Gene Association: S100A12

UniProt Search: S100A12 (PROTEIN_CODING)
Function Description: S100 calcium binding protein A12

found 142 associated metabolites with current gene based on the text mining result from the pubmed database.

griffonin

(Z)-2-((4R,5S,6S)-4,5-Dihydroxy-6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-2-en-1-ylidene)acetonitrile

C14H19NO8 (329.1111)


Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].

   

Capsaicin

(E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide

C18H27NO3 (305.1991)


Capsaicin is a capsaicinoid. It has a role as a non-narcotic analgesic, a voltage-gated sodium channel blocker and a TRPV1 agonist. Capsaicin is most often used as a topical analgesic and exists in many formulations of cream, liquid, and patch preparations of various strengths; however, it may also be found in some dietary supplements. Capsaicin is a naturally-occurring botanical irritant in chili peppers, synthetically derived for pharmaceutical formulations. The most recent capsaicin FDA approval was Qutenza, an 8\\\\\\% capsaicin patch dermal-delivery system, indicated for neuropathic pain associated with post-herpetic neuralgia. Capsaicin is a natural product found in Capsicum pubescens, Capsicum, and Capsicum annuum with data available. Capsaicin is a chili pepper extract with analgesic properties. Capsaicin is a neuropeptide releasing agent selective for primary sensory peripheral neurons. Used topically, capsaicin aids in controlling peripheral nerve pain. This agent has been used experimentally to manipulate substance P and other tachykinins. In addition, capsaicin may be useful in controlling chemotherapy- and radiotherapy-induced mucositis. Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (A7835). An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. See also: Capsicum (part of); Capsicum Oleoresin (active moiety of); Paprika (part of) ... View More ... Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (PMID: 8621114). M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Flavouring ingredient. Pungent principle of various Capsicum subspecies (Solanaceae) D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.208 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.207 Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].

   

Rutaecarpine

3,13,21-triazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-1(21),2(10),4(9),5,7,15(20),16,18-octaen-14-one

C18H13N3O (287.1059)


Rutecarpine is a member of beta-carbolines. Rutaecarpine is a natural product found in Bouchardatia neurococca, Zanthoxylum dimorphophyllum, and other organisms with data available. Rutaecarpine belongs to the family of Pyridopyrimidines. These are compounds containing a pyridopyrimidine, which consists of a pyridine fused to a pyrimidine. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Rutaecarpine, an alkaloid of Evodia rutaecarpa, is an inhibitor of COX-2 with an IC50 value of 0.28 μM. Rutaecarpine, an alkaloid of Evodia rutaecarpa, is an inhibitor of COX-2 with an IC50 value of 0.28 μM.

   

Esculentic acid (Diplazium)

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Umbellulone

[1R,5S,(-)]-4-Methyl-1-isopropylbicyclo[3.1.0]hexa-3-ene-2-one

C10H14O (150.1045)


Umbellulone is a ketone. (-)-Umbellulone is a natural product found in Tanacetum vulgare, Pimenta racemosa, and Umbellularia californica with data available.

   

Santamarin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin, also known as (+)-santamarine or balchanin, belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Santamarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Santamarin can be found in sweet bay, which makes santamarin a potential biomarker for the consumption of this food product. Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

Arecaidine

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-

C7H11NO2 (141.079)


Arecaidine is a citraconoyl group. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].

   

Acetyl-N-formyl-5-methoxykynurenamine

N-[3-[2-(formylamino)-5-methoxyphenyl]-3-oxypropyl]-acetamide

C13H16N2O4 (264.111)


Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration, with AFMK found in some patients exceeding the concentration of melatonin normally found in serum. (PMID: 16150112) [HMDB] Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration. AFMK was also found in some patients to exceed the concentration of melatonin normally found in serum (PMID: 16150112).

   

Epinephrine

(R)-(-)-3,4-Dihydroxy-α-(methylaminomethyl)benzyl alcohol, L-Adrenaline, L-Epinephrine

C9H13NO3 (183.0895)


Epinephrine, also known as adrenaline, is both a neurotransmitter and a hormone. It plays an important role in your body’s “fight-or-flight” response. It’s also used as a medication to treat many life-threatening conditions. Epinephrine is a catecholamine, a sympathomimetic monoamine derived from the amino acids phenylalanine and tyrosine. It is the active sympathomimetic hormone secreted from the adrenal medulla in most species. It stimulates both the alpha- and beta- adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. It is used in asthma and cardiac failure and to delay absorption of local anesthetics. Epinephrine also constricts arterioles in the skin and gut while dilating arterioles in leg muscles. It elevates the blood sugar level by increasing hydrolysis of glycogen to glucose in the liver, and at the same time begins the breakdown of lipids in adipocytes. Epinephrine has a suppressive effect on the immune system. [HMDB] Epinephrine, also called adrenaline, is both a hormone and a neurotransmitter. As a hormone, it’s made and released by your adrenal glands, which are hat-shaped glands that sit on top of each kidney. As a central nervous system neurotransmitter, it’s a chemical messenger that helps transmit nerve signals across nerve endings to another nerve cell, muscle cell or gland cell. Epinephrine is part of your sympathetic nervous system, which is part of your body’s emergency response system to danger — the “fight-or-flight” response. Medically, the flight-or-flight response is known as the acute stress response. Epinephrine is also called a catecholamine, as are norepinephrine and dopamine. They’re given this name because of a certain molecule in its structure. As a hormone, epinephrine is made from norepinephrine inside of your adrenal gland. As a neurotransmitter, epinephrine plays a small role. Only a small amount is produced in your nerves. It plays a role in metabolism, attention, focus, panic and excitement. Abnormal levels are linked to sleep disorders, anxiety, hypertension and lowered immunity. Epinephrine’s major action is in its role as a hormone. Epinephrine is released by your adrenal glands in response to stress. This reaction causes a number of changes in your body and is known as the fight-or-flight response.

   

Levorphanol

(1R,9R,10R)-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5-trien-4-ol

C17H23NO (257.178)


Levorphanol is only found in individuals that have used or taken this drug. It is a narcotic analgesic that may be habit-forming. It is nearly as effective orally as by injection. [PubChem]Like other mu-agonist opioids it is believed to act at receptors in the periventricular and periaqueductal gray matter in both the brain and spinal cord to alter the transmission and perception of pain. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Baclofen

beta-(Aminomethyl)-4-chlorobenzenepropanoic acid

C10H12ClNO2 (213.0557)


Baclofen is a gamma-amino-butyric acid (GABA) derivative used as a skeletal muscle relaxant. Baclofen stimulates GABA-B receptors leading to decreased frequency and amplitude of muscle spasms. It is especially useful in treating muscle spasticity associated with spinal cord injury. It appears to act primarily at the spinal cord level by inhibiting spinal polysynaptic afferent pathways and, to a lesser extent, monosynaptic afferent pathways. M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1]. Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].

   

Ketorolac

(±)-5-benzoyl-2,3-dihydro-1H-pyrrolizine-1-carboxylic acid, tris(hydroxymethyl)aminomethane salt

C15H13NO3 (255.0895)


Ketorolac is only found in individuals that have used or taken this drug. It is a pyrrolizine carboxylic acid derivative structurally related to indomethacin. It is an NSAID and is used principally for its analgesic activity (from Martindale The Extra Pharmacopoeia, 31st ed). Ketorolac is a nonsteroidal anti-inflammatory drug (NSAID) chemically related to indomethacin and tolmetin. Ketorolac tromethamine is a racemic mixture of [-]S- and [+]R-enantiomeric forms, with the S-form having analgesic activity. Its antiinflammatory effects are believed to be due to inhibition of both cylooxygenase-1 (COX-1) and cylooxygenase-2 (COX-2) which leads to the inhibition of prostaglandin synthesis leading to decreased formation of precursors of prostaglandins and thromboxanes from arachidonic acid. The resultant reduction in prostaglandin synthesis and activity may be at least partially responsible for many of the adverse, as well as the therapeutic, effects of these medications. Analgesia is probably produced via a peripheral action in which blockade of pain impulse generation results from decreased prostaglandin activity. However, inhibition of the synthesis or actions of other substances that sensitize pain receptors to mechanical or chemical stimulation may also contribute to the analgesic effect. In terms of the ophthalmic applications of ketorolac - ocular administration of ketorolac reduces prostaglandin E2 levels in aqueous humor, secondary to inhibition of prostaglandin biosynthesis. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

fleroxacin

6,8-difluoro-1-(2-fluoroethyl)-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

C17H18F3N3O3 (369.13)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Biperiden

1-{bicyclo[2.2.1]hept-5-en-2-yl}-1-phenyl-3-(piperidin-1-yl)propan-1-ol

C21H29NO (311.2249)


A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Cytisine

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Sumatriptan

1-[3-(2-Dimethylaminoethyl)-1H-indol-5-yl]-N-methyl-methanesulphonamide

C14H21N3O2S (295.1354)


Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. Sumatriptan is structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve. Sumatriptan is a triptan drug including a sulfonamide group structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. A serotonin agonist that acts selectively at 5HT1 receptors. It is used in the treatment of migraines. Sumatriptan (Imitrex, Imigran, Imigran Recovery) is a triptan drug including a sulfonamide group which was originally developed by Glaxo for the treatment of migraine headaches. Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. Sumatriptan is structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve.; Sumatriptan is a triptan drug including a sulfonamide group structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Sumatriptan (GR 43175) is an orally active 5-HT1 receptor agonist with IC50s of 7.3 nm, 9.3nm and 17.8 nm for 5-HT1D, 5-HT1B and 5-HT1F receptors, respectively. Sumatriptan can be used for migraine headache research[1][2][3][4].

   

Miglitol

(2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol

C8H17NO5 (207.1107)


Miglitol is an oral anti-diabetic drug that acts by inhibiting the ability of the patient to breakdown complex carbohydrates into glucose. It is primarily used in diabetes mellitus type 2 for establishing greater glycemic control by preventing the digestion of carbohydrates (such as disaccharides, oligosaccharides, and polysaccharides) into monosaccharides which can be absorbed by the body. Miglitol inhibits glycoside hydrolase enzymes called alpha-glucosidases. Since miglitol works by preventing digestion of carbohydrates, it lowers the degree of postprandial hyperglycemia. It must be taken at the start of main meals to have maximal effect. Its effect will depend on the amount of non-monosaccharide carbohydrates in a persons diet. In contrast to acarbose (another alpha-glucosidase inhibitor), miglitol is systemically absorbed; however, it is not metabolized and is excreted by the kidneys. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors C471 - Enzyme Inhibitor > C2846 - Glucosidase Inhibitor D004791 - Enzyme Inhibitors

   

Hexadecanedioic acid

N-Tetradecane-omega,omega-dicarboxylic acid

C16H30O4 (286.2144)


Hexadecanedioic acid, also known as thapsic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Hexadecanedioic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in the liver (PMID: 4372285). It has antitumor activity (PMID: 14987827). Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in liver (PMID 4372285). It has an antitumor activity (PMID 14987827). Hexadecanedioic acid is found in sweet cherry and potato. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

Olopatadine

2-[(2Z)-2-[3-(dimethylamino)propylidene]-9-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3(8),4,6,11,13-hexaen-5-yl]acetic acid

C21H23NO3 (337.1678)


Used to treat allergic conjunctivitis (itching eyes), olopatadine inhibits the release of histamine from mast cells. It is a relatively selective histamine H1 antagonist that inhibits the in vivo and in vitro type 1 immediate hypersensitivity reaction including inhibition of histamine induced effects on human conjunctival epithelial cells. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D018926 - Anti-Allergic Agents

   

Sufentanil

N-[4-(methoxymethyl)-1-[2-(thiophen-2-yl)ethyl]piperidin-4-yl]-N-phenylpropanamide

C22H30N2O2S (386.2028)


Sufentanil is only found in individuals that have used or taken this drug. It is an opioid analgesic that is used as an adjunct in anesthesia, in balanced anesthesia, and as a primary anesthetic agent. [PubChem]Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Sufentanils analgesic activity is, most likely, due to its conversion to morphine. Opioids open calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Tizanidine

5-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-2,1,3-benzothiadiazol-4-amine

C9H8ClN5S (253.0189)


Tizanidine is a short-acting drug for the management of spasticity. Tizanidine is an agonist at a2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons. Tizanidine has two major metabolites: (1) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiazdiazole and (2) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiadiazole (PMID: 9929503, 19961320). M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.

   

Anandamide

(5Z,8Z,11Z,14Z)-N-(2-Hydroxyethyl)-5,8,11,14-eicosatetraenamide

C22H37NO2 (347.2824)


Anandamide, also known as arachidonoylethanolamide (AEA), is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumour cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (> 48-degree centigrade), and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID: 15047233). Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (such as anandamide). Recent evidence suggests that these new types of prostaglandins are likely novel signalling mediators involved in synaptic transmission and plasticity (PMID: 16957004). Anandamide is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of Tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumor cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (>48 degree centigrade) and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID 15047233) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 41 D049990 - Membrane Transport Modulators

   

Taurocholate

2-[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid

C26H45NO7S (515.2917)


Taurocholic acid is a bile acid and is the product of the conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurocholic acid, as with all bile acids, acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and choleretic (a bile purging agent). Hydrolysis of taurocholic acid yields taurine, a nonessential amino acid. Taurocholic acid is one of the main components of urinary nonsulfated bile acids in biliary atresia. Raised levels of taurocholate in fetal serum in obstetric cholestasis may result in the development of a fetal dysrhythmia and sudden intra-uterine death (PMID: 3944741, 11256973). Taurocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=81-24-3 (retrieved 2024-07-01) (CAS RN: 81-24-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats. Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats.

   

12,13-DiHOME

(9Z,12S,13S)-12,13-dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]

   

12(S)-HPETE

(5Z,8Z,10E,14Z)-(12S)-12-Hydroperoxyeicosa-5,8,10,14-tetraenoic acid

C20H32O4 (336.23)


12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system. 12-HPETE is one of the six monohydroperoxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid (Leukotrienes). Reduction of the hydroperoxide yields the more stable hydroxyl fatty acid (+/-)12-HETE. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Zaleplon

N-(3-(3-Cyanopyrazolo(1,5-a)pyrimidin-7-yl)phenyl)-N-ethylacetamide

C17H15N5O (305.1277)


Zaleplon is a sedative/hypnotic, mainly used for insomnia. It is known as a nonbenzodiazepine hypnotic. Zaleplon interacts with the GABA receptor complex and shares some of the pharmacological properties of the benzodiazepines. Zaleplon is a schedule IV drug in the United States. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Epibatidine

(+/-)-epibatidine

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Oxymetazoline

3-[(4,5-Dihydro-1H-imidazol-2-yl)methyl]-6-(1,1-dimethylethyl)-2,4-dimethylphenol

C16H24N2O (260.1889)


Oxymetazoline is only found in individuals that have used or taken this drug. It is a direct acting sympathomimetic used as a vasoconstrictor to relieve nasal congestion. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1251)Oxymetazoline is a direct acting sympathomimetic amine, which acts on alpha-adrenergic receptors in the arterioles of the conjunctiva and nasal mucosa. It produces vasoconstriction, resulting in decreased conjunctival congestion in ophthalmic. In nasal it produces constriction, resulting in decreased blood flow and decreased nasal congestion. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D - Dermatologicals

   

Spermidine

N-(gamma-Aminopropyl)tetramethylenediamine

C7H19N3 (145.1579)


Spermidine, also known as SPD, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Spermidine exists in all living species, ranging from bacteria to humans. Within humans, spermidine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine by the enzyme spermidine synthase. In addition, S-adenosylmethioninamine and spermidine can be converted into 5-methylthioadenosine and spermine through the action of the enzyme spermine synthase. In humans, spermidine is involved in spermidine and spermine biosynthesis. Outside of the human body, spermidine is found, on average, in the highest concentration within cow milk and oats. Spermidine has also been detected, but not quantified in several different foods, such as common chokecherries, watercress, agars, strawberry guava, and bog bilberries. This could make spermidine a potential biomarker for the consumption of these foods. Spermidine is consideres as an uremic toxine. Increased levels of uremic toxins can stimulate the production of reactive oxygen species. Chronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. As a uremic toxin, this compound can cause uremic syndrome. Uremic toxins such as spermidine are actively transported into the kidneys via organic ion transporters (especially OAT3). Constituent of meat products. Isol from the edible shaggy ink cap mushroom (Coprinus comatus) and from commercial/household prepared sauerkraut COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials IPB_RECORD: 269; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 220 KEIO_ID S003 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1]. Spermidine maintains cell membrane stability, increases antioxidant enzymes activities, improving photosystem II (PSII), and relevant gene expression. Spermidine significantly decreases the H2O2 and O2.- contents[1].

   

L-Name

N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester

C7H15N5O4 (233.1124)


D004791 - Enzyme Inhibitors

   

Epsilon-caprolactam

Hexahydro 2H azepin 2 one

C6H11NO (113.0841)


Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

NA 28:8;O2

(5Z,8Z,11Z,14Z)-N-(3,4-dihydroxyphenethyl)icosa-5,8,11,14-tetraenamide

C28H41NO3 (439.3086)


   

Methoxamine

Glaxo wellcome brand 1 OF methoxamine hydrochloride

C11H17NO3 (211.1208)


Methoxamine is only found in individuals that have used or taken this drug. It is an alpha-adrenergic agonist that causes prolonged peripheral vasoconstriction. It has little if any direct effect on the central nervous system. [PubChem]Methoxamine acts through peripheral vasoconstriction by acting as a pure alpha-1 adrenergic receptor agonist, consequently increasing systemic blood pressure (both systolic and diastolic). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents KEIO_ID M169; [MS2] KO009056 KEIO_ID M169

   

Zolmitriptan

(4S)-4-({3-[2-(dimethylamino)ethyl]-1H-indol-5-yl}methyl)-1,3-oxazolidin-2-one

C16H21N3O2 (287.1634)


Zolmitriptan is only found in individuals that have used or taken this drug. It is a synthetic tryptamine derivative and appears as a white powder that is readily soluble in water. [Wikipedia]Zolmitriptan binds with high affinity to human 5-HT1B and 5-HT1D receptors leading to cranial blood vessel constriction. Current theories proposed to explain the etiology of migraine headache suggest that symptoms are due to local cranial vasodilatation and/or to the release of sensory neuropeptides (vasoactive intestinal peptide, substance P and calcitonin gene-related peptide) through nerve endings in the trigeminal system. The therapeutic activity of zolmitriptan for the treatment of migraine headache can most likely be attributed to the agonist effects at the 5HT1B/1D receptors on intracranial blood vessels (including the arterio-venous anastomoses) and sensory nerves of the trigeminal system which result in cranial vessel constriction and inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

9,10-Epoxyoctadecenoic acid

8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoic acid

C18H32O3 (296.2351)


9,10-Epoxyoctadecenoic acid (9,10-EOA) is a peroxidation product of linoleic acid (LA). 9,10-EOA is a naturally occurring component of oxidized low density lipoprotein (LDL), the level of which increases with aging, atherosclerosis, and rheumatoid arthritis, perhaps due to an increase in 15-lipoxygenase and free oxygen radicals. 9,10-EOA is a proliferator-activated receptors (PPAR) gamma2 ligand, that is antiosteogenic without stimulating adipocyte differentiation. Studies in dogs suggest that 9,10-EOA has toxic cardiovascular effects. (PMID: 12665667, 12021203, 10667371).

   

Cromoglicic acid

5-{3-[(2-carboxy-4-oxo-4H-chromen-5-yl)oxy]-2-hydroxypropoxy}-4-oxo-4H-chromene-2-carboxylic acid

C23H16O11 (468.0693)


Cromoglicic acid is only found in individuals that have used or taken this drug. It is a chromone complex that acts by inhibiting the release of chemical mediators from sensitized mast cells. It is used in the prophylactic treatment of both allergic and exercise-induced asthma, but does not affect an established asthmatic attack. [PubChem]Cromoglicate inhibits degranulation of mast cells, subsequently preventing the release of histamine and slow-reacting substance of anaphylaxis (SRS-A), mediators of type I allergic reactions. Cromoglicate also may reduce the release of inflammatory leukotrienes. Cromoglicate may act by inhibiting calcium influx. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EB - Antiallergic agents, excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C29714 - Mast Cell Stabilizer S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors

   

Dihydroergotamine

(2R,4R,7R)-N-[(1S,2S,4R,7S)-7-benzyl-2-hydroxy-4-methyl-5,8-dioxo-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene-4-carboxamide

C33H37N5O5 (583.2795)


Dihydroergotamine is only found in individuals that have used or taken this drug. It is a 9,10alpha-dihydro derivative of ergotamine. It is used as a vasoconstrictor, specifically for the therapy of migraine disorders. [PubChem]Two theories have been proposed to explain the efficacy of 5-HT1D receptor agonists in migraine: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Resolvin D1

(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoic acid

C22H32O5 (376.225)


Resolvin D1 (RvD1) is an autacoid resolvin. Autacoids are chemical mediators including the families of resolvins and protectins, defined by their potent bioactions and novel chemical structures. The bioactive local mediators, or autacoids, that require enzymatic generation from the omega-3 essential fatty acid EPA were first identified in resolving inflammatory exudates in vivo and carry potent stereoselective biological actions. Resolvins of the E (RvE) series are derived from eicosapentaenoic acid (EPA). Those derived from docosahexaenoic acid (DHA) were termed resolvins of the D series, for example resolvin D1 (RvD1).Resolvins and protectins have specific stereoselective actions which evoke biological actions in the nanogram range in vivo and are natural exudate products. Resolvins and protectins as distinct chemical families join the lipoxins as potent agonists of endogenous anti-inflammation and are proresolving chemical mediators of interest in human disease as potential new approaches to treatment. The term resolvins (resolution-phase interaction products) was first introduced to signify that these new structures were endogenous mediators, biosynthesized in the resolution phase of inflammatory exudates, possessing very potent anti-inflammatory and immunoregulatory actions. These actions include reducing neutrophil traffic, regulating cytokine and reactive oxygen species, and lowering the magnitude of the response. In recent years, investigators have recognized inflammation as playing a key role in many prevalent diseases not previously considered to be of inflammatory etiology. These include Alzheimers disease, cardiovascular disease, and cancer, which now join those well-appreciated inflammatory disorders such as arthritis and periodontal disease. Identifying the molecular mechanism(s) that underlie the many reports of the benefits of dietary omega-3 PUFAs remains an important challenge for nutrition and medicine. Thus, that these new mediator families, resolvins and protectins, are biosynthesized from EPA and DHA, act locally, and possess potent, novel bioactions is of interest to researchers. (PMID: 17090225).

   

Homocitrulline

(2S)-2-amino-6-(carbamoylamino)hexanoic acid

C7H15N3O3 (189.1113)


Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). Homocitrulline has been identified in the human placenta (PMID: 32033212). Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). [HMDB] L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

Ergotamine

(4R,7R)-N-[(1S,2S,4R,7S)-7-benzyl-2-hydroxy-4-methyl-5,8-dioxo-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C33H35N5O5 (581.2638)


Ergotamine is only found in individuals that have used or taken this drug. It is a vasoconstrictor found in ergot of Central Europe. It is an alpha-1 selective adrenergic agonist and is commonly used in the treatment of migraine disorders. [PubChem]Ergotamine acts on migraine by one of two proposed mechanisms: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache, and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

Palmitaldehyde

Palmitoyl aldehyde

C16H32O (240.2453)


Palmitaldehyde, also known as 1-hexadecanal, is a member of the class of compounds known as fatty aldehydes. Fatty aldehydes are long chain aldehydes with a chain of at least 12 carbon atoms. Thus, palmitaldehyde is considered to be a fatty aldehyde lipid molecule. Palmitaldehyde is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Palmitaldehyde can be found in a number of food items such as rose hip, lambsquarters, pak choy, and swede, which makes palmitaldehyde a potential biomarker for the consumption of these food products. Palmitaldehyde exists in all eukaryotes, ranging from yeast to humans. In humans, palmitaldehyde is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Palmitaldehyde is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Palmitaldehyde is an intermediate in the metabolism of Glycosphingolipid. It is a substrate for Sphingosine-1-phosphate lyase 1. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

Nitric oxide

Endothelium-derived relaxing factor

NO (29.998)


The biologically active molecule nitric oxide (NO) is a simple, membrane-permeable gas with unique chemistry. It is formed by the conversion of L-arginine to L-citrulline, with the release of NO. The enzymatic oxidation of L-arginine to L-citrulline takes place in the presence of oxygen and NADPH using flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, thiol, and tetrahydrobiopterin as cofactors. The enzyme responsible for the generation of NO is nitric oxide synthase (E.C. 1.7.99.7; NOS). Three NOS isoforms have been described and shown to be encoded on three distinct genes: neuronal NOS (nNOS, NOS type I), inducible NOS (NOS type II), and endothelial NOS (eNOS, NOS type III). Two of them are constitutively expressed and dependent on the presence of calcium ions and calmodulin to function (nNOS and eNOS), while iNOS is considered non-constitutive and calcium-independent. However, experience has shown that constitutive expression of nNOS and eNOS is not as rigid as previously thought (i.e. either present or absent), but can be dynamically controlled during development and in response to injury. Functionally, NO may act as a hormone, neurotransmitter, paracrine messenger, mediator, cytoprotective molecule, and cytotoxic molecule. NO has multiple cellular molecular targets. It influences the activity of transcription factors, modulates upstream signaling cascades, mRNA stability and translation, and processes the primary gene products. In the brain, many processes are linked to NO. NO activates its receptor, soluble guanylate cyclase by binding to it. The stimulation of this enzyme leads to increased synthesis of the second messenger, cGMP, which in turn activates cGMP-dependent kinases in target cells. NO exerts a strong influence on glutamatergic neurotransmission by directly interacting with the N-methyl-D-aspartate (NMDA) receptor. Neuronal NOS is connected to NMDA receptors (see below) and sharply increases NO production following activation of this receptor. Thus, the level of endogenously produced NO around NMDA synapses reflects the activity of glutamate-mediated neurotransmission. However, there is recent evidence showing that non-NMDA glutamate receptors (i.e. AMPA and type I metabotropic receptors) also contribute to NO generation. Besides its influence on glutamate, NO is known to have effects on the storage, uptake and/or release of most other neurotransmitters in the CNS (acetylcholine, dopamine, noradrenaline, GABA, taurine, and glycine) as well as of certain neuropeptides. Finally, since NO is a highly diffusible molecule, it may reach extrasynaptic receptors at target cell membranes that are some distance away from the place of NO synthesis. NO is thus capable of mediating both synaptic and nonsynaptic communication processes. NO is a potent vasodilator (a major endogenous regulator of vascular tone), and an important endothelium-dependent relaxing factor. NO is synthesized by NO synthases (NOS) and NOS are inhibited by asymmetrical dimethylarginine (ADMA). ADMA is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) and excreted in the kidneys. Lower ADMA levels in pregnant women compared to non-pregnant controls suggest that ADMA has a role in vascular dilatation and blood pressure changes. Several studies show an increase in ADMA levels in pregnancies complicated with preeclampsia. Elevated ADMA levels in preeclampsia are seen before clinical symptoms have developed; these findings suggest that ADMA has a role in the pathogenesis of preeclampsia. In some pulmonary hypertensive states such as ARDS, the production of endogenous NO may be impaired. Nitric oxide inhalation selectively dilates the pulmonary circulation. Significant systemic vasodilation does not occur because NO is inactivated by rapidly binding to hemoglobin. In an injured lung with pulmonary hypertension, inhaled NO produces local vasodilation of well-ventilated lung units and may "steal" blood flow away from unventil... D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents > D045462 - Endothelium-Dependent Relaxing Factors D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants R - Respiratory system

   

18-Hydroxycorticosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-15-(hydroxymethyl)-2-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O5 (362.2093)


18-Hydroxycorticosterone is a corticosteroid and a derivative of corticosterone. If it is present in sufficiently high concentrations, it can lead to serious electrolyte imbalances (an electrolyte toxin). 18-Hydroxycorticosterone serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. Chronically high levels of 18-hydroxycorticosterone are associated with at least three inborn errors of metabolism including adrenal hyperplasia type V, corticosterone methyl oxidase I deficiency, and corticosterone methyl oxidase II deficiency. Each of these conditions is characterized by excessive amounts of sodium being released in the urine (salt wasting), along with insufficient release of potassium in the urine, usually beginning in the first few weeks of life. This imbalance leads to low levels of sodium and high levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also have high levels of acid in the blood (metabolic acidosis). Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency can cause nausea, vomiting, dehydration, low blood pressure, extreme tiredness (fatigue), and muscle weakness. 11 beta,18,21-Trihydroxypregn-4-ene-3,20-dione. 18-Hydroxycorticosterone is a derivative of corticosterone. It serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

AMASTATIN

CHEMBL27693

C21H38N4O8 (474.269)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Biotin amide

5-[(3AS,6R,6ar)-2-hydroxy-1H,3ah,4H,6H,6ah-thieno[3,4-D]imidazol-6-yl]pentanimidate

C10H17N3O2S (243.1041)


The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927). Late-onset multiple carboxylase deficiency (MCD) with biotinidase deficiency is caused by mutation in the biotinidase gene. MCD is an autosomal recessive metabolic disorder characterized primarily by cutaneous and neurologic abnormalities. Symptoms result from the patients inability to reutilize biotin, a necessary nutrient. (OMIM 253260). The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927)

   

2-Propylamine

Isopropylamine:2-Propanamine

C3H9N (59.0735)


Isopropylamine, also known as 2-aminopropane or 2-propanamine, is a member of the class of compounds known as monoalkylamines. Monoalkylamines are organic compounds containing an primary aliphatic amine group. Isopropylamine is soluble (in water) and a very strong basic compound (based on its pKa). Isopropylamine is an ammoniacal and fishy tasting compound found in corn and soy bean, which makes isopropylamine a potential biomarker for the consumption of these food products. Isopropylamine (monoisopropyl amine, MIPA, 2-Propylamine) is an organic compound, an amine. It is a hygroscopic colorless liquid with ammonia-like odor. It is miscible with water and flammable. It is a valuable intermediate in chemical industry .

   

Nitroglycerin

1,3-bis(nitrooxy)propan-2-yl nitrate

C3H5N3O9 (227.0026)


Nitroglycerin is only found in individuals that have used or taken this drug. It is a volatile vasodilator which relieves angina pectoris by stimulating guanylate cyclase and lowering cytosolic calcium. [PubChem]Similar to other nitrites and organic nitrates, nitroglycerin is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase. This stimulates the synthesis of cyclic guanosine 3,5-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

hexamethonium

hexamethonium

C12H30N2+2 (202.2409)


C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D006584 - Hexamethonium Compounds D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Naratriptan

1H-Indole-5-ethanesulfonamide, N-methyl-3-(1-methyl-4-piperidinyl)-, monohydrochloride

C17H25N3O2S (335.1667)


Naratriptan is only found in individuals that have used or taken this drug. It is a triptan drug used for the treatment of migraine headaches. It is a selective 5-hydroxytryptamine1 receptor subtype agonist.Three distinct pharmacological actions have been implicated in the antimigraine effect of the triptans: (1) stimulation of presynaptic 5-HT1D receptors, which serves to inhibit both dural vasodilation and inflammation; (2) direct inhibition of trigeminal nuclei cell excitability via 5-HT1B/1D receptor agonism in the brainstem and (3) vasoconstriction of meningeal, dural, cerebral or pial vessels as a result of vascular 5-HT1B receptor agonism. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Fluticasone

Fluticasone

C22H27F3O4S (444.1582)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Resiniferatoxin

Benzeneacetic acid, 4-hydroxy-3-methoxy-, ((2S,3aR,3bS,6aR,9aR,9bR,10R,11aR)-3a,3b,6,6a,9a,10,11,11a-octahydro-6a-hydroxy-8,10-dimethyl-11a-(1-methylethenyl)-7-oxo-2-(phenylmethyl)-7H-2,9b-epoxyazuleno(5,4-e)-1,3-benzodioxol-5-yl)methyl ester

C37H40O9 (628.2672)


Resiniferatoxin is a heteropentacyclic compound found in Euphorbia poissonii with molecular formula C37H40O9. It is an agonist of the transient receptor potential cation channel subfamily V member 1 (TrpV1). It has a role as a TRPV1 agonist, a plant metabolite, a neurotoxin and an analgesic. It is a diterpenoid, an ortho ester, a tertiary alpha-hydroxy ketone, a member of phenols, a monomethoxybenzene, an organic heteropentacyclic compound, a carboxylic ester and an enone. Resiniferatoxin (RTX) is a naturally occurring, ultrapotent capsaicin analog that activates the vanilloid receptor in a subpopulation of primary afferent sensory neurons involved in nociception (the transmission of physiological pain). Resiniferatoxin is a natural product found in Euphorbia resinifera and Euphorbia unispina with data available. Resiniferatoxin is a naturally occurring capsaicin analog found in the latex of the cactus Euphorbia resinifera with analgesic activity. Resiniferatoxin (RTX) binds to and activates the transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel in the plasma membrane of primary afferent sensory neurons. This increases the permeability to cations, and leads to an influx of calcium and sodium ions. This results in membrane depolarization, causing an irritant effect, followed by desensitization of the sensory neurons thereby inhibiting signal conduction in afferent pain pathways and causing analgesia. TRPV1, a member of the transient receptor potential channel (TRP) superfamily, is a heat- and chemo-sensitive calcium/sodium ion channel that is selectively expressed in a subpopulation of pain-sensing primary afferent neurons. A heteropentacyclic compound found in Euphorbia poissonii with molecular formula C37H40O9. It is an agonist of the transient receptor potential cation channel subfamily V member 1 (TrpV1). C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

Arecaidine

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-

C7H11NO2 (141.079)


Arecaidine is found in nuts. Arecaidine is an alkaloid from nuts of Areca catechu (betel nuts Arecaidine is a citraconoyl group. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].

   

BQ-123

Cyclo[D-trp-D-asp-L-pro-D-val-L-leu]

C31H42N6O7 (610.3115)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D065128 - Endothelin Receptor Antagonists BQ-123 is a potent and selective endothelin A (ETA) receptor antagonist with an IC50 of 7.3 nM and a Ki of 25 nM. BQ-123 inhibits endothelin-1-mediated proliferation of human pulmonary artery smooth muscle cells and lowers blood pressure in different rat models of hypertension[1][2][3].

   

SB-200646

N-(1-Methyl-5-indolyl)-N-(3-pyridyl)urea

C15H14N4O (266.1168)


   

m-Chlorophenylbiguanide

N-(3-chlorophenyl)-N-(diaminomethylidene)guanidine

C8H10ClN5 (211.0625)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D007004 - Hypoglycemic Agents > D001645 - Biguanides

   

ppads

Pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid

C14H14N3O12PS2 (510.9757)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

D-NONOate

1,1-Diethyl-2-hydroxy-2-nitrosohydrazine

C4H10N3O2- (132.0773)


D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors

   

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

10,10-bis[(pyridin-4-yl)methyl]-9,10-dihydroanthracen-9-one

C26H20N2O (376.1576)


   

Retigabine

Ethyl N-(2-amino-4-(4-fluorobenzylamino)phenyl)carbamate hydrochloride

C16H18FN3O2 (303.1383)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569

   

1-(2-Hydroxy-5-(trifluoromethyl)phenyl)-5-(trifluoromethyl)-1H-benzo[d]imidazol-2(3H)-one

1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2,3-dihydro-1H-1,3-benzodiazol-2-one

C15H8F6N2O2 (362.049)


   

DCEBIO

5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one

C9H8Cl2N2O (230.0014)


   

Angiotensin (1-9)

Angiotensin I (1-9) trifluoroacetate salt

C56H78N16O13 (1182.5934)


A nine amino acid peptide which is formed when angiotensin converting enzyme 2 (ACE2) hydrolyzes the carboxy terminal leucine from angiotensin I. It is a anti-cardiac hypertrophy agent. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Substance K

NEUROKININ A

C50H80N14O14S (1132.5699)


D018377 - Neurotransmitter Agents > D015320 - Tachykinins

   

1-Indolizidinone

1-Ketooctahydroindolizine

C8H13NO (139.0997)


   

3-Bromotyrosine

2-amino-3-(3-bromo-4-hydroxyphenyl)propanoic acid

C9H10BrNO3 (258.9844)


3-Bromotyrosine(BY) is generated from the halogenation of tyrosine residues in plasma proteins via the enzyme Eosinophil peroxidase. The presence of free bromotyrosine in blood or urine is the result of enzymatic degradation of these brominated proteins. A significantly higher concentration of BY was observed in the urine from asthmatic patients than in that from healthy control subjects (PMID: 15196282). Bromotyrosine may be useful for monitoring the activation of eosinophils in asthmatic patients. 3-Bromotyrosine(BY) is generated from the halogenation of tyrosine residues in plasma proteins via the enzyme Eosinophil peroxidase. A significantly higher concentration of BY was observed in the urine from asthmatic patients than in that from healthy control subjects (PMID: 15196282). [HMDB]

   

Immepip

4-[(1H-imidazol-5-yl)methyl]piperidine

C9H15N3 (165.1266)


   

Thioperamide

N-cyclohexyl-4-(1H-imidazol-5-yl)piperidine-1-carboimidothioic acid

C15H24N4S (292.1722)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Thioperamide (MR-12842) is a potent, orally available, brain penetrant and selective H3 receptor antagonist with a Ki of 4.3 nM for inhibition of [3H]histamine release. Thioperamide inhibits [3H]histamine synthesis with a Ki of 31 nM[1].

   

Deltorphin

Deltorphin A; Dermenkephalin

C44H62N10O10S2 (954.4092)


   

3beta-Hydroxypregn-5-en-20-one sulfate

[(1S,2R,5S,10S,11S,14S,15S)-14-acetyl-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-yl]oxidanesulfonic acid

C21H32O5S (396.197)


3beta-Hydroxypregn-5-en-20-one sulfate is a metabolite of pregnenolone. Pregnenolone, also known as 3α,5β-tetrahydroprogesterone (3α,5β-THP), is an endogenous steroid hormone involved in the steroidogenesis of progestogens, mineralocorticoids, glucocorticoids, androgens, and estrogens, as well as the neuroactive steroids. As such it is a prohormone, though it also has biological effects of its own, behaving namely as a neuroactive steroid in its own right with potent anxiolytic effects. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].

   

Nitroxyl

Nitroxyl

HNO (31.0058)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants

   

Pregnenolone sulfate

[(1S,2R,10S,11S,14S,15S)-14-acetyl-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl]oxidanesulfonic acid

C21H32O5S (396.197)


Pregnenolone sulfate is a sulfated version of the steroid hormone known as pregnenolone. Pregnenolone sulfate belongs to the class of organic compounds known as sulfated steroids. These are sterol lipids containing a sulfate group attached to the steroid skeleton. Pregnenolone sulfate is a neurosteroid found in the brain and central nervous system. Pregnenolone sulfate is a metabolite synthesized from pregnenolone via sulfation. It is known to have cognitive and memory-enhancing, antidepressant, anxiogenic, and proconvulsant effects (PMID: 21094889). As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Recently, pregnenolone sulfate has been shown to not only be a modulator of ion channels, but it is also an activating ion channel ligand (PMID: 24084011). Pregnenolone sulfate, a neurosteroid, is a metabolite of Pregnenolone. It is found in the brain and central nervous system. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].

   

DL-Adrenaline

4-[1-hydroxy-2-(methylamino)ethyl]benzene-1,2-diol

C9H13NO3 (183.0895)


Oxidized-adrenal-ferredoxin, also known as Epinephrine racemic or Racepinefrine, is classified as a member of the Catechols. Catechols are compounds containing a 1,2-benzenediol moiety. Oxidized-adrenal-ferredoxin is considered to be soluble (in water) and acidic D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

(+)-Epibatidine

2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

7,8,17-trihydroxy-4,9,11,13,15,19-docosahexaenoic acid

7,8,17-Trihydroxy-4,9,11,13,15,19-docosahexaenoic acid

C22H32O5 (376.225)


   

Hexoprenaline

4-{2-[(6-{[2-(3,4-dihydroxyphenyl)-2-hydroxyethyl]amino}hexyl)amino]-1-hydroxyethyl}benzene-1,2-diol

C22H32N2O6 (420.226)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Neurokinin A

3-(2-{6-amino-2-[2-amino-3-(1H-imidazol-5-yl)propanamido]hexanamido}-3-hydroxybutanamido)-3-({1-[(1-{[1-({[(1-{[1-carbamoyl-3-(methylsulfanyl)propyl]carbamoyl}-3-methylbutyl)carbamoyl]methyl}carbamoyl)-2-methylpropyl]carbamoyl}-2-phenylethyl)carbamoyl]-2-hydroxyethyl}carbamoyl)propanoic acid

C50H80N14O14S (1132.5699)


D018377 - Neurotransmitter Agents > D015320 - Tachykinins

   

Ppads

4-(2-{4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]pyridin-2-yl}diazen-1-yl)benzene-1,3-disulfonic acid

C14H14N3O12PS2 (510.9757)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

Taurocholic Acid

N-(3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oyl)-taurine

C26H45NO7S (515.2917)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats. Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats.

   

Cytisinicline

(1R,5S)-1,2,3,4,5,6-HEXAHYDRO-8H-1,5-METHANOPYRIDO(1,2-A)(1,5)DIAZOCIN-8-ONE (CYTISINE)

C11H14N2O (190.1106)


Cytisine is an organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. It has a role as a nicotinic acetylcholine receptor agonist, a phytotoxin and a plant metabolite. It is an alkaloid, an organic heterotricyclic compound, a secondary amino compound, a lactam and a bridged compound. Cytisine is an alkaloid naturally derived from the Fabaceae family of plants including the genera Laburnum and Cytisus. Recent studies have shown it to be a more effective and significantly more affordable smoking cessation treatment than nicotine replacement therapy. Also known as baptitoxine or sophorine, cytisine has been used as a smoking cessation treatment since 1964, and is relatively unknown in regions outside of central and Eastern Europe. Cytisine is a partial nicotinic acetylcholine agonist with a half-life of 4.8 hours. Recent Phase III clinical trials using Tabex (a brand of Cytisine marketed by Sopharma AD) have shown similar efficacy to varenicline, but at a fraction of the cost. Cytisine is a natural product found in Viscum cruciatum, Thermopsis chinensis, and other organisms with data available. See also: Cytisus scoparius flowering top (part of); Thermopsis lanceolata whole (part of). An organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Asiatic Acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O5 (488.3502)


Esculentic acid (diplazium) is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Esculentic acid (diplazium) is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Esculentic acid (diplazium) can be found in green vegetables, which makes esculentic acid (diplazium) a potential biomarker for the consumption of this food product. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product relative retention time with respect to 9-anthracene Carboxylic Acid is 1.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Coronaric acid

Coronaric acid

C18H32O3 (296.2351)


   

Olopatadine

Olopatadine

C21H23NO3 (337.1678)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D018926 - Anti-Allergic Agents CONFIDENCE standard compound; INTERNAL_ID 2210 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3323

   

cromolyn

Cromoglicic acid

C23H16O11 (468.0693)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EB - Antiallergic agents, excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C29714 - Mast Cell Stabilizer S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors

   

dihydroergotamine

dihydroergotamine

C33H37N5O5 (583.2795)


Ergotamine in which a single bond replaces the double bond between positions 9 and 10. A semisynthetic ergot alkaloid with weaker oxytocic and vasoconstrictor properties than ergotamine, it is used (as the methanesulfonic or tartaric acid salts) for the treatment of migraine and orthostatic hypotension. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.880 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.878 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.874

   

ketorolac

ketorolac

C15H13NO3 (255.0895)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors This spectrum was obtained at The Multidisciplinary Research Laboratory at Antenor Orrego Private University, Trujillo, La Libertad, Peru.The sample was obtained from a pharmacy.; The sample was dissolved in 1:1 acetonitrile:water and passed through a ACQUITY UPLC BEH C18 1.7um column at 0.6 mL/min in ramp of MPA: 0.1\\% Formic Acid in water; MPB: 0.1\\% Formic Acid in Acetonitrile; Contact us: http://www.upao.edu.pe/labinm/

   

SUFENTANIL

SUFENTANIL

C22H30N2O2S (386.2028)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Zolmitriptan

Zolmitriptan (Zomig)

C16H21N3O2 (287.1634)


N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

fleroxacin

Fleroxacin (Quinodis)

C17H18F3N3O3 (369.13)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

L-Homocitrulline

L-Homocitrulline

C7H15N3O3 (189.1113)


A L-lysine derivative that is L-lysine having a carbamoyl group at the N(6)-position. It is found in individuals with urea cycle disorders. L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

HEXADECANEDIOIC ACID

HEXADECANEDIOIC ACID

C16H30O4 (286.2144)


An alpha,omega-dicarboxylic acid that is the 1,14-dicarboxy derivative of tetradecane. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

methoxamine

methoxamine

C11H17NO3 (211.1208)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Miglitol

Miglitol

C8H17NO5 (207.1107)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors C471 - Enzyme Inhibitor > C2846 - Glucosidase Inhibitor D004791 - Enzyme Inhibitors

   

sumatriptan

sumatriptan

C14H21N3O2S (295.1354)


N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Sumatriptan (GR 43175) is an orally active 5-HT1 receptor agonist with IC50s of 7.3 nm, 9.3nm and 17.8 nm for 5-HT1D, 5-HT1B and 5-HT1F receptors, respectively. Sumatriptan can be used for migraine headache research[1][2][3][4].

   

Taurocholic Acid

N-(3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oyl)-taurine

C26H45NO7S (515.2917)


A bile acid taurine conjugate of cholic acid that usually occurs as the sodium salt of bile in mammals. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WBWWGRHZICKQGZ-HZAMXZRMSA-N_STSL_0093_Taurocholic acid_8000fmol_180416_S2_LC02_MS02_101; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 59 Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats. Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats.

   

Zaleplon

Zaleplon

C17H15N5O (305.1277)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

ergotamine

Ergotaminum

C33H35N5O5 (581.2638)


A peptide ergot alkaloid that is dihydroergotamine in which a double bond replaces the single bond between positions 9 and 10. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia

   

biperiden

biperiden

C21H29NO (311.2249)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Resolvin D1

7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid

C22H32O5 (376.225)


   

Cytisin

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2241 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

pregnenolone sulfate

(3beta)-3-(sulfooxy)pregn-5-en-20-one

C21H32O5S (396.197)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].

   

Levorphanol

17-Methylmorphinan-3-ol

C17H23NO (257.178)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Racepinephrine

Alipogene tiparvovec

C9H13NO3 (183.0895)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Thioperamide

N-cyclohexyl-4-(1H-imidazol-5-yl)-(2Z)-2-butenedioate-1-piperidinecarbothioamide

C15H24N4S (292.1722)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Thioperamide (MR-12842) is a potent, orally available, brain penetrant and selective H3 receptor antagonist with a Ki of 4.3 nM for inhibition of [3H]histamine release. Thioperamide inhibits [3H]histamine synthesis with a Ki of 31 nM[1].

   

Thaspic acid

HEXADECANEDIOIC ACID

C16H30O4 (286.2144)


Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

leukotoxin

9,10-epoxy-12Z-octadecenoic acid

C18H32O3 (296.2351)


   

FAL 16:0

2-methylpentadecanal

C16H32O (240.2453)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

ST 21:3;O5

11beta,21-dihydroxy-3,20-dioxo-5beta-pregnan-18-al

C21H30O5 (362.2093)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   
   

Retigabine

Retigabine

C16H18FN3O2 (303.1383)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators

   

Hexoprenaline

hexoprenaline sulphate

C22H32N2O6 (420.226)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Axsain

(6E)-N-{[4-hydroxy-3-(methyloxy)phenyl]methyl}-8-methylnon-6-enamide

C18H27NO3 (305.1991)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].

   

palmitoyl

Palmitaldehyde, 16-Hexadecanal

C16H32O (240.2453)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

Thapsic acid

n-Tetradecane-.omega.,.omega.-dicarboxylic acid

C16H30O4 (286.2144)


Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

Stilon

InChI=1\C6H11NO\c8-6-4-2-1-3-5-7-6\h1-5H2,(H,7,8

C6H11NO (113.0841)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

81-24-3

2-[[(4R)-1-oxo-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentyl]amino]ethanesulfonic acid

C26H45NO7S (515.2917)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats. Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats.

   

Balchanin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

12(S)-HPETE

12-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents The (S)-enantiomer of 12-HPETE.

   

1,1-Diethyl-2-hydroxy-2-nitrosohydrazine

1,1-Diethyl-2-hydroxy-2-nitrosohydrazine

C4H10N3O2- (132.0773)


D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors

   

Neuromedin L

Neuromedin L

C50H80N14O14S (1132.5699)


D018377 - Neurotransmitter Agents > D015320 - Tachykinins

   

Asiatic

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Caprolactam

Caprolactam

C6H11NO (113.0841)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

oxymetazoline

oxymetazoline

C16H24N2O (260.1889)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D - Dermatologicals

   

ISOPROPYLAMINE

ISOPROPYLAMINE

C3H9N (59.0735)


   

nitroglycerin

1,2,3-Propanetriyl trinitrate

C3H5N3O9 (227.0026)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

tizanidine

tizanidine

C9H8ClN5S (253.0189)


M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.

   

hexadecanal

1-hexadecanal

C16H32O (240.2453)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

naratriptan

naratriptan

C17H25N3O2S (335.1667)


N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

18-Hydroxycorticosterone

18-Hydroxycorticosterone

C21H30O5 (362.2093)


A 18-hydroxy steroid that is corticosterone substituted by a hydroxy group at position 18. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Arbaclofen

(R)-Baclofen

C10H12ClNO2 (213.0557)


C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1].

   

AFMK

N-Acetyl-N-formyl-5-methoxykynurenamine

C13H16N2O4 (264.111)


   

THIORPHAN

THIORPHAN

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

m-Chlorophenylbiguanide

m-Chlorophenylbiguanide

C8H10ClN5 (211.0625)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D007004 - Hypoglycemic Agents > D001645 - Biguanides

   

Immepip

4-(1h-imidazol-4-ylmethyl)-piperidine

C9H15N3 (165.1266)


   

Biotinamide

Biotin amide

C10H17N3O2S (243.1041)


A monocarboxylic acid amide derived from biotin.

   

3-bromotyrosine

3-bromotyrosine

C9H10BrNO3 (258.9844)


   

D-23129

N-(2-Amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester

C16H18FN3O2 (303.1383)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569

   

Anandamide

N-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-ethanolamine

C22H37NO2 (347.2824)


An N-acylethanolamine 20:4 resulting from the formal condensation of carboxy group of arachidonic acid with the amino group of ethanolamine. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

12,13-DHOA

(9Z)-12,13-Dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


A DiHOME obtained by formal dihydroxylation of the 12,13-double bond of octadeca-9,12-dienoic acid (the 9Z-geoisomer).

   

XE991

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

C26H20N2O (376.1576)


   

NS-1619

1-(2-Hydroxy-5-(trifluoromethyl)phenyl)-5-(trifluoromethyl)-1H-benzo[d]imidazol-2(3H)-one

C15H8F6N2O2 (362.049)


   

SB 200646

N-(1-Methyl-5-indolyl)-N-(3-pyridyl)urea

C15H14N4O (266.1168)