L-Tryptophan betaine (BioDeep_00000000473)

   

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


(2S)-3-(1H-indol-3-yl)-2-(trimethylazaniumyl)propanoate

化学式: C14H18N2O2 (246.1368)
中文名称: 刺桐碱
谱图信息: 最多检出来源 Homo sapiens(blood) 43.36%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

L-Tryptophan betaine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/lenticin (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000473). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C[N+](C)(C(C([O-])=O)CC1=CNC2=C1C=CC=C2)C
InChI: InChI=1S/C14H18N2O2/c1-16(2,3)13(14(17)18)8-10-9-15-12-7-5-4-6-11(10)12/h4-7,9,13,15H,8H2,1-3H3/t13-/m0/s1

描述信息

Hypaphorine is an amino acid betaine obtaine by exhaustive methylation of the alpha-amino group of L-tryptophan with concomitant deprotonation of the carboxy group. It has a role as a plant metabolite, a xenobiotic and a fungal metabolite. It is an amino-acid betaine, a L-tryptophan derivative and an indole alkaloid.
Hypaphorine is a natural product found in Erythrina suberosa, Erythrina subumbrans, and other organisms with data available.
Lenticin or hypaphorine is a compound found in lentil extracts. It can also be detected in blood after an individual has consumed lentils and may therefore serve as a food biomarker. Lenticin is an indole alkaloid that is essentially an N-methylated form of tryptophan. It is known to be a sleep-inducing compound (PMID: 18571406). In plants it is an agonist of the plant hormone indole acetic acid.
An amino acid betaine obtaine by exhaustive methylation of the alpha-amino group of L-tryptophan with concomitant deprotonation of the carboxy group.

(+)-Hypaphorine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-58-1 (retrieved 2024-07-01) (CAS RN: 487-58-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Hypaphorine is an indole alkaloid isolated from Caragana korshinskii, and with neurological and glucose-lowering effects in rodents[1].
Hypaphorine is an indole alkaloid isolated from Caragana korshinskii, and with neurological and glucose-lowering effects in rodents[1].

同义名列表

25 个代谢物同义名

1H-INDOLE-3-ETHANAMINIUM, .ALPHA.-CARBOXY-N,N,N-TRIMETHYL-, INNER SALT, (.ALPHA.S)-; (.ALPHA.S)-.ALPHA.-CARBOXY-N,N,N-TRIMETHYL-1H-INDOLE-3-ETHANAMINIUM INNER SALT; 1H-Indole-3-ethanaminium, alpha-carboxy-N,N,N-trimethyl-, inner salt, (S)-; 1H-Indole-3-ethanaminium,a-carboxy-N,N,N-trimethyl-, innersalt, (aS)-; (2S)-3-(1H-indol-3-yl)-2-(trimethylazaniumyl)propanoate; (2S)-3-(1H-indol-3-yl)-2-(trimethylammonio)propionate; (S)-3-(1H-Indol-3-yl)-2-(trimethylammonio)propanoate; N,N,N-trimethyltryptophan betaine; TRYPTOPHAN, TRIMETHYLBETAINE; L-tryptophan betaine; Tryptophan betaine; HYPAPHORINE, (+)-; HYPAPHORINE [MI]; lenticin nitrate; (+)-Hypaphorine; Glyyunnanenine; L-Hypaphorine; Hypaphorine; C14H18N2O2; 1ST156701; hypaforin; Lenticine; lenticin; DL-Hypaphorine; Hypaphorine



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

84 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AIMP2, AKT2, ANG, BCL2, DUSP1, FASN, IL18, MAPK8, MTOR, PIK3CA, PPARG, PTGS2, SREBF1, TLR4
Peripheral membrane protein 3 GORASP1, MTOR, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 4 BCL2, MTOR, PTGS2, SREBF1
Nucleus 9 AIMP2, AKT2, ANG, BCL2, DUSP1, MAPK8, MTOR, PPARG, SREBF1
cytosol 11 AIMP2, AKT2, ANG, BCL2, FASN, IL18, MAPK8, MTOR, PIK3CA, PPARG, SREBF1
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
nucleoplasm 5 AKT2, MAPK8, MTOR, PPARG, SREBF1
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 2 TLR4, TNF
Cytoplasmic side 2 GORASP1, MTOR
lamellipodium 1 PIK3CA
ruffle membrane 1 AKT2
Multi-pass membrane protein 1 SREBF1
Golgi apparatus membrane 3 GORASP1, MTOR, SREBF1
Synapse 2 MAPK8, NPS
cell cortex 1 AKT2
cell surface 2 TLR4, TNF
Golgi apparatus 2 FASN, GORASP1
Golgi membrane 4 GORASP1, INS, MTOR, SREBF1
growth cone 1 ANG
lysosomal membrane 1 MTOR
neuronal cell body 2 ANG, TNF
Cytoplasm, cytosol 2 AIMP2, IL18
Lysosome 1 MTOR
plasma membrane 5 AKT2, FASN, PIK3CA, TLR4, TNF
Membrane 5 AIMP2, BCL2, FASN, MTOR, TLR4
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 1 FASN
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BCL2, PTGS2, SREBF1
extracellular space 6 ANG, CCL2, IL10, IL18, INS, TNF
perinuclear region of cytoplasm 3 PIK3CA, PPARG, TLR4
intercalated disc 1 PIK3CA
mitochondrion 1 BCL2
protein-containing complex 3 BCL2, PTGS2, SREBF1
intracellular membrane-bounded organelle 2 AKT2, PPARG
Microsome membrane 2 MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TLR4
Secreted 5 ANG, CCL2, IL10, IL18, INS
extracellular region 7 ANG, CCL2, IL10, IL18, INS, NPS, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 TLR4, TNF
actin cytoskeleton 1 ANG
nucleolus 1 ANG
Early endosome 2 AKT2, TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
cis-Golgi network 1 GORASP1
basement membrane 1 ANG
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 PPARG, TLR4
neuron projection 1 PTGS2
chromatin 2 PPARG, SREBF1
phagocytic cup 2 TLR4, TNF
Chromosome 1 ANG
Nucleus, nucleolus 1 ANG
nuclear envelope 2 MTOR, SREBF1
Endomembrane system 1 MTOR
endosome lumen 1 INS
Cytoplasmic vesicle membrane 1 SREBF1
Melanosome 1 FASN
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
ER to Golgi transport vesicle membrane 1 SREBF1
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Cytoplasmic vesicle, phagosome 1 MTOR
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
BAD-BCL-2 complex 1 BCL2
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yu-Hua Ding, Run-Xin Miao, Qiang Zhang. Hypaphorine exerts anti-inflammatory effects in sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway. The Kaohsiung journal of medical sciences. 2021 Oct; 37(10):883-893. doi: 10.1002/kjm2.12418. [PMID: 34250720]
  • Mar Garcia-Aloy, Marynka Ulaszewska, Pietro Franceschi, Sheila Estruel-Amades, Christoph H Weinert, Alba Tor-Roca, Mireia Urpi-Sarda, Fulvio Mattivi, Cristina Andres-Lacueva. Discovery of Intake Biomarkers of Lentils, Chickpeas, and White Beans by Untargeted LC-MS Metabolomics in Serum and Urine. Molecular nutrition & food research. 2020 07; 64(13):e1901137. doi: 10.1002/mnfr.201901137. [PMID: 32420683]
  • Yan Song, Lan Pan, Wenjie Li, Yingying Si, Di Zhou, Chengjian Zheng, Xiaofang Hao, Xinyue Jia, Yuemei Jia, Minghui Shi, Xiaoguang Jia, Ning Li, Yue Hou. Natural neuro-inflammatory inhibitors from Caragana turfanensis. Bioorganic & medicinal chemistry letters. 2017 10; 27(20):4765-4769. doi: 10.1016/j.bmcl.2017.08.047. [PMID: 28911817]
  • Guangxiang Luan, Fangfang Tie, Zhenzhen Yuan, Gang Li, Jie He, Zhenhua Wang, Honglun Wang. Hypaphorine, an Indole Alkaloid Isolated from Caragana korshinskii Kom., Inhibites 3T3-L1 Adipocyte Differentiation and Improves Insulin Sensitivity in Vitro. Chemistry & biodiversity. 2017 Jul; 14(7):. doi: 10.1002/cbdv.201700038. [PMID: 28398659]
  • Haijian Sun, Weiwei Cai, Xu Wang, Yanling Liu, Bao Hou, Xuexue Zhu, Liying Qiu. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC complementary and alternative medicine. 2017 Feb; 17(1):120. doi: 10.1186/s12906-017-1635-1. [PMID: 28219355]
  • Stamatis Rigas, Franck Anicet Ditengou, Karin Ljung, Gerasimos Daras, Olaf Tietz, Klaus Palme, Polydefkis Hatzopoulos. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. The New phytologist. 2013 Mar; 197(4):1130-1141. doi: 10.1111/nph.12092. [PMID: 23252740]
  • Masaaki Ozawa, Kazuki Honda, Izumi Nakai, Akio Kishida, Ayumi Ohsaki. Hypaphorine, an indole alkaloid from Erythrina velutina, induced sleep on normal mice. Bioorganic & medicinal chemistry letters. 2008 Jul; 18(14):3992-4. doi: 10.1016/j.bmcl.2008.06.002. [PMID: 18571406]
  • Hakima Bel-Kassaoui, Driss Lamnaouer, Akino Jossang, El Hassane Abdennebi, Zoubida Charrouf, Bernard Bodo. Role of hypaphorine in the toxicity of Astragalus lusitanicus. Natural product research. 2008 Mar; 22(5):453-7. doi: 10.1080/14786410701591986. [PMID: 18404567]
  • A Dauphin, J Gérard, F Lapeyrie, V Legué. Fungal hypaphorine reduces growth and induces cytosolic calcium increase in root hairs of Eucalyptus globulus. Protoplasma. 2007; 231(1-2):83-8. doi: 10.1007/s00709-006-0240-9. [PMID: 17370110]
  • A Dauphin, N C A De Ruijter, A M C Emons, V Legué. Actin organization during eucalyptus root hair development and its response to fungal hypaphorine. Plant biology (Stuttgart, Germany). 2006 Mar; 8(2):204-11. doi: 10.1055/s-2006-923767. [PMID: 16547865]
  • Li-qian Hai, Qing-ying Zhang, Yu-ying Zhao, Hong Liang, Nian-Sheng Du. [Studies on chemical constituents from root of Hedysarum polybotrys]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2004 May; 29(5):432-4. doi: ". [PMID: 15706896]
  • Franck Anicet Ditengou, Marjatta Raudaskoski, Frédéric Lapeyrie. Hypaphorine, an indole-3-acetic acid antagonist delivered by the ectomycorrhizal fungus Pisolithus tinctorius, induces reorganisation of actin and the microtubule cytoskeleton in Eucalyptus globulus ssp bicostata root hairs. Planta. 2003 Dec; 218(2):217-25. doi: 10.1007/s00425-003-1095-3. [PMID: 14504925]
  • David Reboutier, Michele Bianchi, Mathias Brault, Camille Roux, Aurélien Dauphin, Jean-Pierre Rona, Valérie Legué, Frédéric Lapeyrie, François Bouteau. The indolic compound hypaphorine produced by ectomycorrhizal fungus interferes with auxin action and evokes early responses in nonhost Arabidopsis thaliana. Molecular plant-microbe interactions : MPMI. 2002 Sep; 15(9):932-8. doi: 10.1094/mpmi.2002.15.9.932. [PMID: 12236599]
  • Tomonori Kawano, Nakako Kawano, Frédéric Lapeyrie. A fungal auxin antagonist, hypaphorine prevents the indole-3-acetic acid-dependent irreversible inactivation of horseradish peroxidase: inhibition of Compound III-mediated formation of P-670. Biochemical and biophysical research communications. 2002 Jun; 294(3):553-9. doi: 10.1016/s0006-291x(02)00513-2. [PMID: 12056802]
  • T Kawano, N Kawano, H Hosoya, F Lapeyrie. Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid-dependent superoxide generation by horseradish peroxidase. Biochemical and biophysical research communications. 2001 Nov; 288(3):546-51. doi: 10.1006/bbrc.2001.5800. [PMID: 11676477]
  • F A Ditengou, T Béguiristain, F Lapeyrie. Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. Planta. 2000 Oct; 211(5):722-8. doi: 10.1007/s004250000342. [PMID: 11089686]
  • F A Ditengou, F Lapeyrie. Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in eucalypt seedlings. Molecular plant-microbe interactions : MPMI. 2000 Feb; 13(2):151-8. doi: 10.1094/mpmi.2000.13.2.151. [PMID: 10659705]
  • U Nehls, T Béguiristain, F Ditengou, F Lapeyrie, F Martin. The expression of a symbiosis-regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Planta. 1998 Dec; 207(2):296-302. doi: 10.1007/s004250050486. [PMID: 9951730]
  • E Marklová, L Sobotka, I M Hais. [Metabolism of indoleacrylic acid. II. The effect of diet on the excretion of indoleacryloylglycine in urine]. Sbornik vedeckych praci Lekarske fakulty Karlovy univerzity v Hradci Kralove. Supplementum. 1986; 29(4-5):443-9. doi: NULL. [PMID: 3125600]
  • E Marklová, I M Hais. [Metabolism of indolylacrylic acid. I. Hypaforin]. Sbornik vedeckych praci Lekarske fakulty Karlovy univerzity v Hradci Kralove. Supplementum. 1986; 29(4-5):435-42. doi: NULL. [PMID: 3501895]