Gene Association: TSC2
UniProt Search:
TSC2 (PROTEIN_CODING)
Function Description: TSC complex subunit 2
found 37 associated metabolites with current gene based on the text mining result from the pubmed database.
Abrine
N(alpha)-methyl-L-tryptophan is a N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. It has a role as an Escherichia coli metabolite. It is a L-tryptophan derivative and a N-methyl-L-alpha-amino acid. It is a tautomer of a N(alpha)-methyl-L-tryptophan zwitterion. N-Methyltryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.216 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.210 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.211 L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin. L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin.
Adenosine
Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].
Bruceantin
Bruceantin is a triterpenoid. Bruceantin is a natural product found in Brucea javanica and Brucea antidysenterica with data available. Bruceantin is a triterpene quassinoid antineoplastic antibiotic isolated from the plant Brucea antidysenterica. Bruceantin inhibits the peptidyl transferase elongation reaction, resulting in decreased protein and DNA synthesis. Bruceantin also has antiamoebic and antimalarial activity. (NCI04) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1974 - Quassinoid Agent C784 - Protein Synthesis Inhibitor C1907 - Drug, Natural Product Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388. Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388.
3-Hydroxypicolinic acid
3-Hydroxy picolinic acid is a picolinic acid derivative and is a member of the pyridine family. Picolinic acid is an isomer of nicotinic acid, which has the carboxyl side chain at the 3-position. It is a catabolite of the amino acid tryptophan. [HMDB] 3-Hydroxy picolinic acid is a picolinic acid derivative and is a member of the pyridine family. Picolinic acid is an isomer of nicotinic acid, which has the carboxyl side chain at the 3-position. It is a catabolite of the amino acid tryptophan. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Hydroxypicolinic acid is a picolinic acid derivative, and belongs to the pyridine family.
5-Aminoimidazole-4-carboxamide
5-Aminoimidazole-4-carboxamide is an imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases. -- Pubchem. An imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases. -- Pubchem [HMDB] KEIO_ID A136 5-Amino-3H-imidazole-4-Carboxamide (AICA) is an important precursor for the synthesis of purines in general and of the nucleobases adenine and guanine in particular.
AICA-riboside
AICA-riboside, also known as acadesine or AICAR, is an AMP-activated protein kinase activator which is used for the treatment of acute lymphoblastic leukemia and may have applications in treating other disorders such as diabetes. AICA-riboside is an adenosine regulating agent developed by PeriCor Therapeutics and licensed to Schering-Plough in 2007 for phase III studies. The drug is a potential first-in-class agent for prevention of reperfusion injury in CABG surgery. Schering began patient enrollment in phase III studies in May, 2009. The trial was terminated in late 2010 based on an interim futility analysis (Wikipedia). AICA-riboside is a minor constituent found in human milk (PMID: 7702711). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C - Cardiovascular system > C01 - Cardiac therapy D007004 - Hypoglycemic Agents
Phosphonoacetate
Phosphonoacetate, also known as fosfonet or phosphonacetic acid, belongs to the class of organic compounds known as organic phosphonic acids. These are organic compounds containing phosphonic acid. Phosphonoacetate exists in all living organisms, ranging from bacteria to humans. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AD - Phosphonic acid derivatives A simple organophosphorus compound that inhibits DNA polymerase, especially in viruses and is used as an antiviral agent. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent KEIO_ID P082 Phosphonoacetic acid is an endogenous metabolite. Phosphonoacetic acid also has anti-orthopoxvirus activity[1].
Oxcarbazepine
Oxcarbazepine is structurally a derivative of carbamazepine, adding an extra oxygen atom to the benzylcarboxamide group. This difference helps reduce the impact on the liver of metabolizing the drug, and also prevents the serious forms of anemia occasionally associated with carbamazepine. Aside from this reduction in side effects, it is thought to have the same mechanism as carbamazepine - sodium channel inhibition - and is generally used to treat partial seizures in epileptic children and adults. D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AF - Carboxamide derivatives D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D049990 - Membrane Transport Modulators
Felbamate
Felbamate is an anticonvulsant drug used in the treatment of epilepsy. It is used to treat partial seizures (with and without generalization) in adults and partial and generalized seizures associated with Lennox-Gastaut syndrome in children. It has a weak inhibitory effect on GABA receptor binding sites. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
Sirolimus
Sirolimus is a macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D020123 - Sirolimus C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C254 - Anti-Infective Agent > C258 - Antibiotic S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].
Vigabatrin
Vigabatrin is only found in individuals that have used or taken this drug. It is an analogue of gamma-aminobutyric acid. It is an irreversible inhibitor of 4-aminobutyrate transaminase, the enzyme responsible for the catabolism of gamma-aminobutyric acid. (From Martindale The Extra Pharmacopoeia, 31st ed)It is believed that vigabatrin increases brain concentrations of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in the CNS, by irreversibly inhibiting enzymes that catabolize GABA (gamma-aminobutyric acid transaminase GABA-T) or block the reuptake of GABA into glia and nerve endings. Vigabatrin may also work by suppressing repetitive neuronal firing through inhibition of voltage-sensitive sodium channels. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3626 D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
Salinomycin
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D08502
Hydroquinone
Hydroquinone, also benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component in most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. [HMDB]. Hydroquinone is found in many foods, some of which are kai-lan, agar, red bell pepper, and jostaberry. Hydroquinone, also known as benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin-containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component of most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals
3-Dehydrosphinganine
3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2. [HMDB]. 3-Dehydrosphinganine is found in many foods, some of which are beech nut, muskmelon, broccoli, and groundcherry. 3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2.
Bromodichloromethane
Bromodichloromethane, also known as dichlorobromomethane or monobromodichloromethane, is classified as a member of the trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Bromodichloromethane is a colorless, nonflammable liquid. Small amounts are formed naturally by algae in the oceans. Some of it will dissolve in water, but it readily evaporates into air. Only small quantities of bromodichloromethane are produced in the United States. The small quantities that are produced are used in laboratories or to make other chemicals. However, most bromodichloromethane is formed as a by-product when chlorine is added to drinking water to kill bacteria. Bromodichloromethane has been formerly used as a flame retardant, and a solvent for fats and waxes and because of its high density for mineral separation. Now it is only used as a reagent or intermediate in organic chemistry. Bromodichloromethane can also occur in municipally-treated drinking water as a by-product of the chlorine disinfection process. D009676 - Noxae > D002273 - Carcinogens
Temsirolimus
Temsirolimus is an intravenous drug for the treatment of renal cell carcinoma (RCC), developed by Wyeth Pharmaceuticals and approved by the FDA in late May 2007, and was also approved by the European Medicines Agency (EMEA) on November 2007. It is a derivative of sirolimus and is sold as Torisel. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D000970 - Antineoplastic Agents > D000091203 - MTOR Inhibitors Same as: D06068 Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8]. Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8].
Deforolimus
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor Same as: D08900
Didemnin B
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic A natural product found particularly in Lyngbya majuscula and Trididemnum solidum. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents Didemnin B is a depsipeptide extracted from the marine tunicate Trididemnin cyanophorum. Didemnin B can be used for the research of cancer[1].
Deforolimus
Sirolimus
Sirolimus is a macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent. It has a role as an immunosuppressive agent, an antineoplastic agent, an antibacterial drug, a mTOR inhibitor, a bacterial metabolite, an anticoronaviral agent and a geroprotector. It is a cyclic acetal, a cyclic ketone, an ether, a secondary alcohol, an organic heterotricyclic compound, an antibiotic antifungal drug and a macrolide lactam. Sirolimus, also known as rapamycin, is a macrocyclic lactone antibiotic produced by bacteria Streptomyces hygroscopicus, which was isolated from the soil of the Vai Atari region of Rapa Nui (Easter Island). It was first isolated and identified as an antifungal agent with potent anticandida activity; however, after its potent antitumor and immunosuppressive activities were later discovered, it was extensively investigated as an immunosuppressive and antitumour agent. Its primary mechanism of action is the inhibition of the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that regulates cell growth, proliferation, and survival. mTOR is an important therapeutic target for various diseases, as it was shown to regulate longevity and maintain normal glucose homeostasis. Targeting mTOR received more attention especially in cancer, as mTOR signalling pathways are constitutively activated in many types of human cancer. Sirolimus was first approved by the FDA in 1999 for the prophylaxis of organ rejection in patients aged 13 years and older receiving renal transplants. In November 2000, the drug was recognized by the European Agency as an alternative to calcineurin antagonists for maintenance therapy with corticosteroids. In May 2015, the FDA approved sirolimus for the treatment of patients with lymphangioleiomyomatosis. In November 2021, albumin-bound sirolimus for intravenous injection was approved by the FDA for the treatment of adults with locally advanced unresectable or metastatic malignant perivascular epithelioid cell tumour (PEComa). Sirolimus was also investigated in other cancers such as skin cancer, Kaposi’s Sarcoma, cutaneous T-cell lymphomas, and tuberous sclerosis. The topical formulation of sirolimus, marketed as HYFTOR, was approved by the FDA in April 2022: this marks the first topical treatment approved in the US for facial angiofibroma associated with tuberous sclerosis complex. Sirolimus is a mTOR Inhibitor Immunosuppressant and Kinase Inhibitor. The mechanism of action of sirolimus is as a mTOR Inhibitor and Protein Kinase Inhibitor. The physiologic effect of sirolimus is by means of Decreased Immunologic Activity. Sirolimus is macrocyclic antibiotic with potent immunosuppressive activity that is used alone or in combination with calcineurin inhibitors and corticosteroids to prevent cellular rejection after renal transplantation. Sirolimus therapy can be associated with mild serum enzyme elevations and it has been linked to rare instances of clinically apparent cholestatic liver injury. Sirolimus is a natural product found in Streptomyces rapamycinicus, Streptomyces hygroscopicus, and other organisms with data available. Sirolimus is a natural macrocyclic lactone produced by the bacterium Streptomyces hygroscopicus, with immunosuppressant properties. In cells, sirolimus binds to the immunophilin FK Binding Protein-12 (FKBP-12) to generate an immunosuppressive complex that binds to and inhibits the activation of the mammalian Target Of Rapamycin (mTOR), a key regulatory kinase. This results in inhibition of T lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (IL-2, IL-4, and IL-15) stimulation and inhibition of antibody production. (NCI04) A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation ... Sirolimus is a macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. [PubChem] A macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D020123 - Sirolimus C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C254 - Anti-Infective Agent > C258 - Antibiotic S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].
3-HYDROXYPICOLINIC ACID
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00011.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00010.jpg 3-Hydroxypicolinic acid is a picolinic acid derivative, and belongs to the pyridine family.
felbamate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
OXCARBAZEPINE
D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AF - Carboxamide derivatives D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 8583
Hydroquinone sulfate
A benzenediol comprising benzene core carrying two hydroxy substituents para to each other. Hydroquinone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-31-9 (retrieved 2024-07-16) (CAS RN: 123-31-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
5-Aminoimidazole-4-carboxamide
An aminoimidazole in which the amino group is at C-5 with a carboxamido group at C-4. 5-Amino-3H-imidazole-4-Carboxamide (AICA) is an important precursor for the synthesis of purines in general and of the nucleobases adenine and guanine in particular.
Phosphonoacetic acid
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AD - Phosphonic acid derivatives D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent Phosphonoacetic acid is an endogenous metabolite. Phosphonoacetic acid also has anti-orthopoxvirus activity[1].
vigabatrin
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
Ridaforolimus
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor
Temsirolimus
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D000970 - Antineoplastic Agents > D000091203 - MTOR Inhibitors Same as: D06068 Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8]. Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8].
3-dehydrosphinganine
A 2-amino-1-hydroxyoctadecan-3-one that has S-configuration.