Gene Association: BFSP1
UniProt Search:
BFSP1 (PROTEIN_CODING)
Function Description: beaded filament structural protein 1
found 14 associated metabolites with current gene based on the text mining result from the pubmed database.
5-Aminolevulinic acid
5-Aminolevulinic acid, also known as 5-aminolevulinate or 5-amino-4-oxopentanoate, belongs to the class of organic compounds known as delta amino acids and derivatives. Delta amino acids and derivatives are compounds containing a carboxylic acid group and an amino group at the C5 carbon atom. 5-Aminolevulinic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 5-Aminolevulinic acid exists in all living species, ranging from bacteria to humans. 5-aminolevulinic acid can be biosynthesized from glycine and succinyl-CoA by the enzyme 5-aminolevulinate synthase. The simplest delta-amino acid in which the hydrogens at the gamma position are replaced by an oxo group. In humans, 5-aminolevulinic acid is involved in the metabolic disorder called the dimethylglycine dehydrogenase deficiency pathway. Outside of the human body, 5-Aminolevulinic acid has been detected, but not quantified in several different foods, such as american butterfish, vaccinium (blueberry, cranberry, huckleberry), amaranths, purple mangosteens, and garden cress. Used (in the form of the hydrochloride salt) in combination with blue light illumination for the treatment of minimally to moderately thick actinic keratosis of the face or scalp. It is metabolised to protoporphyrin IX, a photoactive compound which accumulates in the skin. An intermediate in heme synthesis. This is the first compound in the porphyrin synthesis pathway. It is produced by the enzyme ALA synthase, from glycine and succinyl CoA. This reaction is known as the Shemin pathway. Aminolevulinic acid plus blue light illumination using a blue light photodynamic therapy illuminator is indicated for the treatment of minimally to moderately thick actinic keratoses of the face or scalp. [HMDB]. 5-Aminolevulinic acid is found in many foods, some of which are fireweed, chia, sesbania flower, and taro. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy Acquisition and generation of the data is financially supported in part by CREST/JST. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents KEIO_ID A052
Protoporphyrin IX
Protoporphyrins are tetrapyrroles containing 4 methyl, 2 propionic, and 2 vinyl side chains. Protoporphyrin is produced by oxidation of the methylene bridge of protoporphyrinogen. Protoporphyrin IX is the only naturally occurring isomer; it is an intermediate in heme biosynthesis, combining with ferrous iron to form protoheme IX, the heme prosthetic group of hemoglobin. Protoporphyrin IX is created by the enzyme protoporphyrinogen oxidase. The enzyme ferrochelatase converts it into heme. Protoporphyrin IX naturally occurs in small amounts in feces. Protoporphyrin IX is also responsible for the brown pigment (ooporphyrin) of birds eggs. Protoporphyrin IX is used as a branch point in the biosynthetic pathway leading to heme (by insertion of iron) and chlorophylls (by insertion of Mg and further side-chain transformation). Protoporphyrin IX can be used to treat liver disorders, mainly as the sodium salt. Under certain conditions, protoporphyrin IX can act as a neurotoxin, a phototoxin, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A phototoxin causes cell damage upon exposure to light. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, it is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). obtained by demetallation of Haemin, occurs in small amounts in faeces. Brown pigment (Ooporphyrin) of birds eggs. Isolated from Atolla wyvillei (CCD). Protoporphyrin is found in red beetroot. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents COVID info from COVID-19 Disease Map C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway. Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway.
Oxyquinoline
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AC - Quinoline derivatives A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AH - Quinoline derivatives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE standard compound; ML_ID 55
2-Hydroxypyridine
This colourless crystalline solid is used in peptide synthesis. It is well known to form hydrogen bonded structures somewhat related to the base-pairing mechanism found in RNA and DNA. It is also a classic case of a molecule that exists as tautomers. Some publications only focus one of the two possible patterns, and neglect the influence of the other. For example, to calculation of the energy difference of the two tautomers in a non-polar solution will lead to a wrong result if a large quantity of the substance is on the side of the dimer in an equilibrium. The direct tautomerisation is not energetically favoured, but a dimerisation followed by a double proton transfer and dissociation of the dimer is a self catalytic path from one tautomer to the other. Protic solvents also mediate the proton transfer during the tautomerisation. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H021 α-Pyridone is an endogenous metabolite.
2-Aminoacrylic acid
Dehydroalanine (or (alpha)-(beta)-di-dehydroalanine) is an uncommon amino acid found in peptides of microbial origin (an unsaturated amino acid). [HMDB] Dehydroalanine (or (alpha)-(beta)-di-dehydroalanine) is an uncommon amino acid found in peptides of microbial origin (an unsaturated amino acid).
Deferoxamine
Deferoxamine is only found in individuals that have used or taken this drug. It is a natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. [PubChem]Deferoxamine works in treating iron toxicity by binding trivalent (ferric) iron (for which it has a strong affinity), forming ferrioxamine, a stable complex which is eliminated via the kidneys. 100 mg of deferoxamine is capable of binding approximately 8.5 mg of trivalent (ferric) iron. Deferoxamine works in treating aluminum toxicity by binding to tissue-bound aluminum to form aluminoxamine, a stable, water-soluble complex. The formation of aluminoxamine increases blood concentrations of aluminum, resulting in an increased concentration gradient between the blood and dialysate, boosting the removal of aluminum during dialysis. 100 mg of deferoxamine is capable of binding approximately 4.1 mg of aluminum. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
Tropolone
Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
Tropolone
Tropolone is a cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. It has a role as a bacterial metabolite, a toxin and a fungicide. It is a cyclic ketone, an enol and an alpha-hydroxy ketone. It derives from a hydride of a cyclohepta-1,3,5-triene. A seven-membered aromatic ring compound. It is structurally related to a number of naturally occurring antifungal compounds (ANTIFUNGAL AGENTS). A cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
deferoxamine
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
Aminolevulinic Acid
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents
Protoporphyrin
A cyclic tetrapyrrole that consists of porphyrin bearing four methyl substituents at positions 3, 8, 13 and 17, two vinyl substituents at positions 7 and 12 and two 2-carboxyethyl substituents at positions 2 and 18. The parent of the class of protoporphyrins. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents COVID info from COVID-19 Disease Map C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway. Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway.