Subcellular Location: Peripheral membrane protein
Found 500 associated metabolites.
945 associated genes.
AAK1, ACAD9, ACADVL, ACAP1, ACAP2, ACAP3, ACBD3, ACHE, ACY3, ADA, ADCY10, ADD1, ADD2, ADD3, ADI1, AGK, AHCYL1, AIF1, AIF1L, AKAP13, AKT3, AKTIP, ALAS1, ALAS2, ALG13, ALG2, ALOX15, ALOX15B, ALOX5, AMBP, AMER2, AMER3, ANKFY1, ANKRA2, ANOS1, ANXA1, ANXA4, ANXA5, ANXA6, AOC1, AP1B1, AP1G1, AP1G2, AP1M1, AP1M2, AP1S1, AP1S2, AP1S3, AP2A1, AP2A2, AP2B1, AP2M1, AP2S1, AP3B1, AP3B2, AP3D1, AP3M1, AP3M2, AP3S1, AP3S2, AP4B1, AP4E1, AP4M1, AP4S1, AP5M1, AP5S1, APBB1IP, APOBR, APPBP2, APPL1, APPL2, ARAP3, ARCN1, ARFGAP1, ARFGAP2, ARFGAP3, ARHGAP15, ARHGAP21, ARHGAP27, ARHGAP5, ARHGEF4, ARL1, ARL6, ARMC12, ARPIN-AP3S2, ARRDC3, ARRDC4, ASPSCR1, ATAD3B, ATG12, ATG14, ATG16L1, ATG2A, ATG2B, ATG5, ATP5F1A, ATP5F1B, ATP5F1C, ATP6V0D1, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1D, ATP6V1E1, ATP6V1F, ATP6V1G2, ATP6V1H, ATPAF1, ATPAF2, ATXN2L, ATXN3, AUP1, AZU1, BAIAP2, BAIAP2L2, BAIAP3, BAP1, BCL2L11, BCL2L2, BECN1, BEGAIN, BFSP1, BFSP2, BIN2, BLOC1S6, BSN, BSPRY, BTK, C1QBP, C2CD2L, C9orf72, CACNB1, CACNB2, CADPS, CADPS2, CALCOCO2, CAMK1G, CAMK2B, CAMK2D, CAMK2G, CAMKV, CAP1, CAP2, CAPRIN2, CAPS, CAPS2, CARMIL2, CASK, CASP4, CASQ1, CATSPERZ, CAV1, CAV2, CAV3, CCDC198, CCDC32, CCDC88A, CCDC88B, CCDC91, CDC42BPB, CDC42EP1, CDC42EP2, CDC42EP3, CDC42EP4, CDC42EP5, CDIP1, CDK14, CDK16, CERK, CFL1, CGAS, CHMP1A, CHMP1B, CHMP2A, CHMP2B, CHMP4A, CHMP4B, CHMP4C, CHMP5, CHN2, CIBAR1, CIDEB, CKMT1A, CKMT1B, CLCA1, CLEC16A, CLTA, CLTB, CLTC, CLTCL1, CLU, CLVS1, CLVS2, CNKSR1, CNKSR3, COA8, COBL, COG1, COG2, COG3, COG4, COG5, COG6, COG7, COG8, COL6A2, COPA, COPB1, COPB2, COPE, COPG1, COPG2, COPZ1, COPZ2, COQ10A, COQ10B, COQ3, COQ5, COQ6, COQ7, CORO1C, COX5A, COX5B, COX6B1, COX6B2, CPAMD8, CPE, CPS1, CPT2, CPTP, CRAT, CRBN, CRCP, CTNNA1, CTNNA2, CTNNAL1, CTSB, CTSG, CTSK, CTSL, CTSO, CTTN, CUBN, CYLD, CYP11A1, CYP11B1, CYP11B2, CYP1A1, CYP1B1, CYP21A2, CYP26B1, CYP27A1, CYP27C1, CYP2B6, CYP2E1, CYP2F1, CYP2S1, CYP3A7-CYP3A51P, CYP4A11, CYP4A22, CYP4F2, CYTH1, CYTH2, CYTH3, CYTH4, DAB2IP, DAO, DAP3, DAPP1, DBNL, DCD, DCTN2, DCXR, DDN, DENND1A, DGKB, DGKD, DGKK, DHDDS, DIP2A, DLC1, DLG1, DLG2, DLG5, DLGAP1, DLGAP2, DLGAP3, DLGAP4, DMD, DMXL2, DNAJA3, DNAJC11, DNAJC13, DNM1L, DNM2, DOC2A, DOC2B, DOCK2, DOCK8, DOK3, DOK7, DOP1A, DOP1B, DRP2, DTNBP1, DTX3L, DUSP18, DUSP21, DVL1, DVL2, DYNC2H1, DYNLT2, EFCAB7, EHD1, EHD2, EHD3, EHD4, EIF5A, EIF5A2, EIF5AL1, EMC2, EMC8, EMC9, EPB41L3, EPB41L5, EPM2A, EPN1, EPRS1, EPS15, EPS15L1, ERAL1, ERC1, ERO1A, ERO1B, ERRFI1, ERVFRD-1, ERVK-18, ERVK-19, ERVK-21, ERVK-24, ERVK-6, ERVK-8, ERVK-9, ERVW-1, ESR1, ESYT1, ESYT2, ESYT3, EXOC7, EZR, FABP6, FAM120A, FAM169A, FARP1, FBXO2, FCHO1, FCHO2, FCHSD2, FCN1, FDXR, FGFBP1, FKBP1A, FKBP2, FLNC, FLOT1, FLOT2, FMN1, FMN2, FNBP1L, FOXO3, FRMD6, FRMPD1, G6PD, GAD2, GAP43, GAPVD1, GAS2, GBA1, GBA2, GBF1, GC, GCC1, GCK, GDI2, GGA1, GGA2, GGA3, GK3, GNAI1, GNAL, GNAS, GNAT1, GNPAT, GNPNAT1, GOLGA1, GOLGA2, GOLGA8A, GOLGA8B, GOLGA8IP, GOLPH3L, GORASP1, GPAM, GRAMD2A, GRAP, GRB14, GRIP1, GRIP2, GRIPAP1, GUF1, HAX1, HCLS1, HGS, HHIP, HK1, HK2, HKDC1, HMGB1, HPCA, HPD, HSD17B6, HSPA8, HSPE1-MOB4, ICA1, ILK, INPP5B, INPP5D, INPP5E, INVS, IQCE, IRS4, ITCH, JAK2, JAK3, JPH1, JPH2, JPH3, JPH4, JUP, KANK1, KARS1, KCNAB1, KCNAB2, KCNIP1, KCNIP4, KCNK2, KIF1A, KIF28P, KIF5B, KIFC3, KLC2, KMT2E, KSR1, KSR2, LAMTOR2, LAMTOR3, LANCL1, LCP1, LDHB, LIMK2, LIMS1, LIMS2, LIMS3, LIMS4, LIN7A, LIN7B, LIN7C, LITAF, LITAFD, LPL, LRRC1, LRRK1, LRRK2, LSS, MAGED1, MAGI1, MAGI2, MAP2K1, MAP2K2, MAP3K13, MAP3K7, MAP4K2, MAPT, MARK1, MARK3, MAST1, MAST2, MBP, MCF2L, MED28, MELK, MFGE8, MGLL, MICALL2, MLIP, MOB4, MPHOSPH9, MPP7, MREG, MSN, MTFR1L, MTG1, MTHFD2L, MTM1, MTMR1, MTMR2, MTMR3, MTMR4, MTMR6, MTMR7, MTMR8, MTMR9, MTOR, MVB12A, MVB12B, MX1, MYH7B, MYLIP, MYO10, MYO19, MYO1G, MYO6, MYT1, MYZAP, NAA60, NAAA, NAPA, NAPB, NAPEPLD, NAPG, NBAS, NBEA, NCF1, NCF4, NDUFA12, NDUFA2, NDUFA5, NDUFA6, NDUFA7, NDUFA8, NDUFB10, NDUFB2, NDUFB7, NDUFB9, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS5, NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NDUFV3, NEDD4, NEU1, NEU3, NEURL1, NF2, NHERF2, NHERF4, NLRP10, NME3, NMT1, NMT2, NOA1, NOS1, NOSTRIN, NOXO1, NPHS2, NSMF, NUCB1, NUCB2, NUMB, NUP155, NUP205, NUP35, NUP42, NUP50, NUP54, NUP58, NUP93, NUP98, OSBP, OSBP2, OSBPL2, OSBPL3, OSBPL6, OTOG, OTULINL, P4HB, PACSIN1, PACSIN2, PACSIN3, PAK1, PALS2, PAM16, PARVG, PATJ, PCYT1A, PDCD10, PDCD6, PDE4A, PDE6D, PDLIM4, PDPK2P, PDXP, PDZK1, PEF1, PEX5L, PHLDA2, PHLDA3, PHLDB2, PI4K2B, PI4KB, PICK1, PIK3AP1, PIK3C2G, PIK3R5, PIK3R6, PIKFYVE, PIP4K2B, PISD, PITPNM2, PITPNM3, PJA2, PKD1L2, PKMYT1, PKN1, PKP3, PKP4, PLA2G15, PLA2G2A, PLA2G2F, PLA2G4D, PLA2G4E, PLA2G4F, PLCD4, PLEKHA2, PLEKHA3, PLEKHA4, PLEKHA8, PLEKHB2, PLEKHF2, PLEKHH2, PLEKHM2, PLEKHO1, PLIN2, PLIN3, PLOD2, PLOD3, PML, PNLIPRP2, PNPT1, PON2, POTED, PPOX, PPP1R14C, PPP1R14D, PPP1R15A, PPP3CA, PRICKLE3, PRKACA, PRKCA, PRKCB, PRKCD, PRKCG, PRKCH, PRKCZ, PRTN3, PRX, PSTPIP1, PSTPIP2, PTGS1, PTGS2, PTK2, PTPMT1, PTPN1, PTPN4, PXK, QTRT1, QTRT2, RAB11FIP3, RAB11FIP5, RAB4A, RAB6A, RAB7A, RALBP1, RANBP9, RANGRF, RAPGEF4, RAPH1, RASA4, RASA4B, RASGRP1, RASGRP2, RBM15, RCC2, RDH13, RDX, RETSAT, RFFL, RGS1, RGS3, RGS6, RGS7, RGS8, RGS9, RIMS1, RIMS2, RIPK2, RIPK4, RNF112, RNF34, ROCK1, ROCK2, RPF1, RPH3A, RPS3, RS1, RTBDN, RUBCNL, RUFY1, S100A12, S100A9, SAG, SAR1A, SAR1B, SBF2, SCFD1, SCG3, SCGN, SCOC, SCRIB, SCUBE1, SDCBP, SDHA, SDHB, SEC13, SEC16A, SEC16B, SEC23A, SEC23B, SEC24A, SEC24B, SEC24C, SEC24D, SEC31A, SEC31B, SELENBP1, SENP2, SEPHS1, SGIP1, SGSM1, SH2D3C, SH3BP5, SH3GL1, SH3GL2, SH3GL3, SH3GLB1, SHROOM3, SIPA1, SLC27A2, SMAP1, SMCP, SMURF1, SNAP29, SNAP91, SNAPIN, SNTA1, SNTB1, SNX1, SNX10, SNX11, SNX12, SNX13, SNX15, SNX17, SNX18, SNX19, SNX2, SNX20, SNX21, SNX22, SNX24, SNX25, SNX27, SNX30, SNX4, SNX6, SNX7, SNX8, SNX9, SORD, SOX10, SPA17, SPAST, SPECC1, SPG21, SPHK1, SPIRE1, SPIRE2, SPRED1, SPRED2, SPRED3, SPRY1, SPRY4, SPTBN1, SQLE, SRL, SRPRA, STAC, STAC2, STAC3, STAM, STAM2, STAMBP, STARD13, STEEP1, STK10, STMN2, STOM, STOML2, STRN, STRN3, STX11, STX19, STXBP1, STXBP5, STXBP5L, STXBP6, SVEP1, SVIP, SYCN, SYNRG, SYT17, SYT6, SYTL1, SYTL3, SYTL4, SYTL5, TAB1, TAB2, TAFAZZIN, TAMALIN, TAMM41, TAOK3, TBC1D24, TBC1D30, TEKT3, TEPSIN, THEM4, TIMM10, TIMM10B, TIMM13, TIMM44, TIMM8A, TIMM8B, TIMM9, TJAP1, TJP1, TJP2, TJP3, TLN1, TMT1B, TNK1, TNK2, TNKS, TNS2, TOM1, TOM1L1, TOMM34, TOR1A, TPR, TPRG1L, TREX1, TRIM37, TRIP11, TSC1, TSC2, TSC22D1, TSG101, TUB, TULP1, TWNK, TXK, UBB, UBC, UBE2D3, UBXN4, UBXN6, ULK2, UNC13A, UNC13B, UNC13C, UQCRB, UQCRC1, UQCRC2, UQCRH, USH1G, USO1, USP14, USP2, USP8, UTRN, VCL, VEPH1, VHL, VPS11, VPS13A, VPS13B, VPS16, VPS18, VPS26A, VPS26B, VPS28, VPS29, VPS33A, VPS33B, VPS37A, VPS37B, VPS37C, VPS37D, VPS39, VPS41, VPS45, VPS4A, VPS4B, VPS53, VTA1, WDFY3, WDR81, WDR91, WIPI2, WWP1, XBP1, YRDC, ZAP70, ZC3H12A, ZFYVE16, ZMYND19, ZNRF1, ZNRF2, ZPBP, ZW10
Nordihydrocapsaicin
Nordihydrocapsaicin is a member of methoxybenzenes and a member of phenols. Nordihydrocapsaicin is a natural product found in Capsicum pubescens and Capsicum annuum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Isolated from the pungent principle of red pepper (Capsicum annuum). Nordihydrocapsaicin is found in many foods, some of which are herbs and spices, pepper (c. annuum), italian sweet red pepper, and green bell pepper. Nordihydrocapsaicin is found in herbs and spices. Nordihydrocapsaicin is isolated from the pungent principle of red pepper (Capsicum annuum Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1]. Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1].
I07-0299
Cimicifugoside is a triterpenoid. CID 441913 is a natural product found in Actaea racemosa with data available.
2-Hydroxyadenine
2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50) [HMDB] 2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50). Isoguanine is an oxopurine that is 3,7-dihydro-purin-2-one in which the hydrogen at position 6 is substituted by an amino group.
N-methylproline
N-Methyl-L-proline, also known as N-methyl-L-proline, (2S)-1-methylpyrrolidine-2-carboxylic acid, hydric acid, or monomethyl proline, is classified as a proline or a proline derivative. It is not naturally produced by humans and can only be obtained from the diet. In particular, it is a metabolically inert cell protectant found in many plants and is used by plants to protect against extremes in osmolarity and growth temperatures. N-Methyl-L-proline is found in the fruit juices of yellow orange, blood orange, lemon, mandarin, and bitter orange (PMID: 21838291). N-methylproline is an L-proline derivative obtained by replacement of the amino hydrogen by a methyl group. It has a role as a plant metabolite and a human metabolite. It is a L-proline derivative and a tertiary amino compound. It is a tautomer of a N-methylproline zwitterion. An L-proline derivative obtained by replacement of the amino hydrogen by a methyl group. Hygric acid (N-Methyl-L-proline) is a proline analogue found in the citrus juices and the juice of bergamot[1].
Sequoyitol
1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Occurs in all gymnosperms and two families of dicotyledonsand is also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrata. Sequoyitol is found in soy bean and ginkgo nuts. Sequoyitol is found in ginkgo nuts. Sequoyitol occurs in all gymnosperms and two families of dicotyledons. Also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrat Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].
LeachianoneG
Leachianone G is a tetrahydroxyflavanone having the hydroxy groups at the 2-, 4-, 5- and 7-positions and a prenyl group at 8-position. It is a tetrahydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a leachianone G(1-). Leachianone G is a natural product found in Morus alba, Sophora flavescens, and Lespedeza cyrtobotrya with data available.
Fraxidin
Fraxidin is a hydroxycoumarin. Fraxidin is a natural product found in Artemisia minor, Melilotus messanensis, and other organisms with data available. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2344 Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2]. Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2].
Docosanedioic acid
Phellogenic acid, also known as 1,20-eicosanedicarboxylic acid or 1,22-docosanedioate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, phellogenic acid is considered to be a fatty acid lipid molecule. Phellogenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Phellogenic acid can be found in potato, which makes phellogenic acid a potential biomarker for the consumption of this food product. Docosanedioic acid is an alpha,omega-dicarboxylic acid that is docosane in which the methyl groups have been oxidised to the corresponding carboxylic acids. It has a role as a metabolite. It is an alpha,omega-dicarboxylic acid and a dicarboxylic fatty acid. It is a conjugate acid of a docosanedioate(2-). It derives from a hydride of a docosane. Docosanedioic acid is a natural product found in Pinus radiata with data available.
Tropate
Tropic acid is a 3-hydroxy monocarboxylic acid that is propionic acid in which one of the hydrogens at position 2 is substituted by a phenyl group, and one of the methyl hydrogens is substituted by a hydroxy group. It has a role as a human xenobiotic metabolite. It is functionally related to a propionic acid and a hydratropic acid. It is a conjugate acid of a tropate. Tropic acid is a natural product found in Hyoscyamus muticus, Datura stramonium, and other organisms with data available. Tropic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Tropate, also known as Tropic acid or alpha-(Hydroxymethyl)phenylacetic acid, is classified as a beta hydroxy acid or a Beta hydroxy acid derivative. Beta hydroxy acids are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Tropate is considered to be soluble in water and acidic. Tropate can be synthesized from hydratropic acid and propionic acid. Tropate can be synthesized into tropan-3alpha-yl 3-hydroxy-2-phenylpropanoate A 3-hydroxy monocarboxylic acid that is propionic acid in which one of the hydrogens at position 2 is substituted by a phenyl group, and one of the methyl hydrogens is substituted by a hydroxy group. KEIO_ID T059 Tropic acid (DL-Tropic acid) is a laboratory reagent used in the chemical synthesis of Atropine and Hyoscyamine[1]. Tropic acid (DL-Tropic acid) is a laboratory reagent used in the chemical synthesis of Atropine and Hyoscyamine[1].
Fluazifop
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
propaquizafop
CONFIDENCE standard compound; EAWAG_UCHEM_ID 122 Propaquizafop is a phenoxyisopropionic acid herbicide and an acetyl-coA carboxylase inhibitor[1][2].
2-Hydroxyphenethylamine
2-Hydroxyphenethylamine, also known as beta-phenethanolamine or 2-amino-1-phenylethanol, belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. It is the simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. 2-Hydroxyphenethylamine exists in all living organisms, ranging from bacteria to humans. 2-Hydroxyphenethylamine ia an amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. Simple amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. It is also used in chemical industry. [HMDB] 2-Amino-1-phenylethanol is an analogue of noradrenaline.
L-3-Phenyllactic acid
L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. [HMDB] L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. (±)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=828-01-3 (retrieved 2024-07-04) (CAS RN: 828-01-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.
N-Acetylhistamine
N-Acetylhistamine is a 4-(beta-Acetylaminoethyl)imidazole that is an intermediate in Histidine metabolism. It is generated from Histamine via the enzyme Transferases (EC 2.3.1.-). Histamine is an amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Isolated from leaves of Spinacia oleracea (spinach). N-Acetylhistamine is found in green vegetables and spinach. KEIO_ID A093 N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
Biocytin
Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID: 8930409, 1384763, 2479450) [HMDB] Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID:8930409, 1384763, 2479450).
Mesaconic acid
Mesaconic acid, also known as 2-methylfumarate or citronic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Mesaconic acid is a dicarboxylic butenoic acid, with a methyl group in position 2 and the double bound between carbons 2 and 3. Mesaconic acid was first studied for its physical properties in 1874 by Jacobus van ‘t Hoff (https://web.archive.org/web/20051117102410/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/Van\\%27t-Hoff-1874.html). It is now known to be involved in the biosynthesis of vitamin B12 and it is also a competitor inhibitor of the reduction of fumarate. Mesaconic acid is one of several isomeric carboxylic acids obtained from citric acid. Is used as a fire retardant, recent studies revealed this acid is a competitive inhibitor of fumarate reduction. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D003879 - Dermatologic Agents
N8-Acetylspermidine
N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine but, instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation. (PMID: 12093478) [HMDB] N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine. Instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation (PMID: 12093478). KEIO_ID A112
Thifensulfuron-methyl
CONFIDENCE standard compound; EAWAG_UCHEM_ID 124 CONFIDENCE standard compound; INTERNAL_ID 3688
2'-Deoxyinosine triphosphate
2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832) [HMDB] 2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-Methylbenzoic acid
o-Toluic acid, also 2-methylbenzoic acid, is an aromatic carboxylic acid, with formula (CH3)C6H4(COOH). -- Wikipedia; It is an isomer of p-toluic acid and m-toluic acid. -- Wikipedia KEIO_ID T038 o-Toluic acid (2-Methylbenzoic acid) is a benzoic acid?substituted by a?methyl?group at position 2. O-Toluic acid plays a role as a xenobiotic metabolite.
17-beta-Estradiol glucuronide
17-beta-Estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. [HMDB] 17-beta-estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Testosterone Decanoate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
zectran
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
(R)-Sulcatol
(R)-Sulcatol is found in herbs and spices. (R)-Sulcatol occurs in lemongrass oi Flavouring ingredient. 6-Methyl-5-hepten-2-ol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=4630-06-2 (retrieved 2024-07-12) (CAS RN: 1569-60-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Fluocinonide
Fluocinonide is only found in individuals that have used or taken this drug. It is a topical glucocorticoid used in the treatment of eczema. [PubChem]Fluocinonide is a potent glucocorticoid steroid used topically as anti-inflammatory agent for the treatment of skin disorders such as eczema. It relieves itching, redness, dryness, crusting, scaling, inflammation, and discomfort. Fluocinonide binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents Fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents
Daminozide
D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2629 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals KEIO_ID D173 Daminozide, a plant growth regulator, is a selective inhibitor of the human KDM2/7 histone demethylases, with IC50s of 0.55, 1.5 and 2.1 μM for PHF8, KDM2A, and KIAA1718, respectively. Daminozide has >100-fold selectivity for KDM2/7 subfamily versus other demethylase subfamily members tested[1][2].
CHLORENDIC ACID
CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5128; ORIGINAL_PRECURSOR_SCAN_NO 5127 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5088; ORIGINAL_PRECURSOR_SCAN_NO 5086 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5203; ORIGINAL_PRECURSOR_SCAN_NO 5202 CONFIDENCE standard compound; INTERNAL_ID 247; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5099; ORIGINAL_PRECURSOR_SCAN_NO 5096
Dihydromorphine
Dihydromorphine is a metabolite of Hydromorphone. Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. (Wikipedia) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
1,3,7-trimethylurate
1,3,7-Trimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 1,3,7-Trimethyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID:11712316, 15833286, 3506820, 15013152).
Tyrosine methylester
Tyrosine methylester, also known as Tyrosine methyl ester hydrochloride, (L)-isomer or Tyr-ome, is classified as a tyrosine or a Tyrosine derivative. Tyrosines are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Tyrosine methylester is considered to be a slightly soluble (in water) and a very weak acidic compound. Tyrosine methylester can be found in humans. KEIO_ID T032 H-Tyr-OMe, an amino acid, is an endogenous metabolite[1].
