Gene Association: HPD

UniProt Search: HPD (PROTEIN_CODING)
Function Description: 4-hydroxyphenylpyruvate dioxygenase

found 90 associated metabolites with current gene based on the text mining result from the pubmed database.

4-Hydroxybenzyl alcohol

4-(Hydroxymethyl)phenol;p-Hydroxybenzyl alcohol;p-Methylolphenol

C7H8O2 (124.0524)


4-hydroxybenzyl alcohol is the cleavage product produced during the biosynthesis of the thiazole moiety of thiamine from tyrosine as part of the thiamine biosynthesis pathway. It is a derivative of benzyl alcohol which is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl Alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl Alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl Alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl Alcohol is not a sensitizer at 10\\\\%. Benzyl Alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl Alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID: 11766131). P-hydroxybenzyl alcohol is a member of the class of benzyl alcohols that is benzyl alcohol substituted by a hydroxy group at position 4. It has been isolated from Arcangelisia gusanlung. It has a role as a plant metabolite. It is a member of phenols and a member of benzyl alcohols. 4-Hydroxybenzyl alcohol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 4-Hydroxybenzyl alcohol is a natural product found in Populus laurifolia, Mesua, and other organisms with data available. Constituent of muskmelon (Cucurbita moschata) 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].

   

alpha-Tocopherol

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, (2R*(4R*,8R*))-(+-)-

C29H50O2 (430.3811)


Alpha-tocopherol is a pale yellow, viscous liquid. (NTP, 1992) (R,R,R)-alpha-tocopherol is an alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. It has a role as an antioxidant, a nutraceutical, an antiatherogenic agent, an EC 2.7.11.13 (protein kinase C) inhibitor, an anticoagulant, an immunomodulator, an antiviral agent, a micronutrient, an algal metabolite and a plant metabolite. It is an enantiomer of a (S,S,S)-alpha-tocopherol. In 1922, vitamin E was demonstrated to be an essential nutrient. Vitamin E is a term used to describe 8 different fat soluble tocopherols and tocotrienols, alpha-tocopherol being the most biologically active. Vitamin E acts as an antioxidant, protecting cell membranes from oxidative damage. The antioxidant effects are currently being researched for use in the treatment of diseases causing bone loss, cardiovascular diseases, diabetes mellitus and associated comorbidities, eye diseases, inflammatory diseases (including skin conditions), lipid disorders, neurological diseases, and radiation damage. Though this research is so far inconclusive, vitamin E remains a popular supplement and is generally considered safe by the FDA. Vitamin E is a natural product found in Monteverdia ilicifolia, Calea jamaicensis, and other organisms with data available. Alpha-Tocopherol is the orally bioavailable alpha form of the naturally-occurring fat-soluble vitamin E, with potent antioxidant and cytoprotective activities. Upon administration, alpha-tocopherol neutralizes free radicals, thereby protecting tissues and organs from oxidative damage. Alpha-tocopherol gets incorporated into biological membranes, prevents protein oxidation and inhibits lipid peroxidation, thereby maintaining cell membrane integrity and protecting the cell against damage. In addition, alpha-tocopherol inhibits the activity of protein kinase C (PKC) and PKC-mediated pathways. Alpha-tocopherol also modulates the expression of various genes, plays a key role in neurological function, inhibits platelet aggregation and enhances vasodilation. Compared with other forms of tocopherol, alpha-tocopherol is the most biologically active form and is the form that is preferentially absorbed and retained in the body. A generic descriptor for all tocopherols and tocotrienols that exhibit alpha-tocopherol activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of isoprenoids. See also: Alpha-Tocopherol Acetate (is active moiety of); Tocopherol (related); Vitamin E (related) ... View More ... alpha-Tocopherol is traditionally recognized as the most active form of vitamin E in humans and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha-Tocopherol. Natural vitamin E exists in eight different forms or isomers: four tocopherols and four tocotrienols. In foods, the most abundant sources of vitamin E are vegetable oils such as palm oil, sunflower, corn, soybean, and olive oil. Nuts, sunflower seeds, and wheat germ are also good sources. Constituent of many vegetable oils such as soya and sunflower oils. Dietary supplement and nutrient. Nutriceutical with anticancer and antioxidant props. Added to fats and oils to prevent rancidity. The naturally-occurring tocopherol is a single stereoisomer; synthetic forms are a mixture of all eight possible isomers An alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. α-Tocopherol (alpha-tocopherol) is a type of vitamin E. Its E number is "E307". Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Compared to the others, α-tocopherol is preferentially absorbed and accumulated in humans. Vitamin E is found in a variety of tissues, being lipid-soluble, and taken up by the body in a wide variety of ways. The most prevalent form, α-tocopherol, is involved in molecular, cellular, biochemical processes closely related to overall lipoprotein and lipid homeostasis. Ongoing research is believed to be "critical for manipulation of vitamin E homeostasis in a variety of oxidative stress-related disease conditions in humans."[2] One of these disease conditions is the α-tocopherol role in the use by malaria parasites to protect themselves from the highly oxidative environment in erythrocytes.[3] DL-α-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=16826-11-2 (retrieved 2024-06-29) (CAS RN: 10191-41-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Gamma-tocopherol

(2R)-2,7,8-trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-1-benzopyran-6-ol

C28H48O2 (416.3654)


Gamma-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. It has a role as a plant metabolite, a food antioxidant and an algal metabolite. It is a vitamin E and a tocopherol. gamma-Tocopherol is under investigation in clinical trial NCT00836368 (In Vitro Basophil Responsiveness to Allergen Challenge After Gamma-tocopherol Supplementation in Allergic Asthmatics). gamma-Tocopherol is a natural product found in Hypericum perfoliatum, Hypericum tomentosum, and other organisms with data available. Gamma-Tocopherol is the orally bioavailable gamma form of the naturally-occurring fat-soluble vitamin E, found in certain nuts and seeds, with potential antioxidant activity. Although the exact mechanism of action of this tocopherol has yet to be fully identified, gamma-tocopherol appears to have the ability to scavenge free radicals, thereby protecting against oxidative damage. A natural tocopherol with less antioxidant activity than ALPHA-TOCOPHEROL. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in BETA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. gamma-Tocopherol, also known as 7,8-dimethyltocol, belongs to the class of organic compounds known as tocopherols. These are vitamin E derivatives containing a saturated trimethyltridecyl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocotrienols which contain an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain. It is estimated that 50\\\\\% of gamma-tocopherol is metabolized into gamma-CEHC and excreted into the urine. gamma-Tocopherol is the predominant form of vitamin E in plant seeds and derived products (e.g. nuts and vegetable oils). Unlike alpha-tocopherol, gamma-tocopherol inhibits cyclooxygenase activity and, therefore, exhibit anti-inflammatory properties (PMID: 11722951). Occurs in many nut and other vegetable oils such as soya and sunflower oil. It is used as antioxidant food additive. Member of Vitamin E group. Added to fats and oils to prevent rancidity. The naturally occurring tocopherol is a single steroisomer; synthetic forms are a mixture of all eight possible isomers [DFC] A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. (+)-γ-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=54-28-4 (retrieved 2024-07-01) (CAS RN: 54-28-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1]. γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].

   

atrazine

6-chloro-N2-ethyl-N4-(1-methylethyl)-1,3,5-triazine-2,4,-diamine

C8H14ClN5 (215.0938)


A diamino-1,3,5-triazine that is 1,3,5-triazine-2,4-diamine substituted by a chloro group at position 6 while one of hydrogens of each amino group is replaced respectively by an ethyl and a propan-2-yl group. D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8568; ORIGINAL_PRECURSOR_SCAN_NO 8565 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8581; ORIGINAL_PRECURSOR_SCAN_NO 8579 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8520; ORIGINAL_PRECURSOR_SCAN_NO 8518 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8527; ORIGINAL_PRECURSOR_SCAN_NO 8525 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8492; ORIGINAL_PRECURSOR_SCAN_NO 8489 CONFIDENCE standard compound; EAWAG_UCHEM_ID 288 CONFIDENCE standard compound; INTERNAL_ID 4033 CONFIDENCE standard compound; INTERNAL_ID 3109 CONFIDENCE standard compound; INTERNAL_ID 8414 CONFIDENCE standard compound; INTERNAL_ID 29

   

3-Hydroxyisovaleric acid

beta-Hydroxy-beta-methylbutyric acid

C5H10O3 (118.063)


3-Hydroxyisovaleric acid is a normal human metabolite excreted in the urine. It is a byproduct of the leucine degradation pathway. Production of 3-hydroxyisovaleric acid begins with the conversion of 3-methylcrotonyl-CoA into 3-methylglutaconyl-CoA in the mitochondria by the biotin-dependent enzyme methylcrotonyl-CoA carboxylase. Biotin deficiencies, certain lifestyle habits (smoking), or specific genetic conditions can reduce methylcrotonyl-CoA carboxylase activity. This reduction can lead to a buildup of 3-methylcrotonyl-CoA, which is converted into 3-hydroxyisovaleryl-CoA by the enzyme enoyl-CoA hydratase. Increased concentrations of 3-methylcrotonyl-CoA and 3-hydroxyisovaleryl-CoA can lead to a disruption of the esterified CoA:free CoA ratio, and ultimately to mitochondrial toxicity. Detoxification of these metabolic end products occur via the transfer of the 3-hydroxyisovaleryl moiety to carnitine forming 3-hydroxyisovaleric acid-carnitine or 3HIA-carnitine, which is then transferred across the inner mitochondrial membrane where 3-hydroxyisovaleric acid is released as the free acid (PMID: 21918059). 3-Hydroxyisovaleric acid has been found to be elevated in smokers and in subjects undergoing long-term anticonvulsant therapy with carbamazepine and/or phenytoin. These levels are elevated due to impairment of renal reclamation of biotin. Levels may also be increased from prolonged consumption of raw egg-whites (PMID: 16895887, 9523856, 15447901, 9176832) (OMIM: 210210, 253270, 600529, 253260, 246450, 210200, 238331). When present in sufficiently high levels, 3-hydroxyisovaleric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-hydroxyisovaleric acid are associated with at least a dozen inborn errors of metabolism, including 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-methylglutaconic aciduria type I, biotinidase deficiency and isovaleric aciduria, dihydrolipoamide dehydrogenase deficiency, 3-methylcrotonyl-CoA carboxylase 1 deficiency, 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, late-onset multiple carboxylase deficiency, holocarboxylase synthetase deficiency, and 3-methylcrotonyl-CoA carboxylase 2 deficiency. 3-Hydroxyisovaleric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-Hydroxyisovaleric acid is a normal human metabolite excreted in the urine. Elevated levels of this compound are found in several inherited disorders such as Dihydrolipoamide dehydrogenase Deficiency, 3-Methylcrotonyl-CoA carboxylase 1 deficiency, 3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-hydroxy-3-methylglutaryl -CoA lyase Deficiency, Biotinidase deficiency multiple carboxylase deficiency late-onset , Late onset multiple carboxylase deficiency, HolMcarboxylase synthetase deficiency, 3-Methylcrotonyl-CoA carboxylase 2 deficiency. 3-Hydroxyisovaleric acid is also elevated in smokers, in subjects undergoing long-term anticonvulsant therapy with carbamazepine and/or phenytoin. These levels are elevated due to impairment of renal reclamation of biotin. Levels may also be increased from prolonged consumption of raw egg-whites (PMID: 16895887, 9523856, 15447901, 9176832)(OMIM: 210210, 253270, 600529, 253260, 246450, 210200, 238331) [HMDB] 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2]. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2].

   

3-hydroxy-3-methylglutarate

beta-Hydroxy-beta-methylglutaric acid

C6H10O5 (162.0528)


3-Hydroxymethylglutaric acid is an "off-product" intermediate in the leucine degradation process. It is produced by defective or inefficient versions of 3-hydroxy-3-methylglutaryl-CoA lyase, an enzyme that normally catalyzes the conversion of 3-hydroxy-3-methylglutaryl-CoA to acetyl-CoA and acetoacetate. If this enzyme is defective, 3-hydroxy-3-methylglutaryl-CoA will accumulate in the mitochondria. Increased concentrations of 3-hydroxy-3-methylglutaryl-CoA can lead to a disruption of the esterified CoA:free CoA ratio and ultimately to mitochondrial toxicity. Detoxification of these CoA end products occurs via the transfer of the 3-hydroxymethylglutaryl moiety to carnitine, forming 3-hydroxymethylglutaric-carnitine, which is then transferred across the inner mitochondrial membrane where 3-hydroxymethylglutaric acid is released as the free acid. 3-Hydroxymethylglutaric acid has been found to accumulate in the urine of patients affected by 3-Hydroxy-3-methylglutaric aciduria, a rare inborn error of metabolism (OMIM: 246450). 3-Hydroxy-3-methylglutaric aciduria is caused by significantly reduced enzyme activity of the intramitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase (EC 4.1.3.4), the enzyme that catalyzes the final step of leucine degradation. This enzyme also plays a key role in ketone body formation. The profile of urinary organic acids for individuals with 3-hydroxy-3-methylglutaric aciduria is different from that of the other identified defects of leucine degradation, such as maple syrup urine disease (OMIM: 248600), isovaleric acidemia (OMIM: 243500), and methylcrotonylglycinemia (OMIM: 210200). The urinary organic acid profile of 3-hydroxy-3-methylglutaric aciduria includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic, and 3-methylglutaric acids (PMID: 10916782, 9658458, 3063529). Clinical manifestations of 3-hydroxy-3-methylglutaric aciduria include hepatomegaly, lethargy, coma, and apnea. Biochemically, there is a characteristic absence of ketosis with hypoglycemia, acidosis, hypertransaminasemia, and variable hyperammonemia. Therefore, when present in sufficiently high concentrations, 3-hydroxymethylglutaric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As noted above, chronically high levels of 3-hydroxymethylglutaric acid are associated with the inborn error of metabolism 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. 3-Hydroxymethylglutaric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-hydroxymethylglutaric acid, also known as meglutol or dicrotalic acid, is a member of the class of compounds known as hydroxy fatty acids. Hydroxy fatty acids are fatty acids in which the chain bears a hydroxyl group. 3-hydroxymethylglutaric acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3-hydroxymethylglutaric acid can be synthesized from glutaric acid. 3-hydroxymethylglutaric acid is also a parent compound for other transformation products, including but not limited to, viscumneoside VII, viscumneoside IV, and yanuthone D. 3-hydroxymethylglutaric acid can be found in flaxseed, which makes 3-hydroxymethylglutaric acid a potential biomarker for the consumption of this food product. 3-hydroxymethylglutaric acid can be found primarily in saliva and urine. 3-hydroxymethylglutaric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronically high levels of 3-hydroxymethylglutaric acid are associated with the inborn error of metabolism: 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency (T3DB). Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis. Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis.

   

4-hydroxymandelic acid

(2S)-hydroxy(4-hydroxyphenyl)ethanoic acid

C8H8O4 (168.0423)


p-Hydroxymandelic acid, also known as 4-hydroxymandelate or 4-hydroxyphenylglycolate, belongs to the class of organic compounds known as 1-hydroxy-2-unsubstituted benzenoids. These are phenols that are unsubstituted at the 2-position. p-Hydroxymandelic acid has been detected, but not quantified in, a few different foods, such as anatidaes (Anatidae), chickens (Gallus gallus), and domestic pigs (Sus scrofa domestica). This could make p-hydroxymandelic acid a potential biomarker for the consumption of these foods. p-Hydroxymandelic acid is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on p-Hydroxymandelic acid. p-Hydroxymandelic acid is a valuable aromatic fine chemical and widely used for production of pharmaceuticals and food additives.

   

Saccharopine

(2S)-2-{[(5S)-5-amino-5-carboxypentyl]amino}pentanedioic acid

C11H20N2O6 (276.1321)


Saccharopine is an intermediate in the degradation of lysine, formed by the condensation of lysine and alpha-ketoglutarate. The saccharopine pathway is the main route for lysine degradation in mammals, and its first two reactions are catalyzed by enzymatic activities known as lysine-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH), which reside on a single bifunctional polypeptide (LOR/SDH) (EC 1.5.1.8). The reactions involved with saccharopine dehydrogenases have very strict substrate specificity for L-lysine, 2-oxoglutarate, and NADPH. LOR/SDH has been detected in a number of mammalian tissues, mainly in the liver and kidney, contributing not only to the general nitrogen balance in the organism but also to the controlled conversion of lysine into ketone bodies. A tetrameric form has also been observed in human liver and placenta. LOR activity has also been detected in brain mitochondria during embryonic development, and this opens up the question of whether or not lysine degradation has any functional significance during brain development. As a result, there is now a new focus on the nutritional requirements for lysine in gestation and infancy. Finally, LOR and/or SDH deficiencies seem to be involved in a human autosomal genetic disorder known as familial hyperlysinemia, which is characterized by serious defects in the functioning of the nervous system and characterized by a deficiency in lysine-ketoglutarate reductase, saccharopine dehydrogenase, and saccharopine oxidoreductase activities. Saccharopinuria (high amounts of saccharopine in the urine) and saccharopinemia (an excess of saccharopine in the blood) are conditions present in some inherited disorders of lysine degradation (PMID: 463877, 10567240, 10772957, 4809305). If present in sufficiently high levels, saccharopine can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Saccharopine is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). Many affected children with organic acidemias experience intellectual disability or delayed development. Amino acid from Saccharomyces cerevisiae and Neurospora crassaand is also found in mushrooms and seeds

   

Nicosulfuron

nicosulfuron [ANSI]

C15H18N6O6S (410.1008)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 129 CONFIDENCE standard compound; INTERNAL_ID 2532

   

Homogentisic acid

2-(2,5-dihydroxyphenyl)acetic acid

C8H8O4 (168.0423)


Homogentisic acid, also known as melanic acid, is an intermediate in the breakdown or catabolism of tyrosine and phenylalanine. It is generated from the compound p-hydroxyphenylpyruvate through the enzyme p-hydroxyphenylpyruvate dehydrogenase. The resulting homogentisic acid is then broken down into 4-maleylacetoacetate via the enzyme homogentisate 1,2-dioxygenase. Homogentisic acid is also found in other organisms. For instance, it can found in Arbutus unedo (strawberry-tree) honey, in the bacterial plant pathogen Xanthomonas campestris as well as in the yeast Yarrowia lipolytica where it is associated with the production of brown pigments. Homogentisic acid can be oxidatively dimerized to form hipposudoric acid, one of the main constituents of the blood sweat of hippopotamuses. When present in sufficiently high levels, homogentisic acid can function as an osteotoxin and a renal toxin. An osteotoxin is a substance that causes damage to bones and/or joints. A renal toxin causes damage to the kidneys. Chronically high levels of homogentisic acid are associated with alkaptonuria (OMIM: 203500), an inborn error of metabolism. Alkaptonuria is a rare inherited genetic disorder in which the body cannot process the amino acids phenylalanine and tyrosine. It is caused by a mutation in the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5), which leads to an accumulation of homogentisic acid in the blood and tissues. Homogentisic acid and its oxidized form benzoquinone acetic acid are excreted in the urine, giving it an unusually dark color. The accumulating homogentisic acid (and benzoquinone acetic acid) causes damage to cartilage (ochronosis, leading to osteoarthritis) and heart valves as well as precipitating as kidney stones and stones in other organs. More specifically, homogentisic acid can be converted to benzoquinone acetic acid (BQA), and the resulting BQA can be readily converted to polymers that resemble the dark skin pigment melanin. These polymers are deposited in the collagen, a connective tissue protein, of particular tissues such as cartilage. This process is called ochronosis (as the tissue looks ochre); ochronotic tissue is stiffened and unusually brittle, impairing its normal function and causing damage. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae. 2-(3,6-dihydroxyphenyl)acetic acid, also known as homogentisic acid or homogentisate, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. 2-(3,6-dihydroxyphenyl)acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-(3,6-dihydroxyphenyl)acetic acid can be found in a number of food items such as gooseberry, angelica, chinese broccoli, and cucumber, which makes 2-(3,6-dihydroxyphenyl)acetic acid a potential biomarker for the consumption of these food products. 2-(3,6-dihydroxyphenyl)acetic acid can be found primarily in blood, feces, and urine, as well as in human cartilage, connective tissue and kidney tissues. In humans, 2-(3,6-dihydroxyphenyl)acetic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 2-(3,6-dihydroxyphenyl)acetic acid is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, tyrosinemia type 3 (TYRO3), alkaptonuria, and tyrosinemia type 2 (or richner-hanhart syndrome). Moreover, 2-(3,6-dihydroxyphenyl)acetic acid is found to be associated with alkaptonuria. 2-(3,6-dihydroxyphenyl)acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Apart from treatment of the complications (such as pain relief using NSAIDs and joint replacement for the cartilage damage), vitamin C has been used to reduce the ochronosis and lowering of the homogentisic acid levels may be attempted with a low-protein diet. Recently the drug nitisinone has been found to suppress homogentisic acid production. Nitrisinone inhibits the enzyme, 4-hydroxyphenylpyruvate dioxygenase, responsible for converting tyrosine to homogentisic acid, thereby blocking the production and accumulation of homogentisic acid. Nitisinone treatment has been shown to cause a 95\\\\% reduction in plasma and urinary homogentisic acid (T3DB). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 118 KEIO_ID H060 Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.

   

4-Hydroxyphenylpyruvic acid

4-Hydroxy-alpha-oxobenzenepropanoic acid

C9H8O4 (180.0423)


3-(4-hydroxy-phenyl)pyruvic acid, also known as 4-hydroxy a-oxobenzenepropanoate or 3-(p-hydroxyphenyl)-2-oxopropanoate, belongs to phenylpyruvic acid derivatives class of compounds. Those are compounds containing a phenylpyruvic acid moiety, which consists of a phenyl group substituted at the second position by an pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-(4-hydroxy-phenyl)pyruvic acid can be synthesized from pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid can also be synthesized into 4-hydroxyphenylpyruvic acid oxime. 3-(4-hydroxy-phenyl)pyruvic acid can be found in a number of food items such as garden onion (variety), rose hip, sourdough, and horseradish tree, which makes 3-(4-hydroxy-phenyl)pyruvic acid a potential biomarker for the consumption of these food products. 3-(4-hydroxy-phenyl)pyruvic acid can be found primarily in blood and urine, as well as in human prostate tissue. 3-(4-hydroxy-phenyl)pyruvic acid exists in all eukaryotes, ranging from yeast to humans. In humans, 3-(4-hydroxy-phenyl)pyruvic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 3-(4-hydroxy-phenyl)pyruvic acid is also involved in several metabolic disorders, some of which include tyrosinemia type I, phenylketonuria, tyrosinemia, transient, of the newborn, and alkaptonuria. Moreover, 3-(4-hydroxy-phenyl)pyruvic acid is found to be associated with hawkinsinuria and phenylketonuria. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid that is involved in the tyrosine catabolism pathway. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase (EC 1.1.1.222) and is formed during tyrosine metabolism. The conversion from tyrosine to 4-HPPA is catalyzed by tyrosine aminotransferase. Additionally, 4-HPPA can be converted to homogentisic acid which is one of the precursors to ochronotic pigment. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction that converts 4-hydroxyphenylpyruvic acid to homogentisic acid. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). Moreover, 4-hydroxyphenylpyruvic acid is also found to be associated in phenylketonuria, which is also an inborn error of metabolism. There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. 4-HPPA has been found to be a microbial metabolite in Escherichia (ECMDB). KEIO_ID H007 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.

   

Phenylpyruvate

2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto)

C9H8O3 (164.0473)


Phenylpyruvic acid is a keto-acid that is an intermediate or catabolic byproduct of phenylalanine metabolism. It has a slight honey-like odor. Levels of phenylpyruvate are normally very low in blood or urine. High levels of phenylpyruvic acid can be found in the urine of individuals with phenylketonuria (PKU), an inborn error of metabolism. PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid. In particular, excessive phenylalanine can be metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. Phenylpyruvic acid is also a microbial metabolite, it can be produced by Lactobacillus plantarum (PMID: 9687465). Flavouring ingredient Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

2,4-Dichlorophenoxyacetic acid

(2,4-Dichlorophenoxy)acetic acid (acd/name 4.0)

C8H6Cl2O3 (219.9694)


2,4-D is a member of the phenoxy family of herbicides, which include:; 2,4-D is a synthetic auxin, which is a class of plant hormones. It is absorbed through the leaves and is translocated to the meristems of the plant. Uncontrolled, unsustainable growth ensues, causing stem curl-over, leaf withering, and eventual plant death. 2,4-D is typically applied as an amine salt, but more potent ester versions exist as well. 2,4-Dichlorophenoxyacetic acid (usually referred to by its abbreviation, 2,4-D) is a common systemic pesticide/herbicide used in the control of broadleaf weeds. It is one of the most widely used herbicide in the world, and the third most commonly used in North America. 2,4-D is a synthetic auxin (plant hormone), and as such it is often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. It was a major ingredient in Agent Orange alongside its chemically similar relative, 2,4,5-T (2,4,5-trichlorophenoxyacetic acid). CONFIDENCE standard compound; INTERNAL_ID 737; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4196; ORIGINAL_PRECURSOR_SCAN_NO 4194 CONFIDENCE standard compound; INTERNAL_ID 737; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4186; ORIGINAL_PRECURSOR_SCAN_NO 4183 CONFIDENCE standard compound; INTERNAL_ID 737; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4207; ORIGINAL_PRECURSOR_SCAN_NO 4205 CONFIDENCE standard compound; INTERNAL_ID 737; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4200; ORIGINAL_PRECURSOR_SCAN_NO 4198 CONFIDENCE standard compound; INTERNAL_ID 737; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4181; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 737; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4198; ORIGINAL_PRECURSOR_SCAN_NO 4196 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8378 CONFIDENCE standard compound; EAWAG_UCHEM_ID 267 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals 2,4-D (2,4-Dichlorophenoxyacetic acid) is a selective systemic herbicide for the control of broad-leaved weeds. 2,4-D acts as a plant hormone, causing uncontrolled growth in the meristematic tissues. 2,4-D inhibits DNA and protein synthesis and thereby prevents normal plant growth and development[1].

   
   

pyrazolate

4-(2,4-Dichlorobenzoyl)-1,3-dimethyl-5-pyrazolyl p-toluenesulfonate

C19H16Cl2N2O4S (438.0208)


   

Oxyfluorfen

4-[2-chloro-4-(trifluoromethyl)phenoxy]-2-ethoxy-1-nitrobenzene

C15H11ClF3NO4 (361.0329)


   

NORFLURAZON

NORFLURAZON

C12H9ClF3N3O (303.0386)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4060; ORIGINAL_PRECURSOR_SCAN_NO 4056 ORIGINAL_ACQUISITION_NO 4060; CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 4056 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8632; ORIGINAL_PRECURSOR_SCAN_NO 8629 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8613; ORIGINAL_PRECURSOR_SCAN_NO 8609 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4026; ORIGINAL_PRECURSOR_SCAN_NO 4022 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8555 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8639; ORIGINAL_PRECURSOR_SCAN_NO 8637 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4015 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4023; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8625; ORIGINAL_PRECURSOR_SCAN_NO 8623 CONFIDENCE standard compound; INTERNAL_ID 206; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8604; ORIGINAL_PRECURSOR_SCAN_NO 8602

   

Glyphosate

2-[(phosphonomethyl)amino]acetic acid

C3H8NO5P (169.014)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals Glyphosate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1071-83-6 (retrieved 2024-09-27) (CAS RN: 1071-83-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Aljaden

SETHOXYDIM

C17H29NO3S (327.1868)


   

9-Hydroxyphenanthrene

9-Hydroxyphenanthrene

C14H10O (194.0732)


This compound belongs to the family of Phenanthrenes and Derivatives. These are polycyclic compounds containing a phenanthrene moiety, which is a tricyclic aromatic compound with three non-linearly fused benzene. D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors

   

Malathion

1,4-diethyl 2-{[dimethoxy(sulfanylidene)-lambda5-phosphanyl]sulfanyl}butanedioate

C10H19O6PS2 (330.0361)


Malathion is only found in individuals that have used or taken this drug. It is a wide spectrum aliphatic organophosphate insecticide widely used for both domestic and commercial agricultural purposes. [PubChem]Malathion is a nonsystemic, wide-spectrum organophosphate insecticide. It inhibits acetylcholinesterase activity of most eukaryotes. Malathion is toxic to aquatic organisms, but has a relatively low toxicity for birds and mammals. The major metabolites of malathion are mono- and di-carboxylic acid derivatives, and malaoxon is a minor metabolite. However, it is malaoxon that is the strongest cholinesterase inhibitor. Cholinesterases catalyze the hydrolysis of the neurotransmitter acetylcholine into choline and acetic acid, a reaction necessary to allow a cholinergic neuron to return to its resting state after activation. Because of its essential function, chemicals that interfere with the action of cholinesterase are potent neurotoxins, causing muscle spasms and ultimately death. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Phenylacetic acid

Phenylacetic acid, sodium salt , carboxy-(11)C-labeled CPD

C8H8O2 (136.0524)


Phenylacetic acid, also known as phenylacetate or alpha-toluic acid, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Phenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Phenylacetic acid can be synthesized from acetic acid. Phenylacetic acid is also a parent compound for other transformation products, including but not limited to, hydratropic acid, 2,4,5-trihydroxyphenylacetic acid, and mandelamide. Phenylacetic acid is a sweet, civet, and floral tasting compound and can be found in a number of food items such as hyssop, cowpea, endive, and shea tree, which makes phenylacetic acid a potential biomarker for the consumption of these food products. Phenylacetic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), saliva, feces, and blood. Phenylacetic acid exists in all living species, ranging from bacteria to humans. In humans, phenylacetic acid is involved in the phenylacetate metabolism. Moreover, phenylacetic acid is found to be associated with kidney disease and phenylketonuria. Phenylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylacetic acid is a drug which is used for use as adjunctive therapy for the treatment of acute hyperammonemia and associated encephalopathy in patients with deficiencies in enzymes of the urea cycle. Phenyl acetate (or phenylacetate) is a carboxylic acid ester that has been found in the biofluids of patients with nephritis and/or hepatitis as well as patients with phenylketonuria (PKU), an inborn error of metabolism. Phenyl acetate has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Excess phenylalanine in the body can be disposed of through a transamination process leading to the production of phenylpyruvate. The phenylpyruvate can be further metabolized into a number of products. Decarboxylation of phenylpyruvate gives phenylacetate, while a reduction reaction gives phenyllactate. The phenylacetate can be further conjugated with glutamine to give phenylacetyl glutamine. All of these metabolites can be detected in serum and urine of PKU patients. Phenyl acetate is also produced endogenously as the metabolite of 2-Phenylethylamine, which is mainly metabolized by monoamine oxidase to form phenyl acetate. 2-phenylethylamine is an "endogenous amphetamine" which may modulate central adrenergic functions, and the urinary phenyl acetate levels have been postulated as a marker for depression. (PMID: 17978765 , 476920 , 6857245). Phenylacetate is also found in essential oils, e.g. neroli, rose oil, free and as esters and in many fruits. As a result it is used as a perfumery and flavoring ingredient. Phenyl acetate is a microbial metabolite. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

3-(4-hydroxyphenyl)lactate

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid or 4-hydroxyphenyllactate (the L-form) is a tyrosine metabolite. The level of L-hydroxyphenyllactic acid is elevated in patients with a deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2) (PMID: 4720815). L-hydroxyphenyllactate is present in relatively higher concentrations in the cerebrospinal fluid and urine of patients with phenylketonuria (PKU) and tyrosinemia (PMID: 3126358). However, the D-form of hydroxyphenyllactate is of bacterial origin and is also found in individuals with bacterial overgrowth or unusual gut microflora (PMID: 3126358). Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids (PMID: 23061754). It has also been shown that hydroxyphenyllactate decreases ROS (reactive oxygen species) production in both mitochondria and neutrophils and so hydroxyphenyllactate may function as a natural anti-oxidant (PMID: 23061754). Hydroxyphenyllactic acid is a microbial metabolite found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Acquisition and generation of the data is financially supported in part by CREST/JST. Hydroxyphenyllactic acid is an antifungal metabolite.

   

QUINOXALINE

1,4-Diazanaphthalene

C8H6N2 (130.0531)


CONFIDENCE standard compound; INTERNAL_ID 8085

   

1,2-Cyclohexanedione

1,2-CYCLOHEXANEDIONE,ketone form

C6H8O2 (112.0524)


1,2-Cyclohexanedione is a flavour material for foo 1,2-Cyclohexanedione is an endogenous metabolite.

   

1,3-Cyclohexanedione

cyclohexane-1,3-dione

C6H8O2 (112.0524)


   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


Ketoleucine is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. Ketoleucine is both a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of ketoleucine are associated with maple syrup urine disease (MSUD). MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). Ketoleucine, also known as alpha-ketoisocaproic acid or 2-oxoisocaproate, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Ketoleucine is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Ketoleucine can be found in a number of food items such as arctic blackberry, sesame, sea-buckthornberry, and soft-necked garlic, which makes ketoleucine a potential biomarker for the consumption of these food products. Ketoleucine can be found primarily in most biofluids, including saliva, blood, cerebrospinal fluid (CSF), and urine, as well as in human muscle, neuron and prostate tissues. Ketoleucine exists in all living species, ranging from bacteria to humans. In humans, ketoleucine is involved in the valine, leucine and isoleucine degradation. Ketoleucine is also involved in several metabolic disorders, some of which include methylmalonate semialdehyde dehydrogenase deficiency, propionic acidemia, 3-methylglutaconic aciduria type IV, and 3-methylglutaconic aciduria type I. Ketoleucine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ketoleucine is a metabolite that accumulates in Maple Syrup Urine Disease (MSUD) and shown to compromise brain energy metabolism by blocking the respiratory chain (T3DB). 4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

Dicamba

3,6-dichloro-2-methoxybenzoic acid

C8H6Cl2O3 (219.9694)


CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4181; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4186; ORIGINAL_PRECURSOR_SCAN_NO 4183 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4196; ORIGINAL_PRECURSOR_SCAN_NO 4194 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4200; ORIGINAL_PRECURSOR_SCAN_NO 4198 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4207; ORIGINAL_PRECURSOR_SCAN_NO 4205 CONFIDENCE standard compound; INTERNAL_ID 990; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4198; ORIGINAL_PRECURSOR_SCAN_NO 4196 D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

gamma-Tocotrienol

(2R)-3,4-Dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. Acquisition and generation of the data is financially supported in part by CREST/JST. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

Phytoene

(6E,10E,14E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,14,16,18,22,26,30-nonaene

C40H64 (544.5008)


Phytoene, also known as all-trans-phytoene or 15-cis-phytoene, is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Thus, phytoene is considered to be an isoprenoid lipid molecule. Phytoene can be found in a number of food items such as turmeric, garden onion, winter squash, and coconut, which makes phytoene a potential biomarker for the consumption of these food products. Phytoene can be found primarily in blood and breast milk. Phytoene (FY-toe-een) is a 40-carbon intermediate in the biosynthesis of carotenoids. The synthesis of phytoene is the first committed step in the synthesis of carotenoids in plants. Phytoene is produced from two molecules of geranylgeranyl pyrophosphate (GGPP) by the action of the enzyme phytoene synthase. The two GGPP molecules are condensed together followed by removal of diphosphate and proton shift leading to the formation of phytoene . Phytoene, also known as 7,7,8,8,11,11,12,12-octahydrocarotene, is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

PIPERONYL BUTOXIDE

alpha-(2-(2-N-Butoxyethoxy)-ethoxy)-4,5-methylenedioxy-2-propyltoluene

C19H30O5 (338.2093)


CONFIDENCE standard compound; INTERNAL_ID 958; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5758; ORIGINAL_PRECURSOR_SCAN_NO 5757 CONFIDENCE standard compound; INTERNAL_ID 958; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5733; ORIGINAL_PRECURSOR_SCAN_NO 5731 CONFIDENCE standard compound; INTERNAL_ID 958; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5682; ORIGINAL_PRECURSOR_SCAN_NO 5681 CONFIDENCE standard compound; INTERNAL_ID 958; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5667; ORIGINAL_PRECURSOR_SCAN_NO 5666 CONFIDENCE standard compound; INTERNAL_ID 958; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5702; ORIGINAL_PRECURSOR_SCAN_NO 5701 CONFIDENCE standard compound; INTERNAL_ID 958; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5704; ORIGINAL_PRECURSOR_SCAN_NO 5702 D010575 - Pesticides > D010574 - Pesticide Synergists CONFIDENCE standard compound; INTERNAL_ID 2296 D016573 - Agrochemicals

   

12-oxo-PDA

8-[(1S,5S)-4-oxo-5-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoic acid

C18H28O3 (292.2038)


12-oxo-pda, also known as (15z)-12-oxophyto-10,15-dienoate or 12-oxo-10,15(Z)-phytodienoic acid, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, 12-oxo-pda is considered to be an octadecanoid lipid molecule. 12-oxo-pda is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 12-oxo-pda can be found in corn, which makes 12-oxo-pda a potential biomarker for the consumption of this food product. D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

4-Hydroxycinnamoylagmatine

(2E)-N-(4-carbamimidamidobutyl)-3-(4-hydroxyphenyl)prop-2-enamide

C14H20N4O2 (276.1586)


4-Hydroxycinnamoylagmatine is found in cereals and cereal products. 4-Hydroxycinnamoylagmatine is isolated from barley seedlings. Isolated from barley seedlings. 4-Hydroxycinnamoylagmatine is found in cereals and cereal products.

   

Naphthalene-1,2-diol

1,2-Dihydroxynaphthalene monohydrate

C10H8O2 (160.0524)


This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.

   

Cobaltous Cation

Cobaltous Cation

Co+2 (58.9332)


   

Prephenate

(1s,4s)-1-(2-carboxy-2-oxoethyl)-4-hydroxycyclohexa-2,5-diene-1-carboxylic acid

C10H10O6 (226.0477)


Prephenate (CAS: 126-49-8), also known as prephenic acid, belongs to the class of organic compounds known as gamma-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the C4 carbon atom. Prephenic acid is an example of an achiral (optically inactive) molecule which has two pseudoasymmetric atoms (i.e. stereogenic but not chirotopic centers): the C1 and the C4 cyclohexadiene ring atoms. Prephenate exists in all living species, ranging from bacteria to humans. Prephenate has been detected, but not quantified, in several different foods, such as American pokeweeds, breadnut tree seeds, common wheats, swiss chards, and breadfruits. The other stereoisomer, i.e. trans or, better, (1r, 4r), is called epiprephenic acid. It has been shown that of the two possible diastereoisomers, the natural prephenic acid is one that has both substituents at higher priority (according to CIP rules) on the two pseudoasymmetric carbons, i.e. the carboxyl and the hydroxyl groups, in the cis configuration, or (1s, 4s) according to the new IUPAC stereochemistry rules (2013). It is biosynthesized by a [3,3]-sigmatropic Claisen rearrangement of chorismate. Prephenic acid, commonly also known by its anionic form prephenate, is an intermediate in the biosynthesis of the aromatic amino acids phenylalanine and tyrosine, as well as of a large number of secondary metabolites of the shikimate pathway. Prephenic acid, more commonly known by its anionic form prephenate, is an intermediate in the biosynthesis of the aromatic amino acids phenylalanine and tyrosine. [HMDB]. Prephenate is found in many foods, some of which are alaska wild rhubarb, chinese chestnut, kai-lan, and globe artichoke.

   

Benzene oxide

7-oxabicyclo[4.1.0]hepta-2,4-diene

C6H6O (94.0419)


   

GLUFOSINATE

L-2-Amino-4-(hydroxymethylphosphinyl)butanoate

C5H12NO4P (181.0504)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

2-Hydroxyethylphosphonate

(2-Hydroxyethyl)phosphonic acid

C2H7O4P (126.0082)


   

Usnic acid

2,6-Diacetyl-3,7,9-trihydroxy-8,9b-dimethyldibenzofuran-1-one

C18H16O7 (344.0896)


A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].

   
   

2-Methyl-6-phytylhydroquinone

2-methyl-6-[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]benzene-1,4-diol

C27H46O2 (402.3498)


2-Methyl-6-phytylhydroquinone, also known as 6-phytyltoluquinol or MPBQ, belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. 2-Methyl-6-phytylhydroquinone is an extremely weak basic (essentially neutral) compound (based on its pKa). 2-Methyl-6-phytylhydroquinone is found in green vegetables. 2-Methyl-6-phytylhydroquinone is a precursor of tocopherol synthesis in spinach chloroplasts. Precursor of tocopherol synth. in spinach chloroplasts. 2-Methyl-6-phytylhydroquinone is found in green vegetables and spinach.

   

4-hydroxymandelic acid

(+/-)-alpha,4-dihydroxy-benzeneacetic acid

C8H8O4 (168.0423)


p-Hydroxymandelic acid is an acidic metabolite of p-octopamine and p-synephrine (p-phenylephrine). It is also a naturally occurring metabolite of tyramine. A specific enantiomer of p-hydroxymandelic aicd ((R)-(-)-p-hydroxymandelic -- also called pisolithin B) has been shown to exhibit antifungal properties. An acidic metabolite of p-octopamine and p-synephrine (p-phenylephrine). It is also a naturally occurring metabolite of tyramine. A specific enantiomer of p-hydroxymandelic aicd ((R)-(-)-p-hydroxymandelic -- also called pisolithin B) has been shown to exhibit antifungal properties. [HMDB] D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids p-Hydroxymandelic acid is a valuable aromatic fine chemical and widely used for production of pharmaceuticals and food additives.

   

Glufosinate

2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid

C5H12NO4P (181.0504)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Usnic_acid

4,10-diacetyl-11,13-dihydroxy-2,12-dimethyl-8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(9),6,10,12-tetraene-3,5-dione

C18H16O7 (344.0896)


7-Hydroxy-(S)-usnate is a member of benzofurans. Usnic acid is a natural product found in Lecanora muralis, Usnea florida, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].

   

Atrazine

6-Chloro-N-ethyl-n-(1-methylethyl)-1,3,5-triazine-2,4-diamine

C8H14ClN5 (215.0938)


Atrazine is an organic compound consisting of an s-triazine-ring is a widely used herbicide. Its use is controversial due to widespread contamination in drinking water and its associations with birth defects and menstrual problems when consumed by humans at concentrations below government standards. Although it has been banned in the European Union,[2] it is still one of the most widely used herbicides in the world (Wikipedia). Atrazine is a suspected teratogen, causing demasculinization in male northern leopard frog even at low concentrations, and an estrogen disruptor. A 2010 study found that atrazine rendered 75 percent of male frogs sterile and turned one in 10 into females. A 2002 study found that exposure to atrazine caused male tadpoles to turn into hermaphrodites - frogs with both male and female sexual characteristics. But another study, requested by EPA and funded by Syngenta, was unable to reproduce these results. Atrazine was banned in the European Union (EU) in 2004 because of its persistent groundwater contamination. In the United States, however, atrazine is one of the most widely used herbicides, with 76 million pounds of it applied each year, in spite of the restriction that used to be imposed. Its endocrine disruptor effects, possible carcinogenic effect, and epidemiological connection to low sperm levels in men has led several researchers to call for banning it in the US.Rates of biodegradation are affected by atrazines low solubility, thus surfactants may increase the degradation rate. Though the two alkyl moieties readily support growth of certain microorganisms, the atrazine ring is a poor energy source due to the oxidized state of ring carbon. In fact, the most common pathway for atrazine degradation involves the intermediate, cyanuric acid, in which carbon is fully oxidized, thus the ring is primarily a nitrogen source for aerobic microorganisms. Atrazine may be catabolized as a carbon and nitrogen source in reducing environments, and some aerobic atrazine degraders have been shown to use the compound for growth under anoxia in the presence of nitrate as an electron acceptor, a process referred to as a denitrification. When atrazine is used as a nitrogen source for bacterial growth, degradation may be regulated by the presence of alternative sources of nitrogen. In pure cultures of atrazine-degrading bacteria, as well as active soil communitites, atrazine ring nitrogen, but not carbon are assimilated into microbial biomass. Low concentrations of glucose can decrease the bioavailability, whereas higher concentrations promote the catabolism of atrazine. Tyrone Hayes, Department of Integrative Biology, University of California, notes that all of the studies that failed to conclude that atrazine caused hermaphroditism were plagued by poor experimental controls and were funded by Syngenta, one of the companies that produce the chemical. The U.S. Environmental Protection Agency (EPA) and its independent Scientific Advisory Panel (SAP) examined all available studies on this topic including Hayes work and concluded that there are currently insufficient data to determine if atrazine affects amphibian development. Hayes, formerly part of the SAP panel, resigned in 2000 to continue studies independently. The EPA and its SAP made recommendations concerning proper study design needed for further investigation into this issue. As required by the EPA, Syngenta conducted two experiments under Good Laboratory Practices (GLP) and inspection by the EPA and German regulatory authorities. The paper concluded These studies demonstrate that long-term exposure of larval X. laevis to atrazine at concentrations ranging from 0.01 to 100 microg/l does not affect growth, larval development, or sexual differentiation. Another independent study in 2008 determined that the failure of recent studies to find that atrazine feminizes X. laevis calls into question the herbicides role in that decline. A report written in Environmental Scien... D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Hydroxyphenyllactic acid

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid is an antifungal metabolite.

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

UsnicAcid

(2R)-4,10-diacetyl-3,11,13-trihydroxy-2,12-dimethyl-8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(13),3,6,9,11-pentaen-5-one

C18H16O7 (344.0896)


(-)-usnic acid is the (-)-enantiomer of usnic acid. It has a role as an EC 1.13.11.27 (4-hydroxyphenylpyruvate dioxygenase) inhibitor. It is a conjugate acid of a (-)-usnic acid(2-). It is an enantiomer of a (+)-usnic acid. Usnic acid is a furandione found uniquely in lichen that is used widely in cosmetics, deodorants, toothpaste and medicinal creams as well as some herbal products. Taken orally, usnic acid can be toxic and has been linked to instances of clinically apparent, acute liver injury. (-)-Usnic acid is a natural product found in Dactylina arctica, Evernia divaricata, and other organisms with data available. The (-)-enantiomer of usnic acid. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2].

   

gamma-Tocotrienol

2,7,8-TRIMETHYL-2-[(3E,7E,11E,15E,19E,23E,27E)-4,8,12,16,20,24,28,32-O CTAMETHYL-3,7,11,15,19,23,27,31-TRITRIACONTAOCTAENYL]-6-CHROMANOL

C28H42O2 (410.3185)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Gamma-tocotrienol is a tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a radiation protective agent, an apoptosis inducer and a hepatoprotective agent. It is a tocotrienol and a vitamin E. gamma-Tocotrienol is a natural product found in Amaranthus cruentus, Triadica sebifera, and other organisms with data available. A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

Tocopherol

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, radical ion(1+), (2R-(2R*(4R*,8R*)))-

C29H50O2 (430.3811)


2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydro-2H-1-benzopyran-6-ol is a tocopherol. Tocopherol exists in four different forms designated as α, β, δ, and γ. They present strong antioxidant activities, and it is determined as the major form of vitamin E. Tocopherol, as a group, is composed of soluble phenolic compounds that consist of a chromanol ring and a 16-carbon phytyl chain. The classification of the tocopherol molecules is designated depending on the number and position of the methyl substituent in the chromanol ring. The different types of tocopherol can be presented trimethylated, dimethylated or methylated in the positions 5-, 7- and 8-. When the carbons at position 5- and 7- are not methylated, they can function as electrophilic centers that can trap reactive oxygen and nitrogen species. Tocopherols can be found in the diet as part of vegetable oil such as corn, soybean, sesame, and cottonseed. It is currently under the list of substances generally recognized as safe (GRAS) in the FDA for the use of human consumption. DL-alpha-Tocopherol is a natural product found in Sida acuta, Tainia latifolia, and other organisms with data available. dl-alpha-Tocopherol is a synthetic form of vitamin E, a fat-soluble vitamin with potent antioxidant properties. Considered essential for the stabilization of biological membranes (especially those with high amounts of polyunsaturated fatty acids), d-alpha-Tocopherol is a potent peroxyl radical scavenger and inhibits noncompetitively cyclooxygenase activity in many tissues, resulting in a decrease in prostaglandin production. Vitamin E also inhibits angiogenesis and tumor dormancy through suppressing vascular endothelial growth factor (VEGF) gene transcription. (NCI04) DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

dicamba

dicamba

C8H6Cl2O3 (219.9694)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 275

   

Oxyfluorfen

Oxyfluorfen

C15H11ClF3NO4 (361.0329)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3174

   

4-Hydroxyphenylpyruvic acid

4-Hydroxyphenylpyruvic acid

C9H8O4 (180.0423)


A 2-oxo monocarboxylic acid that is pyruvic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase [EC 1.1.1.222] and is formed during tyrosine metabolism (KEGG). There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). [HMDB] 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.

   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524)


A monocarboxylic acid that is toluene in which one of the hydrogens of the methyl group has been replaced by a carboxy group. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Saccharopine

L-Saccharopine

C11H20N2O6 (276.1321)


The N(6)-(1,3-dicarboxypropan-1-yl) derivative of L-lysine.

   

Homogentisic acid

Homogentisic acid

C8H8O4 (168.0423)


A dihydroxyphenylacetic acid having the two hydroxy substituents at the 2- and 5-positions. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.

   

Hydroxyphenyllactic acid

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid is a tyrosine metabolite. It is carcinogenic. The level of hydroxyphenyllactic acid is elevated in patients with deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2). (PMID 4720815) [HMDB] Hydroxyphenyllactic acid is an antifungal metabolite.

   

p-Coumaroylagmatine

p-Coumaroylagmatine

C14H20N4O2 (276.1586)


   

Phenylpyruvic acid

2-Oxo-3-phenylpropanoic acid

C9H8O3 (164.0473)


Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

Ketoleucine

4-methyl-2-oxopentanoic acid

C6H10O3 (130.063)


A 2-oxo monocarboxylic acid that is pentanoic acid (valeric acid) substituted with a keto group at C-2 and a methyl group at C-4. A metabolite that has been found to accumulate in maple syrup urine disease. 4-Methyl-2-oxopentanoic acid (α-Ketoisocaproic acid), an abnormal metabolite, is both a neurotoxin and a metabotoxin.

   

3-Hydroxyisovaleric acid

3-Hydroxy-3-methylbutanoic acid

C5H10O3 (118.063)


A 3-hydroxy monocarboxylic acid that is isovaleric acid substituted at position 3 by a hydroxy group. Used as indicator of biotin deficiency. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2]. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2].

   

VITAMIN E

DL-alpha-Tocopherol

C29H50O2 (430.3811)


Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 40 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 15 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

2,4-dichlorophenoxyacetic acid

2,4-dichlorophenoxyacetic acid

C8H6Cl2O3 (219.9694)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals 2,4-D (2,4-Dichlorophenoxyacetic acid) is a selective systemic herbicide for the control of broad-leaved weeds. 2,4-D acts as a plant hormone, causing uncontrolled growth in the meristematic tissues. 2,4-D inhibits DNA and protein synthesis and thereby prevents normal plant growth and development[1].

   

1,2-CYCLOHEXANEDIONE

1,2-CYCLOHEXANEDIONE

C6H8O2 (112.0524)


1,2-Cyclohexanedione is an endogenous metabolite.

   

3-Hydroxy-3-methylglutaric acid

3-Hydroxy-3-methylglutaric acid

C6H10O5 (162.0528)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D009676 - Noxae > D000963 - Antimetabolites Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis. Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis.

   

Alcapton

InChI=1\C8H8O4\c9-6-1-2-7(10)5(3-6)4-8(11)12\h1-3,9-10H,4H2,(H,11,12

C8H8O4 (168.0423)


Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.

   

PIPERONYL BUTOXIDE

Pesticide4_Piperonyl butoxide_C19H30O5_Butacide

C19H30O5 (338.2093)


D010575 - Pesticides > D010574 - Pesticide Synergists D016573 - Agrochemicals

   

b-Hydroxyisovalerate

β-hydroxy-beta-methylbutyric acid

C5H10O3 (118.063)


3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2]. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2].

   

Phytoene

(6E,10E,14E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,14,16,18,22,26,30-nonaene

C40H64 (544.5008)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

54-28-4

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-, (2R)-

C28H48O2 (416.3654)


D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols D018977 - Micronutrients > D014815 - Vitamins γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1]. γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].

   

CHEBI:33277

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-, (2R)- (9CI)

C28H42O2 (410.3185)


γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

Ephanyl

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, (2R*(4R*,8R*))-(+-)- (9CI)

C29H50O2 (430.3811)


COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

AI3-08920

InChI=1\C8H8O2\c9-8(10)6-7-4-2-1-3-5-7\h1-5H,6H2,(H,9,10

C8H8O2 (136.0524)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

623-05-2

InChI=1\C7H8O2\c8-5-6-1-3-7(9)4-2-6\h1-4,8-9H,5H

C7H8O2 (124.0524)


4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].

   

156-06-9

Benzenepropanoic acid, .alpha.-oxo-

C9H8O3 (164.0473)


Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

malathion

malathion

C10H19O6PS2 (330.0361)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

glyphosate

N-Phosphonomethyl-glycine

C3H8NO5P (169.014)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

1,3-Cyclohexanedione

1,3-Cyclohexanedione

C6H8O2 (112.0524)


   

QUINOXALINE

QUINOXALINE

C8H6N2 (130.0531)


   

benzocatechol

Naphthalene-1,2-diol

C10H8O2 (160.0524)


   

2-HYDROXYETHYL PHOSPHONIC ACID

(2-Hydroxyethyl)phosphonic acid

C2H7O4P (126.0082)


   

Benzene oxide

Benzene oxide

C6H6O (94.0419)


   

Prephenic acid

Prephenic acid

C10H10O6 (226.0477)


An oxo dicarboxylic acid that consists of 4-hydroxycyclohexa-2,5-diene-1-carboxylic acid substituted by a 2-carboxy-2-oxoethyl group at position 1.

   

12-oxo-phytodienoic acid

12-oxo-phytodienoic acid

C18H28O3 (292.2038)


D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

2-Methyl-6-phytylquinol

2-Methyl-6-phytyl-1,4-hydroquinone

C27H46O2 (402.3498)


   

9-Phenanthrol

9-Phenanthrol

C14H10O (194.0732)


D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors