng Hu, Yangyong Deng, Wen Zhang, Jian Zheng, Jianqin Huang, Yan Li. Polyphenols from hickory nut reduce the occurrence of atherosclerosis in mice by improving intestinal microbiota and inhibiting trimethylamine N-oxide production.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jun; 128(?):155349. doi:
10.1016/j.phymed.2024.155349
. [PMID: 38522315] - Natalia G Vallianou, Dimitris Kounatidis, Sotiria Psallida, Fotis Panagopoulos, Theodora Stratigou, Eleni Geladari, Irene Karampela, Dimitrios Tsilingiris, Maria Dalamaga. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence.
Current nutrition reports.
2024 06; 13(2):152-165. doi:
10.1007/s13668-024-00521-3
. [PMID: 38427291] - Ryohei Tanaka-Kanegae, Hiroyuki Kimura, Koichiro Hamada. Pharmacokinetics of soy-derived lysophosphatidylcholine compared with that of glycerophosphocholine: a randomized controlled trial.
Bioscience, biotechnology, and biochemistry.
2024 May; 88(6):648-655. doi:
10.1093/bbb/zbae031
. [PMID: 38490741] - Qiao Jin, Chiyuan Zhang, Ran Chen, Luping Jiang, Hongli Li, Pengcui Wu, Liang Li. Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic.
Journal of translational medicine.
2024 Apr; 22(1):352. doi:
10.1186/s12967-024-05120-y
. [PMID: 38622667] - Caleigh M Sawicki, Lorena S Pacheco, Sona Rivas-Tumanyan, Zheyi Cao, Danielle E Haslam, Liming Liang, Katherine L Tucker, Kaumudi Joshipura, Shilpa N Bhupathiraju. Association of Gut Microbiota-Related Metabolites and Type 2 Diabetes in Two Puerto Rican Cohorts.
Nutrients.
2024 Mar; 16(7):. doi:
10.3390/nu16070959
. [PMID: 38612993] - Xinyi Shen, Curtis Tilves, Hyunju Kim, Toshiko Tanaka, Adam P Spira, Chee W Chia, Sameera A Talegawkar, Luigi Ferrucci, Noel T Mueller. Plant-based diets and the gut microbiome: findings from the Baltimore Longitudinal Study of Aging.
The American journal of clinical nutrition.
2024 Mar; 119(3):628-638. doi:
10.1016/j.ajcnut.2024.01.006
. [PMID: 38218318] - Xiao-Yue Li, Zhu-Lin Yu, Ying-Cai Zhao, Dan-Dan Wang, Chang-Hu Xue, Tian-Tian Zhang, Yu-Ming Wang. Gut Microbiota Metabolite TMA May Mediate the Effects of TMAO on Glucose and Lipid Metabolism in C57BL/6J Mice.
Molecular nutrition & food research.
2024 Mar; 68(6):e2300443. doi:
10.1002/mnfr.202300443
. [PMID: 38456781] - Rui Sun, Zedong Cheng, Di Li, Jingyao Yin. Effects of Lizhong Tongmai acupuncture on TMAO, CD36 expression, and cholesterol deposition in atherosclerotic mice.
Zhongguo zhen jiu = Chinese acupuncture & moxibustion.
2024 Feb; 44(2):169-174. doi:
10.13703/j.0255-2930.20230606-0001
. [PMID: 38373762] - Wangwang Huang, Yizhuo Hua, Fan Wang, Jia Xu, Lv Yuan, Zhao Jing, Weimin Wang, Yuhua Zhao. Dietary betaine and/or TMAO affect hepatic lipid accumulation and glycometabolism of Megalobrama amblycephala exposed to a high-carbohydrate diet.
Fish physiology and biochemistry.
2024 Feb; 50(1):59-75. doi:
10.1007/s10695-022-01160-7
. [PMID: 36580207] - Huafang Ding, Jianhui Liu, Zixing Chen, Shouhe Huang, Chi Yan, Erika Kwek, Zouyan He, Hanyue Zhu, Zhen-Yu Chen. Protocatechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating inflammation, regulating lipid metabolism, and reshaping gut microbiota.
Food & function.
2024 Jan; 15(2):881-893. doi:
10.1039/d3fo04396g
. [PMID: 38165856] - Lei Liu, Huifang Xu, Jian Wang, Haiyan Wang, Saisai Ren, Qian Huang, Mingyan Zhang, Hui Zhou, Chunyan Yang, Lu Jia, Yu Huang, Hao Zhang, Yanling Tao, Ying Li, Yanan Min. Trimethylamine-N-oxide (TMAO) and basic fibroblast growth factor (bFGF) are possibly involved in corticosteroid resistance in adult patients with immune thrombocytopenia.
Thrombosis research.
2024 Jan; 233(?):25-36. doi:
10.1016/j.thromres.2023.11.003
. [PMID: 37988847] - Ziyan Wang, Chengxin Liu, Jiaming Wei, Hui Yuan, Min Shi, Fei Zhang, Qinghua Zeng, Aisi Huang, Lixin Du, Ya Li, Zhihua Guo. Network and Experimental Pharmacology on Mechanism of Yixintai Regulates the TMAO/PKC/NF-κB Signaling Pathway in Treating Heart Failure.
Drug design, development and therapy.
2024; 18(?):1415-1438. doi:
10.2147/dddt.s448140
. [PMID: 38707614] - Chih-Yao Hou, Yu-Wei Chen, Sulfath Hakkim Hazeena, You-Lin Tain, Chang-Wei Hsieh, De-Quan Chen, Rou-Yun Liu, Ming-Kuei Shih. Cardiovascular risk of dietary trimethylamine oxide precursors and the therapeutic potential of resveratrol and its derivatives.
FEBS open bio.
2023 Dec; ?(?):. doi:
10.1002/2211-5463.13762
. [PMID: 38151750] - ZhiSheng Luo, XiaoChen Yu, Chao Wang, HaiYan Zhao, Xinming Wang, XiuRu Guan. Trimethylamine N-oxide promotes oxidative stress and lipid accumulation in macrophage foam cells via the Nrf2/ABCA1 pathway.
Journal of physiology and biochemistry.
2023 Nov; ?(?):. doi:
10.1007/s13105-023-00984-y
. [PMID: 37932654] - Xiuqi Sun, Anbang Zhang, Bo Pang, Yuanhua Wu, Jingyu Shi, Ning Zhang, Tao Ye. Electroacupuncture pretreatment alleviates spasticity after stroke in rats by inducing the NF-κB/NLRP3 signaling pathway and the gut-brain axis.
Brain research.
2023 Oct; 1822(?):148643. doi:
10.1016/j.brainres.2023.148643
. [PMID: 37884180] - Shan Huang, Si Ying Lim, Sock Hwee Tan, Mark Y Chan, Wuzhong Ni, Sam Fong Yau Li. Targeted Plasma Metabolomics Reveals Association of Acute Myocardial Infarction Risk with the Dynamic Balance between Trimethylamine-N-oxide, Betaine, and Choline.
Journal of agricultural and food chemistry.
2023 Oct; ?(?):. doi:
10.1021/acs.jafc.2c08241
. [PMID: 37781984] - Tu'erhong Fei'erdun, Weimin Zhang, Keyoumu Yilihamujiang, Mingming Zhang, Mangyuan Wang. [Correlation Between Plasma Trimethylamine N-Oxide and Lipid Levels in Hyperlipidemic Patients].
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition.
2023 Sep; 54(5):1030-1034. doi:
10.12182/20230960109
. [PMID: 37866964] - Fulin Nian, Chen Zhu, Nuyun Jin, Qiaoyun Xia, Longyun Wu, Xiaolan Lu. Gut microbiota metabolite TMAO promoted lipid deposition and fibrosis process via KRT17 in fatty liver cells in vitro.
Biochemical and biophysical research communications.
2023 08; 669(?):134-142. doi:
10.1016/j.bbrc.2023.05.041
. [PMID: 37271025] - Yi Kang, Hui Cheng, Yanfang Shi, Junbing Liu, Yue Wang, Dong Wan. Utility of Trimethylamine Oxide (TMAO) in Predicting Early Neurological Deterioration after Acute Ischemic Stroke.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2023 Aug; 33(8):861-865. doi:
10.29271/jcpsp.2023.08.861
. [PMID: 37553923] - Herong Cui, Songjie Han, Yanan Dai, Wei Xie, Rui Zheng, Yang Sun, Xiaofeng Xia, Xiaopeng Deng, Yaru Cao, Mei Zhang, Hongcai Shang. Gut microbiota and integrative traditional Chinese and western medicine in prevention and treatment of heart failure.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Aug; 117(?):154885. doi:
10.1016/j.phymed.2023.154885
. [PMID: 37302262] - Xiaofeng Chen, Hua Zhang, Sichong Ren, Yangnan Ding, Naznin Sultana Remex, Md Shenuarin Bhuiyan, Jiahua Qu, Xiaoqiang Tang. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases.
Chinese medical journal.
2023 Jul; ?(?):. doi:
10.1097/cm9.0000000000002206
. [PMID: 37442759] - Yongzheng Yang, Sajad Karampoor, Rasoul Mirzaei, Leonid Borozdkin, Ping Zhu. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review.
International immunopharmacology.
2023 Jun; 121(?):110546. doi:
10.1016/j.intimp.2023.110546
. [PMID: 37364331] - Joaquín García-Cordero, Alba Martinez, Carlos Blanco-Valverde, Alicia Pino, Verónica Puertas-Martín, Ricardo San Román, Sonia de Pascual-Teresa. Regular Consumption of Cocoa and Red Berries as a Strategy to Improve Cardiovascular Biomarkers via Modulation of Microbiota Metabolism in Healthy Aging Adults.
Nutrients.
2023 May; 15(10):. doi:
10.3390/nu15102299
. [PMID: 37242181] - Jing Liu, Shihan Zhou, Yanqing Wang, Jinling Liu, SuPing Sun, Yan Sun, Ping Xu, Xu Xu, Boran Zhu, Haoxin Wu. ZeXieYin Formula alleviates TMAO-induced cognitive impairment by restoring synaptic plasticity damage.
Journal of ethnopharmacology.
2023 May; 314(?):116604. doi:
10.1016/j.jep.2023.116604
. [PMID: 37178985] - Leonie Schoch, Pablo Sutelman, Rosa Suades, Lina Badimon, Isabel Moreno-Indias, Gemma Vilahur. The gut microbiome dysbiosis is recovered by restoring a normal diet in hypercholesterolemic pigs.
European journal of clinical investigation.
2023 Apr; 53(4):e13927. doi:
10.1111/eci.13927
. [PMID: 36453873] - Shihan Zhou, Jing Liu, Yan Sun, Ping Xu, Jin Ling Liu, Suping Sun, Boran Zhu, Haoxin Wu. Dietary choline metabolite TMAO impairs cognitive function and induces hippocampal synaptic plasticity declining through the mTOR/P70S6K/4EBP1 pathway.
Food & function.
2023 Mar; ?(?):. doi:
10.1039/d2fo03874a
. [PMID: 36883968] - Guixia Shi, Lixiong Zeng, Jialu Shi, Yunhua Chen. Trimethylamine N-oxide Promotes Atherosclerosis by Regulating Low-Density Lipoprotein-Induced Autophagy in Vascular Smooth Muscle Cells Through PI3K/AKT/mTOR Pathway.
International heart journal.
2023; 64(3):462-469. doi:
10.1536/ihj.22-603
. [PMID: 37258122] - Chen Yong, Guo-Shun Huang, Hong-Wei Ge, Qing-Min Sun, Kun Gao, En-Chao Zhou. [Effect of traditional Chinese medicine in attenuating chronic kidney disease and its complications by regulating gut microbiota-derived metabolite trimethylamine N-oxide: a review].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jan; 48(2):321-328. doi:
10.19540/j.cnki.cjcmm.20220726.501
. [PMID: 36725221] - Ya-Lan Huang, Qin Xiang, Jun-Ju Zou, Yongjun Wu, Rong Yu. Zuogui Jiangtang Shuxin formula Ameliorates diabetic cardiomyopathy mice via modulating gut-heart axis.
Frontiers in endocrinology.
2023; 14(?):1106812. doi:
10.3389/fendo.2023.1106812
. [PMID: 36843604] - Ateequr Rehman, Susan M Tyree, Sophie Fehlbaum, Gillian DunnGalvin, Charalampos G Panagos, Bertrand Guy, Shriram Patel, Timothy G Dinan, Asim K Duttaroy, Ruedi Duss, Robert E Steinert. A water-soluble tomato extract rich in secondary plant metabolites lowers trimethylamine-n-oxide and modulates gut microbiota: a randomized, double-blind, placebo-controlled cross-over study in overweight and obese adults.
The Journal of nutrition.
2023 01; 153(1):96-105. doi:
10.1016/j.tjnut.2022.11.009
. [PMID: 36913483] - Yuri Shakhman, Ilan Shumilin, Daniel Harries. Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions.
Journal of colloid and interface science.
2023 Jan; 629(Pt A):165-172. doi:
10.1016/j.jcis.2022.08.123
. [PMID: 36063634] - Suhong Zhao, Yanan Tian, Shanjie Wang, Fan Yang, Junyan Xu, Zhifeng Qin, Xinxin Liu, Muhua Cao, Peng Zhao, Guohua Zhang, Zhuozhong Wang, Yiying Zhang, Yidan Wang, Kaiyang Lin, Shaohong Fang, Zhao Wang, Tianshu Han, Maoyi Tian, Huiyong Yin, Jinwei Tian, Bo Yu. Prognostic value of gut microbiota-derived metabolites in patients with ST-segment elevation myocardial infarction.
The American journal of clinical nutrition.
2022 Dec; ?(?):. doi:
10.1016/j.ajcnut.2022.12.013
. [PMID: 36811471] - Yanpo Si, Wenjun Wei, Xiaohui Chen, Xiaolong Xie, Tao Guo, Yohei Sasaki, Youbo Zhang, Lili Wang, Fei Zhang, Shuying Feng. A comprehensive study on the relieving effect of Lilium brownii on the intestinal flora and metabolic disorder in p-chlorphenylalanine induced insomnia rats.
Pharmaceutical biology.
2022 Dec; 60(1):131-143. doi:
10.1080/13880209.2021.2019283
. [PMID: 34978949] - Peng Zhou, Xiao-Ni Zhao, Yao-Yao Ma, Tong-Juan Tang, Shu-Shu Wang, Liang Wang, Jin-Ling Huang. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease.
Journal of food biochemistry.
2022 12; 46(12):e14376. doi:
10.1111/jfbc.14376
. [PMID: 35945702] - Haoran Wei, Mingming Zhao, Junfang Wu, Chenze Li, Man Huang, Jianing Gao, Qi Zhang, Liang Ji, Yan Wang, Chunxia Zhao, Erdan Dong, Lemin Zheng, Dao Wen Wang. Association of Systemic Trimethyllysine With Heart Failure With Preserved Ejection Fraction and Cardiovascular Events.
The Journal of clinical endocrinology and metabolism.
2022 11; 107(12):e4360-e4370. doi:
10.1210/clinem/dgac519
. [PMID: 36062477] - Chen Yong, Guoshun Huang, Hongwei Ge, Yiye Zhu, Yang Yang, Yongfei Yu, Fang Tian, Kun Gao, Enchao Zhou. Perilla frutescens L. alleviates trimethylamine N-oxide-induced apoptosis in the renal tubule by regulating ASK1-JNK phosphorylation.
Phytotherapy research : PTR.
2022 Nov; ?(?):. doi:
10.1002/ptr.7684
. [PMID: 36420586] - Xiangnan Zhang, Lin Shi, Qiannan Li, Chaofan Song, Ning Han, Tao Yan, Liansheng Zhang, Daoyuan Ren, Yan Zhao, Xingbin Yang. Caloric Restriction, Friend or Foe: Effects on Metabolic Status in Association with the Intestinal Microbiome and Metabolome.
Journal of agricultural and food chemistry.
2022 Nov; 70(43):14061-14072. doi:
10.1021/acs.jafc.2c06162
. [PMID: 36263977] - Tanya L France, William A Myers, Awais Javaid, Ian R Frost, Joseph W McFadden. Changes in plasma and milk choline metabolite concentrations in response to the provision of various rumen-protected choline prototypes in lactating dairy cows.
Journal of dairy science.
2022 Nov; 105(12):9509-9522. doi:
10.3168/jds.2021-21615
. [PMID: 36241441] - Sirawit Sriwichaiin, Parameth Thiennimitr, Chanisa Thonusin, Phinitphong Sarichai, Songphon Buddhasiri, Sirinart Kumfu, Wichwara Nawara, Weerayuth Kittichotirat, Suthat Fucharoen, Nipon Chattipakorn, Siriporn C Chattipakorn. Deferiprone has less benefits on gut microbiota and metabolites in high iron-diet induced iron overload thalassemic mice than in iron overload wild-type mice: A preclinical study.
Life sciences.
2022 Oct; 307(?):120871. doi:
10.1016/j.lfs.2022.120871
. [PMID: 35952729] - Smriti Kumar, Yun Zhu, Lauren Stover, Arthur Laganowsky. Step toward Probing the Nonannular Belt of Membrane Proteins.
Analytical chemistry.
2022 Oct; 94(40):13906-13912. doi:
10.1021/acs.analchem.2c02811
. [PMID: 36170465] - Laura Díez-Ricote, Paloma Ruiz-Valderrey, Víctor Micó, Ruth Blanco, Joao Tomé-Carneiro, Alberto Dávalos, José M Ordovás, Lidia Daimiel. TMAO Upregulates Members of the miR-17/92 Cluster and Impacts Targets Associated with Atherosclerosis.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012107
. [PMID: 36292963] - Jing Xue, Jie Xu, Mingming Zhao, Aoming Jin, Aichun Cheng, Xue Jiang, Ke Li, Jinxi Lin, Xia Meng, Hao Li, Lemin Zheng, Yongjun Wang. Residual Risk of Trimethylamine-N-Oxide and Choline for Stroke Recurrence in Patients With Intensive Secondary Therapy.
Journal of the American Heart Association.
2022 10; 11(19):e027265. doi:
10.1161/jaha.122.027265
. [PMID: 36193936] - Nida Buawangpong, Kanokporn Pinyopornpanish, Arintaya Phrommintikul, Nathamol Chindapan, Sakamon Devahastin, Nipon Chattipakorn, Siriporn C Chattipakorn. Increased plasma trimethylamine-N-oxide levels are associated with mild cognitive impairment in high cardiovascular risk elderly population.
Food & function.
2022 Oct; 13(19):10013-10022. doi:
10.1039/d2fo02021a
. [PMID: 36069253] - Jiexin Zhang, Caiwen Ou, Minsheng Chen. Curcumin attenuates cadmium-induced atherosclerosis by regulating trimethylamine-N-oxide synthesis and macrophage polarization through remodeling the gut microbiota.
Ecotoxicology and environmental safety.
2022 Oct; 244(?):114057. doi:
10.1016/j.ecoenv.2022.114057
. [PMID: 36084504] - C M Florea, R Rosu, G Cismaru, R Moldovan, L Vlase, V Toma, N Decea, B Ancuta, G A Filip. Chronic oral trimethylamine-N-oxide administration induces experimental incipient atherosclerosis in non-genetically modified mice.
Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.
2022 Oct; 73(5):. doi:
10.26402/jpp.2022.5.07
. [PMID: 36942810] - Dongqin Wei, Yizhou Li, Meng Che, Chaowei Li, Qiong Wu, Chao Sun. Melatonin relieves hepatic lipid dysmetabolism caused by aging via modifying the secondary bile acid pattern of gut microbes.
Cellular and molecular life sciences : CMLS.
2022 Sep; 79(10):527. doi:
10.1007/s00018-022-04412-0
. [PMID: 36151409] - Peng Zhou, Jun-Li Kang, Qi-Qing Cheng, Ming-Tai Chen, Ying Xie, Hua Zhou. Therapeutic potential of traditional Chinese medicine against atherosclerosis: Targeting trimethylamine N-oxide.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Sep; 104(?):154305. doi:
10.1016/j.phymed.2022.154305
. [PMID: 35792446] - Julian Josef Emonds, Clemens Ringel, Madlen Reinicke, Daniel Müller, Arnold Von Eckardstein, Jürgen Meixensberger, Uta Ceglarek, Alexander Gaudl. Influence of Trimethylamine N-Oxide on Platelet Activation.
Nutrients.
2022 Aug; 14(16):. doi:
10.3390/nu14163261
. [PMID: 36014773] - Rachel E Elam, Petra Bůžková, Joshua I Barzilay, Zeneng Wang, Ina Nemet, Matthew J Budoff, Jane A Cauley, Howard A Fink, Yujin Lee, John A Robbins, Meng Wang, Stanley L Hazen, Dariush Mozaffarian, Laura D Carbone. Trimethylamine N-oxide and hip fracture and bone mineral density in older adults: The cardiovascular health study.
Bone.
2022 08; 161(?):116431. doi:
10.1016/j.bone.2022.116431
. [PMID: 35577327] - Xiaowei Xiong, Jian Zhou, Qiang Fu, Xiaowei Xu, Shaobin Wei, Shenghua Yang, Buxing Chen. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy.
Lipids in health and disease.
2022 Jul; 21(1):60. doi:
10.1186/s12944-022-01673-3
. [PMID: 35864500] - Shu-Rong Ma, Qian Tong, Yuan Lin, Li-Bin Pan, Jie Fu, Ran Peng, Xian-Feng Zhang, Zhen-Xiong Zhao, Yang Li, Jin-Bo Yu, Lin Cong, Pei Han, Zheng-Wei Zhang, Hang Yu, Yan Wang, Jian-Dong Jiang. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota.
Signal transduction and targeted therapy.
2022 07; 7(1):207. doi:
10.1038/s41392-022-01027-6
. [PMID: 35794102] - Doudou Li, Ying Lu, Shuai Yuan, Xiaxia Cai, Yuan He, Jie Chen, Qiong Wu, Di He, Aiping Fang, Yacong Bo, Peige Song, Debby Bogaert, Kostas Tsilidis, Susanna C Larsson, Huanling Yu, Huilian Zhu, Evropi Theodoratou, Yimin Zhu, Xue Li. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis.
The American journal of clinical nutrition.
2022 07; 116(1):230-243. doi:
10.1093/ajcn/nqac074
. [PMID: 35348578] - Daniel Y Li, Xinmin S Li, Thanat Chaikijurajai, Lin Li, Zeneng Wang, Stanley L Hazen, W H Wilson Tang. Relation of Statin Use to Gut Microbial Trimethylamine N-Oxide and Cardiovascular Risk.
The American journal of cardiology.
2022 Jul; ?(?):. doi:
10.1016/j.amjcard.2022.05.010
. [PMID: 35787338] - Mohammad Moradzad, Mohammad Abdi, Farshad Sheikh Esmaeili, Dana Ghaderi, Khaled Rahmani, Mohammad Raman Moloudi, Zakaria Vahabzadeh. Possible correlation between high circulatory levels of trimethylamine-N-oxide and 2177G>C polymorphisms of hepatic flavin containing monooxygenase 3 in Kurdish Population with non-alcoholic fatty liver disease.
Molecular biology reports.
2022 Jul; 49(7):5927-5937. doi:
10.1007/s11033-022-07375-4
. [PMID: 35348964] - Kaiyang Lin, Xuedong Wang, Ji Li, Peng Zhao, Xiangwen Xi, Yi Feng, Li Yin, Jinwei Tian, Hulun Li, Xinxin Liu, Bo Yu. Anti-atherosclerotic effects of geraniin through the gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway in mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jul; 101(?):154104. doi:
10.1016/j.phymed.2022.154104
. [PMID: 35461005] - Jiaying Li, Qingchun Zeng, Zhenyu Xiong, Gaopeng Xian, Zuheng Liu, Qiong Zhan, Wenyan Lai, Lihua Ao, Xianzhong Meng, Hao Ren, Dingli Xu. Trimethylamine N-oxide induces osteogenic responses in human aortic valve interstitial cells in vitro and aggravates aortic valve lesions in mice.
Cardiovascular research.
2022 Jun; 118(8):2018-2030. doi:
10.1093/cvr/cvab243
. [PMID: 34352088] - Hao-Hao Shi, Li-Pin Chen, Cheng-Cheng Wang, Ying-Cai Zhao, Yu-Ming Wang, Chang-Hu Xue, Tian-Tian Zhang. Docosahexaenoic acid-acylated curcumin diester alleviates cisplatin-induced acute kidney injury by regulating the effect of gut microbiota on the lipopolysaccharide- and trimethylamine-N-oxide-mediated PI3K/Akt/NF-κB signaling pathway in mice.
Food & function.
2022 Jun; 13(11):6103-6117. doi:
10.1039/d1fo04178a
. [PMID: 35575345] - Shichao Lv, Yunjiao Wang, Wanqin Zhang, Hongcai Shang. Trimethylamine oxide: a potential target for heart failure therapy.
Heart (British Cardiac Society).
2022 05; 108(12):917-922. doi:
10.1136/heartjnl-2021-320054
. [PMID: 34611047] - Anne Jomard, Luca Liberale, Petia Doytcheva, Martin F Reiner, Daniel Müller, Michele Visentin, Marco Bueter, Thomas F Lüscher, Roberto Vettor, Thomas A Lutz, Giovanni G Camici, Elena Osto. Effects of acute administration of trimethylamine N-oxide on endothelial function: a translational study.
Scientific reports.
2022 05; 12(1):8664. doi:
10.1038/s41598-022-12720-5
. [PMID: 35606406] - Nora A Kalagi, Rohith N Thota, Elizabeth Stojanovski, Khalid A Alburikan, Manohar L Garg. Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study.
Nutrients.
2022 May; 14(10):. doi:
10.3390/nu14102093
. [PMID: 35631234] - Jin-Yue Yang, Tian-Tian Zhang, Zhu-Lin Yu, Cheng-Cheng Wang, Ying-Cai Zhao, Yu-Ming Wang, Chang-Hu Xue. Taurine Alleviates Trimethylamine N-Oxide-Induced Atherosclerosis by Regulating Bile Acid Metabolism in ApoE-/- Mice.
Journal of agricultural and food chemistry.
2022 May; 70(18):5738-5747. doi:
10.1021/acs.jafc.2c01376
. [PMID: 35486890] - Lamuel D Bean, Jeffrey J Wing, Randall E Harris, Suzanne M Smart, Subha V Raman, M Wesley Milks. Transferrin predicts trimethylamine-N-oxide levels and is a potential biomarker of cardiovascular disease.
BMC cardiovascular disorders.
2022 05; 22(1):209. doi:
10.1186/s12872-022-02644-3
. [PMID: 35538408] - Amanda M Fretts, Stanley L Hazen, Paul Jensen, Matthew Budoff, Colleen M Sitlani, Meng Wang, Marcia C de Oliveira Otto, Joseph A DiDonato, Yujin Lee, Bruce M Psaty, David S Siscovick, Nona Sotoodehnia, W H Wilson Tang, Heidi Lai, Rozenn N Lemaitre, Dariush Mozaffarian. Association of Trimethylamine N-Oxide and Metabolites With Mortality in Older Adults.
JAMA network open.
2022 05; 5(5):e2213242. doi:
10.1001/jamanetworkopen.2022.13242
. [PMID: 35594043] - Mengxue Yang, Rui Zhang, Caifang Zhuang, Yueyue Wu, Qian Yang, Zhiyuan Yu, Jun Liu, Bingbing Zha, Qihai Gong, Bo Yang, Miao Zeng, Cuili Yan. Serum Trimethylamine N-oxide and the Diversity of the Intestinal Microbial Flora in Type 2 Diabetes Complicated by Diabetic Kidney Disease.
Clinical laboratory.
2022 May; 68(5):. doi:
10.7754/clin.lab.2021.210836
. [PMID: 35536069] - Samitinjaya Dhakal, Zahra Moazzami, Cydne Perry, Moul Dey. Effects of Lean Pork on Microbiota and Microbial-Metabolite Trimethylamine-N-Oxide: A Randomized Controlled Non-Inferiority Feeding Trial Based on the Dietary Guidelines for Americans.
Molecular nutrition & food research.
2022 05; 66(9):e2101136. doi:
10.1002/mnfr.202101136
. [PMID: 35182101] - Maximilien Franck, Juan de Toro-Martín, Thibault V Varin, Véronique Garneau, Geneviève Pilon, Denis Roy, Patrick Couture, Charles Couillard, André Marette, Marie-Claude Vohl. Gut Microbial Signatures of Distinct Trimethylamine N-Oxide Response to Raspberry Consumption.
Nutrients.
2022 Apr; 14(8):. doi:
10.3390/nu14081656
. [PMID: 35458219] - Hai Wang, Xingyu Rong, Gan Zhao, Yifan Zhou, Yi Xiao, Ding Ma, Xi Jin, Yonglin Wu, Yuchen Yan, Hao Yang, Yuan Zhou, Manning Qian, Chen Niu, Xin Hu, Da-Qiang Li, Qingyun Liu, Yumei Wen, Yi-Zhou Jiang, Chao Zhao, Zhi-Ming Shao. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer.
Cell metabolism.
2022 04; 34(4):581-594.e8. doi:
10.1016/j.cmet.2022.02.010
. [PMID: 35278352] - He Liu, Kunpeng Jia, Zhengnan Ren, Jia Sun, Li-Long Pan. PRMT5 critically mediates TMAO-induced inflammatory response in vascular smooth muscle cells.
Cell death & disease.
2022 04; 13(4):299. doi:
10.1038/s41419-022-04719-7
. [PMID: 35379776] - Giulia Querio, Susanna Antoniotti, Federica Geddo, Renzo Levi, Maria Pia Gallo. Trimethylamine N-Oxide (TMAO) Impairs Purinergic Induced Intracellular Calcium Increase and Nitric Oxide Release in Endothelial Cells.
International journal of molecular sciences.
2022 Apr; 23(7):. doi:
10.3390/ijms23073982
. [PMID: 35409341] - Jie Xu, Aichun Cheng, Bo Song, Mingming Zhao, Jing Xue, Anxin Wang, Liye Dai, Jing Jing, Xia Meng, Hao Li, Lemin Zheng, Yongjun Wang. Trimethylamine N-Oxide and Stroke Recurrence Depends on Ischemic Stroke Subtypes.
Stroke.
2022 04; 53(4):1207-1215. doi:
10.1161/strokeaha.120.031443
. [PMID: 34794334] - Haoran Wei, Mingming Zhao, Man Huang, Chenze Li, Jianing Gao, Ting Yu, Qi Zhang, Xiaoqing Shen, Liang Ji, Li Ni, Chunxia Zhao, Zeneng Wang, Erdan Dong, Lemin Zheng, Dao Wen Wang. FMO3-TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population.
Frontiers of medicine.
2022 Apr; 16(2):295-305. doi:
10.1007/s11684-021-0857-2
. [PMID: 34159537] - Jun Li, Yanping Li, Kerry L Ivey, Dong D Wang, Jeremy E Wilkinson, Adrian Franke, Kyu Ha Lee, Andrew Chan, Curtis Huttenhower, Frank B Hu, Eric B Rimm, Qi Sun. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men.
Gut.
2022 04; 71(4):724-733. doi:
10.1136/gutjnl-2020-322473
. [PMID: 33926968] - Kristen L James, Erik R Gertz, Eduardo Cervantes, Ellen L Bonnel, Charles B Stephensen, Mary E Kable, Brian J Bennett. Diet, Fecal Microbiome, and Trimethylamine N-Oxide in a Cohort of Metabolically Healthy United States Adults.
Nutrients.
2022 Mar; 14(7):. doi:
10.3390/nu14071376
. [PMID: 35405993] - Qianqian Wang, Min Guo, Yang Liu, Mengshu Xu, Liuting Shi, Xiu Li, Jianxin Zhao, Hao Zhang, Gang Wang, Wei Chen. Bifidobacterium breve and Bifidobacterium longum Attenuate Choline-Induced Plasma Trimethylamine N-Oxide Production by Modulating Gut Microbiota in Mice.
Nutrients.
2022 Mar; 14(6):. doi:
10.3390/nu14061222
. [PMID: 35334879] - Melita Videja, Eduards Sevostjanovs, Sabine Upmale-Engela, Edgars Liepinsh, Ilze Konrade, Maija Dambrova. Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers.
Nutrients.
2022 Mar; 14(5):. doi:
10.3390/nu14051093
. [PMID: 35268068] - Ruey Leng Loo, Queenie Chan, Jeremy K Nicholson, Elaine Holmes. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine-N-oxide.
Journal of proteome research.
2022 03; 21(3):560-589. doi:
10.1021/acs.jproteome.1c00851
. [PMID: 35142516] - Mauro Lombardo, Giovanni Aulisa, Daniele Marcon, Gianluca Rizzo. The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans.
Current nutrition reports.
2022 03; 11(1):56-68. doi:
10.1007/s13668-021-00387-9
. [PMID: 34990005] - Jiajia Wang, Shenshen Wu, Jian Cui, Zhen Ding, Qingtao Meng, Hao Sun, Bin Li, Jun Teng, Yanping Dong, Michael Aschner, Shaowei Wu, Xiaobo Li, Rui Chen. The influences of ambient fine particulate matter constituents on plasma hormones, circulating TMAO levels and blood pressure: A panel study in China.
Environmental pollution (Barking, Essex : 1987).
2022 Mar; 296(?):118746. doi:
10.1016/j.envpol.2021.118746
. [PMID: 34968616] - Archita Maiti, Snehasis Daschakraborty. Can Urea and Trimethylamine-N-oxide Prevent the Pressure-Induced Phase Transition of Lipid Membrane?.
The journal of physical chemistry. B.
2022 02; 126(7):1426-1440. doi:
10.1021/acs.jpcb.1c08891
. [PMID: 35139638] - Lorena Calderón-Pérez, Susana Suárez-García, Anna Pedret, Manuel Suárez, Elisabet Llauradó, Laura Rubió, Josep M Del Bas, Antoni Caimari, Francesc Puiggrós, Lluís Arola, Rosa Solà, Rosa M Valls. Serum lysophospholipidome of dietary origin as a suitable susceptibility/risk biomarker of human hypercholesterolemia: A cross-sectional study.
Clinical nutrition (Edinburgh, Scotland).
2022 02; 41(2):489-499. doi:
10.1016/j.clnu.2021.11.033
. [PMID: 35007817] - Jea Woo Kang, Angela M Zivkovic. Are eggs good again? A precision nutrition perspective on the effects of eggs on cardiovascular risk, taking into account plasma lipid profiles and TMAO.
The Journal of nutritional biochemistry.
2022 02; 100(?):108906. doi:
10.1016/j.jnutbio.2021.108906
. [PMID: 34801688] - Fang Dong, Shan Jiang, Chun Tang, Xiaohua Wang, Xiaoqiu Ren, Qichun Wei, Jiong Tian, Weipeng Hu, Jie Guo, Xiaodong Fu, Linlin Liu, Andreas Patzak, Pontus B Persson, Fei Gao, En Yin Lai, Liang Zhao. Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy.
Free radical biology & medicine.
2022 02; 179(?):288-300. doi:
10.1016/j.freeradbiomed.2021.11.010
. [PMID: 34767921] - Lei Zhang, Feifei Xie, Haie Tang, Xinrong Zhang, Jianxia Hu, Xiaohong Zhong, Nirong Gong, Yunshi Lai, Miaomiao Zhou, Jianwei Tian, Zhanmei Zhou, Liling Xie, Zheng Hu, Fengxin Zhu, Jianping Jiang, Jing Nie. Gut microbial metabolite TMAO increases peritoneal inflammation and peritonitis risk in peritoneal dialysis patients.
Translational research : the journal of laboratory and clinical medicine.
2022 02; 240(?):50-63. doi:
10.1016/j.trsl.2021.10.001
. [PMID: 34673277] - Jennifer A Buffa, Kymberleigh A Romano, Matthew F Copeland, David B Cody, Weifei Zhu, Rachel Galvez, Xiaoming Fu, Kathryn Ward, Marc Ferrell, Hong J Dai, Sarah Skye, Ping Hu, Lin Li, Mirjana Parlov, Amy McMillan, Xingtao Wei, Ina Nemet, Robert A Koeth, Xinmin S Li, Zeneng Wang, Naseer Sangwan, Adeline M Hajjar, Mohammed Dwidar, Taylor L Weeks, Nathalie Bergeron, Ronald M Krauss, W H Wilson Tang, Federico E Rey, Joseph A DiDonato, Valentin Gogonea, G Frank Gerberick, Jose Carlos Garcia-Garcia, Stanley L Hazen. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism.
Nature microbiology.
2022 01; 7(1):73-86. doi:
10.1038/s41564-021-01010-x
. [PMID: 34949826] - Youjing Zheng, Jia-Qiang He. Pathogenic Mechanisms of Trimethylamine N-Oxide-induced Atherosclerosis and Cardiomyopathy.
Current vascular pharmacology.
2022; 20(1):29-36. doi:
10.2174/1570161119666210812152802
. [PMID: 34387163] - Yunshi Lai, Haie Tang, Xinrong Zhang, Zhanmei Zhou, Miaomiao Zhou, Zheng Hu, Fengxin Zhu, Lei Zhang, Jing Nie. Trimethylamine-N-Oxide Aggravates Kidney Injury via Activation of p38/MAPK Signaling and Upregulation of HuR.
Kidney & blood pressure research.
2022; 47(1):61-71. doi:
10.1159/000519603
. [PMID: 34788763] - Guixiu Chen, Lin He, Xiaotao Dou, Tao Liu. Association of Trimethylamine-N-Oxide Levels with Risk of Cardiovascular Disease and Mortality among Elderly Subjects: A Systematic Review and Meta-Analysis.
Cardiorenal medicine.
2022; 12(2):39-54. doi:
10.1159/000520910
. [PMID: 34915483] - Wanwen Kong, Junyi Ma, Ying Lin, Weiyu Chen. Positive Association of Plasma Trimethylamine-N-Oxide and Atherosclerosis in Patient with Acute Coronary Syndrome.
Cardiovascular therapeutics.
2022; 2022(?):2484018. doi:
10.1155/2022/2484018
. [PMID: 36420057] - Guodong Yang, Xiaoying Zhang. Trimethylamine N-oxide promotes hyperlipidemia acute pancreatitis via inflammatory response.
Canadian journal of physiology and pharmacology.
2022 Jan; 100(1):61-67. doi:
10.1139/cjpp-2021-0421
. [PMID: 34793682] - Tiantian Luo, Zhigang Guo, Dan Liu, Zhongzhou Guo, Qiao Wu, Qinxian Li, Rongzhan Lin, Peier Chen, Caiwen Ou, Minsheng Chen. Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3.
Gut microbes.
2022 Jan; 14(1):2077602. doi:
10.1080/19490976.2022.2077602
. [PMID: 35613310] - Sridevi Krishnan, Erik R Gertz, Sean H Adams, John W Newman, Theresa L Pedersen, Nancy L Keim, Brian J Bennett. Effects of a diet based on the Dietary Guidelines on vascular health and TMAO in women with cardiometabolic risk factors.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2022 01; 32(1):210-219. doi:
10.1016/j.numecd.2021.09.013
. [PMID: 34895998] - Yan-Yan Chen, Zu-Sen Ye, Nian-Ge Xia, Yun Xu. TMAO as a Novel Predictor of Major Adverse Vascular Events and Recurrence in Patients with Large Artery Atherosclerotic Ischemic Stroke.
Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis.
2022 Jan; 28(?):10760296221090503. doi:
10.1177/10760296221090503
. [PMID: 35345908] - Mingzhu Yan, Chong Zhao, Shangyun Lu, Jinling Cui, Zhenou Sun, Xiaoyi Liu, Shuo Liu, Yazhen Huo, Shutao Yin, Hongbo Hu. Trimethylamine N-oxide exacerbates acetaminophen-induced liver injury by interfering with macrophage-mediated liver regeneration.
Journal of cellular physiology.
2022 01; 237(1):897-910. doi:
10.1002/jcp.30568
. [PMID: 34459512] - Si-Yue Chen, Xing-Yu Rong, Xin-Yi Sun, Yi-Rong Zou, Chao Zhao, Hui-Jing Wang. A Novel Trimethylamine Oxide-Induced Model Implicates Gut Microbiota-Related Mechanisms in Frailty.
Frontiers in cellular and infection microbiology.
2022; 12(?):803082. doi:
10.3389/fcimb.2022.803082
. [PMID: 35360115] - Caizhen Li, Li Zhu, Yinming Dai, Zhiying Zhang, Leo Huang, Tom J Wang, Peiji Fu, Yinuo Li, Jian Wang, Chao Jiang. Diet-Induced High Serum Levels of Trimethylamine-N-oxide Enhance the Cellular Inflammatory Response without Exacerbating Acute Intracerebral Hemorrhage Injury in Mice.
Oxidative medicine and cellular longevity.
2022; 2022(?):1599747. doi:
10.1155/2022/1599747
. [PMID: 35242275] - Sourav Nandi, Arghajit Pyne, Souvik Layek, Chirag Arora, Nilmoni Sarkar. The Dietary Nutrient Trimethylamine N-Oxide Affects the Phospholipid Vesicle Membrane: Probable Route to Adverse Intake.
The journal of physical chemistry letters.
2021 Dec; 12(51):12411-12418. doi:
10.1021/acs.jpclett.1c03201
. [PMID: 34939822] - Kritika Kumari, Marina Warepam, Aniket Kumar Bansal, Tanveer Ali Dar, Vladimir N Uversky, Laishram Rajendrakumar Singh. The gut metabolite, trimethylamine N-oxide inhibits protein folding by affecting cis-trans isomerization and induces cell cycle arrest.
Cellular and molecular life sciences : CMLS.
2021 Dec; 79(1):12. doi:
10.1007/s00018-021-04087-z
. [PMID: 34953141]