Propyzamide
CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4823 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4820; ORIGINAL_PRECURSOR_SCAN_NO 4819 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9401; ORIGINAL_PRECURSOR_SCAN_NO 9399 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4849 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9366 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4851; ORIGINAL_PRECURSOR_SCAN_NO 4850 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4792; ORIGINAL_PRECURSOR_SCAN_NO 4790 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3175 CONFIDENCE standard compound; INTERNAL_ID 2321 CONFIDENCE standard compound; INTERNAL_ID 8467
Triflumuron
CONFIDENCE standard compound; INTERNAL_ID 617; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5237; ORIGINAL_PRECURSOR_SCAN_NO 5232 CONFIDENCE standard compound; INTERNAL_ID 617; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5229; ORIGINAL_PRECURSOR_SCAN_NO 5227 CONFIDENCE standard compound; INTERNAL_ID 617; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5230; ORIGINAL_PRECURSOR_SCAN_NO 5226 CONFIDENCE standard compound; INTERNAL_ID 617; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5242; ORIGINAL_PRECURSOR_SCAN_NO 5241 CONFIDENCE standard compound; INTERNAL_ID 617; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5203; ORIGINAL_PRECURSOR_SCAN_NO 5199 CONFIDENCE standard compound; INTERNAL_ID 617; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5232; ORIGINAL_PRECURSOR_SCAN_NO 5230 D010575 - Pesticides > D002629 - Chemosterilants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
11-Ketoetiocholanolone
11-Ketoetiocholanolone is an endogenous anabolic androgenic steroid. The concentration ratio of 11-hydroxyetiocholanolone/11-hydroxyandrosterone is increased in patients with uterine leiomyomas, and it appears to be caused by a decrease in patients metabolite of steroids. The concentration of 11-Ketoetiocholanolone is significantly higher in these patients. There is a relationship between urinary endogenous steroid metabolites and lower urinary tract function related to the residual vol. in uroflowmetry in postmenopausal women. (PMID: 15808004, 14698830, 12728469) [HMDB] 11-Ketoetiocholanolone is an endogenous anabolic androgenic steroid. The concentration ratio of 11-hydroxyetiocholanolone/11-hydroxyandrosterone is increased in patients with uterine leiomyomas, and it appears to be caused by a decrease in patients metabolite of steroids. The concentration of 11-Ketoetiocholanolone is significantly higher in these patients. There is a relationship between urinary endogenous steroid metabolites and lower urinary tract function related to the residual volume in uroflowmetry in postmenopausal women. (PMID: 15808004, 14698830, 12728469). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
FUSARENON X
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
3-hydroxyropivacaine
3-hydroxyropivacaine is a metabolite of ropivacaine. Ropivacaine is a local anaesthetic drug belonging to the amino amide group. The name ropivacaine refers to both the racemate and the marketed S-enantiomer. Ropivacaine hydrochloride is commonly marketed by AstraZeneca under the trade name Naropin. (Wikipedia)
Testosterone glucuronide
Testosterone glucuronide is a natural human metabolite of testosterone. Testosterone is a steroid hormone from the androgen group. testosterone is primarily secreted in the testes of males and the ovaries of females although small amounts are secreted by the adrenal glands. It is the principal male sex hormone and an anabolic steroid. In both males and females, it plays key roles in health and well-being. There is a sex difference in the median values of testosterone glucuronide in the amniotic fluid specimens 15-19 wk gestation between female (median 160 pM, range 64-465 pM) and male (median 817 pM, range 68-3707 pM). This difference, when used in conjunction with amniotic fluid unconjugated testosterone values, increase the predictive accuracy of fetal sexing from 95.4 to 98.9\\\%. In human newborns and young infants, urinary testosterone sulfate is higher than glucuronide. The high sulfokinase activity in fetal and neonatal testes is more likely responsible for this phenomenon than an impaired glucuronizing capacity of the liver. Urinary excretion of testosterone glucuronide increases significantly during puberty. The level of testosterone glucuronide exceeds the level of unconjugated testosterone in human seminal plasma. Urinary testosterone glucuronide excretion is increased in women with virilizing adrenocortical tumors. Concentration of testosterone glucuronide in urine from women with breast tumor in urine samples is not different from patients with benign or malignant breast disease, either before or after the menopause. (PMID: 8327267, 3560942, 6246233, 871373, 133773, 947290) [HMDB] Testosterone glucuronide is a natural human metabolite of testosterone. Testosterone is a steroid hormone from the androgen group. Testosterone is primarily secreted in the testes of males and the ovaries of females although small amounts are secreted by the adrenal glands. It is the principal male sex hormone and an anabolic steroid. In both males and females, it plays key roles in health and well-being. There is a sex difference in the median values of testosterone glucuronide in the amniotic fluid specimens 15-19 wk gestation between female (median 160 pM, range 64-465 pM) and male (median 817 pM, range 68-3707 pM). This difference, when used in conjunction with amniotic fluid unconjugated testosterone values, increase the predictive accuracy of fetal sexing from 95.4 to 98.9\\\%. In human newborns and young infants, urinary testosterone sulfate is higher than glucuronide. The high sulfokinase activity in fetal and neonatal testes is more likely responsible for this phenomenon than an impaired glucuronizing capacity of the liver. Urinary excretion of testosterone glucuronide increases significantly during puberty. The level of testosterone glucuronide exceeds the level of unconjugated testosterone in human seminal plasma. Urinary testosterone glucuronide excretion is increased in women with virilizing adrenocortical tumors. Concentration of testosterone glucuronide in urine from women with breast tumor in urine samples is not different from patients with benign or malignant breast disease, either before or after the menopause. (PMID: 8327267, 3560942, 6246233, 871373, 133773, 947290).
Isoetharine
Isoetharine is only found in individuals that have used or taken this drug. It is a selective adrenergic beta-2 agonist used as fast acting bronchodilator for emphysema, bronchitis and asthma. [PubChem]The pharmacologic effects of isoetharine are attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic AMP. Increased cyclic AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
Diphacinone
B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent
D-Chicoric acid
D-Chicoric acid is found in green vegetables. D-Chicoric acid is isolated from chicory (Cichorium intybus) and Cichorium endivia (endive). Isolated from chicory (Cichorium intybus) and Cichorium endivia (endive). D-Chicoric acid is found in green vegetables. Chicoric acid (Cichoric acid), an orally active dicaffeyltartaric acid, induces reactive oxygen species (ROS) generation. Chicoric acid inhibits cell viability and induces mitochondria-dependent apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. Chicoric acid increases glucose uptake, improves insulin resistance, and attenuates glucosamine-induced inflammation. Chicoric acid has antidiabetic properties and antioxidant, anti-inflammatory effects[1][2][3]. Chicoric acid (Cichoric acid), an orally active dicaffeyltartaric acid, induces reactive oxygen species (ROS) generation. Chicoric acid inhibits cell viability and induces mitochondria-dependent apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. Chicoric acid increases glucose uptake, improves insulin resistance, and attenuates glucosamine-induced inflammation. Chicoric acid has antidiabetic properties and antioxidant, anti-inflammatory effects[1][2][3]. L-Chicoric Acid ((-)-Chicoric acid) is a dicaffeoyltartaric acid and a potent, selective and reversible HIV-1 integrase inhibitor with an IC50 of ~100 nM. L-Chicoric Acid inhibits HIV-1 replication in tissue culture[1][2][3]. L-Chicoric Acid ((-)-Chicoric acid) is a dicaffeoyltartaric acid and a potent, selective and reversible HIV-1 integrase inhibitor with an IC50 of ~100 nM. L-Chicoric Acid inhibits HIV-1 replication in tissue culture[1][2][3].
Morphine-6-glucuronide
Morphine-6-glucuronide (M6G) is a major active metabolite of morphine, and as such is the molecule responsible for much of the pain-relieving effects of morphine (and thus heroin). M6G is formed from morphine by the enzyme UDP-Glucuronosyltransferase-2B7 (UGT2B7). M6G can accumulate to toxic levels in kidney failure. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate
D-Arabinono-1,4-lactone
D-arabinono-1,4-lactone, also known as D-arabinonic acid, gamma-lactone, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. D-arabinono-1,4-lactone is soluble (in water) and a very weakly acidic compound (based on its pKa). D-arabinono-1,4-lactone can be found in rice, which makes D-arabinono-1,4-lactone a potential biomarker for the consumption of this food product. D-arabinono-1,4-lactone may be a unique S.cerevisiae (yeast) metabolite.
N-Acetyl-glucosamine 1-phosphate
N-Acetyl-glucosamine 1-phosphate is an intermediate in aminosugar metabolism. It is a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 and EC:5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG). It is involved in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc). N-Acetyl-glucosamine 1-phosphate is an intermeiate in the Aminosugars metabolism, a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG), in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc) [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-METHYLPYRROLIDINE
A member of the class of pyrrolidines that is pyrrolidine which is substituted by a methyl group at position 2. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RGHPCLZJAFCTIK-UHFFFAOYSA-N_STSL_0186_2-Methylpyrrolidine_0500fmol_180831_S2_L02M02_68; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
Benz[c]acridine
CONFIDENCE standard compound; INTERNAL_ID 8306 CONFIDENCE standard compound; INTERNAL_ID 8119
(2R,3R)-2,3-Butanediol
(2R,3R)-2,3-Butanediol is found in cocoa and cocoa products. (2R,3R)-2,3-Butanediol is isolated from cocoa butter and roots of Ruta graveolens (rue).2,3-Butanediol is one of the constitutional isomers of butanediol. The 2R,3R stereoisomer of 2,3-butanediol is produced by a variety of microorganisms, in a process known as butanediol fermentation. It is found in cocoa butter and in the roots of Ruta graveolens. (Wikipedia). (2R,3R)-Butane-2,3-diol is an endogenous metabolite. (2R,3R)-Butane-2,3-diol is an endogenous metabolite. 2,3-Butanediol is a butanediol derived from the bioconversion of natural resources[1]. 2,3-Butanediol is a butanediol derived from the bioconversion of natural resources[1].
5,6-dihydrouracil
Dihydrouracil belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Dihydrouracil is an intermediate breakdown product of uracil. Dihydrouracil exists in all living organisms, ranging from bacteria to plants to humans. Within humans, dihydrouracil participates in a number of enzymatic reactions. In particular, dihydrouracil can be biosynthesized from uracil; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. The breakdown of uracil is a multistep reaction that leads to the production of beta-alanine. The reaction process begins with the enzyme known as dihydropyrimidine dehydrogenase (DHP), which catalyzes the reduction of uracil into dihydrouracil. Then the enzyme known as dihydropyrimidinase hydrolyzes dihydrouracil into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. There is at least one metabolic disorder that is associated with altered levels of dihydrouracil. In particular, dihydropyrimidinase deficiency is an inborn metabolic disorder that leads to highly increased concentrations of dihydrouracil and 5,6-dihydrothymine, and moderately increased concentrations of uracil and thymine in urine. Dihydropyrimidinase deficiency can cause neurological and gastrointestinal problems in some affected individuals (OMIM: 222748). In particular, patients with dihydropyrimidinase deficiency exhibit a number of neurological abnormalities including intellectual disability, seizures, weak muscle tone (hypotonia), an abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. 3,4-dihydrouracil, also known as 2,4-dioxotetrahydropyrimidine or 5,6-dihydro-2,4-dihydroxypyrimidine, is a member of the class of compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 3,4-dihydrouracil is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydrouracil can be found in a number of food items such as colorado pinyon, rocket salad (sspecies), wax gourd, and boysenberry, which makes 3,4-dihydrouracil a potential biomarker for the consumption of these food products. 3,4-dihydrouracil can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as throughout most human tissues. 3,4-dihydrouracil exists in all living organisms, ranging from bacteria to humans. In humans, 3,4-dihydrouracil is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. 3,4-dihydrouracil is also involved in several metabolic disorders, some of which include UMP synthase deficiency (orotic aciduria), dihydropyrimidinase deficiency, ureidopropionase deficiency, and carnosinuria, carnosinemia. Moreover, 3,4-dihydrouracil is found to be associated with dihydropyrimidine dehydrogenase deficiency and hypertension. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
bestatin
KEIO_ID B018; [MS2] KO009090 KEIO_ID B018 Bestatin is a natural, broad-spectrum, and competitive CD13 (Aminopeptidase N)/APN and leukotriene A4 hydrolase inhibitor. Bestatin has anticancer effects[1][2].
1,2-Dihydronaphthalene-1,2-diol
A member of the class of naphthalenediols that is 1,2-dihydronaphthalene substituted by hydroxy groups at positions 1 and 2 respectively.
Ketopantolactone
2-dehydropantolactone is a tetrahydrofurandione. It is functionally related to a pantoic acid. 2-Dehydropantolactone is a metabolite found in or produced by Saccharomyces cerevisiae. Ketopantolactone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13031-04-4 (retrieved 2024-10-30) (CAS RN: 13031-04-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
xi-gamma-Undecalactone
(±)-5-Heptyldihydro-2(3H)-furanone is a flavouring ingredient. [Raw Data] CB092_gamma-Undecalactone_pos_20eV_CB000039.txt [Raw Data] CB092_gamma-Undecalactone_pos_30eV_CB000039.txt [Raw Data] CB092_gamma-Undecalactone_pos_10eV_CB000039.txt
1,5-Diphenylcarbazide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID D166; [MS2] KO009100 KEIO_ID D166
4-Hydroxyphenyl-2-propionic acid
4-Hydroxyphenyl-2-propionic acid belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 4-Hydroxyphenyl-2-propionic acid has been detected in multiple biofluids, such as urine and blood (PMID: 20428313). Within the cell, 4-hydroxyphenyl-2-propionic acid is primarily located in the cytoplasm. A polyphenol metabolite detected in biological fluids [PhenolExplorer] KEIO_ID H099
Leu-Leu-Tyr
Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L007
Propynoic acid
Propynoic acid, also known as propiolic acid, is involved in propanoate metabolism and is interconverted into 2-propyn-1-al by mitochondrial aldehyde dehydrogenase. Propynoic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6°C and boil at about 144°C with decomposition. It is soluble in water and possesses an odour resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). It undergoes bromination to give dibromoacrylic acid. With hydrogen chloride it forms chloroacrylic acid. Its ethyl ester condenses with hydrazine to form pyrazolone. Propynoic acid forms a characteristic explosive silver salt upon the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes upon warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone (Wikipedia). Propynoic acid is involved in propanoate metabolism and is interconverted between 2-propyn1-al and propynoic acid by mitochondrial aldehyde dehydrogenase. Propiolic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6 degree centigrade, and boil at about 144 degree centigrade with decomposition. It is soluble in water and possesses an odor resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). Bromine converts it into dibromoacrylic acid, and it gives with hydrochloric acid O-chloracrylic acid. It forms a characteristic explosive silver salt on the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes on warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone. [HMDB] KEIO_ID P040
Hexylamine
Hexylamine is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Acquisition and generation of the data is financially supported in part by CREST/JST. It is used as a food additive .
Pelargonidin 3-glucoside
Acquisition and generation of the data is financially supported in part by CREST/JST.
Sinapoyl malate
Annotation level-2 Acquisition and generation of the data is financially supported in part by CREST/JST.
Multinoside A
Multinoside A, also known as quercetin 3-(4-glucosylrhamnoside), is a member of the class of compounds known as flavonoid-3-O-glycosides. Flavonoid-3-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Multinoside A is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Multinoside A can be found in fruits such as peach (Prunus persica), which makes multinoside A a potential biomarker for the consumption of these food products. Isolated from Prunus persica. Quercetin 3-(4-glucosylrhamnoside) is found in fruits and peach.
4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone
4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone is found in root vegetables. 4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone is a constituent of roots of Polymnia sonchifolia (yacon)
Xanthyletin
Xanthyletin is a member of the class of compounds known as linear pyranocoumarins. Linear pyranocoumarins are organic compounds containing a pyran (or a hydrogenated derivative) linearly fused to a coumarin moiety. Xanthyletin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Xanthyletin can be found in lemon, lime, mandarin orange (clementine, tangerine), and sweet orange, which makes xanthyletin a potential biomarker for the consumption of these food products.
4-Aminoisoxazolidin-3-one
4-amino-1,2-oxazolidin-3-one is a member of the class of oxazolidines that is isoxazoldin-3-one which is substituted at position 4 by an amino group. It is a serine derivative, a member of oxazolidines, a primary amino compound and a hydroxamic acid ester.
Hexylglutathione
D004791 - Enzyme Inhibitors
gamma-Carotene
gamma-Carotene is a cyclic carotene obtained by the cyclization of lycopene. It is found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). Gamma-carotene, also known as γ-carotene, is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Gamma-carotene can be found in a number of food items such as corn, yellow bell pepper, fig, and papaya, which makes gamma-carotene a potential biomarker for the consumption of these food products.
adonirubin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
adonixanthin
A carotenone that consists of beta,beta-caroten-4-one bearing two hydroxy substituents at positions 3 and 3 (the 3S,3R diastereomer). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
3-Methylcrotonyl-CoA
3-Methylcrotonyl-CoA, also known as beta-methylcrotonyl-coenzyme A or dimethylacryloyl-CoA, belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, 3-methylcrotonyl-CoA is considered to be a fatty ester lipid molecule. 3-Methylcrotonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, is a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), and is a biotin-dependent mitochondrial enzyme in the catabolism of leucine (OMIM: 609010). 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), a biotin-dependent mitochondrial enzyme in the catabolism of leucine. (OMIM 609010) [HMDB]. 3-Methylcrotonyl-CoA is found in many foods, some of which are summer savory, lupine, blackcurrant, and soft-necked garlic.
3-Methyl-2-butenal
3-Methyl-2-butenal, also known as senecialdehyde or 3,3-dimethylacrolein, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. 3-methyl-2-butenal has been detected, but not quantified, in several different foods, such as common oregano, beechnuts, oval-leaf huckleberries, tea leaf willows, and red rice. This could make 3-methyl-2-butenal a potential biomarker for the consumption of these foods. 3-Methyl-2-butenal is a derivative of acrolein that is an alpha, beta-unsaturated carbonyl metabolite. It can be formed endogenously during lipid peroxidation or after oxidative stress, and is considered to play an important role in human carcinogenesis. The endogenously formed acroleins are a constant source of DNA damage, can lead to mutation, and can also induce tumours in humans (PMID:8319634). 3-Methyl-2-butenal, which is an unsaturated aldehyde bearing substitution at the alkene terminus, is a poor inactivator of the enzymes protein tyrosine phosphatases (PTPs). The inactivation of PTPs can yield profound biological consequences arising from the disruption of cellular signalling pathways (PMID:17655273). Present in blackberry, grape brandy, cocoa, currants, baked potato, tea, costmary and white bread. Flavouring ingredient
Pyrophosphate
The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Formiminoglutamic acid
Measurement of this acid in the urine after oral administration of histidine provides the basis for the diagnostic test of folic acid deficiency and of megaloblastic anemia of pregnancy. [HMDB] Measurement of this acid in the urine after oral administration of histidine provides the basis for the diagnostic test of folic acid deficiency and of megaloblastic anemia of pregnancy.
Triphosphate
Triphosphate is a salt or ester containing three phosphate groups. It is the ionic form of triphosphoric acid, a condensed form of phosphoric acid. Triphosphate is an intermediate in the biosynthesis of folate, the metabolism of purine, the metabolism of porphyrin and chlorophyll, the metabolism of pyrimidine, and the metabolism of thiamine. It is a substrate for transforming protein p21/H-Ras-1, bis(5-adenosyl)-triphosphatase, ectonucleoside triphosphate diphosphohydrolase, DNA polymerase gamma subunit 1, DNA nucleotidylexotransferase, inosine triphosphate pyrophosphatase, cob(I)yrinic acid a,c-diamide adenosyltransferase (mitochondrial), thiamine-triphosphatase, DNA-directed RNA polymerase III 32 kDa polypeptide, and 6-pyruvoyl tetrahydrobiopterin synthase. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. Polyphosphates are hydrolyzed into smaller units (orthophosphates) in the gut before absorption, which may induce metabolic acidosis. The acute toxicity of polyphosphonates is low as the lowest LD50 after oral administration is > 1,000 mg/kg body weight. Polyphosphates are moderately irritating to skin and mucous membrane because of their alkalinity. No mutagenic potential was observed when TTP was tested in a Salmonella/microsome assay (Ames test) and in a chromosomal aberration assay in vitro using a Chinese hamster fibroblast cell line (Ishidate et al. 1984). Tetrasodium pyrophosphate was not mutagenic in an in vitro assay using S. cerevisiae strains and S. typhimurium strains with and without the addition of mammalian metabolic activation preparations (IPCS 1982). Reproduction studies in three generations of rats on diets with 0.5\\% TTP were performed. TTP had no effects on fertility or litter size, or on growth or survival on offspring (Hodge 1964). Triphosphoric acid, also tripolyphosphoric acid, with formula H5P3O10, is a condensed form of phosphoric acid. In polyphosphoric acids, it is the next after pyrophosphoric acid, H4P2O7, also called diphosphoric acid. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. [Wikipedia]
Macrocin
A macrolide antibiotic that is tylonolide having mono- and diglycosyl moieties attached to two of its hydroxy groups. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007933 - Leucomycins
Pentanoyl-CoA
Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.
Formylmethanofuran
pimeloyl-CoA
Pimeloyl-coa, also known as pimeloyl-coenzyme a or 6-carboxyhexanoyl-coa, is a member of the class of compounds known as 2,3,4-saturated fatty acyl coas. 2,3,4-saturated fatty acyl coas are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain. Thus, pimeloyl-coa is considered to be a fatty ester lipid molecule. Pimeloyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Pimeloyl-coa can be synthesized from pimelic acid and coenzyme A. Pimeloyl-coa is also a parent compound for other transformation products, including but not limited to, 3-hydroxypimeloyl-CoA, 3-oxopimeloyl-CoA, and 2,3-didehydropimeloyl-CoA. Pimeloyl-coa can be found in a number of food items such as german camomile, rose hip, chinese chestnut, and star anise, which makes pimeloyl-coa a potential biomarker for the consumption of these food products. Pimeloyl-coa may be a unique S.cerevisiae (yeast) metabolite.
4-Trimethylammoniobutanal
4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial). [HMDB] 4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial).
GDP-4-Dehydro-6-deoxy-D-mannose
GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403) [HMDB]. GDP-4-Dehydro-6-deoxy-D-mannose is found in many foods, some of which are bayberry, cherimoya, greenthread tea, and pulses. GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
all-trans-Hexaprenyl diphosphate
all-trans-Hexaprenyl diphosphate is the final product of the hexaprenyl diphosphate biosynthesis pathway. In this pathway, multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids. There are two different pathways for the biosynthesis of IPP. Bacteria that possess ubiquinone generally use the methylerythritol phosphate pathway (MEP), while the eukaryotic microorganisms use the mevalonate pathway. However, exceptions exist. For example, some eukaryotic microbes, like the green algae and the malarial parasite Plasmodium falciparum, appear to utilize the MEP pathway, and some bacteria utilize the mevalonate pathway (Eisenreich01, Eisenreich04). In Saccharomyces cerevisiae S288C, the initial addition of two isoprenyl units to form (E, E)-farnesyl diphosphate is catalyzed by geranyltransferase / dimethylallyltransferase, encoded by FPP1. An additional unit is added by farnesyltranstransferase (encoded by BTS1), resulting in the formation of all-trans-geranyl-geranyl diphosphate. The last enzyme in this pathway is hexaprenyl diphosphate synthase (encoded by COQ1), which adds additional isoprenoid units to a maximal length unique to the organism. In the case of Saccharomyces cerevisiae S288C, it is 6 units. Polyprenyl diphosphate synthase enzymes, such as hexaprenyl diphosphate synthase, are responsible for determining the final length of the tail. When yeast COQ1 mutants are complemented with homologs from other organisms, ubiquinone biosynthesis is restored, but the tail length of the quinone depends on the source of the enzyme. All-trans-hexaprenyl diphosphate is the final product of hexaprenyl diphosphate biosynthesis pathway.In this pathway multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids.
Uridine 3'-monophosphate
Uridine 3-monophosphate (3-UMP) belongs to the class of compounds called pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Uridine 3-monophosphate has been identified in the human placenta (PMID: 32033212). COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
D-Apiose
Beta-d-apiofuranose is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Beta-d-apiofuranose is very soluble (in water) and a very weakly acidic compound (based on its pKa). Beta-d-apiofuranose can be found in parsley, which makes beta-d-apiofuranose a potential biomarker for the consumption of this food product.
D-Apiose is found in green vegetables. D-Apiose is first found in parsley as the glycoside Apiin
Choloyl-CoA
Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG). The conjugation of bile acids to glycine and taurine for excretion into bile occurs via a reaction catalyzed by the enzyme Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes. Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG) D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Thiocysteine
The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).
Aristolochene
Eicosanoyl-CoA
Eicosanoyl-CoA is an intermediate metabolite in the synthesis of phosphatidic acid, a substrate of lysophosphatidic acid acyltransferase with high specificity as an acyl donor. Cells and membranes of mammalian cells synthesize their glycerophospholipids and triglycerides to maintain the cellular integrity and to provide energy for cellular functions. The phospholipids are synthesized de novo in cells through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. Several isoforms of the enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (EC 2.3.1.51, AGPAT) acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. Bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65, BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile and can utilize Eicosanoyl-CoA as an acyl donor as well; this may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. (PMID: 17535882, 12810727) [HMDB] Eicosanoyl-CoA is an intermediate metabolite in the synthesis of phosphatidic acid, a substrate of lysophosphatidic acid acyltransferase with high specificity as an acyl donor. Cells and membranes of mammalian cells synthesize their glycerophospholipids and triglycerides to maintain the cellular integrity and to provide energy for cellular functions. The phospholipids are synthesized de novo in cells through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. Several isoforms of the enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (EC 2.3.1.51, AGPAT) acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. Bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65, BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile and can utilize Eicosanoyl-CoA as an acyl donor as well; this may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. (PMID: 17535882, 12810727).
Prostanoic acid
A carbocyclic fatty acid composed of heptanoic acid having a (1S,2S)-2-octylcyclopentyl substituent at position 7.
3-Epicycloeucalenol
3-Epicycloeucalenol is found in fruits. 3-Epicycloeucalenol is a constituent of Musa sapientum (banana) fruit peel Constituent of Musa sapientum (banana) fruit peel. 3-Epicycloeucalenol is found in fruits.
2-Oxosuccinamate
This compound belongs to the family of Short-chain Keto Acids and Derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms
(2E)-Pentenoyl-CoA
(2E)-Pentenoyl-CoA is also known as (2E)-Pent-2-enoyl-coenzyme A(4-). (2E)-Pentenoyl-CoA is considered to be slightly soluble (in water) and acidic
Dimethyl telluride
An organotellurium compound in which the tellurium atom is covalently bonded to two methyl groups. A xenobiotic metabolite produced by certain strains of bacteria exposed to tellurium containing compounds.
10-Formyldihydrofolate
10-Formyldihydrofolate is a folate compound that has not been found as a component of intracellular folates in normal tissues but has been identified in the cytosol of methotrexate (MTX)-treated MCF-7 breast cancer cells and normal human myeloid precursor cells. The origin of 10-formyldihydrofolate remains an enigma. Its appearance only in the extracts from MTX-treated cells is not consistent with a simple oxidation of lO-formyl-H4folate during the extraction procedure. This, however, does not exclude the occurrence of spontaneous oxidation of 10-formyl-H4folate within the intact cells prior to the folate extraction. (PMID: 3366769) [HMDB] 10-formyldihydrofolate is a folate compound that has not been found as a component of intracellular folates in normal tissues but has been identified in the cytosol of methotrexate (MTX)-treated MCF-7 breast cancer cells and normal human myeloid precursor cells. The origin of 10-formyldihydrofolate remains an enigma. Its appearance only in the extracts from MTX-treated cells is not consistent with a simple oxidation of lO-formyl-H4folate during the extraction procedure. This, however, does not exclude the occurrence of spontaneous oxidation of 10-formyl-H4folate within the intact cells prior to the folate extraction. (PMID: 3366769).
3,5-Dinitro-Tyr-OH
A non-proteinogenic L-alpha-amino acid that is L-tyrosine substituted by nitro groups at positions 3 and 5.
Tiglyl-CoA
Tiglyl-CoA is a metabolite in the degradation of isoleucine to propionic acid pathway. A defect in the conversion of tiglyl-CoA to alpha-methyl-beta-hydroxybutyryl-CoA, results in episodic abdominal pain and acidosis in patients with Tiglic acidemia (OMIM 275190). Tiglyl-CoA is a metabolite in the degradation of isoleucine to propionic acid pathway.
3,5-Dichloro-L-tyrosine
A chloroamino acid that is L-tyrosine carrying chloro- substituents at positions C-3 and C-5 of the benzyl group.
(±)-2'-Hydroxydihydrodaidzein
(±)-2-hydroxydihydrodaidzein, also known as 2,4,7-trihydroxyisoflavanone, is a member of the class of compounds known as isoflavanones. Isoflavanones are polycyclic compounds containing an isoflavan skeleton which bears a ketone at position C4. Thus, (±)-2-hydroxydihydrodaidzein is considered to be a flavonoid lipid molecule (±)-2-hydroxydihydrodaidzein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (±)-2-hydroxydihydrodaidzein can be found in green bean, pulses, and yellow wax bean, which makes (±)-2-hydroxydihydrodaidzein a potential biomarker for the consumption of these food products. (±)-2-Hydroxydihydrodaidzein is found in pulses. (±)-2-Hydroxydihydrodaidzein is isolated from pods of Phaseolus vulgaris (kidney bean) and also from Phaseolus coccineus (scarlet runner bean).
Geranylfarnesyl diphosphate
Geranylfarnesyl diphosphate reacts with isopentenyl diphosphate to produce all-trans-hexaprenyl diphosphate and diphosphate. The reaction is catalyzed by a all-trans-hexaprenyl-diphosphate synthase enzyme. [HMDB] Geranylfarnesyl diphosphate reacts with isopentenyl diphosphate to produce all-trans-hexaprenyl diphosphate and diphosphate. The reaction is catalyzed by a all-trans-hexaprenyl-diphosphate synthase enzyme.
4-Carboxy-2-hydroxy-cis,cis-muconate
2-Methyl-3-hydroxybutyryl-CoA
2-Methyl-3-hydroxybutyryl-CoA (CAS: 6701-38-8) belongs to the class of organic compounds known as (S)-3-hydroxyacyl-CoAs. These are organic compounds containing an (S)-3-hydroxyl acylated coenzyme A derivative. Thus, 2-methyl-3-hydroxybutyryl-CoA is considered to be a fatty ester lipid molecule. 2-Methyl-3-hydroxybutyryl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-Methyl-3-hydroxybutyryl-CoA is a substrate for 3-hydroxyacyl-CoA dehydrogenase type II, enoyl-CoA hydratase, trifunctional enzyme alpha subunit, short-chain 3-hydroxyacyl-CoA dehydrogenase, and peroxisomal bifunctional enzyme. 2-Methyl-3-hydroxybutyryl-CoA is a substrate for 3-hydroxyacyl-CoA dehydrogenase type II, Enoyl-CoA hydratase (mitochondrial), Trifunctional enzyme alpha subunit (mitochondrial), Short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial) and Peroxisomal bifunctional enzyme. [HMDB]. 2-Methyl-3-hydroxybutyryl-CoA is found in many foods, some of which are malus (crab apple), sweet potato, white cabbage, and agave.
D-myo-Inositol 1,3,4,6-tetrakisphosphate
D-myo-Inositol 1,3,4,6-tetrakisphosphate, also known as Ins(1,3,4,6)P4, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,3,4,6-tetrakisphosphate is an extremely strong acidic compound (based on its pKa). D-myo-Inositol 1,3,4,6-tetrakisphosphate participates in a number of enzymatic reactions. In particular, D-myo-inositol 1,3,4,6-tetrakisphosphate can be converted into D-myo-inositol 1,3,4,5,6-pentakisphosphate through the action of the enzyme inositol polyphosphate multikinase. In addition, D-myo-inositol 1,3,4,6-tetrakisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate; which is mediated by the enzyme inositol-tetrakisphosphate 1-kinase. In humans, D-myo-inositol 1,3,4,6-tetrakisphosphate is involved in inositol phosphate metabolism and is a substrate for the tyrosine-protein kinase BTK. 1D-Myo-inositol 1,3,4,6-tetrakisphosphate is a substrate for Tyrosine-protein kinase BTK and Inositol polyphosphate multikinase. [HMDB]
Diketogulonic acid
Diketogulonic acid (DKG) is a metabolite of the degradation of vitamin C, the nonenzymatic hydrolysis-product of dehydroascorbate. Dehydroascorbate can be reduced back to ascorbate or hydrolyzed to DKG; the latter reaction is irreversible and DKG is devoid of antiscorbutic activity. The degradation pathway of vitamin C continues to produce l-erythrulose and oxalate as final products. DKG appears in human urine and represents approximately 20\\% of the vitamin C by-products (oxalate being approximately 44\\% and dehydroascorbate 20\\%). A major catabolic event in man is the cleavage of the molecule (presumably a spontaneous cleavage of DKG) between C2 and C3, with little if any decarboxylation. The oxalate formed in this way may contribute to the formation of kidney stones in susceptible individuals. However, the association between ascorbate supplementation and increased risk of kidney stone formation remains a matter of controversy. (PMID: 16698813, 17222174)
Imidazoleacetic acid riboside
Imidazoleacetic acid riboside is a metabolite of imidazoleacetic acid (itself histamines oxidative metabolite). (PMID: 7616240). In kidney glomeruli, histamine is predominantly catabolized to acid metabolites of the diamine oxidase (histaminase) pathway, imidazoleacetic acid and Imidazoleacetic acid riboside. (PMID: 7616240). Imidazoleacetic acid riboside is a metabolite of imidazoleacetic acid (itself histamines oxidative metabolite). (PMID: 7616240)
3-Oxohexadecanoyl-CoA
3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB] 3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA.
27-Deoxy-5b-cyprinol
27-Deoxy-5b-cyprinol is an intermediate in Bile acid synthesis pathway, in a sequence of reactions catalyzed by sterol 27-hydroxylase (CYP27) in the oxidation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,27-tetrol into 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (PMID: 8496170). 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol 3-glucuronide, a metabolite of 27-Deoxy-5b-cyprinol, is the major bile alcohol component in serum from cerebrotendinous xanthomatosis patients (PMID: 7920441). 27-Deoxy-5b-cyprinol is an intermediate in Bile acid synthesis pathway, in a sequence of reactions catalyzed by sterol 27-hydroxylase (CYP27) in the oxidation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,27-tetrol into 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (PMID: 8496170).
4,6-Dihydroxyquinoline
4,6-Dihydroxyquinoline is the product of the conversion of 5-hydroxykynurenamine by the enzyme monoamine oxidase, both metabolites from the 5-hydroxytryptophan metabolism. (PMIDs 7160021, 312499) [HMDB] 4,6-Dihydroxyquinoline is the product of the conversion of 5-hydroxykynurenamine by the enzyme monoamine oxidase, both metabolites from the 5-hydroxytryptophan metabolism. (PMIDs 7160021, 312499). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glutathionylspermidine
The spermidine amide of glutathione.
2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone
2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is created from 2-Hexaprenyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis methyltransferase [EC:2.1.1.-]. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is then converted to 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-]. [HMDB] 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is created from 2-Hexaprenyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis methyltransferase [EC:2.1.1.-]. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is then converted to 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-].
(KDO)2-lipid IVA
Lipid IVA glycosylated with two 3-deoxy-D-manno-octulosonic acid (KDO) residues.
FT-0699926
2-Hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate
2,5-dichlorohydroquinone
A dichlorohydroquinone that is hydroquinone substituted by chloro groups at positions 2 and 5 respectively.
Erythromycin
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D005765 - Gastrointestinal Agents
berythromycin
An erythromycin that consists of erythronolide B having 2,6-dideoxy-3-C-methyl-3-O-methyl-alpha-L-ribo-hexopyranosyl and 3,4,6-trideoxy-3-(dimethylamino)-beta-D-xylo-hexopyranosyl residues attahced at positions 4 and 6 respectively. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic
Clavaldehyde
An organic heterobicyclic compound that is clavulanic acid in which the allylic alcohol group has been oxidised to the corresponding aldehyde.
4-Methylbenzaldehyde
4-Methylbenzaldehyde, also known as p-toluylaldehyde or p-formyltoluene, belongs to the class of organic compounds known as benzoyl derivatives. A tolualdehyde compound with the methyl substituent at the 4-position. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 4-Methylbenzaldehyde is a cherry and fruity tasting compound. 4-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as caraway, sweet cherries, tea, nuts, and coffee and coffee products. Component of *FEMA 3068* together with the o- and m-isomers. Flavouring ingredient. Methylbenzaldehydes are present in roasted nuts, cooked beef, cider, tomato, coffee, tea and elderberry juice. 4-Methylbenzaldehyde is found in many foods, some of which are tea, caraway, nuts, and garden tomato. p-Tolualdehyde is an endogenous metabolite. p-Tolualdehyde is an endogenous metabolite.
Isopropamide
Isopropamide is only found in individuals that have used or taken this drug. It is a long-acting quaternary anticholinergic drug. It is used in the treatment of peptic ulcer and other gastrointestinal disorders marked by hyperacidity and hypermotility.Anticholinergics are a class of medications that inhibit parasympathetic nerve impulses by selectively blocking the binding of the neurotransmitter acetylcholine to its receptor in nerve cells. The nerve fibers of the parasympathetic system are responsible for the involuntary movements of smooth muscles present in the gastrointestinal tract. Inhibition here decreases acidity and motility, aiding in the treatment of gastrointestinal disorders. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AB - Synthetic anticholinergics, quaternary ammonium compounds C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent
3,6-dichlorocatechol
3,6-dichlorocatechol, also known as 3,6-dichloro-1,2-benzenediol, is a member of the class of compounds known as 3-chlorocatechols. 3-chlorocatechols are chlorocatechols with the chlorine atom attached at position C3 of the benzene ring. 3,6-dichlorocatechol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 3,6-dichlorocatechol can be found in a number of food items such as gooseberry, jicama, nutmeg, and lingonberry, which makes 3,6-dichlorocatechol a potential biomarker for the consumption of these food products.
1,2-Epoxy-p-menth-8-ene
1,2-epoxy-p-menth-8-ene, also known as limonene-1,2-epoxide or 1,2-epoxylimonene, is a member of the class of compounds known as oxepanes. Oxepanes are compounds containing an oxepane ring, which is a seven-member saturated aliphatic heterocycle with one oxygen and six carbon atoms. 1,2-epoxy-p-menth-8-ene is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 1,2-epoxy-p-menth-8-ene is a green tasting compound found in lemon and wild celery, which makes 1,2-epoxy-p-menth-8-ene a potential biomarker for the consumption of these food products. 1,2-Epoxy-p-menth-8-ene is found in citrus. 1,2-Epoxy-p-menth-8-ene is isolated from oil of Cymbopogon species, orange (Citrus sinensis), Japanese pepper tree (Zanthoxylum piperitum) and other
Phenindione
Phenindione is only found in individuals that have used or taken this drug. It is an indandione that has been used as an anticoagulant. Phenindione has actions similar to warfarin, but it is now rarely employed because of its higher incidence of severe adverse effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p234)Phenindione inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decreased prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D006401 - Hematologic Agents > D000925 - Anticoagulants
Emedastine
Emedastine is only found in individuals that have used or taken this drug. It is an antihistamine used in eye drops to treat allergic conjunctivitis. [Wikipedia]Emedastine is a relatively selective, histamine H1 antagonist. In vitro examinations of emedastines affinity for histamine receptors demonstrate relative selectivity for the H1 histamine receptor. In vivo studies have shown concentration-dependent inhibition of histamine-stimulated vascular permeability in the conjunctiva following topical ocular administration. Emedastine appears to be devoid of effects on adrenergic, dopaminergic and serotonin receptors. D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Emedastine is an orally active, selective and high affinity histamine H1 receptor antagonist with a Ki value of 1.3 nM. Emedastine is a benzimidazole derivative with potent antiallergic properties and used for allergic rhinitis, allergic skin diseases and allergic conjunctivitis[1][2][3].
CHLORPHENESIN CARBAMATE
C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist
Fluphenazine decanoate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].
tinyatoxin
A heteropentacyclic compound found in Euphorbia poissonii with molecular formula C36H38O8. It is an agonist of the transient receptor potential cation channel subfamily V member 1 (TrpV1).
beta-cyclocostunolide
beta-Cubebene
Beta-cubebene, also known as (-)-B-cubebene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Beta-cubebene is a citrus and fruity tasting compound and can be found in a number of food items such as sweet basil, roman camomile, pot marjoram, and sweet bay, which makes beta-cubebene a potential biomarker for the consumption of these food products. Beta-cubebene can be found primarily in saliva. Piper cubeba, cubeb or tailed pepper is a plant in genus Piper, cultivated for its fruit and essential oil. It is mostly grown in Java and Sumatra, hence sometimes called Java pepper. The fruits are gathered before they are ripe, and carefully dried. Commercial cubebs consist of the dried berries, similar in appearance to black pepper, but with stalks attached – the "tails" in "tailed pepper". The dried pericarp is wrinkled, and its color ranges from grayish brown to black. The seed is hard, white and oily. The odor of cubebs is described as agreeable and aromatic and the taste as pungent, acrid, slightly bitter and persistent. It has been described as tasting like allspice, or like a cross between allspice and black pepper . beta-Cubebene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
dolichodial
A dialdehyde that is cyclopentanecarbaldehyde substituted by a methyl group at position 2 and a 3-oxo-prop-1-en-2yl group at position 5. It has been found to occur in pheromones of insects such as aphids.
prontosil
A diphenyldiazene compound having two amino substituents at the 2- and 4-positions and an aminosulphonyl substituent at the 4-position. It was the first antibacterial drug, (introduced 1935) and the first of the sulfonamide antibiotics. C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent
Isodiospyrin
Isodiospyrin is a member of biphenyls. Isodiospyrin is a natural product found in Diospyros morrisiana, Diospyros verrucosa, and other organisms with data available. Isodiospyrin, a natural dimeric naphthoquinone, is a human DNA topoisomerase I (Topoisomerase) inhibitor. Isodiospyrin can prevent both DNA relaxation and kinase activities of human topoisomerase I. Isodiospyrin shows anticancer, antibacterial and antifungal activities[1][2][3]. Isodiospyrin, a natural dimeric naphthoquinone, is a human DNA topoisomerase I (Topoisomerase) inhibitor. Isodiospyrin can prevent both DNA relaxation and kinase activities of human topoisomerase I. Isodiospyrin shows anticancer, antibacterial and antifungal activities[1][2][3].
5-O-Methylembelin
5-O-Methylembelin is a constituent of Myrsine africana (cape myrtle). Constituent of Myrsine africana (cape myrtle) 5-O-Methylembelin is a natural isocoumarin that inhibits PCSK9, inducible degrader of the low-density lipoprotein receptor (IDLR), and sterol regulatory element binding protein 2 (SREBP2) mRNA expression[1].
Supinidine
Supinidine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Supinidine? can be found in borage, which makes supinidine? a potential biomarker for the consumption of this food product.
Sulfometuron-methyl
D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
N-Acetyl-S-(N-methylcarbamoyl)cysteine
N-acetyl-s-(n-methylcarbamoyl)cysteine belongs to the family of N-acyl-alpha Amino Acids and Derivatives. These are compounds containing an alpha amino acid which bears an acyl group at his terminal nitrogen atom.
delta8,14-Sterol
delta8,14-Sterol, also known as 4alpha-methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, delta8,14-sterol is considered to be a sterol lipid molecule. delta8,14-Sterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta8,14-Sterol is an intermediate in the biosynthesis of steroids and is converted from O-butusifoliol via the enzyme cytochrome P450, family 51, subfamily A (sterol 14-demethylase) (EC 1.14.13.70). It is then converted into 4-alpha-methylfecosterol via the enzyme delta14-sterol reductase (EC 1.3.1.70). Constituent of wheat germ oil (Triticum aestivum)
Levonordefrin
Levonordefrin is only found in individuals that have used or taken this drug. It acts as a topical nasal decongestant and vasoconstrictor, most often used in dentistry.It is designed to mimic the molecular shape of adrenaline. It binds to alpha-adrenergic receptors in the nasal mucosa. Here it can, therefore, cause vasoconstriction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Same as: D02388 Levonordefrin, a common alternative to levoepinephrine as a vasoconstrictor in dental local anesthetic preparations, is usually used in fivefold higher concentrations. Levonordefrin is generally considered equivalent to epinephrine[1].
Xamoterol
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists Same as: D06328
Ethylketocyclazocine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Lavoltidine
C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists
magnesium;methyl (3R,21S,22S)-11,16-bis(ethenyl)-12,17,21,26-tetramethyl-4-oxo-22-[3-oxo-3-[(E,7R,11R)-3,7,11,15-tetramethylhexadec-2-enoxy]propyl]-23,25-diaza-7,24-diazanidahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,5,8(26),9,11,13(25),14,16,18,20(23)-decaene-3-carboxylate
8,8a-Deoxyoleandolide
8,8a-Deoxyoleandolide is a naturally occurring sesquiterpene lactone, which is a type of organic compound derived from the metabolism of plants. It is characterized by the absence of an oxygen atom at the 8 and 8a positions in its molecular structure, which differentiates it from the related compound oleandolide. Sesquiterpene lactones are known for their biological activities, such as cytotoxic, anti-inflammatory, and antimicrobial properties. 8,8a-Deoxyoleandolide may be found in various plant species and could be of interest for pharmaceutical research due to its potential therapeutic effects. The compound's structure typically includes a lactone ring fused with a sesquiterpene framework, and it may exhibit various substituents depending on its source and the specific plant it is derived from. 13-Deethyl-6,12-dideoxy-13-methylerythronolide A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=53428-54-9 (retrieved 2024-07-15) (CAS RN: 53428-54-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
10-Deoxymethymycin
A macrolide antibiotic that is the 3,4,6-trideoxy-3-(dimethylamino)-beta-D-xylo-hexoside of 10-deoxymethynolide.
2-Pentyl-3-phenyl-2-propenal
2-Pentyl-3-phenyl-2-propenal, also known as alpha-amylcinnamaldehyde or pentylcinnamaldehyde, is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. 2-Pentyl-3-phenyl-2-propenal is practically insoluble in water. 2-Pentyl-3-phenyl-2-propenal is a flavouring agent and has a sweet, floral, and fruity taste. It is a non-carcinogenic (not listed by IARC) potentially toxic compound.
5-Aminopentanal
The aminoaldehydes 5-aminopentanal, derived from the oxidation of the diamines putrescine and cadaverine,is produced utilizing a copper amine oxidase (CAO) from Euphorbia characias latex and tested with in vitro cultivation of Leishmania infantum promastigotes.Whereas the aminoaldehydes derived from the oxidation of the diamines were stimulating factors for growth of Leishmania infantum promastigotes, the aldehydes derived from polyamines oxidation had a drastic inhibitory effect on the vitality and growth of these parasites. Thus, a double scenario arises, showing the use of aldehydes from diamines to obtain a large number of organisms of Leishmania infantum promastigotes to use in serological studies, whereas the aldehydes derived from polyamines could be used as a new strategy for therapeutic treatment against these parasites. [HMDB]. 5-Aminopentanal is found in many foods, some of which are watermelon, sorrel, medlar, and cornmint. The aminoaldehydes 5-aminopentanal, derived from the oxidation of the diamines putrescine and cadaverine,is produced utilizing a copper amine oxidase (CAO) from Euphorbia characias latex and tested with in vitro cultivation of Leishmania infantum promastigotes.Whereas the aminoaldehydes derived from the oxidation of the diamines were stimulating factors for growth of Leishmania infantum promastigotes, the aldehydes derived from polyamines oxidation had a drastic inhibitory effect on the vitality and growth of these parasites. Thus, a double scenario arises, showing the use of aldehydes from diamines to obtain a large number of organisms of Leishmania infantum promastigotes to use in serological studies, whereas the aldehydes derived from polyamines could be used as a new strategy for therapeutic treatment against these parasites.
Pyrrolnitrin
A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01094
Potassium sulfate (K2SO4)
Flavouring agent and enhancer Same as: D01726
I-123 BMIPP
C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate Same as: D06608
5-Fluorowillardiine
An alanine derivative that is L-alanine bearing a 5-fluorouracil-1-yl substituent at position 3. A more potent and selective AMPA receptor agonist (at hGluR1 and hGluR2) than AMPA itself (Ki = 14.7, 25.1, and 1820 nM for hGluR1, hGluR2 and hGluR5 respectively).
Devazepide
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
5,8-Diethoxypsoralen
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators
Correolide
D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators
2,6-Dimethyl-naphtalene
2,6-Dimethyl-naphtalene belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings. Flavouring compound [Flavornet]
alpha-Methylstyrene
alpha-Methylstyrene belongs to the family of Phenylpropenes. These are compounds containing a phenylpropene moeity, which consists of a propene substituent bound to a phenyl group.
Bis(1-methylethyl) hexanedioate
Bis(1-methylethyl) hexanedioate is a food additive [Goodscents]. Food additive [Goodscents]
4-t-Butylbenzoic acid
CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4630; ORIGINAL_PRECURSOR_SCAN_NO 4625 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4617; ORIGINAL_PRECURSOR_SCAN_NO 4616 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4640; ORIGINAL_PRECURSOR_SCAN_NO 4636 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4710; ORIGINAL_PRECURSOR_SCAN_NO 4706 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4650; ORIGINAL_PRECURSOR_SCAN_NO 4645 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4623; ORIGINAL_PRECURSOR_SCAN_NO 4620
3-Methoxy-17-epiestriol
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03G - Gonadotropins and other ovulation stimulants > G03GB - Ovulation stimulants, synthetic D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Same as: D04021
Diethyl sulfate
D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens
2-chloro-4-biphenylol
CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5119; ORIGINAL_PRECURSOR_SCAN_NO 5116 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5184; ORIGINAL_PRECURSOR_SCAN_NO 5183 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5105; ORIGINAL_PRECURSOR_SCAN_NO 5101 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5089; ORIGINAL_PRECURSOR_SCAN_NO 5088 CONFIDENCE standard compound; INTERNAL_ID 1048; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5081; ORIGINAL_PRECURSOR_SCAN_NO 5079
1-Nitro-7-hydroxy-8-glutathionyl-7,8-dihydronaphthalene
This compound belongs to the family of Peptides. These are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another.
1-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene
This compound belongs to the family of Peptides. These are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another.
S-(Formylmethyl)glutathione
This compound belongs to the family of Peptides. These are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another.
4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
2-BUTYL-3-(3,5-DIIODO-4-HYDROXYBENZOYL) BENZOFURAN
Chloroxanthin
A carotenol obtained by formal hydration across the double bonds at position 1 of neurosporene.
Traumatin
obtained from ripe miracle berry fruits (Thaumatococcus daniellii). Sweetener (5,000 times sweeter than sucrose), flavour enhancer for coffee, peppermint flavours etc. Permitted in EU at 50-400 ppm in chewing gum, vitamin preparations and some other sugar-free products. Use limited by slow contact and persistence of sensation Traumatin is found in tea. Traumatin is found in Thea sinensis chloroplasts Traumatin is a plant hormone produced in response to wound. Traumatin is a precursor to the related hormone traumatic acid.
FA 18:4;O
A long-chain, divinyl ether fatty acid composed of 8-nonenoic acid in which the E-hydrogen at position 9 is substituted by a (1E,3Z,6Z)-nona-1,3,6-trien-1-yloxy group.
4-hydroxylamino-2,6-dinitrotoluene
4-hydroxylamino-2,6-dinitrotoluene, also known as 4-hadnt, is a member of the class of compounds known as dinitrotoluenes. Dinitrotoluenes are organic aromatic compounds containing a benzene that carries a single methyl group and exactly two nitro groups. 4-hydroxylamino-2,6-dinitrotoluene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxylamino-2,6-dinitrotoluene can be found in a number of food items such as elderberry, pigeon pea, tea leaf willow, and tree fern, which makes 4-hydroxylamino-2,6-dinitrotoluene a potential biomarker for the consumption of these food products.
2-hydroxylamino-4,6-dinitrotoluene
2-hydroxylamino-4,6-dinitrotoluene, also known as 2-hadnt or 4,6-dinitro-2-hydroxylaminotoluene, is a member of the class of compounds known as dinitrotoluenes. Dinitrotoluenes are organic aromatic compounds containing a benzene that carries a single methyl group and exactly two nitro groups. 2-hydroxylamino-4,6-dinitrotoluene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-hydroxylamino-4,6-dinitrotoluene can be found in a number of food items such as rye, jujube, komatsuna, and allspice, which makes 2-hydroxylamino-4,6-dinitrotoluene a potential biomarker for the consumption of these food products.
Docosanoyl-CoA
Docosanoyl-CoA is an acyl-CoA with the C-22 fatty acid Acyl chain moiety. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Docosanoyl-CoA is a acyl-CoA with the C-22 fatty acid Acyl chain moiety.
alpha-Hydroxy-N-desmethyltamoxifen
alpha-Hydroxy-N-desmethyltamoxifen is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)
N,N'-Diacetylhydrazine
N,N-Diacetylhydrazine is a metabolite of isoniazid. Isoniazid (Laniazid, Nydrazid), also known as isonicotinylhydrazine (INH), is an organic compound that is the first-line medication in prevention and treatment of tuberculosis. (Wikipedia)
5,6-Dihydro-5-fluorouracil
5,6-Dihydro-5-fluorouracil is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia)
all-trans-5,6-Epoxyretinoic acid
all-trans-5,6-Epoxyretinoic acid, also known as 5,6-epoxy-atRA, is classified as a member of the retinoids. Retinoids are oxygenated derivatives of 3,7-dimethyl-1-(2,6,6-trimethylcyclohex-1-enyl)nona-1,3,5,7-tetraene and derivatives thereof. all-trans-5,6-Epoxyretinoic acid is considered to be a practically insoluble (in water) and a weak acidic compound. all-trans-5,6-Epoxyretinoic acid is an isoprenoid lipid molecule. all-trans-5,6-Epoxyretinoic acid can be found primarily in human kidney and liver tissues; and in blood and urine. Within a cell, all-trans-5,6-epoxyretinoic acid is primarily located in the cytoplasm, in the extracellular space, or near the membrane. A human metabolite taken as a putative food compound of mammalian origin [HMDB] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
N-Deacetylcolchicine
Deacetylcolchicine is a carbotricyclic compound, an alkaloid and a member of acetamides.N-Deacetylcolchicine has been reported in Apis cerana
7 alpha,26-Dihydroxy-4-cholesten-3-one
7 alpha,26-Dihydroxy-4-cholesten-3-one is involved in primary bile acid biosynthesis. 7 alpha,26-Dihydroxy-4-cholesten-3-one is produced from 7 alpha,27-Dihydroxycholesterol through the action of HSD3B7 (EC:1.1.1.181). 7 alpha,26-Dihydroxy-4-cholesten-3-one can then be converted to 7 alpha-Hydroxy-3-oxo-4-cholestenoate by CYP27A (EC:1.14.13.15). 7 alpha,26-Dihydroxy-4-cholesten-3-one is involved in primary bile acid biosynthesis.
Tricosane
N-tricosane, also known as ch3-[ch2]21-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-tricosane is considered to be a hydrocarbon lipid molecule. N-tricosane is an alkane and waxy tasting compound and can be found in a number of food items such as kohlrabi, papaya, coconut, and ginkgo nuts, which makes N-tricosane a potential biomarker for the consumption of these food products. N-tricosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tricosane belongs to the class of organic compounds known as acyclic alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.
Bluensomycin
C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic
Acetylatractylodinol
Acetylatractylodinol, isolated from Atractylodes lancea, possesses antioxidant activity[1]. Acetylatractylodinol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Acetylatractylodinol, isolated from Atractylodes lancea, possesses antioxidant activity[1]. Acetylatractylodinol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Sorbitol-6-phosphate
Sorbitol 6-phosphate (Sor6P) is an intermediate in sorbitol biosynthesis. It is a competitive inhibitor for both cytosolic and chloroplastic PGIs with a K(i) of 61 and 40muM, respectively. PMID: 18242768 [HMDB] Sorbitol 6-phosphate (Sor6P) is an intermediate in sorbitol biosynthesis. It is a competitive inhibitor for both cytosolic and chloroplastic PGIs with a K(i) of 61 and 40muM, respectively. PMID: 18242768.
Daminozide
Succinic acid 2,2-dimethylhydrazide appears as odorless white crystals or powder. (NTP, 1992) Daminozide is a straight-chain fatty acid. Daminozide — also known as Alar, Kylar, B-NINE, DMASA, SADH, or B 995 — is a plant growth regulator, a chemical sprayed on fruit to regulate their growth, make their harvest easier, and keep apples from falling off the trees before they are ripe. This makes sure they are red and firm for storage. Alar was first approved for use in the U.S. in 1963, it was primarily used on apples until 1989 when it was voluntarily withdrawn by the manufacturer after the U.S. Environmental Protection Agency proposed banning it based on unacceptably high cancer risks to consumers. D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals Daminozide, a plant growth regulator, is a selective inhibitor of the human KDM2/7 histone demethylases, with IC50s of 0.55, 1.5 and 2.1 μM for PHF8, KDM2A, and KIAA1718, respectively. Daminozide has >100-fold selectivity for KDM2/7 subfamily versus other demethylase subfamily members tested[1][2].
Liquiritigenin
4,7-dihydroxyflavanone is a dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. It has a role as a Brassica napus metabolite and a fungal xenobiotic metabolite. It is a dihydroxyflavanone, a polyphenol and a member of 4-hydroxyflavanones. It is functionally related to a flavanone. 4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)- is a natural product found in Pterocarpus marsupium, Pterocarpus macrocarpus, and other organisms with data available. A dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1]. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1].
Corynanthin
Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a yohimban alkaloid, a methyl ester and an organic heteropentacyclic compound. Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a natural product found in Aspidosperma oblongum, Aspidosperma ramiflorum, and other organisms with data available. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials
D-Phenyllactic acid
Phenyllactic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. (+)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7326-19-4 (retrieved 2024-07-04) (CAS RN: 7326-19-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.
Ribonolactone
Ribonolactone, also known as D-ribono-1,4-lactone is a five-membered form of ribonolactone having D-configuration. It has a role as a metabolite. It is a ribonolactone and a butan-4-olide. It derives from a D-ribonic acid. Ribonolactone belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Ribonolactone is a metabolite normally not detectable in human biofluids; however, it has been found in the urine of patients with neuroblastoma. Ribonolactone is a metabolite normally not detectable in human biofluids; however, it has been found in the urine of patients with neuroblastoma. (PMID 699273) [HMDB] D-Ribonolactone is sugar lactone and an inhibitor of β-galactosidase of Escherichia coli with a Ki of 26 mM[1].
2,3-Butanediol
2,3-Butanediol is an isomer of butanediol. The 2R,3R stereoisomer of 2,3-butanediol is produced by a variety of microorganisms, in a process known as butanediol fermentation. 2,3-Butanediol fermentation is the anaerobic fermentation of glucose with 2,3-butanediol as one of the end products. The overall stoichiometry of the reaction is 2 pyruvate + NADH --> 2CO2 + 2,3-butanediol. Butanediol fermentation is typical for Enterobacter species or microbes found in the gut. 2,3-butanediol has been identified in the sera of alcoholics and it may be a specific marker of alcohol abuse (PMID:6139706). In humans, 2,3-butanediol is oxidized to acetyl-CoA via acetoin. 2,3-Butanediol is also found in cocoa butter. 2,3-Butanediol can also be found in Bacillus, Klebsiella and Serratia (PMID:21272631). 2,3-Butanediol is one of the constitutional isomers of butanediol. The 2R,3R stereoisomer of 2,3-butanediol is produced by a variety of microorganisms, in a process known as butanediol fermentation. It is found in cocoa butter and in the roots of Ruta graveolens. (2R,3R)-Butane-2,3-diol is an endogenous metabolite. (2R,3R)-Butane-2,3-diol is an endogenous metabolite. 2,3-Butanediol is a butanediol derived from the bioconversion of natural resources[1]. 2,3-Butanediol is a butanediol derived from the bioconversion of natural resources[1].
3'-Hydroxyhexobarbital
3-Hydroxyhexobarbital is only found in individuals that have used or taken Hexobarbital. 3-Hydroxyhexobarbital is a metabolite of Hexobarbital. 3-hydroxyhexobarbital belongs to the family of Barbituric Acid Derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
L-Dihydroorotic acid
L-Dihydroorotic acid, also known as (S)-4,5-dihydroorotate or dihydro-L-orotate, belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. 4,5-Dihydroorotic acid is a derivative of orotic acid which serves as an intermediate in pyrimidine biosynthesis. L-Dihydroorotic acid is a drug. L-Dihydroorotic acid exists in all living species, ranging from bacteria to humans. Within humans, L-dihydroorotic acid participates in a number of enzymatic reactions. In particular, L-dihydroorotic acid can be biosynthesized from ureidosuccinic acid; which is catalyzed by the enzyme cad protein. In addition, L-dihydroorotic acid and quinone can be converted into orotic acid through the action of the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In humans, L-dihydroorotic acid is involved in the metabolic disorder called the beta-ureidopropionase deficiency pathway. Outside of the human body, L-dihydroorotic acid has been detected, but not quantified in several different foods, such as black chokeberries, vanilla, sweet basils, soy beans, and broad beans. L-Dihydroorotic acid is an intermediate in the metabolism of Pyrimidine. It is a substrate for Dihydroorotate dehydrogenase (mitochondrial). [HMDB]. L-Dihydroorotic acid is found in many foods, some of which are lemon balm, eggplant, arrowhead, and european cranberry. L-Dihydroorotic acid can reversibly hydrolyze to yield the acyclic L-ureidosuccinic acid by dihydrowhey enzyme[1].
N-(N-(N-((Hexahydro-1H-azepin-1-yl)carbonyl)-L-leucyl)-D-tryptophyl)-D-tryptophan
Ajmalicine
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Moxisylyte
G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
D-3-phenyllactic acid
D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.
Sequoyitol
1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].
dihydrouracil
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
2-Hydroxydihydrodaidzein
A hydroxyisoflavanone that is 2,3-dihydrodaidzein with an additonal hydroxy substituent at position 2.
Multinoside A
A glycosyloxyflavone that is quercetin attached to a 6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl residue at position 3 via a glycosidic linkage.
Mesaconic acid
A dicarboxylic acid consisting of fumaric acid having a methyl substituent at the 2-position. D003879 - Dermatologic Agents
ACon1_000409
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-4-one is a member of flavanones. (+/-)-Eriodictyol is a natural product found in Prunus campanulata, Lawsonia inermis, and other organisms with data available.
Glaucine, dl
1,2,9,10-Tetramethoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available.
ST 29:3;O
A 3beta-sterol that is methyl-5alpha-ergosta-8,14,24(28)-trien-3beta-ol carrying an additional 4alpha-methyl substituent. Stigmasta-7,22E,25-trien-3beta-ol is a steroid. It derives from a hydride of a stigmastane.
5-O-Methylembelin
5-O-methyl embelin is a member of the class of monohydroxy-1,4-benzoquinones that is embelin in which the hydroxy group at position 5 is replaced by a methoxy group. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antileishmanial activity as well as inhibitory activity towards hepatitis C protease. It has a role as a metabolite, a hepatitis C protease inhibitor, an antileishmanial agent and an antineoplastic agent. It is an enol ether and a member of monohydroxy-1,4-benzoquinones. It is functionally related to an embelin. 5-O-Methylembelin is a natural product found in Lysimachia punctata, Embelia schimperi, and other organisms with data available. 5-O-Methylembelin is a constituent of Myrsine africana (cape myrtle). Constituent of Myrsine africana (cape myrtle) 5-O-Methylembelin is a natural isocoumarin that inhibits PCSK9, inducible degrader of the low-density lipoprotein receptor (IDLR), and sterol regulatory element binding protein 2 (SREBP2) mRNA expression[1].
Fluazifop
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 147 EAWAG_UCHEM_ID 147; CONFIDENCE standard compound
Triflumuron
D010575 - Pesticides > D002629 - Chemosterilants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3118
oxamniquine
P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent [Raw Data] CB143_Oxamniquine_pos_50eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_40eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_30eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_20eV_CB000053.txt [Raw Data] CB143_Oxamniquine_pos_10eV_CB000053.txt
Laudanosine
D002491 - Central Nervous System Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.628 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.624 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2441; CONFIDENCE confident structure DL-Laudanosine, an Atracurium and Cisatracurium metabolite, crosses the blood–brain barrier and may cause excitement and seizure activity[1]. DL-Laudanosine, an Atracurium and Cisatracurium metabolite, crosses the blood–brain barrier and may cause excitement and seizure activity[1].
FLUOCINONIDE
C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents
L-Dihydroorotic acid
The (S)-enantiomer of dihydroorotic acid that is an intermediate in the metabolism of pyridine. L-Dihydroorotic acid can reversibly hydrolyze to yield the acyclic L-ureidosuccinic acid by dihydrowhey enzyme[1].
Fraxidin
Fraxidin is a hydroxycoumarin. Fraxidin is a natural product found in Artemisia minor, Melilotus messanensis, and other organisms with data available. Fraxidin, also known as 8-hydroxy-6,7-dimethoxy-2h-1-benzopyran-2-one, is a member of the class of compounds known as hydroxycoumarins. Hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the coumarin skeleton. Fraxidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Fraxidin can be found in durian and watermelon, which makes fraxidin a potential biomarker for the consumption of these food products. Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2]. Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].
phenylethanolamine
The simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. The parent of the phenylethanolamine class. 2-Amino-1-phenylethanol is an analogue of noradrenaline.
1,3,7-Trimethyluric acid
An oxopurine in which the purine ring is substituted by oxo groups at positions 2, 6, and 8, and the nitrogens at positions 1, 3, and 7 are substituted by methyl groups. It is a metabolite of caffeine.
N-Acetylhistamine
A member of the class of acetamides that is acetamide comprising histamine having an acetyl group attached to the side-chain amino function. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
phenindione
B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D006401 - Hematologic Agents > D000925 - Anticoagulants
12-HETE-[d8]
PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ]; CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
gamma-Carotene
A cyclic carotene obtained by the cyclisation of lycopene. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Fusarenon-X
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
O-TOLUIC ACID
A methylbenzoic acid that is benzoic acid substituted by a methyl group at position 2. o-Toluic acid (2-Methylbenzoic acid) is a benzoic acid?substituted by a?methyl?group at position 2. O-Toluic acid plays a role as a xenobiotic metabolite.
5beta-Cholestane-3alpha,7alpha,12alpha,26-tetrol
Nordihydrocapsacin
Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1]. Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1].
FA 6:3;O2
cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2].
5-hydroxypentanoyl-CoA
5-hydroxypentanoyl-CoA is an acyl-CoA resulting from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 5-hydroxypentanoic acid. It is functionally related to a pentanoyl-CoA and a 5-hydroxypentanoic acid. It is a conjugate acid of a 5-hydroxypentanoyl-CoA(4-). 5-Hydroxypentanoyl-coenzyme A is a thioester compound that plays a crucial role in various metabolic pathways, particularly in the biosynthesis of certain natural products and in the metabolism of fatty acids. It is formed by the condensation of 5-hydroxypentanoic acid with coenzyme A (CoA), which is a carrier molecule involved in the transfer of acyl groups. Chemically, 5-hydroxypentanoyl-CoA consists of a 5-hydroxypentanoyl group, which is a five-carbon acyl chain with a hydroxyl group attached to the fifth carbon, and the CoA moiety. The CoA part of the molecule includes a pantothenic acid (vitamin B5) derivative, a pyrophosphate group, and an adenine nucleotide. The acyl group is attached to the thiol (-SH) group of the CoA via a thioester linkage, which is a high-energy bond. In biological systems, 5-hydroxypentanoyl-CoA is an intermediate in the biosynthesis of polyketides, a large class of natural products that include many pharmaceuticals and other bioactive compounds. It can also be involved in the metabolism of fatty acids, where it may be converted into other compounds or used as a substrate for energy production. The presence of the hydroxyl group in the acyl chain of 5-hydroxypentanoyl-CoA confers specific chemical properties and reactivity to the molecule, making it a versatile building block in various biochemical pathways. Its role in these pathways highlights the importance of understanding its synthesis, metabolism, and regulation in biological systems.
CoA 7:3
pimeloyl-CoA
An omega carboxyacyl-CoA that is the S-pimeloyl derivative of coenzyme A.
Cycloeucalenol
3-epicycloeucalenol belongs to cycloartanols and derivatives class of compounds. Those are steroids containing a cycloartanol moiety. 3-epicycloeucalenol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 3-epicycloeucalenol can be found in fruits, which makes 3-epicycloeucalenol a potential biomarker for the consumption of this food product.
all-trans-pentaprenyl diphosphate
All-trans-hexaprenyl diphosphate
Erythromycin C
An erythromycin that consists of erythronolide A having 2,6-dideoxy-3-C-methyl-alpha-L-ribo-hexopyranosyl and 3,4,6-trideoxy-3-(dimethylamino)-beta-D-xylo-hexopyranosyl residues attahced at positions 4 and 6 respectively. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D005765 - Gastrointestinal Agents
NITROSOBENZENE
A nitroso compound that is the nitroso derivative of benzene; a diamagnetic hybrid of singlet O2 and azobenzene.
Protirelina
H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01A - Anterior pituitary lobe hormones and analogues > H01AB - Thyrotropin
1-beta-D-Arabinofuranosylthymine
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
(S)-(-)-5-Fluorowillardiine
Levonordefrin
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Same as: D02388 Levonordefrin, a common alternative to levoepinephrine as a vasoconstrictor in dental local anesthetic preparations, is usually used in fivefold higher concentrations. Levonordefrin is generally considered equivalent to epinephrine[1].
moxisylyte
G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Fructon
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.
FR-0140
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
(2R,3R)-2,3-Butanediol
(2R,3R)-2,3-Butanediol is found in cocoa and cocoa products. (2R,3R)-2,3-Butanediol is isolated from cocoa butter and roots of Ruta graveolens (rue).2,3-Butanediol is one of the constitutional isomers of butanediol. The 2R,3R stereoisomer of 2,3-butanediol is produced by a variety of microorganisms, in a process known as butanediol fermentation. It is found in cocoa butter and in the roots of Ruta graveolens. (Wikipedia). Isolated from cocoa butter and roots of Ruta graveolens (rue) (2R,3R)-Butane-2,3-diol is an endogenous metabolite. (2R,3R)-Butane-2,3-diol is an endogenous metabolite.
Pentanoyl-CoA
Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.
Docosanedioic_acid
Docosanedioic acid is an alpha,omega-dicarboxylic acid that is docosane in which the methyl groups have been oxidised to the corresponding carboxylic acids. It has a role as a metabolite. It is an alpha,omega-dicarboxylic acid and a dicarboxylic fatty acid. It is a conjugate acid of a docosanedioate(2-). It derives from a hydride of a docosane. Docosanedioic acid is a natural product found in Pinus radiata with data available. An alpha,omega-dicarboxylic acid that is docosane in which the methyl groups have been oxidised to the corresponding carboxylic acids.
p-Tolualdehyde
A tolualdehyde compound with the methyl substituent at the 4-position. p-Tolualdehyde is an endogenous metabolite. p-Tolualdehyde is an endogenous metabolite.
Diphosphoric acid
An acyclic phosphorus acid anhydride obtained by condensation of two molecules of phosphoric acid. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Diphacinone
B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent
sulfometuron-methyl
D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
emedastine
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Emedastine is an orally active, selective and high affinity histamine H1 receptor antagonist with a Ki value of 1.3 nM. Emedastine is a benzimidazole derivative with potent antiallergic properties and used for allergic rhinitis, allergic skin diseases and allergic conjunctivitis[1][2][3].
Isopropamide
A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AB - Synthetic anticholinergics, quaternary ammonium compounds C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent
isoetarine
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
Fluphenazine decanoate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].
(±)-2,3-Butanediol
The (R,R) diastereoisomer of butane-2,3-diol. (2R,3R)-Butane-2,3-diol is an endogenous metabolite. (2R,3R)-Butane-2,3-diol is an endogenous metabolite.
Methyl β-D-galactopyranoside
Methyl β-D-Galactopyranoside is an endogenous metabolite.
3-Uridylic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Formiminoglutamic acid
The N-formimidoyl derivative of L-glutamic acid
(2S,3S)-3-hydroxy-2-methylbutanoyl-CoA
An (S)-3-hydroxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2S,3S)-3-hydroxy-2-methylbutanoic acid.
D-3-phenyllactic acid
D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1].
2-Deoxyinosine triphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
3-methylbut-2-enoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-methylbut-2-enoic acid.
N-Acetylglucosamine-1-phosphate
A N-acetyl-D-glucosamine 1-phosphate that is 2-deoxy-D-glucopyranose 1-(dihydrogen phosphate) substituted by an acetamido group at position 2. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4,6-Quinolinediol
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-Hydroxy-4-aminobiphenyl
A N-substituted amine that is 4-aminobiphenyl substituted by a hydroxy group at the nitrogen atom.
D-Fructofuranose
A fructofuranose that has D configuration. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.
GDP-4-Keto-6-deoxymannose
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
threo-3-methyl-L-aspartic acid
An aspartic acid derivative having a 3-methyl substituent.
(1R,2S)-1,2-Dihydronaphthalene-1,2-diol
The cis-1,2-dihydronaphthalene-1,2-diol with a (1R,2S)-configuration.
Choloyl-CoA
A steroidal acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cholic acid. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
2,2,3-trihydroxydiphenyl ether
Diphenyl ether in which the hydrogens at the 2, 3, and 2 positions are substituted by hydroxy groups.
2,3-Diketogulonic Acid
A carbohydrate acid formally derived from gulonic acid by oxidation of the -OH groups at positions 2 and 3 to keto groups.
pentanoyl-CoA
A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of pentanoic acid.
Myo-inositol 1,3,4,6-tetrakisphosphate
A myo-inositol tetrakisphosphate having the phosphate groups placed at the 1-, 3-, 4- and 6-positions.
CID 443409
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
(2S,3R,4S,5R)-3,4,5,6-tetrahydroxyoxane-2-carbaldehyde
Dihydromorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Morphine-6-glucuronide
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate
Butyrylcarnitine
Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.
DL-Penicillamine
D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents
5-Aminopentanal
An omega-aminoaldehyde that is pentanal which is substituted at position 5 by an amino group. It is an intermediate in the biosynthesis of L-lysine derived alkaloids.
CoA 22:0
A very long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of docosanoic (behenic) acid.
4-Hydroxylamino-2,6-dinitrotoluene
A member of the class of nitrotoluenes that is 2,6-dinitrotoluene bearing an additional hydroxylamino substituent at position 4.
2-Hydroxylamino-4,6-dinitrotoluene
A member of the class of nitrotoluenes that is 4,6-dinitrotoluene bearing an additional hydroxylamino substituent at position 2.
[(2S,3R)-3-Amino-2-hydroxy-4-phenylbutyryl]-L-leucine
Diethyl sulfate
D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens
Testosterone glucuronide
A steroid glucosiduronic that is testosterone carrying a glucosiduronic acid residue at position 17. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Diphenylcarbazide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
5,6-Epoxyretinoic acid
A retinoid obtained by epoxidation across the 5,6-double bond of retinoic acid. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
(9Z)-12-Hydroxyoctadec-9-enoic acid
A hydroxy fatty acid that is (9Z)-octadec-9-enoic (oleic) acid carrying a hydroxy substituent at position 12.
GYKI 52466
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
11-Oxo etiocholanolone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Devapamil
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
17beta-Estradiol glucuronide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones