Subcellular Location: extracellular space
Found 500 associated metabolites.
1731 associated genes.
A1BG, A2M, A2ML1, ABCA3, ABI3BP, ACAN, ACE, ACE2, ACHE, ACP3, ACTA1, ACTA2, ACTB, ACTBL2, ACTC1, ACTG1, ACTG2, ACTN1, ACTN4, ADA2, ADAM15, ADAM9, ADAMTS13, ADAMTS15, ADAMTS20, ADAMTS3, ADAMTS4, ADAMTS5, ADAMTS9, ADGRB1, ADIPOQ, ADISSP, ADM, ADNP, ADPRH, AEBP1, AFM, AFP, AGA, AGR2, AGRP, AGT, AHSG, AIFM2, AIMP1, AKR1A1, AKR1B1, ALB, ALDH3A1, ALDOA, ALKAL1, ALKAL2, ALOX5, AMBP, AMH, AMN, AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, ANG, ANGPT1, ANGPT2, ANGPT4, ANGPTL1, ANGPTL2, ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, ANGPTL7, ANOS1, ANPEP, ANXA1, ANXA13, ANXA2, AOC1, APC2, APCS, APELA, APLN, APOA1, APOA2, APOA4, APOA5, APOB, APOC2, APOC3, APOD, APOE, APOF, APOH, APOL1, APOL4, APOO, APP, AREG, ARG1, ARSA, ARSG, ARTN, ASAH1, ASIP, ASPN, ATP4A, ATR, ATRN, ATXN10, AVP, AXL, AZGP1, AZU1, B2M, B4GALT1, BCAN, BCHE, BDNF, BGLAP, BGN, BIVM, BLOC1S1, BMP1, BMP10, BMP15, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8A, BMP8B, BMPER, BMPR2, BPI, BPIFA1, BPIFA2, BPIFB1, BPIFC, BRICD5, BTC, BTD, BTN1A1, C17orf99, C1QC, C1QL4, C1QTNF1, C1QTNF12, C1QTNF3, C1QTNF4, C1QTNF5, C1QTNF6, C1QTNF8, C1R, C1RL, C1S, C2, C3, C3orf33, C3P1, C4A, C4B, C4B_2, C4BPA, C4BPB, C5, C6, C6orf58, C7, C7orf50, C8A, C8B, C9, C9orf72, CA11, CA6, CABP1, CALCA, CALCB, CALR, CAMP, CARTPT, CASK, CASP7, CBLIF, CBLN2, CBLN3, CBLN4, CBR3, CCBE1, CCK, CCL1, CCL11, CCL13, CCL14, CCL15, CCL15-CCL14, CCL16, CCL17, CCL18, CCL19, CCL2, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L1, CCL4L2, CCL5, CCL7, CCL8, CCN1, CCN2, CCN3, CCN4, CCN5, CCN6, CD109, CD14, CD180, CD1A, CD1B, CD1C, CD1D, CD1E, CD36, CD40, CD40LG, CD46, CD59, CD5L, CD63, CD9, CDH13, CDK13, CDNF, CEACAM16, CEACAM6, CEACAM8, CEL, CELA1, CELA2A, CELA2B, CELA3A, CELA3B, CEP164, CER1, CETP, CFAP58, CFB, CFH, CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, CFI, CFL1, CFL2, CFP, CGA, CGB1, CGB2, CGB3, CGB7, CGB8, CHAD, CHADL, CHEK1, CHGA, CHGB, CHI3L1, CHI3L2, CHIA, CHID1, CHIT1, CHRD, CHRDL2, CILP, CILP2, CKB, CKLF, CKM, CLC, CLCA3P, CLCF1, CLEC11A, CLEC18A, CLEC18B, CLEC18C, CLEC3A, CLEC3B, CLIC1, CLP1, CLU, CLUL1, CMA1, CMTM1, CMTM2, CMTM3, CMTM5, CMTM7, CMTM8, CNOT1, CNP, CNTF, COL10A1, COL11A1, COL11A2, COL12A1, COL13A1, COL14A1, COL15A1, COL16A1, COL17A1, COL18A1, COL19A1, COL1A1, COL1A2, COL22A1, COL23A1, COL24A1, COL25A1, COL27A1, COL28A1, COL2A1, COL3A1, COL4A1, COL4A2, COL4A3, COL4A4, COL4A5, COL4A6, COL5A1, COL5A2, COL5A3, COL6A2, COL6A3, COL7A1, COL8A1, COL8A2, COL9A1, COL9A2, COL9A3, COLEC10, COLEC11, COLEC12, COLQ, COMP, COPA, CORT, CP, CPA1, CPA2, CPA3, CPA4, CPA5, CPA6, CPAMD8, CPB1, CPB2, CPD, CPE, CPM, CPN1, CPN2, CPNE9, CPO, CPQ, CPXM1, CPZ, CR1, CR1L, CR2, CREG1, CREG2, CRELD2, CRH, CRHBP, CRIPTO, CRISP1, CRISP2, CRISP3, CRISPLD1, CRISPLD2, CRLF1, CRP, CRTAP, CSF1, CSF2, CSF3, CSH1, CSH2, CSHL1, CSN1S1, CSN2, CSN3, CST1, CST2, CST3, CST4, CST5, CST6, CST7, CST9, CST9L, CST9LP1, CSTA, CSTB, CTBS, CTF1, CTHRC1, CTRL, CTSB, CTSC, CTSD, CTSF, CTSG, CTSH, CTSK, CTSL, CTSO, CTSS, CTSV, CTSW, CTSZ, CUZD1, CX3CL1, CXADR, CXCL1, CXCL10, CXCL11, CXCL13, CXCL14, CXCL16, CXCL17, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CXCL9, CYP4A22, CYTL1, DAG1, DAND5, DAO, DBH, DCN, DDB1, DDR1, DDT, DDTL, DEF6, DEFA1, DEFA1B, DEFA3, DEFA4, DEFA5, DEFA6, DEFB1, DEFB103A, DEFB103B, DEFB109B, DEFB110, DEFB114, DEFB130A, DEFB130B, DEFB131A, DEFB131B, DEFB132, DEFB133, DEFB4A, DEFB4B, DHH, DIPK2A, DKK1, DKK2, DKK3, DKK4, DKKL1, DLG3, DLK1, DMBT1, DMKN, DMXL2, DNAJB11, DNAJC9, DPEP1, DPT, DPYSL3, DSCAML1, DYNC2I1, EBI3, ECM1, ECRG4, EDA, EDDM3A, EDN1, EDN2, EDN3, EEF1A1, EEF1A1P5, EFEMP1, EGF, EGFL6, EGFR, EIF2A, ELANE, ELFN1, ELFN2, ELOA, EMILIN1, EMILIN3, ENDOU, ENG, ENO1, ENO2, ENO3, ENPEP, ENPP1, ENPP2, ENTPD5, ENTPD6, EPGN, EPO, EPPIN, EPX, ERAP1, ERAP2, ERBB3, EREG, ERFE, ERO1A, ERVH48-1, ESF1, EZR, F10, F11, F12, F13A1, F13B, F2, F3, F5, F7, F8, F9, FABP3, FABP5, FAM151A, FAM151B, FAM184A, FAM20A, FAM20C, FAM3A, FAM3B, FAM3C, FAM3D, FAP, FASLG, FAU, FBLN1, FBLN5, FBLN7, FBN1, FCGBP, FCGR3A, FCGRT, FCN1, FCN2, FCN3, FETUB, FGA, FGB, FGF1, FGF10, FGF12, FGF16, FGF17, FGF18, FGF19, FGF2, FGF20, FGF21, FGF22, FGF23, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FGFBP1, FGG, FGL1, FGL2, FIBCD1, FJX1, FKRP, FKTN, FLRT1, FLRT2, FLRT3, FLT1, FLT3LG, FMOD, FN1, FNDC4, FREM3, FRMD4B, FRMD7, FRZB, FSHB, FST, FSTL1, FSTL3, FUCA2, GABBR1, GAL, GAS6, GAST, GC, GCG, GCNT1, GDF1, GDF10, GDF11, GDF15, GDF2, GDF3, GDF5, GDF6, GDF7, GDF9, GDNF, GFER, GGH, GGT1, GH1, GH2, GHR, GHRH, GHRL, GIP, GKN1, GKN2, GKN3P, GLDN, GLE1, GLIPR1, GLIPR1L1, GLIPR1L2, GLIPR2, GNB2, GNL1, GNL3, GNLY, GNRH1, GNRH2, GOLM1, GP1BA, GP2, GPC1, GPHA2, GPHB5, GPI, GPLD1, GPR15LG, GPRC5B, GPX3, GREM1, GREM2, GRN, GRP, GSDMD, GSN, GSTP1, GUSB, GZMA, H2BC10, H2BC11, H2BC12, H2BC12L, H2BC21, H2BC4, H2BC6, H2BC7, H2BC8, HABP2, HAMP, HAPLN1, HAPLN2, HAPLN3, HAPLN4, HBA2, HBB, HBEGF, HDGF, HFE, HGF, HGFAC, HILPDA, HJV, HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-E, HLA-F, HLA-G, HLA-H, HMGB1, HMGB2, HMGN2, HMOX1, HMSD, HP, HPR, HPSE, HPSE2, HPX, HSPA1A, HSPA8, HSPB1, HSPBP1, HSPD1, HSPG2, HTRA1, HYAL1, IAPP, IBSP, ICAM1, IDE, IFI35, IFNA1, IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNAR2, IFNB1, IFNE, IFNG, IFNK, IFNL1, IFNL2, IFNL3, IFNL4, IFNW1, IGF1, IGF2, IGFALS, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, IGFBP6, IGFBP7, IGFBPL1, IGFL1, IGFL2, IGFL3, IGFL4, IGHA1, IGHA2, IGHD, IGHE, IGHG1, IGHG2, IGHG3, IGHG4, IGHM, IGHV3-13, IGHV3-23, IGHV3-30, IGKC, IGKV1-12, IGKV1-13, IGKV1-16, IGKV1-17, IGKV1-27, IGKV1-33, IGKV1-37, IGKV1-39, IGKV1-5, IGKV1-6, IGKV1-8, IGKV1-9, IGKV1D-12, IGKV1D-13, IGKV1D-16, IGKV1D-17, IGKV1D-33, IGKV1D-37, IGKV1D-39, IGKV1D-42, IGKV1D-43, IGKV1D-8, IGKV1OR2-108, IGKV2-24, IGKV2-28, IGKV2-29, IGKV2-30, IGKV2-40, IGKV2D-24, IGKV2D-26, IGKV2D-28, IGKV2D-29, IGKV2D-30, IGKV2D-40, IGKV3-11, IGKV3-15, IGKV3-20, IGKV3-7, IGKV3D-11, IGKV3D-15, IGKV3D-20, IGKV3D-7, IGKV3OR2-268, IGKV4-1, IGKV5-2, IGKV6-21, IGKV6D-21, IGKV6D-41, IGLC1, IGLC2, IGLC3, IGLC6, IGLC7, IGLV1-36, IGLV1-40, IGLV1-44, IGLV1-47, IGLV1-50, IGLV1-51, IGLV10-54, IGLV11-55, IGLV2-11, IGLV2-14, IGLV2-18, IGLV2-23, IGLV2-33, IGLV2-8, IGLV3-1, IGLV3-10, IGLV3-12, IGLV3-16, IGLV3-19, IGLV3-21, IGLV3-22, IGLV3-25, IGLV3-27, IGLV3-32, IGLV3-9, IGLV4-3, IGLV4-60, IGLV4-69, IGLV5-37, IGLV5-39, IGLV5-45, IGLV5-48, IGLV5-52, IGLV6-57, IGLV7-43, IGLV7-46, IGLV8-61, IGLV9-49, IHH, IL10, IL11, IL12A, IL12B, IL13, IL13RA2, IL15, IL16, IL17A, IL17B, IL17C, IL17D, IL17F, IL18, IL18BP, IL19, IL1A, IL1B, IL1F10, IL1RN, IL2, IL20, IL21, IL22, IL22RA2, IL24, IL25, IL26, IL27, IL3, IL31, IL32, IL33, IL34, IL36A, IL36B, IL36G, IL36RN, IL37, IL4, IL5, IL5RA, IL6, IL6R, IL6ST, IL7, IL9, IL9R, INA, INHA, INHBA, INHBB, INHBC, INHBE, INPP5E, INS, INS-IGF2, INSL3, INSL4, IRAK4, IRF2BPL, ITGAM, ITLN1, ITLN2, ITM2B, JAM3, JCHAIN, KARS1, KAT2A, KATNIP, KAZALD1, KCP, KDSR, KERA, KISS1, KIT, KITLG, KL, KLHL17, KLHL34, KLK11, KLK12, KLK13, KLK14, KLK3, KLK5, KLK6, KLK7, KLK8, KLKB1, KMO, KNG1, KRIT1, KRT1, KRT10, KRT2, KRT31, KRT33A, KRT33B, KRT34, KRT35, KRT78, KRT81, KRT83, KRT85, KRT86, KRT87P, KRT9, KRTDAP, LACRT, LALBA, LAMA1, LAMA5, LAMB1, LAMB2, LAMC1, LAMC2, LAMP2, LBP, LCAT, LCN1, LCN12, LCN1P1, LCN2, LCN9, LCP1, LECT2, LEFTY1, LEFTY2, LEP, LGALS1, LGALS3, LGALS3BP, LGALS4, LGALS7, LGALS7B, LGALS8, LGALS9, LGI1, LGI3, LGI4, LHB, LHCGR, LIF, LIG1, LIG3, LILRA5, LILRB2, LIME1, LINGO1, LINGO2, LINGO3, LINGO4, LIPC, LIPG, LIPH, LIPI, LMAN2, LNPEP, LOC102723971, LOX, LOXL1, LOXL2, LOXL3, LOXL4, LPA, LPL, LPO, LRG1, LRIG1, LRIG2, LRIG3, LRP8, LRRC15, LRRC17, LRRC24, LRRC32, LRRC3B, LRRC3C, LRRC4C, LRRK2, LRRN1, LRRN2, LRRN3, LRRTM1, LRRTM2, LRRTM3, LRRTM4, LTA, LTB, LTBP2, LTBP3, LTBP4, LTF, LUM, LVRN, LXN, LYPD3, LYPD8, LYZ, LYZL4, MAN2B1, MANF, MARCOL, MASP1, MASP2, MBL2, MCAM, MCF2L, MDGA1, MDH1, MDS2, MECP2, MELTF, MEP1A, MERTK, METRN, METRNL, MFAP4, MFGE8, MFNG, MIA, MICA, MICB, MIF, MINPP1, MMEL1, MMP1, MMP10, MMP11, MMP12, MMP13, MMP14, MMP15, MMP16, MMP17, MMP19, MMP2, MMP20, MMP21, MMP23B, MMP24, MMP25, MMP26, MMP27, MMP28, MMP3, MMP7, MMP8, MMP9, MMRN2, MOV10, MOXD1, MOXD2P, MPO, MR1, MRGPRD, MROH7, MRPL18, MS4A1, MSMB, MSMP, MSN, MST1, MST1L, MSTN, MT-RNR1, MT-RNR2, MT3, MTCL1, MTCL2, MTCL3, MTHFD2, MTMR4, MTUS1, MUC1, MUC13, MUC2, MUC4, MUC5AC, MUC5B, MUC6, MYDGF, MYOC, NAMPT, NAPA, NAPSA, NAXE, NBL1, NCAN, NCOA5, NDNF, NDP, NDUFAF7, NELL1, NELL2, NENF, NGF, NICOL1, NID2, NMB, NMI, NODAL, NOG, NPC2, NPEPPS, NPFF, NPPA, NPPB, NPPC, NPY, NRG1, NRG2, NRG3, NRG4, NRN1L, NRP1, NRP2, NRTN, NTF3, NTF4, NTT, NUCB1, NUCB2, NUDT1, NYX, OAS3, OBP2A, OBP2B, OBSCN, ODAM, OGN, OLFM1, OLFM2, OLFM3, OLFM4, OLFML1, OLFML2A, OLFML2B, OLFML3, OMD, OPRPN, ORM1, ORM2, OSM, OSTN, OTOG, OTOGL, OTOL1, OXT, PAPPA, PAPPA2, PATE2, PATE4, PCDH15, PCOLCE, PCSK1, PCSK1N, PCSK2, PCSK5, PCSK6, PCSK9, PDE4C, PDF, PDGFA, PDGFB, PDGFC, PDGFD, PDIA3, PDIA4, PDIA6, PDZD7, PECAM1, PF4, PF4V1, PGC, PGF, PGK1, PGLYRP1, PI15, PI16, PI3, PIBF1, PIGR, PIK3IP1, PIP, PKHD1L1, PLA1A, PLA2G10, PLA2G15, PLA2G1B, PLA2G2A, PLA2G3, PLA2G6, PLAT, PLAU, PLBD1, PLEKHH3, PLG, PLOD3, PLTP, PLXDC1, PMPCA, PNLIP, PNLIPRP2, PNP, PODN, PODNL1, PODXL, POLGARF, POMC, PON1, PON3, POP1, POSTN, POTEE, POTEF, POTEI, POTEJ, PPBP, PPFIBP2, PPIA, PPY, PRDX1, PRDX5, PRDX6, PRELP, PRG1, PRG2, PRG3, PRG4, PRH2, PRKAG2, PRKAG3, PRL, PROC, PROCR, PROM1, PROS1, PROZ, PRR4, PRRG1, PRRG2, PRRG3, PRRG4, PRSS1, PRSS2, PRSS21, PRSS22, PRSS29P, PRSS3, PRSS33, PRSS3P2, PRSS42P, PRSS45P, PRSS47P, PRSS48, PRSS54, PRSS56, PRSS57, PRSS8, PRTG, PRTN3, PSAP, PSPN, PTGDS, PTGIS, PTH, PTHLH, PTN, PTPRQ, PTPRR, PTX3, PVR, PXDN, PXDNL, PYY, PYY3, PZP, QSOX1, QSOX2, R3HDML, RAB11FIP4, RAET1E, RAET1G, RAET1L, RALGAPA2, RARRES1, RARRES2, RBBP8NL, RBMX, RBMXP1, RBP3, RBP4, RDX, REG1A, REG1B, REG3A, REG3G, RELN, REN, RETN, RETNLB, RLF, RNASE2, RNASE3, RNASE4, RNASE6, RNASE7, RNASE8, RNASET2, RNLS, RNPEP, RPL39, RPS27A, RS1, RTN3, RTN4RL1, RTN4RL2, S100A10, S100A11, S100A13, S100A14, S100A16, S100A4, S100A7, S100A7A, S100A7L2, S100A8, S100A9, S100B, S100G, SAMD1, SCG2, SCGB1A1, SCGB1D1, SCGB1D2, SCGB1D4, SCGB2A1, SCGB2A2, SCGB3A1, SCGB3A2, SCRG1, SCT, SCUBE1, SCUBE2, SCUBE3, SDCBP, SECTM1, SELE, SELENBP1, SELL, SELP, SEMA3A, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA4C, SEMA4D, SEMG1, SEMG2, SERPINA1, SERPINA10, SERPINA11, SERPINA12, SERPINA13P, SERPINA2, SERPINA3, SERPINA4, SERPINA5, SERPINA6, SERPINA7, SERPINA9, SERPINB1, SERPINB10, SERPINB11, SERPINB12, SERPINB13, SERPINB2, SERPINB3, SERPINB4, SERPINB5, SERPINB6, SERPINB7, SERPINB8, SERPINB9, SERPINC1, SERPIND1, SERPINE1, SERPINE2, SERPINE3, SERPINF1, SERPINF2, SERPING1, SERPINH1, SERPINI1, SERPINI2, SFN, SFRP1, SFRP2, SFRP4, SFRP5, SFTA3, SFTPA1, SFTPA2, SFTPC, SFTPD, SH3BGRL, SHH, SIAE, SIL1, SIPA1L3, SLIT1, SLIT2, SLIT3, SLPI, SLURP1, SLURP2, SMAP2, SMARCA4, SMOC1, SMOC2, SMPD1, SMPDL3A, SMPDL3B, SMR3B, SNCA, SOD1, SOD3, SORD, SORL1, SOST, SOSTDC1, SP1, SPARC, SPARCL1, SPINK7, SPINT1, SPN, SPOCK1, SPOCK3, SPON1, SPP1, SPTBN2, SPX, SRGN, SRPX2, SSC5D, SSH2, SSPOP, SST, ST14, STAG3, STC1, STC2, STOM, STX2, STX4, SULF1, SULF2, SUPT20HL2, SUSD2, SVEP1, TAC1, TAC3, TAC4, TACSTD2, TAFA1, TAFA2, TAFA3, TAFA4, TAFA5, TCN1, TCN2, TCTN1, TECTB, TF, TFF1, TFF2, TFF3, TFPI, TFPI2, TFRC, TG, TGFA, TGFB1, TGFB2, TGFB3, TGFBI, TGFBR2, TGFBR3, TGS1, THBD, THBS1, THBS4, THNSL2, THPO, TIMM8B, TIMP1, TIMP2, TIMP3, TIMP4, TINAG, TINAGL1, TLE2, TLL1, TLL2, TLR3, TMC8, TMEM98, TMPRSS3, TMPRSS4, TMPRSS6, TNC, TNF, TNFAIP2, TNFAIP6, TNFRSF11B, TNFRSF1A, TNFRSF6B, TNFSF10, TNFSF11, TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TNFSF18, TNFSF4, TNFSF8, TNFSF9, TNN, TNR, TNXB, TPI1, TPO, TPSAB1, TPSB2, TPSD1, TPSG1, TPT1, TRAV14DV4, TRAV19, TRAV2, TRAV38-1, TRAV38-2DV8, TRDV1, TRDV3, TREM1, TRHDE, TRIL, TRIM75, TSHB, TSKU, TSLP, TST, TTBK2, TTR, TUT4, TWSG1, UBA52, UBB, UBC, UBN2, UCN2, UCN3, ULBP1, ULBP2, ULBP3, UMOD, UMODL1, USPL1, UTP11, UTS2, VASH1, VASN, VCAM1, VCAN, VEGFA, VEGFB, VEGFC, VEGFD, VGF, VMO1, VPREB1, VPREB3, VSTM1, VTN, VWA1, VWA2, VWC2, VWC2L, VWF, WFDC1, WFDC10A, WFDC10B, WFDC11, WFDC12, WFDC13, WFDC2, WFDC3, WFDC5, WFDC9, WFIKKN1, WFIKKN2, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1, XCL2, XDH, XYLT1, XYLT2, YARS1, YWHAZ, ZAN, ZBED3, ZFC3H1, ZG16, ZG16B, ZNF446, ZNF649, ZP3, ZPLD1, ZSWIM5
Lindeneol
Linderenol is a member of benzofurans. Linderene is a natural product found in Lindera chunii and Lindera pulcherrima var. hemsleyana with data available. Lindenenol is isolated from Radix linderae, with antioxidant and antibacterial activities[1]. Lindenenol is isolated from Radix linderae, with antioxidant and antibacterial activities[1].
Magnocurarine
Magnocurarine is a member of isoquinolines. Magnocurarine is a natural product found in Lindera megaphylla, Litsea cubeba, and other organisms with data available.
ParishinB
Parishin B is a glycoside. Parishin B is a natural product found in Artemisia absinthium with data available. Parishin B, a parishin derivative isolated from Gastrodia elata, may have antioxidant property[1]. Parishin B, a parishin derivative isolated from Gastrodia elata, may have antioxidant property[1].
OnjisaponinF
Onjisaponin F is a triterpenoid saponin. Onjisaponin F is a natural product found in Polygala tenuifolia and Polygala japonica with data available. Polygalasaponin XXXI (Onjisaponin F) is an effective adjuvant for intranasal administration of influenza Influenza hemagglutinin (HA) vaccine to protect influenza virus infection[1]. Polygalasaponin XXXI (Onjisaponin F) is an effective adjuvant for intranasal administration of influenza Influenza hemagglutinin (HA) vaccine to protect influenza virus infection[1].
Picrotin
Picrotin is an organic heteropentacyclic compound that is picrotoxinin in which the olefinic double bond has undergone addition of water to give the corresponding tertiary alcohol. It is the less toxic component of picrotoxin, lacking GABA activity. It has a role as a plant metabolite. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone, a diol and a picrotoxane sesquiterpenoid. It is functionally related to a picrotoxinin. Picrotin is a natural product found in Dendrobium moniliforme and Anamirta cocculus with data available. Picrotin belongs to the class of organic compounds known as furopyrans. These are organic polycyclic compounds containing a furan ring fused to a pyran ring. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Pyran a six-membered heterocyclic, non-aromatic ring, made up of five carbon atoms and one oxygen atom and containing two double bonds. Picrotin is soluble (in water) and a very weakly acidic compound (based on its pKa). C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2].
Mesembrenone
Mesembrenone is a member of pyrrolidines. Mesembrenone is a natural product found in Bergeranthus scapiger, Oscularia deltoides, and other organisms with data available.
Maritimetin
Maritimetin is a hydroxyaurone that is aurone substituted by hydroxy groups at positions 6, 7, 3 and 4 respectively. It has a role as a radical scavenger and a plant metabolite. It is functionally related to an aurone. Maritimetin is a natural product found in Lasthenia californica, Coreopsis tinctoria, and Bidens aurea with data available. A hydroxyaurone that is aurone substituted by hydroxy groups at positions 6, 7, 3 and 4 respectively. Maritimetin is used in flavourin
Dihydrovaltrate
Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). Isolated from Valeriana subspecies Dihydrovaltrate is found in tea, fats and oils, and herbs and spices. Dihydrovaltrate is found in fats and oils. Dihydrovaltrate is isolated from Valeriana specie C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Crocin 3
Beta-D-gentiobiosyl crocetin is a dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose. It is a dicarboxylic acid monoester, a glycoside and a disaccharide derivative. It is functionally related to a crocetin and a gentiobiose. It is a conjugate acid of a beta-D-gentiobiosyl crocetin(1-). beta-D-gentiobiosyl crocetin is a natural product found in Gardenia jasminoides, Apis cerana, and Crocus sativus with data available. Isolated from saffron. Crocin 3 is found in saffron and herbs and spices. Crocin 3 is found in herbs and spices. Crocin 3 is isolated from saffron.
Platycodin A
2O-acetylplatycodin D is a triterpenoid saponin. It has a role as a metabolite. 2O-acetylplatycodin D is a natural product found in Platycodon grandiflorus with data available. A natural product found in Platycodon grandiflorum.
Chloridazon
CONFIDENCE standard compound; EAWAG_UCHEM_ID 88 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6944; ORIGINAL_PRECURSOR_SCAN_NO 6942 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3286; ORIGINAL_PRECURSOR_SCAN_NO 3284 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3282; ORIGINAL_PRECURSOR_SCAN_NO 3279 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3278; ORIGINAL_PRECURSOR_SCAN_NO 3275 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6929; ORIGINAL_PRECURSOR_SCAN_NO 6925 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6942; ORIGINAL_PRECURSOR_SCAN_NO 6938 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6890; ORIGINAL_PRECURSOR_SCAN_NO 6885 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3352; ORIGINAL_PRECURSOR_SCAN_NO 3350 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3282; ORIGINAL_PRECURSOR_SCAN_NO 3278 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6929; ORIGINAL_PRECURSOR_SCAN_NO 6927 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6909; ORIGINAL_PRECURSOR_SCAN_NO 6907 CONFIDENCE standard compound; INTERNAL_ID 281; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3278; ORIGINAL_PRECURSOR_SCAN_NO 3276 CONFIDENCE standard compound; INTERNAL_ID 3300 CONFIDENCE standard compound; INTERNAL_ID 4018 CONFIDENCE standard compound; INTERNAL_ID 2317 CONFIDENCE standard compound; INTERNAL_ID 8402
Decanoyl-CoA (n-C10:0CoA)
Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
RESORCINOL MONOACETATE
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Same as: D02393
2-Naphthalenesulfonic acid
CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3266; ORIGINAL_PRECURSOR_SCAN_NO 3264 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3270; ORIGINAL_PRECURSOR_SCAN_NO 3268 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3298; ORIGINAL_PRECURSOR_SCAN_NO 3294 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3290; ORIGINAL_PRECURSOR_SCAN_NO 3285 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3285; ORIGINAL_PRECURSOR_SCAN_NO 3282 CONFIDENCE standard compound; INTERNAL_ID 1273; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3292; ORIGINAL_PRECURSOR_SCAN_NO 3289 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3356; ORIGINAL_PRECURSOR_SCAN_NO 3352 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3363; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3353; ORIGINAL_PRECURSOR_SCAN_NO 3350 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3351; ORIGINAL_PRECURSOR_SCAN_NO 3348 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3344; ORIGINAL_PRECURSOR_SCAN_NO 3341 CONFIDENCE standard compound; INTERNAL_ID 626; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3371; ORIGINAL_PRECURSOR_SCAN_NO 3368 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8811 CONFIDENCE standard compound; EAWAG_UCHEM_ID 653 CONFIDENCE standard compound; INTERNAL_ID 2300
3,5-Dibromo-4-hydroxybenzoate
CONFIDENCE standard compound; EAWAG_UCHEM_ID 804 EAWAG_UCHEM_ID 804; CONFIDENCE standard compound
Fentrazamide
Pyrazosulfuron-ethyl
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
spirodiclofen
Prodiamine
CONFIDENCE standard compound; INTERNAL_ID 498; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5592; ORIGINAL_PRECURSOR_SCAN_NO 5591 CONFIDENCE standard compound; INTERNAL_ID 498; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5630; ORIGINAL_PRECURSOR_SCAN_NO 5629 CONFIDENCE standard compound; INTERNAL_ID 498; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5608; ORIGINAL_PRECURSOR_SCAN_NO 5607 CONFIDENCE standard compound; INTERNAL_ID 498; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5607; ORIGINAL_PRECURSOR_SCAN_NO 5606 CONFIDENCE standard compound; INTERNAL_ID 498; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5619; ORIGINAL_PRECURSOR_SCAN_NO 5616 CONFIDENCE standard compound; INTERNAL_ID 498; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5615; ORIGINAL_PRECURSOR_SCAN_NO 5612
Nirvanol
Nirvanol is a metabolite of Mephenytoin. Nirvanol, also known as ethylphenylhydantoin, is a derivative of hydantoin with anticonvulsant properties. Its 5-ethyl-5-phenyl substitution pattern is similar to that of phenobarbital. It is useful in the treatment of chorea. (Wikipedia) D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
10,11-Dihydroxycarbamazepine
10,11-Dihydroxycarbamazepine, also called carbamazepine diol, is a metabolite of both carbamazepine and oxcarbazepine. Carbamazepine (CBZ) is an anticonvulsant and mood-stabilizing drug used primarily in the treatment of epilepsy and bipolar disorder, as well as trigeminal neuralgia. Oxcarbazepine is an anticonvulsant and mood-stabilizing drug, used primarily in the treatment of epilepsy. It is also used to treat anxiety and mood disorders, and benign motor tics. (Wikipedia) CONFIDENCE standard compound; INTERNAL_ID 8581 CONFIDENCE standard compound; INTERNAL_ID 2668 CONFIDENCE standard compound; INTERNAL_ID 4109
Testosterone Phenylpropionate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Aniline Yellow
D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8954; ORIGINAL_PRECURSOR_SCAN_NO 8952 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8961; ORIGINAL_PRECURSOR_SCAN_NO 8959 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8978; ORIGINAL_PRECURSOR_SCAN_NO 8977 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8974; ORIGINAL_PRECURSOR_SCAN_NO 8972 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8989; ORIGINAL_PRECURSOR_SCAN_NO 8988 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8997; ORIGINAL_PRECURSOR_SCAN_NO 8995 CONFIDENCE standard compound; INTERNAL_ID 2428 CONFIDENCE standard compound; INTERNAL_ID 8113 CONFIDENCE standard compound; INTERNAL_ID 4141
pramoxine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3273
2-Ethyl-5-methyl-3,3-diphenyl-1-pyrroline
2-Ethyl-5-methyl-3,3-diphenyl-1-pyrroline is a metabolite of methadone. Methadone (also known as Symoron, Dolophine, Amidone, Methadose, Physeptone, Heptadon, Phy and many other names) is a synthetic opioid, used medically as an analgesic and a maintenance anti-addictive for use in patients with opioid dependency. It was developed in Germany in 1937. Although chemically unlike morphine or heroin, methadone acts on the same opioid receptors as these drugs, and thus has many of the same effects. (Wikipedia)
3-Acetylmorphine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
5-(8-Pentadecenyl)-1,3-benzenediol
5-(8-Pentadecenyl)-1,3-benzenediol is found in cashew nut. 5-(8-Pentadecenyl)-1,3-benzenediol is isolated from Ginkgo biloba (ginkgo) fruit Isolated from Ginkgo biloba (ginkgo) fruits. 5-(8-Pentadecenyl)-1,3-benzenediol is found in cashew nut, ginkgo nuts, and fats and oils.
1,2-CYCLOHEXANEDIOL
trans-Cyclohexane-1,2-diol is an endogenous metabolite.
4-Methoxyglucobrassicin
An indolylmethylglucosinolic acid that is glucobrassicin bearing a methoxy substituent at position 4 on the indole ring.
Glucoiberin
Glucoiberin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Glucoiberin is an extremely weak basic (essentially neutral) compound (based on its pKa). Glucoiberin has been detected, but not quantified in, several different foods, such as capers, cauliflowers, cabbages, Brassicas, and Chinese cabbages. This could make glucoiberin a potential biomarker for the consumption of these foods. Glucoiberin is isolated from the seeds of Brassica oleracea and other crucifers. Isolated from seeds of Brassica oleracea and other crucifers. Glucoiberin is found in many foods, some of which are white cabbage, cabbage, broccoli, and brussel sprouts. Acquisition and generation of the data is financially supported in part by CREST/JST.
xi-gamma-Undecalactone
(±)-5-Heptyldihydro-2(3H)-furanone is a flavouring ingredient. [Raw Data] CB092_gamma-Undecalactone_pos_20eV_CB000039.txt [Raw Data] CB092_gamma-Undecalactone_pos_30eV_CB000039.txt [Raw Data] CB092_gamma-Undecalactone_pos_10eV_CB000039.txt
4-Chlorobenzoic acid
CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4340; ORIGINAL_PRECURSOR_SCAN_NO 4338 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4332; ORIGINAL_PRECURSOR_SCAN_NO 4329 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4361; ORIGINAL_PRECURSOR_SCAN_NO 4356 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4419 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4331; ORIGINAL_PRECURSOR_SCAN_NO 4328 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4339; ORIGINAL_PRECURSOR_SCAN_NO 4337 KEIO_ID C104
4-O-alpha-D-Galactopyranuronosyl-D-galacturonic acid
Prepd. from pectin by enzymic hydrolysis using yeast or mould pectinases or by acid hydrolysis. Sole or major repeating unit of the pectin class of polysaccharides. Prepd. from pectin by enzymic hydrolysis using yeast or mould pectinases or by acid hydrolysis. Sole or major repeating unit of the pectin class of polysaccharides KEIO_ID D100
threo-b-methylaspartate
Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M009
gibberellin A24
A C20-gibberellin that consists of a tetracyclic skeleton bearing two carboxy and a formyl group. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
UDP-L-rhamnose
UDP-L-rhamnose is synthesized from UDP-D-glucose. [HMDB]. UDP-L-rhamnose is found in many foods, some of which are maitake, orange bell pepper, common mushroom, and horseradish tree. Acquisition and generation of the data is financially supported in part by CREST/JST. UDP-L-rhamnose is synthesized from UDP-D-glucose.
Galactinol
Acquisition and generation of the data is financially supported in part by CREST/JST.
Sinapoyl malate
Annotation level-2 Acquisition and generation of the data is financially supported in part by CREST/JST.
UNII:5K6L8O868Y
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.978 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.974 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.973 4'-Hydroxyflavanone is an inhibitor of SREBP maturation and lipid synthesis. 4'-Hydroxyflavanone is a synthetic analogue of flavanone, has potential for hepatic steatosis and dyslipidemia research[1]. 4'-Hydroxyflavanone is an inhibitor of SREBP maturation and lipid synthesis. 4'-Hydroxyflavanone is a synthetic analogue of flavanone, has potential for hepatic steatosis and dyslipidemia research[1]. 4'-Hydroxyflavanone is an inhibitor of SREBP maturation and lipid synthesis. 4'-Hydroxyflavanone is a synthetic analogue of flavanone, has potential for hepatic steatosis and dyslipidemia research[1].
Pseudobaptigenin
Isolated from Pisum sativum (pea) and Trifolium pratense (red clover). Pseudobaptigenin is found in many foods, some of which are canada blueberry, oval-leaf huckleberry, radish, and lentils. Pseudobaptigenin is found in herbs and spices. Pseudobaptigenin is isolated from Pisum sativum (pea) and Trifolium pratense (red clover).
Senecionine N-oxide
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2301 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 146 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 176 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 116 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 136 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 166 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 156 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 106 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 126 Senecionine n-oxide is the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Senecionine N-oxide has anti-cancer activity[1][2].
Glucobrassicanapin
Isolated from rape (Brassica napus) and other Brassica species Glucobrassicanapin is found in many foods, some of which are swede, chinese mustard, chinese cabbage, and horseradish. Glucobrassicanapin is found in brassicas. Glucobrassicanapin is isolated from rape (Brassica napus) and other Brassica sp.
alpha-Peltatin
An organic heterotetracyclic compound that is 4-demethylpodophyllotoxin which is substituted by a hydroxy group at position 10 but which is lacking the hydroxy group at position 9. It is found as a glucoside in the rhizomes of Podophyllum peltatum. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.899 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.887 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.886
4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone
4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone is found in root vegetables. 4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone is a constituent of roots of Polymnia sonchifolia (yacon)
D-Glycero-D-galacto-heptitol
D-Glycero-D-manno-heptitol is found in avocado. D-Glycero-D-manno-heptitol occurs in the edible chichitake mushroom (Lactarius volemus). D-Glycero-D-manno-heptitol is widely distributed in plants. Occurs in the edible chichitake mushroom (Lactarius volemus). Widely distributed in plants. D-Glycero-D-manno-heptitol is found in mushrooms and avocado.
trans-cinnamoyl-beta-D-glucoside
Trans-cinnamoyl-beta-d-glucoside, also known as 1-O-trans-cinnamoyl-beta-D-glucopyranose, is a member of the class of compounds known as O-cinnamoyl glycosides. O-cinnamoyl glycosides are o-glycoside derivatives of cinnamic acid. Cinnamic acid is an aromatic compound containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamoyl-beta-d-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Trans-cinnamoyl-beta-d-glucoside can be found in a number of food items such as angelica, cherry tomato, garden cress, and yam, which makes trans-cinnamoyl-beta-d-glucoside a potential biomarker for the consumption of these food products. Trans-cinnamoyl-β-d-glucoside, also known as 1-O-trans-cinnamoyl-beta-D-glucopyranose, is a member of the class of compounds known as O-cinnamoyl glycosides. O-cinnamoyl glycosides are o-glycoside derivatives of cinnamic acid. Cinnamic acid is an aromatic compound containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamoyl-β-d-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Trans-cinnamoyl-β-d-glucoside can be found in a number of food items such as angelica, cherry tomato, garden cress, and yam, which makes trans-cinnamoyl-β-d-glucoside a potential biomarker for the consumption of these food products.
4-Aminoisoxazolidin-3-one
4-amino-1,2-oxazolidin-3-one is a member of the class of oxazolidines that is isoxazoldin-3-one which is substituted at position 4 by an amino group. It is a serine derivative, a member of oxazolidines, a primary amino compound and a hydroxamic acid ester.
Antiarol
3,4,5-trimethoxyphenol is a member of the class of phenols that is phenol substituted by methoxy groups at positions 3, 4 and 5. It has a role as a plant metabolite. It is a member of phenols and a member of methoxybenzenes. 3,4,5-Trimethoxyphenol is a natural product found in Diospyros eriantha, Tarenna attenuata, and other organisms with data available. A member of the class of phenols that is phenol substituted by methoxy groups at positions 3, 4 and 5. Antiarol (3,4,5-Trimethoxyphenol) is a natural compound isolated from Cochlospermum vitifolium. Antiarol (3,4,5-Trimethoxyphenol) is a natural compound isolated from Cochlospermum vitifolium.
Tryprostatin B
A cyclic dipeptide that is brevianamide F (cyclo-L-Trp-L-Pro) substituted at position 2 on the indole ring by a prenyl group. CONFIDENCE Penicillium amphipolaria
phenazine-1,6-dicarboxylate
A member of the class of phenazines carrying carboxy substituents at positions 1 and 6. A natural product found in Streptomyces species. CONFIDENCE standard compound; INTERNAL_ID 187
Aminoundecanoic acid
11-Aminoundecanoic acid is an organic compound with the formula H2N(CH2)10CO2H. This white solid is classified as an amine and a fatty acid. 11-Aminoundecanoic acid is a precursor to Nylon-11.[1] As practiced by Arkema, 11-aminoundecanoic acid is prepared industrially from undecylenic acid, which is derived from castor oil.[2] The synthesis proceeds in four separate reactions: 1. Transesterification of castor oil to methyl ricinoleate: Crude castor oil consists of about 80\\% triglycerides, from the ricinoleic acid, itself representing about 90\\% of the oil.[3] It is quantitatively transesterified with methanol to methyl ricinoleate (the methyl ester of ricinoleic acid) in the presence of the basic sodium methoxide at 80 °C within 1 h reaction time in a stirred reactor. At the end of the reaction, the resulting glycerol separates and the liquid methyl ester is washed with water to remove residual glycerol. 2. Pyrolysis of methylricinoleate to heptanal and methyl undecenoate: Methylricinoleate is evaporated at 250 °C, mixed with hot steam (600 °C) in a 1:1 ratio and decomposed in a cracking furnace at 400 - 575 °C at a retention time of about 10 seconds into its cleavage products heptanal and methyl undecenoate. The cleavage of the aliphatic chain occurs in this variant of the steam cracking selectively between the hydroxymethylene and the allyl-methylene group. Besides heptanal and methyl undecenoate, a mixture of methyl esters of saturated and unsaturated C18-carboxylic acids is obtained. This mixture is known under the trade name Esterol and is used as a lubricant additive. 3. Hydrolysis of methyl undecenoate to 10-undecenoic acid The hydrolysis of the methyl ester with sodium hydroxide proceeds at 25 °C within 30 min with quantitative yield. After acidification with hydrochloric acid, solid 10-undecenoic acid (undecylenic acid) is obtained. 4. Hydrobromination of 10-undecenoic acid to 11-bromoundecanoic acid The undecenoic acid is dissolved in toluene and, in the presence of the radical initiator benzoyl peroxide (BPO), gaseous hydrogen bromide is added, in contrary to the Markovnikov rule ("anti-Markovnikov"). When cooled to 0 °C, the fast and highly exothermic reaction produces 11-bromoundecanoic acid in 95\\% yield - the Markovnikov product 10-bromoundecanoic acid is produced in small quantities as a by-product. Toluene and unreacted hydrogen bromide are extracted under reduced pressure and reused. 5. Bromine exchange of 11-bromoundecanoic acid to 11-aminoundecanoic acid 11-Bromodecanoic acid is mixed at 30 °C with a large excess of 40\\% aqueous ammonia solution. When the reaction is complete, water is added and the mixture is heated to 100 °C to remove the excess ammonia. The acid can be recrystallized from water. For further purification, the hydrochloride of 11-aminoundecanoic acid, which is available by acidification with hydrochloric acid, can be recrystallized from a methanol/ethyl acetate mixture. Aminoundecanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2432-99-7 (retrieved 2024-07-01) (CAS RN: 2432-99-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1006
9,10-Epoxystearic acid
9,10-epoxystearate, also known as 18:0(9ep) or 9,10-epoxystearic acid, 14c-acid, belongs to lineolic acids and derivatives class of compounds. Those are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Thus, 9,10-epoxystearate is considered to be an octadecanoid lipid molecule. 9,10-epoxystearate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 9,10-epoxystearate can be found in a number of food items such as garden cress, silver linden, european chestnut, and soft-necked garlic, which makes 9,10-epoxystearate a potential biomarker for the consumption of these food products.
6'-O-Malonyldaidzin
Present in soy foods; potential nutriceutical. 6-Malonyldaidzin is found in many foods, some of which are soy milk, soy sauce, soy bean, and soy yogurt. 6-O-Malonyldaidzin is found in miso. 6-O-Malonyldaidzin is present in soy foods; potential nutriceutical.
3-Methyl-2-butenal
3-Methyl-2-butenal, also known as senecialdehyde or 3,3-dimethylacrolein, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. 3-methyl-2-butenal has been detected, but not quantified, in several different foods, such as common oregano, beechnuts, oval-leaf huckleberries, tea leaf willows, and red rice. This could make 3-methyl-2-butenal a potential biomarker for the consumption of these foods. 3-Methyl-2-butenal is a derivative of acrolein that is an alpha, beta-unsaturated carbonyl metabolite. It can be formed endogenously during lipid peroxidation or after oxidative stress, and is considered to play an important role in human carcinogenesis. The endogenously formed acroleins are a constant source of DNA damage, can lead to mutation, and can also induce tumours in humans (PMID:8319634). 3-Methyl-2-butenal, which is an unsaturated aldehyde bearing substitution at the alkene terminus, is a poor inactivator of the enzymes protein tyrosine phosphatases (PTPs). The inactivation of PTPs can yield profound biological consequences arising from the disruption of cellular signalling pathways (PMID:17655273). Present in blackberry, grape brandy, cocoa, currants, baked potato, tea, costmary and white bread. Flavouring ingredient
neopinone
The beta,gamma-unsaturated ketone resulting from the hydrolysis of the methyl enol ether group of thebaine. It is a key intermediate in the biosynthesis of codeine and morphine in the opium poppy, Papaver somniferum.
Salutaridinol
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
isochorismate
Isochorismate, also known as isochorismic acid, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Isochorismate is soluble (in water) and a weakly acidic compound (based on its pKa). Isochorismate can be found in a number of food items such as cucurbita (gourd), cherry tomato, chinese chestnut, and chinese water chestnut, which makes isochorismate a potential biomarker for the consumption of these food products. Isochorismate may be a unique E.coli metabolite.
oxalyl-CoA
An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of oxalic acid.
Pantoate
Pantoic acid (along with beta-alanine) is used to synthesize pantothenic acid (vitamin B5) in most microorganisms and plants. Pantothenic acid is a structural component of coenzyme A (CoA) which is involved in essential biological processes such as the citric acid cycle (TCA cycle) and the synthesis of carbohydrates, proteins, and fat. Pantothenic acid is found widespread in foods but especially in egg yolk, offal, fish, whole-grains, legumes, mushrooms, avocados, broccoli, and royal jelly (from bees).
Phenylacetyl-CoA
Phenylacetyl-CoA was found to be a very potent inhibitor of choline acetyltransferase, competitive for acetyl-CoA with Ki of 3.1 X 10(-7)M. Phenylacetate exerts its neurotoxic action through its metabolic product, phenylacetyl-CoA, which could severely decrease the availability of acetyl-CoA. (PMID: 6142928) [HMDB] Phenylacetyl-CoA was found to be a very potent inhibitor of choline acetyltransferase, competitive for acetyl-CoA with Ki of 3.1 X 10(-7)M. Phenylacetate exerts its neurotoxic action through its metabolic product, phenylacetyl-CoA, which could severely decrease the availability of acetyl-CoA (PMID: 6142928).
Quercetin 3-sulfate
N-acyl-d-mannosamine, also known as quercetin 3-(hydrogen sulfate) or quercetin 3-monosulphate, is a member of the class of compounds known as 3-sulfated flavonoids. 3-sulfated flavonoids are flavonoids that are sulfated at the 3-ring position of the flavonoid skeleton. Thus, N-acyl-d-mannosamine is considered to be a flavonoid lipid molecule. N-acyl-d-mannosamine is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). N-acyl-d-mannosamine can be found in dill, which makes N-acyl-d-mannosamine a potential biomarker for the consumption of this food product. N-acyl-d-mannosamine may be a unique E.coli metabolite.
Xanthosine 5-triphosphate
Xanthosine 5-triphosphate (XTP) is a Guanosine triphosphate (GTP) analogue. The base of XTP, xanthine, bears a keto group instead of an amino group at C2 of the purine rings. XTP can substitute for GTP in supporting receptor-mediated adenylyl cyclase activation. XTP competitively inhibits the binding of GTP to the guanine nucleotide-binding site of retinal G-protein, transducin (TD). These suggests that GTP, ITP, and XTP are differential signal sorters and signal amplifiers at the G-protein level. G-proteins mediate signal transfer from receptors to effector systems. (PMID: 9337071). Xanthosine 5-triphosphate is an intermediate of the Purine metabolism pathway, a substrate of the enzymes dinucleoside tetraphosphatase (EC 3.6.1.17) and nucleoside-triphosphate pyrophosphatase (EC 3.6.1.19). (KEGG). Xanthosine 5-triphosphate (XTP) is a Guanosine triphosphate (GTP) analogue. The base of XTP, xanthine, bears a keto group instead of an amino group at C2 of the purine rings. XTP can substitute for GTP in supporting receptor-mediated adenylyl cyclase activation. XTP competitively inhibits the binding of GTP to the guanine nucleotide-binding site of retinal G-protein, transducin (TD). These suggests that GTP, ITP, and XTP are differential signal sorters and signal amplifiers at the G-protein level. G-proteins mediate signal transfer from receptors to effector systems. (PMID: 9337071)
Pentanoyl-CoA
Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.
Formylmethanofuran
O-Phosphohomoserine
O-phosphohomoserine is a naturally occurring analogue of phosphonate amino acids. O-phosphohomoserine has been found in trace amounts in shotgun-metabolomics analysis in mouse tissue extracts, and is the substrate of a threonine analog enzyme in murine species. O-phosphohomoserine, an analogue of the excitatory amino acid antagonist 2-amino-phosphonovalerate is an N-methyl-D-aspartate (NMDA) antagonist. (PMID: 3528930, 17034760, 17665876) [HMDB] O-phosphohomoserine is a naturally occurring analogue of phosphonate amino acids. O-phosphohomoserine has been found in trace amounts in shotgun-metabolomics analysis in mouse tissue extracts, and is the substrate of a threonine analog enzyme in murine species. O-phosphohomoserine, an analogue of the excitatory amino acid antagonist 2-amino-phosphonovalerate is an N-methyl-D-aspartate (NMDA) antagonist. (PMID: 3528930, 17034760, 17665876).
Mevalonic acid-5P
Mevalonic acid-5p, also known as (R)-5-phosphomevalonate or mevalonate-5p, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Thus, mevalonic acid-5p is considered to be a fatty acid lipid molecule. Mevalonic acid-5p is soluble (in water) and a moderately acidic compound (based on its pKa). Mevalonic acid-5p can be found in a number of food items such as rowanberry, common oregano, caraway, and cherry tomato, which makes mevalonic acid-5p a potential biomarker for the consumption of these food products. Mevalonic acid-5p can be found primarily throughout most human tissues. Mevalonic acid-5p exists in all eukaryotes, ranging from yeast to humans. In humans, mevalonic acid-5p is involved in several metabolic pathways, some of which include pamidronate action pathway, rosuvastatin action pathway, pravastatin action pathway, and lovastatin action pathway. Mevalonic acid-5p is also involved in several metabolic disorders, some of which include hypercholesterolemia, lysosomal acid lipase deficiency (wolman disease), hyper-igd syndrome, and mevalonic aciduria. Mevalonic acid-5P (CAS: 1189-94-2), also known as 5-phosphomevalonic acid, belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Within humans, mevalonic acid-5P participates in many enzymatic reactions. In particular, mevalonic acid-5P can be biosynthesized from mevalonate; which is mediated by the enzyme mevalonate kinase. In addition, mevalonic acid-5P can be converted into mevalonic acid-5-pyrophosphate through its interaction with the enzyme phosphomevalonate kinase. In humans, mevalonic acid-5P is involved in the mevalonate pathway. Outside of the human body, mevalonic acid-5P has been detected, but not quantified in, several different foods, such as oriental wheat, devilfish, pepper (spice), redcurrants, and star fruits. This could make mevalonic acid-5P a potential biomarker for the consumption of these foods.
all-trans-Hexaprenyl diphosphate
all-trans-Hexaprenyl diphosphate is the final product of the hexaprenyl diphosphate biosynthesis pathway. In this pathway, multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids. There are two different pathways for the biosynthesis of IPP. Bacteria that possess ubiquinone generally use the methylerythritol phosphate pathway (MEP), while the eukaryotic microorganisms use the mevalonate pathway. However, exceptions exist. For example, some eukaryotic microbes, like the green algae and the malarial parasite Plasmodium falciparum, appear to utilize the MEP pathway, and some bacteria utilize the mevalonate pathway (Eisenreich01, Eisenreich04). In Saccharomyces cerevisiae S288C, the initial addition of two isoprenyl units to form (E, E)-farnesyl diphosphate is catalyzed by geranyltransferase / dimethylallyltransferase, encoded by FPP1. An additional unit is added by farnesyltranstransferase (encoded by BTS1), resulting in the formation of all-trans-geranyl-geranyl diphosphate. The last enzyme in this pathway is hexaprenyl diphosphate synthase (encoded by COQ1), which adds additional isoprenoid units to a maximal length unique to the organism. In the case of Saccharomyces cerevisiae S288C, it is 6 units. Polyprenyl diphosphate synthase enzymes, such as hexaprenyl diphosphate synthase, are responsible for determining the final length of the tail. When yeast COQ1 mutants are complemented with homologs from other organisms, ubiquinone biosynthesis is restored, but the tail length of the quinone depends on the source of the enzyme. All-trans-hexaprenyl diphosphate is the final product of hexaprenyl diphosphate biosynthesis pathway.In this pathway multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids.
Gentamicin A
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins
Okadaic acid
Okadaic acid is found in mollusks. Okadaic acid is found in the marine sponges Halichondria okadai and Halichondria melanodocia and shellfish. It is a metabolite of Prorocentrum lima. It is a diarrhetic shellfish toxin. Okadaic acid is a toxin that accumulates in bivalves and causes diarrhetic shellfish poisoning. The molecular formula of okadaic acid, which is a derivative of a C38 fatty acid, is C44H68O13. The IUPAC name of okadaic acid is (2R)-2-hydroxy-3-{(2S,5R,6R,8S)-5-hydroxy-[(1R,2E)-3-((2R,5R,6S,8R,8aS)-8-hydroxy-6-{(1S,3S)-1-hydroxy-3-[(3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undec-2-yl]butyl}-7-methyleneoctahydro-3H,3H-spiro[furan-2,2-pyrano[3,2-b]pyran]-5-yl)-1-methylprop-2-en-1-yl]-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-methylpropanoic acid. Okadaic acid was named from the marine sponge Halichondria okadai, from which okadaic acid was isolated for the first time. It has also been isolated from another marine sponge, H. malanodocia, as a cytotoxin. The real producer of okadaic acid is a marine dinoflagellate D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators D004791 - Enzyme Inhibitors D007476 - Ionophores
Eicosanoyl-CoA
Eicosanoyl-CoA is an intermediate metabolite in the synthesis of phosphatidic acid, a substrate of lysophosphatidic acid acyltransferase with high specificity as an acyl donor. Cells and membranes of mammalian cells synthesize their glycerophospholipids and triglycerides to maintain the cellular integrity and to provide energy for cellular functions. The phospholipids are synthesized de novo in cells through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. Several isoforms of the enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (EC 2.3.1.51, AGPAT) acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. Bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65, BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile and can utilize Eicosanoyl-CoA as an acyl donor as well; this may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. (PMID: 17535882, 12810727) [HMDB] Eicosanoyl-CoA is an intermediate metabolite in the synthesis of phosphatidic acid, a substrate of lysophosphatidic acid acyltransferase with high specificity as an acyl donor. Cells and membranes of mammalian cells synthesize their glycerophospholipids and triglycerides to maintain the cellular integrity and to provide energy for cellular functions. The phospholipids are synthesized de novo in cells through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. Several isoforms of the enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (EC 2.3.1.51, AGPAT) acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. Bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65, BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile and can utilize Eicosanoyl-CoA as an acyl donor as well; this may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. (PMID: 17535882, 12810727).
Prostanoic acid
A carbocyclic fatty acid composed of heptanoic acid having a (1S,2S)-2-octylcyclopentyl substituent at position 7.
Uridine 2',3'-cyclic phosphate
Uridine 2,3-cyclic phosphate is a cyclic nucleotide. A cyclic nucleotide is any nucleotide in which the phosphate group is bonded to two of the sugars hydroxyl groups, forming a cyclical or ring structure. Cyclic phosphates are commonly found at the 3 end of mRNAs and other small RNAs. Uridine 2,3-cyclic phosphate is a substrate for the enzyme 2,3-cyclic nucleotide-3-phosphodiesterase (CNPase, EC 3.1.4.37) which hydrolyses it to Uridine 2-phosphate. CNPase is a unique RNase in that it only cleaves nucleoside 2,3-cyclic phosphates and not the RNA internucleotide linkage, like other RNases such as RNase A and RNase T1. [HMDB] Uridine 2,3-cyclic phosphate is a cyclic nucleotide. A cyclic nucleotide is any nucleotide in which the phosphate group is bonded to two of the sugars hydroxyl groups, forming a cyclical or ring structure. Cyclic phosphates are commonly found at the 3 end of mRNAs and other small RNAs. Uridine 2,3-cyclic phosphate is a substrate for the enzyme 2,3-cyclic nucleotide-3-phosphodiesterase (CNPase, EC 3.1.4.37) which hydrolyses it to Uridine 2-phosphate. CNPase is a unique RNase in that it only cleaves nucleoside 2,3-cyclic phosphates and not the RNA internucleotide linkage, like other RNases such as RNase A and RNase T1.
2-Oxosuccinamate
This compound belongs to the family of Short-chain Keto Acids and Derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms
Tolylacetonitrile
(2-Naphthyl)methanol
This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.
CYCLOPIAZONIC ACID
D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D004791 - Enzyme Inhibitors Cyclopiazonic acid (CPA), a neurotoxic secondary metabolite (SM) made by Aspergillus flavus, is an inhibitor of endoplasmic reticulum calcium ATPase (Ca2+ATPase; SERCA) and a potent inducer of cell death in plants[1].
Deacetylcephalosporin C
A 3-hydroxymethylcephalosporin having a (5-amino-5-carboxypentanoyl)amino group at the 7-position. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
10-Formyldihydrofolate
10-Formyldihydrofolate is a folate compound that has not been found as a component of intracellular folates in normal tissues but has been identified in the cytosol of methotrexate (MTX)-treated MCF-7 breast cancer cells and normal human myeloid precursor cells. The origin of 10-formyldihydrofolate remains an enigma. Its appearance only in the extracts from MTX-treated cells is not consistent with a simple oxidation of lO-formyl-H4folate during the extraction procedure. This, however, does not exclude the occurrence of spontaneous oxidation of 10-formyl-H4folate within the intact cells prior to the folate extraction. (PMID: 3366769) [HMDB] 10-formyldihydrofolate is a folate compound that has not been found as a component of intracellular folates in normal tissues but has been identified in the cytosol of methotrexate (MTX)-treated MCF-7 breast cancer cells and normal human myeloid precursor cells. The origin of 10-formyldihydrofolate remains an enigma. Its appearance only in the extracts from MTX-treated cells is not consistent with a simple oxidation of lO-formyl-H4folate during the extraction procedure. This, however, does not exclude the occurrence of spontaneous oxidation of 10-formyl-H4folate within the intact cells prior to the folate extraction. (PMID: 3366769).
3,5-Dinitro-Tyr-OH
A non-proteinogenic L-alpha-amino acid that is L-tyrosine substituted by nitro groups at positions 3 and 5.
O-Methylsterigmatocystin
O-Methylsterigmatocystin is a mycotoxin of Aspergillus flavu D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
CMP-N-glycoloylneuraminate
CMP-N-glycoloylneuraminate is an intermediate in Aminosugars metabolism. It is generated from CMP-N-acetylneuraminate via the enzyme CMP-N-acetylneuraminate monooxygenase (EC 1.14.18.2). CMP-N-glycoloylneuraminate can be converted to N-Glycolylneuraminate via the enzyme N-acylneuraminate cytidylyltransferase (EC 2.7.7.43). [HMDB] CMP-N-glycoloylneuraminate is an intermediate in Aminosugars metabolism. It is generated from CMP-N-acetylneuraminate via the enzyme CMP-N-acetylneuraminate monooxygenase (EC 1.14.18.2). CMP-N-glycoloylneuraminate can be converted to N-Glycolylneuraminate via the enzyme N-acylneuraminate cytidylyltransferase (EC 2.7.7.43).
11a-Hydroxyprogesterone
Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. -- Wikipedia; Progesterones reproductive function serves to convert the endometrium to its secretory stage to prepare the uterus for implantation. If pregnancy does not occur, progesterone levels will decrease leading to menstruation in the human. Normal menstrual bleeding is a progesterone withdrawal bleeding. -- Wikipedia; During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine musculature. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. Progesterone has an effect upon vaginal epithelium and cervical mucus. -- Wikipedia [HMDB] Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. Progesterones reproductive function serves to convert the endometrium to its secretory stage to prepare the uterus for implantation. If pregnancy does not occur, progesterone levels will decrease leading to menstruation in the human. Normal menstrual bleeding is a progesterone withdrawal bleeding. During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine musculature. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition, progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. Progesterone has an effect upon vaginal epithelium and cervical mucus. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins
(Z)-But-1-ene-1,2,4-tricarboxylate
This compound belongs to the family of Tricarboxylic Acids and Derivatives. These are organic compounds containing three carboxylic acid groups (or salt/ester derivatives thereof).
D-myo-Inositol 3,4-bisphosphate
D-myo-Inositol 3,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 3,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). In humans, D-myo-inositol 3,4-bisphosphate participates in a number of enzymatic reactions. In particular, D-myo-inositol 3,4-bisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate through the action of the enzyme inositol polyphosphate 1-phosphatase. D-myo-Inositol 3,4-bisphosphate is an intermediate in inositol phosphate metabolism. D-myo-Inositol 3,4-bisphosphate is converted from D-myo-inositol-3-phosphate via inositol polyphosphate-4-phosphatase (EC 3.1.3.66). 1D-myo-Inositol 3,4-bisphosphate is an intermediate in inositol phosphate metabolism. 1D-myo-Inositol 3,4-bisphosphate is converted from 1D-myo-inositol-3-phosphate via inositol polyphosphate-4-phosphatase [EC:3.1.3.66]. [HMDB]
Geranylfarnesyl diphosphate
Geranylfarnesyl diphosphate reacts with isopentenyl diphosphate to produce all-trans-hexaprenyl diphosphate and diphosphate. The reaction is catalyzed by a all-trans-hexaprenyl-diphosphate synthase enzyme. [HMDB] Geranylfarnesyl diphosphate reacts with isopentenyl diphosphate to produce all-trans-hexaprenyl diphosphate and diphosphate. The reaction is catalyzed by a all-trans-hexaprenyl-diphosphate synthase enzyme.
6-Lactoyltetrahydropterin
6-Lactoyltetrahydropterin is a putative intermediate in the de novo synthesis of tetrahydrobiopterin (BH4) pathway, in a reaction involving the enzyme sepiapterin reductase (E.C. 1.1.1.153) in human liver. In brain, an enzyme distinct from sepiapterin reductase catalyzes the TPNH-dependent reduction of 6-pyruvoyl-tetrahydropterin to 6-lactoyl-tetrahydropterin. (PMID: 4004850). In brain, the expression of other enzymes involved in BH4 biosynthesis includes aldose reductase, carbonyl reductase, GTP-cyclohydrolase I, and 6-pyruvoyltetrahydrobiopterin. Sepiapterin reductase expression is increased in Parkinsons disease brain tissue. (PMID: 17270157). 6-Lactoyltetrahydropterin is a putative intermediate in the de novo synthesis of tetrahydrobiopterin (BH4) pathway, in a reaction involving the enzyme sepiapterin reductase (E.C. 1.1.1.153) in human liver. In brain, an enzyme distinct from sepiapterin reductase catalyzes the TPNH-dependent reduction of 6-pyruvoyl-tetrahydropterin to 6-lactoyl-tetrahydropterin. (PMID: 4004850)
BENZOYLARGININE NITROANILIDE
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004396 - Coloring Agents
2-Amino-3-carboxymuconic acid semialdehyde
2-Amino-3-carboxymuconic acid semialdehyde (CAS: 16597-58-3) is an intermediate metabolite of the tryptophan-niacin catabolic pathway. Current interest in the degradation of tryptophan is mostly due to the role of quinolinate and other metabolites in several neuropathological conditions. Quinolinate is a neurotoxin formed nonenzymatically from 2-amino-3-carboxymuconic semialdehyde in mammalian tissues. 2-Amino-3-carboxymuconic acid semialdehyde is enzymatically converted into 2-aminomuconate via 2-aminomuconic semialdehyde (PMID: 10510494, 16267312, 14275129). 2-amino-3-carboxymuconic acid semialdehyde is an intermediate metabolite of the tryptophan-niacin catabolic pathway. Current interest in the degradation of tryptophan is mostly due to the role of quinolinate and other metabolites in several neuropathological conditions. Quinolinate is a neurotoxin formed nonenzymatically from 2-amino-3-carboxymuconic semialdehyde in mammalian tissues. 2-Amino-3-carboxymuconic semialdehyde is enzymatically converted to 2-aminomuconate via 2-aminomuconic semialdehyde. (PMID: 10510494, 16267312, 14275129) [HMDB]
4-[2,2'-Bithiophen-5-yl]-3-butyn-1-ol
4-[2,2-Bithiophen-5-yl]-3-butyn-1-ol is found in herbs and spices. 4-[2,2-Bithiophen-5-yl]-3-butyn-1-ol is a constituent of the roots of Tagetes minuta (Mexican marigold), Tagetes species Constituent of the roots of Tagetes minuta (Mexican marigold), Tagetes subspecies 4-[2,2-Bithiophen-5-yl]-3-butyn-1-ol is found in herbs and spices.
(4-Amino-2-methylpyrimidin-5-YL)methyl dihydrogen phosphate
Imidazoleacetic acid riboside
Imidazoleacetic acid riboside is a metabolite of imidazoleacetic acid (itself histamines oxidative metabolite). (PMID: 7616240). In kidney glomeruli, histamine is predominantly catabolized to acid metabolites of the diamine oxidase (histaminase) pathway, imidazoleacetic acid and Imidazoleacetic acid riboside. (PMID: 7616240). Imidazoleacetic acid riboside is a metabolite of imidazoleacetic acid (itself histamines oxidative metabolite). (PMID: 7616240)
(S)-3-Hydroxy-N-methylcoclaurine
(S)-3-Hydroxy-N-methylcoclaurine is an intermediate in the biosynthesis of alkaloids (KEGG ID C05202). It is the 10th to last step in the synthesis of morphine and is converted from (s)-N-methylcoclaurine via the enzyme tyrosinase [EC:1.14.18.1]. It is then converted to (S)-reticuline. [HMDB] (S)-3-Hydroxy-N-methylcoclaurine is an intermediate in the biosynthesis of alkaloids (KEGG ID C05202). It is the 10th to last step in the synthesis of morphine and is converted from (s)-N-methylcoclaurine via the enzyme tyrosinase [EC:1.14.18.1]. It is then converted to (S)-reticuline.
S-2-Octenoyl CoA
S-2-Octenoyl coenzyme A is an intermediate metabolite of fatty acid metabolism. Mitochondrial beta-oxidation of saturated acyl-CoA esters proceeds by a repeated cycle of four concerted reactions: flavoprotein-linked dehydrogenation, hydration, NAD-linked dehydrogenation and thiolysis. The three chain-length-specific acyl-CoA dehydrogenases which catalyse the first dehydrogenation step are linked to the respiratory chain by the electron-transferring flavoprotein (ETF) and ETF: ubiquinone oxidoreductase (ETF: QO). The second dehydrogenation step is catalysed by two chain-length-specific NAD+-dependent 3-hydroxyacyl-CoA dehydrogenases. The control of beta-oxidation in the mitochondrial matrix occurs at several steps and depends on the redox state and the rate of recycling of CoA. The rate is lowered with reduced states, since high NAD+/NADH ratios impair the activity of the hydroxyacyl-CoA dehydrogenase and increase the formation of ETF semiquinone (ETFSq), which is a potent inhibitor of the acyl-CoA dehydrogenases. These changes affect the steady-state concentrations of acyl-CoA intermediates, which in turn may change the control strength of other enzymes of the pathway. In liver mitochondria, acetyl-CoA produced by each cycle of beta-oxidation has four major routes of disposal: ketogenesis, oxidation by the citrate cycle, conversion into acetylcarnitine or hydrolysis to acetate; each of these reactions generates free CoA. During maximum flux through beta-oxidation, up to 95 \\% of the mitochondrial CoA pool is acylated, and thus the rate of recycling of CoA may partly control beta-oxidation. Increased steady-state concentrations of some acyl-CoA esters may also occur when one or more of the enzymes of beta-oxidation is inhibited, as in hypoglycin poisoning, or where one or more of the enzymes of the pathway is absent. Such inborn errors of beta-oxidation are being increasingly recognized as important causes of disease, especially in children, and deficiencies of long-chain-acyl-CoA dehydrogenase, medium-chain-acyl-CoA dehydrogenase, short-chain-acyl-CoA dehydrogenase, ETF, ETF: QO and acetoacetyl-CoA thiolase have been described. (PMID: 2818568).
19-Oxoandrost-4-ene-3,17-dione
19-Oxoandrost-4-ene-3,17-dione is an intermediate in Androgen and estrogen metabolism. 19-Oxoandrost-4-ene-3,17-dione is the 4th to last step in the synthesis of 2-Methoxyestrone 3-glucuronide. It is generated from 19-Hydroxyandrost-4-ene-3,17-dione and then converted to Estrone. [HMDB] 19-Oxoandrost-4-ene-3,17-dione is an intermediate in Androgen and estrogen metabolism. 19-Oxoandrost-4-ene-3,17-dione is the 4th to last step in the synthesis of 2-Methoxyestrone 3-glucuronide. It is generated from 19-Hydroxyandrost-4-ene-3,17-dione and then converted to Estrone. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
3a,7a,12a-Trihydroxy-5b-cholestanoyl-CoA
3a,7a,12a-Trihydroxy-5b-cholestanoyl-CoA is an intermediate in the Bile acid biosynthesis pathway (KEGG). C27-bile acyl-CoAs are converted to their (S)-stereoisomers by the enzyme Alpha-methylacyl-CoA racemase (OMIM 604489). 3a,7a,12a-Trihydroxy-5b-cholestanoyl-CoA is an intermediate in the Bile acid biosynthesis pathway (KEGG)
3a,21-Dihydroxy-5b-pregnane-11,20-dione
3alpha,21-Dihydroxy-5beta-pregnane-11,20-dione is an intermediate in C21-Steroid hormone metabolism. 3alpha,21-Dihydroxy-5beta-pregnane-11,20-dione is converted from Tetrahydrocorticosterone via the enzyme 11beta-hydroxysteroid dehydrogenase (EC 1.1.1.146). It is then converted to 3alpha,20alpha,21-Trihydroxy-5beta-pregnane-11-one via the enzyme 3alpha(or 20beta)-hydroxysteroid dehydrogenase (EC 1.1.1.53). 3alpha,21-Dihydroxy-5beta-pregnane-11,20-dione is an intermediate in C21-Steroid hormone metabolism. 3alpha,21-Dihydroxy-5beta-pregnane-11,20-dione
Selenomethionine se-oxide
This compound belongs to the family of Alpha Amino Acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon).
Iminoaspartic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids Iminoaspartic acid is a substrate for D-aspartate oxidase. [HMDB] Iminoaspartic acid is a substrate for D-aspartate oxidase.
3-Hydroxyisovaleryl-CoA
3-Hydroxyisovaleryl-CoA is an end product of leucine degradation. It is converted from 3-methylbut-2-enoyl-CoA by the enzyme enoyl-CoA hydratase. [HMDB] 3-Hydroxyisovaleryl-CoA is an end product of leucine degradation. It is converted from 3-methylbut-2-enoyl-CoA by the enzyme enoyl-CoA hydratase.
(KDO)2-lipid IVA
Lipid IVA glycosylated with two 3-deoxy-D-manno-octulosonic acid (KDO) residues.
Molybdate
Molybdate is involved in the molybdenum cofactor biosynthesis pathway. Molybdate reacts with molybdopterin-AMP to produce molybdenum cofactor, AMP, and H2O. [HMDB]. Molybdate is found in many foods, some of which are okra, black raspberry, silver linden, and chinese chestnut. Molybdate is involved in the molybdenum cofactor biosynthesis pathway. Molybdate reacts with molybdopterin-AMP to produce molybdenum cofactor, AMP, and H2O.
N-Acetylneuraminate 9-phosphate
N-Acetylneuraminate 9-phosphate is an intermediate in Aminosugars metabolism. N-Acetylneuraminate 9-phosphate is the 4th to last step in the synthesis of colominate and is converted from N-Acetyl-D-mannosamine-6-phosphate via the enzyme N-Acylneuraminate-9-phosphate synthase (EC 2.5.1.57). It is then converted to N-Acetylneuraminate via the enzyme N-acylneuraminate-9-phosphatase(EC 3.1.3.29). [HMDB] N-Acetylneuraminate 9-phosphate is an intermediate in Aminosugars metabolism. N-Acetylneuraminate 9-phosphate is the 4th to last step in the synthesis of colominate and is converted from N-Acetyl-D-mannosamine-6-phosphate via the enzyme N-Acylneuraminate-9-phosphate synthase (EC 2.5.1.57). It is then converted to N-Acetylneuraminate via the enzyme N-acylneuraminate-9-phosphatase(EC 3.1.3.29).
Pradimicin A
A member of the class of pradimicins that is isolated from the cultured broth of Actinomadura hibisca No. P157-2 (ATCC 53557). D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
Ceforanide
Ceforanide is a second-generation parenteral cephalosporin antibiotic. It has a longer elimination half-life than any currently available cephalosporin. Its activity is very similar to that of cefamandole, a second-generation cephalosporin, except that ceforanide is less active against most gram-positive organisms. Many coliforms, including Escherichia coli, Klebsiella, Enterobacter, and Proteus, are susceptible to ceforanide, as are most strains of Salmonella, Shigella, Hemophilus, Citrobacter and Arizona species. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Paramethadione
Paramethadione is only found in individuals that have used or taken this drug. It is an anticonvulsant in the oxazolidinedione class. It is associated with fetal trimethadione syndrome, which is also known as paramethadione syndrome.Dione anticonvulsants such as paramethadione reduce T-type calcium currents in thalamic neurons (including thalamic relay neurons). This inhibits corticothalamic transmission and raises the threshold for repetitive activity in the thalamus. This results in a dampening of the abnormal thalamocortical rhythmicity proposed to underlie the 3-Hz spike-and-wave discharge seen on electroencephalogram (EEG) during absence seizures. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AC - Oxazolidine derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent
dimethisterone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
Fluphenazine enanthate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
Thial-1-Propene-1-thiol S-oxide
Lachrymatory factor of onion (Allium cepa). Thial-1-Propene-1-thiol S-oxide is found in garden onion and onion-family vegetables. Thial-1-Propene-1-thiol S-oxide is found in garden onion. Lachrymatory factor of onion (Allium cepa).
Cucurbic acid
6-Epi-7-isocucurbic acid is found in nuts. 6-Epi-7-isocucurbic acid is a constituent of Vicia faba and Juglans regia (walnut). Constituent of Vicia faba and Juglans regia (walnut). 6-Epi-7-isocucurbic acid is found in pulses, nuts, and rye.
delta-Carotene
delta-Carotene (CAS: 472-92-4), also known as epsilon,psi-carotene, belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Thus, delta-carotene is considered to be an isoprenoid lipid molecule. delta-Carotene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Found in carrots and tomatoes
Cucurbitacin C
Cucurbitacin C is found in cucumber. Cucurbitacin C is a constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber) Constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber). Cucurbitacin C is found in cucumber and fruits.
Croton factor F1
D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters
Arbusculin A
A sesquiterpene lactone isolated from Saussureae Radix and has been shown to exhibit inhibitory activity against melanogenesis.
Melampodin A
Epilubimin
Stress product from potato tubers. Lubimin is found in eggplant and potato. Lubimin is found in eggplant. Stress product from potato tuber
Rishitin
Constituent of the tubers of white potatoes (Solanum subspecies) infected by Phytophthora infestans. Rishitin is found in many foods, some of which are pepper (c. annuum), yellow bell pepper, red bell pepper, and garden tomato (variety). Rishitin is found in alcoholic beverages. Rishitin is a constituent of the tubers of white potatoes (Solanum species) infected by Phytophthora infestans
2-hydroxycyclohexane-1-carbonyl-CoA
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 2-hydroxycyclohexane-1-carboxylic acid.
Strobopinin
A dihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 5 and 7 and a methyl group at position 6 respectively.
prontosil
A diphenyldiazene compound having two amino substituents at the 2- and 4-positions and an aminosulphonyl substituent at the 4-position. It was the first antibacterial drug, (introduced 1935) and the first of the sulfonamide antibiotics. C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent
1,3,5-Trihydroxyxanthone
A member of the class of xanthones that is xanthone substituted by hydroxy groups at positions 1, 3 and 5. It has been isolated from Anaxagorea luzonensis.
Lunularic acid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
Supinidine
Supinidine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Supinidine? can be found in borage, which makes supinidine? a potential biomarker for the consumption of this food product.
Dihydroconiferyl alcohol
Dihydroconiferyl alcohol, also known as 3-(4-guaiacyl)propanol or 3-(4-hydroxy-3-methoxyphenyl)-propan-1-ol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Dihydroconiferyl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydroconiferyl alcohol can be found in lettuce and romaine lettuce, which makes dihydroconiferyl alcohol a potential biomarker for the consumption of these food products. Dihydroconiferyl alcohol is a cell division factor that can be found in pring sap of Acer pseudoplatanus L. Dihydroconiferyl alcohol can stimulate growth of soybean callus[1].
Phaseollinisoflavan
Phytoalexin from Phaseolus vulgaris (kidney bean), other Phaseolus subspecies and Glycyrrhiza glabra (licorice). Phaseollinisoflavan is found in many foods, some of which are green bean, yellow wax bean, herbs and spices, and common bean. Phaseollinisoflavan is found in common bean. Phytoalexin from Phaseolus vulgaris (kidney bean), other Phaseolus species and Glycyrrhiza glabra (licorice
Yatein
Dihydroanhydropodorhizol is a member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively. It has a role as a plant metabolite. It is a lignan, a butan-4-olide, a member of methoxybenzenes and a member of benzodioxoles. Yatein is a natural product found in Austrocedrus chilensis, Podolepis canescens, and other organisms with data available. A member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively.
Chlorpromazine-N-oxide
Chlorpromazine-N-oxide is a metabolite of chlorpromazine. Chlorpromazine (as chlorpromazine hydrochloride, abbreviated CPZ; marketed in the United States as Thorazine and elsewhere as Largactil) is a typical antipsychotic. First synthesized on December 11, 1950, chlorpromazine was the first drug developed with specific antipsychotic action, and would serve as the prototype for the phenothiazine class of drugs, which later grew to comprise several other agents. (Wikipedia)
Amdro
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4856; ORIGINAL_PRECURSOR_SCAN_NO 4854 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4845; ORIGINAL_PRECURSOR_SCAN_NO 4843 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4856 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4880; ORIGINAL_PRECURSOR_SCAN_NO 4878 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9324; ORIGINAL_PRECURSOR_SCAN_NO 9322 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9337; ORIGINAL_PRECURSOR_SCAN_NO 9336 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9290; ORIGINAL_PRECURSOR_SCAN_NO 9289 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4940; ORIGINAL_PRECURSOR_SCAN_NO 4938 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4851; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9266; ORIGINAL_PRECURSOR_SCAN_NO 9265 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9299; ORIGINAL_PRECURSOR_SCAN_NO 9298 CONFIDENCE standard compound; INTERNAL_ID 350; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9304; ORIGINAL_PRECURSOR_SCAN_NO 9303
1,3,6,8-TCDD
D009676 - Noxae > D013723 - Teratogens > D000072317 - Polychlorinated Dibenzodioxins
Oligomycin B
An oligomycin with formula C45H72O12 that is oligomycin A in which the spirocyclic ring bearing the 2-hydroxypropyl substituent has been substituted by an oxo group at the carbon which is directly attached to the spirocentre. It is a nonselective inhibitor of the mitochondrial F1F0 ATP synthase. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins
1-Deoxy-D-xylulose 5-phosphate
1-Deoxy-D-xylulose 5-phosphate is a substrate for 2,4-dienoyl-CoA reductase (mitochondrial). [HMDB]. 1-Deoxy-D-xylulose 5-phosphate is found in many foods, some of which are jackfruit, dandelion, italian sweet red pepper, and summer grape. 1-Deoxy-D-xylulose 5-phosphate is a substrate for 2,4-dienoyl-CoA reductase (mitochondrial). It has been found to be a metabolite of Escherichia and Streptomyces (PMID: 10648511; PMID: 9371765).
Nereistoxin
D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins
Pepsinostreptin
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D010436 - Pepstatins
R-Soterenol
C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator
Narbonolide
A 14-membererd macrolide containing seven stereocentres carrying one ethyl, one hydroxy and five methyl substituents. It is the aglycone of the antibiotic narbonomycin and an intermediate in the biosynthesis of pikromycin.
Luteoliflavan
A tetrahydroxyflavan in which the four hydroxy groups are located at positions 3, 4, 5 and 7.
Cyclohexyl acetate
Cyclohexyl acetate, also known as adronal acetate, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Cyclohexyl acetate is a sweet, ethereal, and fruity tasting compound. Cyclohexyl acetate has been detected, but not quantified, in several different foods, such as brassicas, onion-family vegetables, pulses, and soy beans. Cyclohexyl acetate is a flavouring agent. It is found in many foods, some of which are pulses, soy bean, brassicas, and onion-family vegetables.
Jadomycin B
A jadomycin that is jadomycin A in which the phenolic hydroxy group at position 12 has been converted to the corresponding 2,6-dideoxy-alpha-L-ribo-hexopyranoside, isolated from Streptomyces venezuelae. It exists as a diastereoisomeric mixture consisting of both 3aS and 3aR isomers.
Eryped
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Same as: D01361 Erythromycin Ethylsuccinate is an antibiotic useful for the treatment of a number of bacterial infections, has an antimicrobial spectrum similar to or slightly wider than that of penicillin. Erythromycin Ethylsuccinate has antiviral activity against HIV-1.
Spiramycin II
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007933 - Leucomycins A macrolide antibiotic produced by various Streptomyces species. Same as: D02420
NS-102
NS-102 is a selective kainate (GluK2) receptor antagonist. NS-102 is a potent GluR6/7 receptor antagonist[1][2][3].
DG(16:0/18:1(9Z)/0:0)
DG(16:0/18:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:0/18:1(9Z)/0:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(16:0/18:1(9Z)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/18:1(9Z)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
Argiopin
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids
2-Naphthaldehyde
This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.
m-Cresotic acid
A monohydroxybenzoic acid consisting of salicylic acid having a methyl group at the 4-position.
Phenyl salicylate
Phenyl salicylate, also known as salol or musol, belongs to the class of organic compounds known as depsides and depsidones. These are polycyclic compounds that is either a polyphenolic compound composed of two or more monocyclic aromatic units linked by an ester bond (depside), or a compound containing the depsidone structure (depsidone). Phenyl salicylate is a mild, sweet, and balsam tasting compound. Phenyl salicylate is a potentially toxic compound. Phenyl salicylate is used as a food additive ("EAFUS: Everything Added to Food in the United States. "). It is hydrolyzed to salicylic acid . It is used for the treatment of inflammation in the lower urinary tract. CONFIDENCE standard compound; INTERNAL_ID 1138; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4583; ORIGINAL_PRECURSOR_SCAN_NO 4581 CONFIDENCE standard compound; INTERNAL_ID 1138; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1138; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4560; ORIGINAL_PRECURSOR_SCAN_NO 4559 CONFIDENCE standard compound; INTERNAL_ID 1138; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4585; ORIGINAL_PRECURSOR_SCAN_NO 4582 CONFIDENCE standard compound; INTERNAL_ID 1138; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4541; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 1138; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4529; ORIGINAL_PRECURSOR_SCAN_NO 4528 D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals ATC code: G04BX12
2,2',4,4',6,6'-Hexachlorobiphenyl
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Dimethyl adipate
Dimethyl adipate belongs to the class of organic compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Dimethyl adipate is a potentially toxic compound. Solvent/diluent for flavouring agents [CCD]
Oxylone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D04221
8(R)-Hydroperoxylinoleic acid
8(R)-hydroperoxylinoleic acid (8(R)-EPODE) is an oxidized product of linoleic acid. Oxidized lipids such as 8(R)-HPODE can decrease cellular proteoglycan metabolism in endothelial monolayers and alter mRNA levels of major specific proteoglycans in a concentration-dependent manner. This may have implications in lipid-mediated disruption of endothelial barrier function and atherosclerosis. (PMID: 8645361, 9507987).
17beta-Acetylestradiol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones β-Estradiol 17-acetate is a metabolite of estradiol. Target: Others β-Estradiol 17-acetate is a metabolite of estradiol.
4a-Hydroxytetrahydrobiopterin
Tetrahydrobiopterin (BH4) is essential for catalyzing the conversion of phenylalanine into tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin (CAS: 70110-58-6) intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both be derived from alternate breakdown routes of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin (PMID: 8323303). Tetrahydrobiopterin (BH4) is essential to catalyze the conversion of phenylalanine to tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both derive from alternate routes of breakdown of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin. (PMID 8323303) [HMDB]
Episterol
Episterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, episterol is considered to be a sterol lipid molecule. Episterol is involved in the biosynthesis of steroids. Episterol is converted from 24-methylenelophenol. Episterol is converted into 5-dehydroepisterol by lathosterol oxidase (EC 1.14.21.6). Episterol is involved in the biosynthesis of steroids. Episterol is converted from 24-Methylenelophenol. Episterol is converted to 5-Dehydroepisterol by lathosterol oxidase [EC:1.14.21.6]. [HMDB]. Episterol is found in many foods, some of which are common chokecherry, eggplant, wax gourd, and red huckleberry.
3-Dehydroteasterone
Constituent of wheat grains Triticum aestivum. 3-Dehydroteasterone is found in many foods, some of which are american cranberry, calabash, spearmint, and quinoa. 3-Dehydroteasterone is found in cereals and cereal products. 3-Dehydroteasterone is a constituent of wheat grains Triticum aestivum.
all-trans-3,4-didehydrolycopene
All-trans-3,4-didehydrolycopene is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Thus, all-trans-3,4-didehydrolycopene is considered to be an isoprenoid lipid molecule. All-trans-3,4-didehydrolycopene can be found in a number of food items such as kale, giant butterbur, citrus, and ginkgo nuts, which makes all-trans-3,4-didehydrolycopene a potential biomarker for the consumption of these food products.
Chlorobactene
A carotenoid that is 1,2,4-trimethylmenzene in which the hydrogen at position 3 has been replaced by an all-trans-3,7,12,16,20,24-hexamethylpentacosa-1,3,5,7,9,11,13,15,17,19,23-undecaen-1-yl group. Found in photosynthetic green bacteria. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Zeaxanthin diglucoside
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
6-(alpha-D-Glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate
A myo-inositol cyclic phosphate that is 1D-myo-inositol 1,2-cyclic phosphate having an alpha-D-glucosaminyl residue attached at the 6-position.
3-Oxooctadecanoyl-CoA
3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652) [HMDB] 3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652).
Medicocarpin
Isolated from roots of Medicago sativa (alfalfa) and Trifolium repens (white clover). Medicocarpin is found in many foods, some of which are alfalfa, herbs and spices, pulses, and tea. Medicocarpin is found in alfalfa. Medicocarpin is isolated from roots of Medicago sativa (alfalfa) and Trifolium repens (white clover). Medicarpin 3-O-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52766-70-8 (retrieved 2024-08-20) (CAS RN: 52766-70-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Fructoselysine 6-phosphate
An L-lysine derivative having a 6-phosphofructosyl group attached to the side-chain amino group.
Tamoxifen N-oxide
Tamoxifen N-oxide is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)
2-ene-Valproic acid
2-ene-Valproic acid is only found in individuals that have used or taken Valproic Acid.2-ene-Valproic acid is a metabolite of Valproic Acid. 2-ene-valproic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D009676 - Noxae > D013723 - Teratogens
Isodeoxycholic acid
Isodeoxycholic acid is a human fecal bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 3667743, 11316487, 16037564, 12576301, 11907135). Isodeoxycholic acid is a human fecal bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. [Analytical] Sample of 1 micorL methanol solution was flow injected.
7alpha-Hydroxypregnenolone
This compound belongs to the family of Gluco/mineralocorticoids, Progestogins and Derivatives. These are steroids whose structure is based on an hydroxylated prostane moiety. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
5alpha-Pregnan-20alpha-ol-3-one
This compound belongs to the family of Gluco/mineralocorticoids, Progestogins and Derivatives. These are steroids whose structure is based on an hydroxylated prostane moiety.
4'-Hydroxyflavanone
4'-Hydroxyflavanone is an inhibitor of SREBP maturation and lipid synthesis. 4'-Hydroxyflavanone is a synthetic analogue of flavanone, has potential for hepatic steatosis and dyslipidemia research[1]. 4'-Hydroxyflavanone is an inhibitor of SREBP maturation and lipid synthesis. 4'-Hydroxyflavanone is a synthetic analogue of flavanone, has potential for hepatic steatosis and dyslipidemia research[1]. 4'-Hydroxyflavanone is an inhibitor of SREBP maturation and lipid synthesis. 4'-Hydroxyflavanone is a synthetic analogue of flavanone, has potential for hepatic steatosis and dyslipidemia research[1].
Liquiritigenin
4,7-dihydroxyflavanone is a dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. It has a role as a Brassica napus metabolite and a fungal xenobiotic metabolite. It is a dihydroxyflavanone, a polyphenol and a member of 4-hydroxyflavanones. It is functionally related to a flavanone. 4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)- is a natural product found in Pterocarpus marsupium, Pterocarpus macrocarpus, and other organisms with data available. A dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1]. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1].
Galactinol
Galactinol belongs to the class of organic compounds known as O-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via an O-glycosidic bond. Galactinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Galactinol is an intermediate in galactose metabolism. Galactinol is the fourth-to-last step in the synthesis of D-galactose and the third-to-last step in the synthesis of D-glucose and D-fructose. Galactinol is converted from UDP-galactose via the enzyme inositol 3-alpha-galactosyltransferase (EC 2.4.1.123). It is then converted into raffinose via the enzyme raffinose synthase (EC 2.4.1.82). Constituent of sugar-beet juice, castor-oil seed meal and potatoes after cold storage
(E)-1-O-Cinnamoyl-beta-D-glucose
(E)-1-O-Cinnamoyl-beta-D-glucose is found in fruits. (E)-1-O-Cinnamoyl-beta-D-glucose is a constituent of Vaccinium vitis-idaea (cowberry)
CMP-N-glycoloyl-beta-neuraminate(2-)
CMP-N-glycoloyl-beta-neuraminate(2-) is also known as CMP-N-Glycoloyl-beta-neuraminic acid. CMP-N-glycoloyl-beta-neuraminate(2-) is considered to be soluble (in water) and acidic
N-Acetylneuraminic acid 9-phosphate
N-Acetylneuraminic acid 9-phosphate is an intermediate in the synthesis of Acetylneuraminic acid, a process occurring in the cytosolic fraction by the human enzyme N-Acetylneuraminic acid 9-phosphate (Neu5Ac 9-P) synthase, that catalyzes the synthesis of N-Acetylneuraminic acid 9-phosphate, in a reaction by the mechanism of aldol condensation of phosphoenolpyruvate (PEP) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). N-Acetylneuraminic acid 9-phosphate is converted to N-Acetylneuraminic acid by the enzyme N-acetylneuraminate-9-phosphate phosphatase. (PMID: 16503877, 6093772) [HMDB] N-Acetylneuraminic acid 9-phosphate is an intermediate in the synthesis of Acetylneuraminic acid, a process occurring in the cytosolic fraction by the human enzyme N-Acetylneuraminic acid 9-phosphate (Neu5Ac 9-P) synthase, that catalyzes the synthesis of N-Acetylneuraminic acid 9-phosphate, in a reaction by the mechanism of aldol condensation of phosphoenolpyruvate (PEP) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). N-Acetylneuraminic acid 9-phosphate is converted to N-Acetylneuraminic acid by the enzyme N-acetylneuraminate-9-phosphate phosphatase. (PMID: 16503877, 6093772).
7b,12a-Dihydroxycholanoic acid
7beta,12alpha-Dihydroxycholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
(2E)-Octenoyl-CoA
(2E)-Octenoyl-CoA is the main metabolite produced in medium-chain acyl-CoA dehydrogenase (EC 1.3.99.3, MCAD) deficiency; however the product of the enzymatic reaction is not directly detected in several methods for screening of inborn errors of fatty acid oxidation. In order to aid the timely follow-up of screening results that suggest abnormalities in MCAD, rapid and simple confirmatory tests for the enzyme activity and/or gene mutation analysis should be available. Medium-chain fatty acyl-CoA dehydrogenase (MCAD) catalyzes the conversion of different chain length fatty acyl- CoAs into their corresponding trans-enoyl-CoA moieties via two consecutive sequences of steps. The first step involves the concerted abstraction of a proton and a hydride ion from the a- and 8-carbon chains of the fatty acyl-CoA substrates, concomitant with the reduction of the enzyme (E)-bound FAD to FADH2. The reoxidation of EFADH2, to propagate further rounds of catalysis, is accomplished via transfer of electrons to a variety of organic electron acceptors; the natural electron acceptor for this process, under physiological conditions, is the electron-transferring flavoprotein. Of the different chain length fatty acyl-CoA substrates, octanoyl-CoA/octenoyl-CoA have been known as the most efficient (and physiological) substrates for the medium-chain fatty acyl-CoA dehydrogenase (MCAD)-catalyzed reaction. (PMID: 16046200, 1390638, 8038175). (2E)-Octenoyl-CoA is the main metabolite produced in medium-chain acyl-CoA dehydrogenase (EC 1.3.99.3, MCAD) deficiency; however the product of the enzymatic reaction is not directly detected in several methods for screening of inborn errors of fatty acid oxidation. In order to aid the timely follow-up of screening results that suggest abnormalities in MCAD, rapid and simple confirmatory tests for the enzyme activity and/or gene mutation analysis should be available.
3'-phosphonato-5'-adenylyl Sulfate(4-)
3-phosphonato-5-adenylyl Sulfate(4-) is also known as 3-Phosphonatoadenosine 5-phosphosulfate or PAPS. 3-phosphonato-5-adenylyl Sulfate(4-) is considered to be slightly soluble (in water) and acidic. 3-phosphonato-5-adenylyl Sulfate(4-) can be found throughout numerous foods such as Pigeon pea, New Zealand spinachs, White lupines, and Allspices
4-Androsten-4-ol-3,17-dione
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
2-[6-Fluoro-2-methyl-3-[(4-methylsulfinylphenyl)methylidene]-1-indenyl]acetic acid
6-Ethylchenodeoxycholic acid
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
BENZOYLARGININE NITROANILIDE
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004396 - Coloring Agents
S-DNP-Glutathione
Rifamycins
Soterenol monohydrochloride
C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator
Benzenesulfonamide, 5-(2-((2-(2-ethoxyphenoxy)ethyl)amino)propyl)-2-methoxy-
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists
Risbitin
Risbitin, also known as rishitin, (1s-(1alpha,2beta,3alpha,7beta))-isomer, is a member of the class of compounds known as 1,2-diols. 1,2-diols are polyols containing an alcohol group at two adjacent positions. Risbitin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Risbitin can be found in potato, which makes risbitin a potential biomarker for the consumption of this food product.
Gibberellin A4
Gibberellin a4 is a member of the class of compounds known as c19-gibberellin 6-carboxylic acids. C19-gibberellin 6-carboxylic acids are c19-gibberellins with a carboxyl group at the 6-position. Gibberellin a4 is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a4 can be found in a number of food items such as passion fruit, dandelion, mamey sapote, and vanilla, which makes gibberellin a4 a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
Gibberellin A24
Gibberellin a24 is a member of the class of compounds known as c20-gibberellin 6-carboxylic acids. C20-gibberellin 6-carboxylic acids are c20-gibberellins with a carboxyl group at the 6-position. Gibberellin a24 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a24 can be found in a number of food items such as root vegetables, breadnut tree seed, lime, and carob, which makes gibberellin a24 a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
decanoyl-CoA
Decanoyl-coa, also known as 10:0-coa or decanoyl-coenzyme a, is a member of the class of compounds known as 2,3,4-saturated fatty acyl coas. 2,3,4-saturated fatty acyl coas are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain. Thus, decanoyl-coa is considered to be a fatty ester lipid molecule. Decanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Decanoyl-coa can be synthesized from decanoic acid and coenzyme A. Decanoyl-coa can also be synthesized into 3-oxodecanoyl-CoA. Decanoyl-coa can be found in a number of food items such as swede, triticale, ohelo berry, and moth bean, which makes decanoyl-coa a potential biomarker for the consumption of these food products. Decanoyl-coa may be a unique S.cerevisiae (yeast) metabolite.
oxalosuccinate
Oxalosuccinic acid, also known as oxalosuccinate or 1-oxopropane-1,2,3-tricarboxylate, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Oxalosuccinic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Oxalosuccinic acid can be found in a number of food items such as japanese chestnut, poppy, wax apple, and hyssop, which makes oxalosuccinic acid a potential biomarker for the consumption of these food products. Oxalosuccinic acid exists in all living species, ranging from bacteria to humans. Oxalosuccinic acid/oxalosuccinate is an unstable 6-carbon intermediate in the tricarboxylic acid cycle. Its an alpha-keto compound, formed during the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, which is catalyzed by the enzyme isocitrate dehydrogenase. Oxalosuccinate never leaves the active site of the enzyme, however; its unstable and immediately undergoes decarboxylation to produce the 5-carbon compound, alpha-ketoglutarate .
Henine
Lucidin is a dihydroxyanthraquinone. Lucidin is a natural product found in Rubia argyi, Ophiorrhiza pumila, and other organisms with data available. Lucidin (NSC 30546) is a natural component of madder and can induce mutations in bacterial and mammalian cells. Lucidin (NSC 30546) is a natural component of madder and can induce mutations in bacterial and mammalian cells.
3,5-Dibromo-4-hydroxybenzoic acid
A monohydroxybenzoic acid that is p-salicylic acid with bromo- substituents at C-3 and C-5 of the benzene ring.
(S)-3-Hydroxy-N-methylcoclaurine
An isoquinoline alkaloid having a tetrahydroisoquinoline core with 3,4-dihydroxybenzyl, methoxy and hydroxy groups at the 1-, 6- and 7-positions respectively; major species at pH 7.3.
Pseudobaptigenin
A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone and in which the phenyl group at position 3 is replaced by a 1,3-benzodioxol-5-yl group.
Decanoyl-CoA (n-C10:0CoA)
Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4-Androsten-4-ol-3,17-dione
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
guaiacyl propanol
Dihydroconiferyl alcohol is a member of class of phenols that is 2-methoxyphenol substituted by a 3-hydroxypropyl group at position 4. It has a role as a plant metabolite. It is a primary alcohol and a eugenol. Dihydroconiferyl alcohol is a natural product found in Euterpe oleracea, Broussonetia papyrifera, and other organisms with data available. See also: Acai fruit pulp (part of). A member of class of phenols that is 2-methoxyphenol substituted by a 3-hydroxypropyl group at position 4. Dihydroconiferyl alcohol is a cell division factor that can be found in pring sap of Acer pseudoplatanus L. Dihydroconiferyl alcohol can stimulate growth of soybean callus[1].
Benzoylecgonine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 2823
Erythromycin Ethylsuccinate
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Same as: D01361 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.195 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.192 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.193 Erythromycin Ethylsuccinate is an antibiotic useful for the treatment of a number of bacterial infections, has an antimicrobial spectrum similar to or slightly wider than that of penicillin. Erythromycin Ethylsuccinate has antiviral activity against HIV-1.
Cephalomannine
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.172 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.307 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.248 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.291 Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog that can be isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2][3][4]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2].
Fenazaquin
CONFIDENCE Reference Standard (Level 1); Source fenazaquin_30102013_12_HCD30_pos.txt
Crocin III
Beta-D-gentiobiosyl crocetin is a dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose. It is a dicarboxylic acid monoester, a glycoside and a disaccharide derivative. It is functionally related to a crocetin and a gentiobiose. It is a conjugate acid of a beta-D-gentiobiosyl crocetin(1-). beta-D-gentiobiosyl crocetin is a natural product found in Gardenia jasminoides, Apis cerana, and Crocus sativus with data available. A dicarboxylic acid monoester resulting from the formal condensation of one of the carboxylic acid groups of crocetin with the anomeric hydroxy group of beta-D-gentiobiose.
12-HETE-[d8]
PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ]; CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0088.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001295.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
RESORCINOL MONOACETATE
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Same as: D02393
FA 6:3;O2
cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2].
Iminoaspartic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids A succinic acid derivative having an imino group at the 2-position.
5-hydroxypentanoyl-CoA
5-hydroxypentanoyl-CoA is an acyl-CoA resulting from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 5-hydroxypentanoic acid. It is functionally related to a pentanoyl-CoA and a 5-hydroxypentanoic acid. It is a conjugate acid of a 5-hydroxypentanoyl-CoA(4-). 5-Hydroxypentanoyl-coenzyme A is a thioester compound that plays a crucial role in various metabolic pathways, particularly in the biosynthesis of certain natural products and in the metabolism of fatty acids. It is formed by the condensation of 5-hydroxypentanoic acid with coenzyme A (CoA), which is a carrier molecule involved in the transfer of acyl groups. Chemically, 5-hydroxypentanoyl-CoA consists of a 5-hydroxypentanoyl group, which is a five-carbon acyl chain with a hydroxyl group attached to the fifth carbon, and the CoA moiety. The CoA part of the molecule includes a pantothenic acid (vitamin B5) derivative, a pyrophosphate group, and an adenine nucleotide. The acyl group is attached to the thiol (-SH) group of the CoA via a thioester linkage, which is a high-energy bond. In biological systems, 5-hydroxypentanoyl-CoA is an intermediate in the biosynthesis of polyketides, a large class of natural products that include many pharmaceuticals and other bioactive compounds. It can also be involved in the metabolism of fatty acids, where it may be converted into other compounds or used as a substrate for energy production. The presence of the hydroxyl group in the acyl chain of 5-hydroxypentanoyl-CoA confers specific chemical properties and reactivity to the molecule, making it a versatile building block in various biochemical pathways. Its role in these pathways highlights the importance of understanding its synthesis, metabolism, and regulation in biological systems.
CoA 7:1;O
CoA 18:1;O
A 3-oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-oxooctadecanoic acid.
anthraniloyl-CoA
A member of the class of benzoyl-CoAs having 2-aminobenzoyl as the S-acyl group.
CoA 10:0
CoA 8:1
cucurbitacin c
ST 21:2;O4
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
beta-Cubebene
A tricyclic sesquiterpene, a constituent of the leaf oil cubebene obtained from a variety of species of flowering plant.
all-trans-pentaprenyl diphosphate
All-trans-hexaprenyl diphosphate
carthamidin
A tetrahydroxyflavanone that is (S)-naringenin substituted by an additional hydroxy group at position 6.
β-Estradiol 17-acetate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones β-Estradiol 17-acetate is a metabolite of estradiol. Target: Others β-Estradiol 17-acetate is a metabolite of estradiol.
7β-Eplerenone Impurity
L-Arabinopyranose
The six-membered ring form of L-arabinose. A D-arabinopyranose with beta-configuration at the anomeric position.
6-Fluoro-2,5-dioxo-2,3-dihydrospiro[chromene-4,4-imidazolidine]-2-carboxamide
Argiotoxin 636
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids
2-(4-Amino-4,6-dimethyl-5-oxooxan-2-yl)oxy-22-(2-amino-2-oxoethyl)-5,15-dichloro-18,32,35,37-tetrahydroxy-19-[[4-methyl-2-(methylamino)pentanoyl]amino]-20,23,26,42,44-pentaoxo-48-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7,13-dioxa-21,24,27,41,43-pentazaoctacyclo[26.14.2.23,6.214,17.18,12.129,33.010,25.034,39]pentaconta-3,5,8,10,12(48),14,16,29(45),30,32,34(39),35,37,46,49-pentadecaene-40-carboxylic acid
Gentiacaulein
A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 2 and 8 and methoxy groups at positions 1 and 6.
CMP-N-glycoloyl-beta-neuraminate(2-)
CMP-N-glycoloyl-beta-neuraminate(2-) is also known as CMP-N-Glycoloyl-beta-neuraminic acid. CMP-N-glycoloyl-beta-neuraminate(2-) is considered to be soluble (in water) and acidic
Pentanoyl-CoA
Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.
Cucurbitacin C
Cucurbitacin C is found in cucumber. Cucurbitacin C is a constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber) Constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber). Cucurbitacin C is found in cucumber and fruits.
(1S)-1-[(2S)-butan-2-yl]-7-hydroxy-5-methyl-2,8,13-trioxo-1,2,8,13-tetrahydro-3aH-benzo[b][1,3]oxazolo[3,2-f]phenanthridin-12-yl 2,6-dideoxy-alpha-L-ribo-hexopyranoside
zeaxanthin bis(beta-D-glucoside)
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Pikrotin
Picrotin is an organic heteropentacyclic compound that is picrotoxinin in which the olefinic double bond has undergone addition of water to give the corresponding tertiary alcohol. It is the less toxic component of picrotoxin, lacking GABA activity. It has a role as a plant metabolite. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone, a diol and a picrotoxane sesquiterpenoid. It is functionally related to a picrotoxinin. Picrotin is a natural product found in Dendrobium moniliforme and Anamirta cocculus with data available. An organic heteropentacyclic compound that is picrotoxinin in which the olefinic double bond has undergone addition of water to give the corresponding tertiary alcohol. It is the less toxic component of picrotoxin, lacking GABA activity. C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2]. Picrotin is an active compound, also is one of the composition of picrotoxin (an antagonist of GABAA receptors (GABAARs) and glycine receptors (GlyRs)). Picrotin has sensitivity for GlyRs/b> with IC50 values range from 5.2 μM to 106 μM. Picrotin can be used for the research of neurotransmission[1][2].
Didrovaltrat
Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
paramethadione (500 mg)
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AC - Oxazolidine derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent
4-Chlorobenzoic acid
A monochlorobenzoic acid carrying a chloro substituent at position 4.
Ceforanide
A second-generation cephalosporin antibiotic with {[1-(carboxymethyl)-1H-tetrazol-5-yl]sulfanyl}methyl and 2-(aminomethyl)phenylacetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It is effective against many coliforms, including Escherichia coli, Klebsiella, Enterobacter and Proteus, and most strains of Salmonella, Shigella, Hemophilus, Citrobacter and Arizona species. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
fluphenazine enanthate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
11-Aminoundecanoic acid
11-Aminoundecanoic acid is an organic compound with the formula H2N(CH2)10CO2H. This white solid is classified as an amine and a fatty acid. 11-Aminoundecanoic acid is a precursor to Nylon-11.[1] As practiced by Arkema, 11-aminoundecanoic acid is prepared industrially from undecylenic acid, which is derived from castor oil.[2] The synthesis proceeds in four separate reactions: 1. Transesterification of castor oil to methyl ricinoleate: Crude castor oil consists of about 80\% triglycerides, from the ricinoleic acid, itself representing about 90\% of the oil.[3] It is quantitatively transesterified with methanol to methyl ricinoleate (the methyl ester of ricinoleic acid) in the presence of the basic sodium methoxide at 80 °C within 1 h reaction time in a stirred reactor. At the end of the reaction, the resulting glycerol separates and the liquid methyl ester is washed with water to remove residual glycerol. 2. Pyrolysis of methylricinoleate to heptanal and methyl undecenoate: Methylricinoleate is evaporated at 250 °C, mixed with hot steam (600 °C) in a 1:1 ratio and decomposed in a cracking furnace at 400 - 575 °C at a retention time of about 10 seconds into its cleavage products heptanal and methyl undecenoate. The cleavage of the aliphatic chain occurs in this variant of the steam cracking selectively between the hydroxymethylene and the allyl-methylene group. Besides heptanal and methyl undecenoate, a mixture of methyl esters of saturated and unsaturated C18-carboxylic acids is obtained. This mixture is known under the trade name Esterol and is used as a lubricant additive. 3. Hydrolysis of methyl undecenoate to 10-undecenoic acid The hydrolysis of the methyl ester with sodium hydroxide proceeds at 25 °C within 30 min with quantitative yield. After acidification with hydrochloric acid, solid 10-undecenoic acid (undecylenic acid) is obtained. 4. Hydrobromination of 10-undecenoic acid to 11-bromoundecanoic acid The undecenoic acid is dissolved in toluene and, in the presence of the radical initiator benzoyl peroxide (BPO), gaseous hydrogen bromide is added, in contrary to the Markovnikov rule ("anti-Markovnikov"). When cooled to 0 °C, the fast and highly exothermic reaction produces 11-bromoundecanoic acid in 95\% yield - the Markovnikov product 10-bromoundecanoic acid is produced in small quantities as a by-product. Toluene and unreacted hydrogen bromide are extracted under reduced pressure and reused. 5. Bromine exchange of 11-bromoundecanoic acid to 11-aminoundecanoic acid 11-Bromodecanoic acid is mixed at 30 °C with a large excess of 40\% aqueous ammonia solution. When the reaction is complete, water is added and the mixture is heated to 100 °C to remove the excess ammonia. The acid can be recrystallized from water. For further purification, the hydrochloride of 11-aminoundecanoic acid, which is available by acidification with hydrochloric acid, can be recrystallized from a methanol/ethyl acetate mixture. Aminoundecanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2432-99-7 (retrieved 2024-07-01) (CAS RN: 2432-99-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Pyrazosulfuron-ethyl
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
decanoyl-CoA
A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of decanoic acid.
MALVALIC ACID
A long-chain cyclopropenyl fatty acid comprising 8-heptadecenoic acid having a cyclopropene ring arising from the linking of C-8 and C-9 by a methylene substituent.
butirosin A
A butirosin that consists of neamine in which is substituted at position 2 by a beta-D-xylofuranosyl and at position 4 by an (S)-2-hydroxy-4-aminobutyryl group. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
Oxalosuccinic acid
A tricarboxylic acid consisting of 2-oxoglutaric acid having a further carboxy group at the 3-position. It is a substrate of the citric acid cycle.
O-Methylsterigmatocystin
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Phenylacetyl-CoA
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of phenylacetic acid.
Xanthosine triphosphate
The xanthosine 5-phosphate in which the 5-phosphate is a triphosphate group.
(3R)-3-Hydroxy-3-methyl-5-(phosphonooxy)pentanoic acid
2,3-cyclic ump
A 2,3-cyclic pyrimidine nucleotide in which uridine is the parent nucleoside.
N-Hydroxy-4-aminobiphenyl
A N-substituted amine that is 4-aminobiphenyl substituted by a hydroxy group at the nitrogen atom.
trans-oct-2-enoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-oct-2-enoic acid.
2-amino-3-(3-oxoprop-1-en-1-yl)but-2-enedioic acid
The cis,cis-isomer of 2-amino-3-(3-oxoprop-1-enyl)but-2-enedioic acid.
2beta,3beta,5beta,14,20,22R,25-heptahydroxycholest-7-en-6-one
3-hydroxyisovaleryl-CoA
A hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-hydroxyisovaleric acid.
4-amino-2-methyl-5-phosphooxymethylpyrimidine
An aminopyrimidine having the amino group at the 4-position together with methyl and phosphooxymethyl groups at the 2- and 5-positions respectively.
cis-2-hydroxypenta-2,4-dienoic acid
The cis-isomer of 2-hydroxypenta-2,4-dienoic acid.
2-Deoxy-D-ribofuranose 5-phosphate
The furanose form of 2-deoxy-D-ribose 5-phosphate.
pentanoyl-CoA
A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of pentanoic acid.
4-Methyl-3-hydroxyanthranilic acid
An aminobenzoic acid that is anthranilic acid substituted by a hydroxy group at position 3 and a methyl group at position 4.
Chloroeremomycin
A complex glycopeptide antibiotic that is isolated from Amycolatopsis orientalis.
7alpha-Hydroxypregnenolone
A 20-oxo steroid that is pregnenolone carrying an additional hydroxy substituent at the 7alpha-position. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
CMP-N-Glycoloyl-beta-neuraminic acid
A CMP-N-acyl-beta-neuraminic acid in which the N-acyl group is glycoloyl.
2-Amino-4-oxo-6-acetyl-7,8-dihydro-3H,9H-pyrimidodiazepine
A member of the class of pyrimidodiazepine 3,7,8,9-tetrahydropyrimido[4,5-b][1,4]diazepin-4-one bearing amino and acetyl substituents at positions 2 and 6 respectively.
Phenyl salicylate
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals ATC code: G04BX12
1-Deoxy-D-xylulose 5-phosphate
The 5-phospho derivative of 1-deoxy-D-xylulose.
S(-)-3-morpholino-4-(3-tert-butylamino-2-hydroxypropoxy)-1,2,5-thiadiazole
2-Naphthaldehyde
A naphthaldehyde that is naphthalene substituted by a formyl group at position 2.
Nirvanol
D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
Nereistoxin
Toxin isolated from marine segmented worm, Lumbriconereis heterodopa. It is also the active insecticide of the proinsecticide thiocyclam. D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins
Benzenesulfonamide, 5-(2-((2-(2-ethoxyphenoxy)ethyl)amino)propyl)-2-methoxy-
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists
2-Amino-6-(1,2-dihydroxypropyl)-4a-hydroxy-1,5,6,7-tetrahydropteridin-4-one
Tamoxifen N-oxide
A tertiary amine oxide resulting from the formal oxidation of the amino group of tamoxifen.
Chlorpromazine N-oxide
An organochlorine compound that is chlorpromazine in which the acyclic tertiary amino group has been converted into the corresponding N-oxide.
11alpha-hydroxyprogesterone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins
DL-Pantolactone
DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2].
DL-m-Tyrosine
DL-m-Tyrosine shows effects on Arabidopsis root growth. Carbidopa combination with DL-m-tyrosine shows a potent hypotensive effect[1][2].