Gene Association: TJP2

UniProt Search: TJP2 (PROTEIN_CODING)
Function Description: tight junction protein 2

found 15 associated metabolites with current gene based on the text mining result from the pubmed database.

Decursin

CROTONIC ACID, 3-METHYL-, ESTER WITH 7,8-DIHYDRO-7-HYDROXY-8,8-DIMETHYL-2H,6H-BENZO(1,2-B:5,4-B)DIPYRAN-2-ONE, (+)-

C19H20O5 (328.1311)


Decursin is a member of coumarins. Decursin is a natural product found in Scutellaria lateriflora, Angelica glauca, and other organisms with data available. See also: Angelica gigas root (part of). D020536 - Enzyme Activators Decursinol angelate is a natural product found in Angelica glauca and Angelica gigas with data available. See also: Angelica gigas root (part of). Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursinol angelate, a cytotoxic and protein kinase C (PKC) activating agent from the root of Angelica gigas, possesses anti-tumor and anti-inflammatory activities[1][2].

   

11,12-Epoxyeicosatrienoic acid

(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid

C20H32O3 (320.2351)


11,12-Epoxyeicosatrienoic acid (CAS: 81276-02-0) is an epoxyeicosatrienoic acid (EET). Induction of CYP2C8 in native coronary artery endothelial cells by beta-naphthoflavone enhances the formation of 11,12-epoxyeicosatrienoic acid, as well as endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation. Transfection of coronary arteries with CYP2C8 antisense oligonucleotides resulted in decreased levels of CYP2C and attenuated the endothelium-derived hyperpolarizing factor-mediated vascular responses. Thus, a CYP-epoxygenase product is an essential component of the endothelium-derived hyperpolarizing factor-mediated relaxation in the porcine coronary artery, and CYP2C8 fulfills the criteria for the coronary endothelium-derived hyperpolarization factor synthase. The role of EETs in the regulation of the cerebral circulation has become more important since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence has shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes (PMID: 17494091, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554). EETs function as autocrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted into natural EETs by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid into four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been shown to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and the brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs into dihydroxyeicosatrienoic acids. 11,12-EpETrE or 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid is an epoxyeicosatrienoic acid or an EET derived from arachadonic acid. EETs function as autacrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted to natural epoxyeicosatrienoic acids (EETs) by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid to four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been show to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have antiinflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids. [HMDB] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Malaoxon

1,4-diethyl 2-[(dimethoxyphosphoryl)sulfanyl]butanedioate

C10H19O7PS (314.0589)


Malaoxon is a metabolite of malathion. Malaoxon is a chemical compound with the formula C10H19O7PS. More specifically, it is a phosphorothioate. It is a breakdown product of, and more toxic than, malathion. (Wikipedia) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3713 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

(±)-Methamidophos

Methyl phosphoramidothioate ((meo)(mes)p(O)(NH2))

C2H8NO2PS (141.0013)


(±)-Methamidophos is an agricultural systemic insecticide and acaricide. It is a metabolite of acephate DGK99-C C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Guanosine monophosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O8P (363.058)


Guanosine monophosphate (GMP), also known as 5′-guanidylic acid or guanylic acid (conjugate base guanylate), is a nucleotide that is used as a monomer in RNA. It is an ester of phosphoric acid with the nucleoside guanosine. GMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase guanine; hence it is a ribonucleoside monophosphate. Guanosine monophosphate is commercially produced by microbial fermentation. Guanosine monophosphate, also known as guanylic acid or 5-GMP, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. Guanosine monophosphate exists in all living species, ranging from bacteria to humans. Within humans, guanosine monophosphate participates in a number of enzymatic reactions. In particular, guanosine triphosphate and guanosine monophosphate can be biosynthesized from diguanosine tetraphosphate through its interaction with the enzyme bis(5-nucleosyl)-tetraphosphatase [asymmetrical]. In addition, guanosine monophosphate can be biosynthesized from guanosine diphosphate; which is mediated by the enzyme ectonucleoside triphosphate diphosphohydrolase 5. In humans, guanosine monophosphate is involved in the metabolic disorder called the lesch-nyhan syndrome (lns) pathway. Outside of the human body, guanosine monophosphate has been detected, but not quantified in several different foods, such as common cabbages, tea, winter squash, spearmints, and sugar apples. Guanosine-5-monophosphate, also known as 5-gmp or guanylic acid, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Guanosine-5-monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine-5-monophosphate can be found in a number of food items such as mustard spinach, swiss chard, watercress, and colorado pinyon, which makes guanosine-5-monophosphate a potential biomarker for the consumption of these food products. Guanosine-5-monophosphate can be found primarily in blood and saliva, as well as throughout most human tissues. Guanosine-5-monophosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine-5-monophosphate is involved in several metabolic pathways, some of which include clarithromycin action pathway, erythromycin action pathway, minocycline action pathway, and tetracycline action pathway. Guanosine-5-monophosphate is also involved in several metabolic disorders, some of which include gout or kelley-seegmiller syndrome, xanthine dehydrogenase deficiency (xanthinuria), aICA-Ribosiduria, and molybdenum cofactor deficiency. Guanosine monophosphate is known as E number reference E626.[7] In the form of its salts, such as disodium guanylate (E627), dipotassium guanylate (E628) and calcium guanylate (E629), are food additives used as flavor enhancers to provide the umami taste.[7] It is often used in synergy with disodium inosinate; the combination is known as disodium 5′-ribonucleotides. Disodium guanylate is often found in instant noodles, potato chips and snacks, savoury rice, tinned vegetables, cured meats, and packet soup. As it is a fairly expensive additive, it is usually not used independently of glutamic acid or monosodium glutamate (MSG), which also contribute umami. If inosinate and guanylate salts are present in a list of ingredients but MSG does not appear to be, the glutamic acid is likely provided as part of another ingredient, such as a processed soy protein complex (hydrolyzed soy protein), autolyzed yeast, or soy sauce. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.

   

Isovaleric acid

3-Methylbutyric acid: isopropyl-acetic acid

C5H10O2 (102.0681)


Isovaleric acid, is a natural fatty acid found in a wide variety of plants and essential oils. Isovaleric acid is clear colorless liquid that is sparingly soluble in water, but well soluble in most common organic solvents. It has been suggested that isovaleric acid from pilot whales, a species frequently consumed in the Faroe Islands, may be the unusual dietary factor in prolonged gestation in the population of the Faroe Islands. Previous studies suggested that was due to the high intake of n-3 polyunsaturated fatty acids has been, but fatty acid data for eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) in blood lipids of Faroese and Norwegians was reviewed in terms of the type of fish eaten (mostly lean white fish with DHA much greater than EPA); the popular lean fish, thus, probably provides too little EPA to produce a marked effect on human biochemistry (PMID 2646392). Isovaleric acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Flavouring agent. Simple esters are used in flavourings. Constituent of hops, cheese etc.; an important component of cheese aroma and flavour CONFIDENCE standard compound; INTERNAL_ID 152 KEIO_ID I018 Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.

   

Cnicin

NCGC00385206-01_C20H26O7_(3aR,4S,10Z,11aR)-10-(Hydroxymethyl)-6-methyl-3-methylene-2-oxo-2,3,3a,4,5,8,9,11a-octahydrocyclodeca[b]furan-4-yl 3,4-dihydroxy-2-methylenebutanoate

C20H26O7 (378.1678)


C1907 - Drug, Natural Product > C28269 - Phytochemical > C93252 - Sesquiterpene Lactone

   

Catalpol

(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O10 (362.1213)


Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].

   

11R,12S-EpETrE

11,12-Epoxy-5,8,14-eicosatrienoic acid, (2alpha(5Z,8Z),3alpha(Z))-isomer

C20H32O3 (320.2351)


   

Cynisin

10-(Hydroxymethyl)-6-methyl-3-methylidene-2-oxo-2H,3H,3ah,4H,5H,8H,9H,11ah-cyclodeca[b]furan-4-yl 3,4-dihydroxy-2-methylidenebutanoic acid

C20H26O7 (378.1678)


   

Guanosine monophosphate

Guanosine-5-monophosphate disodium salt hydrate from Yeast

C10H14N5O8P (363.058)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.058 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.

   

methamidophos

Pesticide1_Methamidophos_C2H8NO2PS_O,S-Dimethyl phosphoramidothioate

C2H8NO2PS (141.0013)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

ISOVALERIC ACID

3-Methylbutanoic acid

C5H10O2 (102.0681)


A C5, branched-chain saturated fatty acid. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.

   

LS-2386

InChI=1\C5H10O2\c1-4(2)3-5(6)7\h4H,3H2,1-2H3,(H,6,7

C5H10O2 (102.0681)


Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.

   

MALAOXON

MALAOXON

C10H19O7PS (314.0589)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals