Gene Association: C1S

UniProt Search: C1S (PROTEIN_CODING)
Function Description: complement C1s

found 48 associated metabolites with current gene based on the text mining result from the pubmed database.

Reserpine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-[(3,4,5-trimethoxyphenyl)carbonyloxy]-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4,6,8-tetraene-19-carboxylate

C33H40N2O9 (608.2734)


Reserpine appears as white or cream to slightly yellow crystals or crystalline powder. Odorless with a bitter taste. (NTP, 1992) Reserpine is an alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. It has a role as an antihypertensive agent, a first generation antipsychotic, an adrenergic uptake inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an environmental contaminant, a xenobiotic and a plant metabolite. It is an alkaloid ester, a methyl ester and a yohimban alkaloid. It is functionally related to a reserpic acid. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. The FDA withdrew its approval for the use of all oral dosage form drug products containing more than 1 mg of reserpine. Reserpine is a Catecholamine-depleting Sympatholytic. The physiologic effect of reserpine is by means of Decreased Sympathetic Activity. Reserpine is an oral antihypertensive medication that acts through inhibitor of alpha-adrenergic transmission and was one of the first antihypertensive agents introduced into clinical practice. Despite widescale use for many years, reserpine has not been shown to cause clinically apparent liver injury. Reserpine is a natural product found in Rauvolfia yunnanensis, Alstonia constricta, and other organisms with data available. Reserpine is an alkaloid, derived from the roots of Rauwolfia serpentine and vomitoria, and an adrenergic uptake inhibitor with antihypertensive effects. Reserpine is lipid soluble and can penetrate blood-brain barrier. This agent binds and inhibits catecholamine pump on the storage vesicles in central and peripheral adrenergic neurons, thereby inhibiting the uptake of norepinephrine, dopamine serotonin into presynaptic storage vesicles. This results in catecholamines and serotonin lingering in the cytoplasm where they are destroyed by intraneuronal monoamine oxidase, thereby causing the depletion of catecholamine and serotonin stores in central and peripheral nerve terminals. Depletion results in a lack of active transmitter discharge from nerve endings upon nerve depolarization, and consequently leads to a decreased heart rate and decreased arterial blood pressure as well as sedative effects. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. See also: Hydroflumethiazide; reserpine (component of); Polythiazide; reserpine (component of); Chlorthalidone; reserpine (component of) ... View More ... An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators C1744 - Multidrug Resistance Modulator CONFIDENCE standard compound; EAWAG_UCHEM_ID 2682 [Raw Data] CBA02_Reserpine_pos_30eV.txt [Raw Data] CBA02_Reserpine_pos_10eV.txt [Raw Data] CBA02_Reserpine_pos_20eV.txt [Raw Data] CBA02_Reserpine_pos_40eV.txt [Raw Data] CBA02_Reserpine_pos_50eV.txt Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2). Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2).

   

L-Phenylalanine

(2S)-2-amino-3-phenylpropanoic acid

C9H11NO2 (165.079)


Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].

   

2,2':5',2'-Terthiophene

2,2 inverted exclamation mark :5 inverted exclamation mark ,2 inverted exclamation mark inverted exclamation mark -Terthiophene

C12H8S3 (247.9788)


2,2:5,2-terthiophene is a terthiophene. 2,2:5,2-Terthiophene is a natural product found in Schoenia cassiniana, Lawrencella rosea, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.

   

CleomiscosinA

9H-pyrano[2,3-f]-1,4-benzodioxin-9-one, 2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-, (2R,3R)-

C20H18O8 (386.1002)


Cleomiscosin A is an organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. It has a role as a metabolite and an anti-inflammatory agent. It is a delta-lactone, an aromatic ether, an organic heterotricyclic compound, a member of phenols and a primary alcohol. Cleomiscosin A is a natural product found in Hibiscus syriacus, Artemisia minor, and other organisms with data available. An organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2]. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2].

   

(R)-Menthofuran

(6R)-3,6-Dimethyl-4,5,6,7-tetrahydro-1-benzofuran

C10H14O (150.1045)


Menthofuran is a monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6. It has a role as a nematicide and a plant metabolite. It is a member of 1-benzofurans and a monoterpenoid. Menthofuran is a natural product found in Methanobacterium and Mentha pulegium with data available. Constituent of peppermint oil (Mentha piperita) and other Mentha subspecies as minor but essential organoleptic. It is used in peppermint oil formulations. (R)-Menthofuran is found in mentha (mint), orange mint, and herbs and spices. (R)-Menthofuran is found in herbs and spices. (R)-Menthofuran is a constituent of peppermint oil (Mentha piperita) and other Mentha species as minor but essential organoleptic. (R)-Menthofuran is used in peppermint oil formulations A monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6.

   

5-Hydroxylysine

alpha,epsilon-Diamino-delta-hydroxycaproic acid

C6H14N2O3 (162.1004)


5-Hydroxylysine (Hyl), also known as hydroxylysine or 5-Hydroxy-L-lysine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. 5-Hydroxylysine is a hydroxylated derivative of the amino acid lysine that is present in certain collagens, the chief structural protein of mammalian skin and connective tissue. 5-Hydroxylysine arises from a post-translational hydroxy modification of lysine and is biosynthesized from lysine via oxidation by lysyl hydroxylase enzymes. 5-Hydroxylysine can then undergo further modification by glycosylation, giving rise to galactosyl hydroxylysine (GH) and glucosylgalactosyl hydroxylysine (GGH). These glycosylated forms of hydroxylysine contribute to collagen’s unusual toughness and resiliency. The monoglycosylated, galactosyl-hydroxylysine is enriched in bone compared with the disaccharide form, glucosyl-galactosyl-hydroxylysine, which is the major form in skin. 5-Hydroxylysine exists in all eukaryotes, ranging from yeast to humans. It was first discovered in 1921 by Donald Van Slyke. Free forms of hydroxylysine arise through proteolytic degradation of collagen. Urinary excretion of 5-Hydroxylysine and its glycosides can be used as an index of collagen degradation, with high levels being indicative of more rapid or extensive collagen degradation (often seen in patients with thermal burns, Pagets disease of bone or hyperphosphatasia) (PMID: 404321). One of the natural protein-bound amino acids. Occurs free in plant tissues, e.g. Medicago sativa (alfalfa)

   

Edetic Acid

2-({2-[bis(carboxymethyl)amino]ethyl}(carboxymethyl)amino)acetic acid

C10H16N2O8 (292.0907)


Edetic Acid is only found in individuals that have used or taken this drug. It is a chelating agent (chelating agents) that sequesters a variety of polyvalent cations. It is used in pharmaceutical manufacturing and as a food additive. [PubChem]The pharmacologic effects of edetate calcium disodium are due to the formation of chelates with divalent and trivalent metals. A stable chelate will form with any metal that has the ability to displace calcium from the molecule, a feature shared by lead, zinc, cadmium, manganese, iron and mercury. The amounts of manganese and iron metabolized are not significant. Copper is not mobilized and mercury is unavailable for chelation because it is too tightly bound to body ligands or it is stored in inaccessible body compartments. The excretion of calcium by the body is not increased following intravenous administration of edetate calcium disodium, but the excretion of zinc is considerably increased. D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants

   

Isoniazid

Acid vanillylidenehydrazide, isonicotinic

C6H7N3O (137.0589)


Isoniazid (also called isonicotinyl hydrazine or INH; sold as Laniazid, Nydrazid) is an organic compound that is the first-line antituberculosis medication in prevention and treatment. First discovered in 1912 as an inhibitor of the MAO enzyme, it was first used as an antidepressant, but discontinued due to side effects. In 1951, it was later discovered that isoniazid was effective against TB. Isoniazid is never used on its own to treat active tuberculosis because resistance quickly develops.; Isoniazid is a bactericidal agent active against organisms of the genus Mycobacterium, specifically M. tuberculosis, M. bovis and M. kansasii. It is a highly specific agent, ineffective against other microorganisms. Isoniazid is bactericidal to rapidly-dividing mycobacteria, but is bacteriostatic if the mycobacterium is slow-growing.; Isoniazid is a prodrug and must be activated by bacterial catalase. It is activated by catalase-peroxidase enzyme KatG which couples the isonicotinic acyl with NADH to form isonicotinic acyl-NADH complex. This complex binds tightly to ketoenoylreductase known as InhA, thereby blocking the natural enoyl-AcpM substrate and the action of fatty acid synthase. This process inhibits the synthesis of mycolic acid required for the mycobacterial cell wall. A range of radicals are produced by KatG activation of Isoniazid, including nitric oxide, that has also been shown to be important in the action of another antimycobacterial prodrug PA824. [HMDB] Isoniazid is only found in individuals that have used or taken this drug. It is an antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. [PubChem]Isoniazid is a prodrug and must be activated by bacterial catalase. Specficially, activation is associated with reduction of the mycobacterial ferric KatG catalase-peroxidase by hydrazine and reaction with oxygen to form an oxyferrous enzyme complex. Once activated, isoniazid inhibits the synthesis of mycoloic acids, an essential component of the bacterial cell wall. At therapeutic levels isoniazid is bacteriocidal against actively growing intracellular and extracellular Mycobacterium tuberculosis organisms. Specifically isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. It is the INH-NAD adduct that acts as a slow, tight-binding competitive inhibitor of InhA. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AC - Hydrazides D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites KEIO_ID I066

   

Acrylic acid

Acrylic acid, ca (2:1) salt, dihydrate

C3H4O2 (72.0211)


Polyacrylic acid, sodium salt is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Monomer component of packaging materials for food. Acrylic acid is found in pineapple. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives KEIO_ID A041

   

3-Hydroxyaspartic acid

D-Aspartic acid,3-hydroxy-, (3S)-rel-

C4H7NO5 (149.0324)


A hydroxy-amino acid that is aspartic acid in which one of the methylene hydrogens has been replaced by a hydroxy group. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID H086

   

Adenosine 2'-phosphate

{[(3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-4-hydroxy-5-(hydroxymethyl)oxolan-3-yl]oxy}phosphonic acid

C10H14N5O7P (347.0631)


Adenosine 2-phosphate is converted enzymatically from adenosine 2,3-cyclic phosphate via the enzyme 2,3-cyclic-nucleotide 3-phosphodiesterase (EC 3.1.4.37). In the brain, this enzyme acts on 2,3-cyclic AMP more rapidly than on the UMP or CMP derivatives. In the liver, this enzyme acts on 2,3-cyclic CMP more rapidly than on the purine derivatives; it also hydrolyses the corresponding 3,5-cyclic phosphates, more slowly. This latter enzyme has been called cyclic-CMP phosphodiesterase. (KEGG). This enzyme belongs to the family of hydrolases, specifically those acting on phosphoric diester bonds. The systematic name of this enzyme class is nucleoside-2,3-cyclic-phosphate 2-nucleotidohydrolase. (Wikipedia). Adenosine 2-phosphate is converted enzymatically from adenosine 2,3-cyclic phosphate via the enzyme 2,3-cyclic-nucleotide 3-phosphodiesterase (EC 3.1.4.37). In the brain, this enzyme acts on 2,3-cyclic AMP more rapidly than on the UMP or CMP derivatives. In the liver, this enzyme acts on 2,3-cyclic CMP more rapidly than on the purine derivatives; it also hydrolyses the corresponding 3,5-cyclic phosphates, more slowly. This latter enzyme has been called cyclic-CMP phosphodiesterase. (KEGG) Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2].

   

Benzamidine

Benzamidine hydrochloride hydrate

C7H8N2 (120.0687)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 2169 KEIO_ID B004

   

alpha-Bixin

(2E,4E,6E,8E,10E,12E,14E,16Z,18E)-20-methoxy-4,8,13,17-tetramethyl-20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid

C25H30O4 (394.2144)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Principal colouring matter of Bixa orellana (annatto) seeds [DFC] Principal colouring matter of Bixa orellana (annatto) seeds. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].

   

Isoflurophate

Diisopropylfluorophosphoric acid ester

C6H14FO3P (184.0665)


An irreversible cholinesterase inhibitor with actions similar to those of echothiophate. It is a powerful miotic used mainly in the treatment of glaucoma. Its vapor is highly toxic and it is recommended that only solutions in arachis oil be used therapeutically. (From Martindale, The Extra Pharmacopoeia, 29th ed, p1330) S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Methylamine

Methylamine hydrochloride, 14C-labeled

CH5N (31.0422)


Methylamine occurs endogenously from amine catabolism and its tissue levels increase in some pathological conditions, including diabetes. Interestingly, methylamine and ammonia levels are reciprocally controlled by a semicarbazide-sensitive amine oxidase activity that deaminates methylamine to formaldehyde with the production of ammonia and hydrogen peroxide. Methylamine also targets the voltage-operated neuronal potassium channels, probably inducing release of neurotransmitter(s). Semicarbazide-sensitive amine oxidase (SSAO) catalyzes the deamination of primary amines. Such deamination has been shown capable of regulating glucose transport in adipose cells. It has been independently discovered that the primary structure of vascular adhesion protein-1 (VAP-1) is identical to SSAO. Increased serum SSAO activities have been found in patients with diabetic mellitus, vascular disorders, and Alzheimers disease. The SSAO-catalyzed deamination of endogenous substrates like methylamine led to production of toxic formaldehyde. Chronic elevated methylamine increases the excretion of malondialdehyde and microalbuminuria. Amine oxidase substrates such as methylamine have been shown to stimulate glucose uptake by increasing the recruitment of the glucose transporter GLUT4 from vesicles within the cell to the cell surface. Inhibition of this effect by the presence of semicarbazide and catalase led to the suggestion that the process is mediated by the hydrogen peroxide produced in the oxidation of these amines (PMID: 16049393 , 12686132 , 17406961). Methylamine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Methylamine is a colourless gas derivative of ammonia, but with one H atom replaced by a methyl group. It is the simplest primary amine. It has a strong odor similar to fish. Methylamine is used as a building block for the synthesis of many other commercially available compounds. Hundreds of millions of kilograms are produced annually. Methylamine is found in many foods, some of which are french plantain, tea, barley, and wild celery.

   

Decyl alcohol

N-Decyl alcohol, magnesium salt

C10H22O (158.1671)


1-Decanol, or decyl alcohol, is a straight chain fatty alcohol with ten carbon atoms and the molecular formula CH3(CH2)9OH. It is a colorless viscous liquid that is insoluble in water. 1-Decanol has a strong odour. Decanol is used in the manufacture of plasticizers, lubricants, surfactants and solvents. Decanol causes a high irritability to skin and eyes, when splashed into the eyes it can cause permanent damage. Also inhalation and ingestion can be harmful, it can also function as a narcotic. It is also harmful to the environment. Isolated from plant sources, e.g. citrus oils, apple, coriander, babaco fruit (Carica pentagonia), wines, scallop and other foods

   

Ac-Tyr-OEt

ethyl (2S)-2-acetamido-3-(4-hydroxyphenyl)propanoate

C13H17NO4 (251.1158)


   

Acenaphthoquinone

1,2-Diketoacenaphthene

C12H6O2 (182.0368)


   

Ethylene oxide

Dimethylene oxide

C2H4O (44.0262)


Flavouring ingredient. It is used in food processing as a solubiliser, stabiliser, processing aid, wetting agent, surfactant, defoaming agent and dough conditioner. D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Methylprednisolone acetate

6α-METHYLPREDNISOLONE ACETATE

C24H32O6 (416.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Plicatic acid

Plicatic acid

C20H22O10 (422.1213)


   

Tribenuron methyl

tribenuron-methyl [ANSI]

C15H17N5O6S (395.09)


   

Sodium hydroxide (NaOH)

Sodium hydroxide (NaOH)

HNaO (39.9925)


It is used in food processing as a pH control agent, washing/surface removal agent, clarifying/flocculating agent, oxidising/reducing agent, flavour and flavour modifier, sanitising/fumigating agent, appearance control agent for colours and colour modifiers D009676 - Noxae > D002424 - Caustics Same as: D01169

   

Cytarabine

4-amino-1-[(2R,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one

C9H13N3O5 (243.0855)


Cytarabine, or cytosine arabinoside, a pyrimidine nucleoside analog, is found in mushrooms. Cytarabine is isolated from the mushroom Xerocomus nigromaculatus of unknown palatability. Cytarabine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute myelogenous leukemia and meningeal leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle to stop normal cell development and division. Cytarabine is metabolized intracellularly into its active triphosphate form (cytosine arabinoside triphosphate). This metabolite then damages DNA by multiple mechanisms, including the inhibition of alpha-DNA polymerase, inhibition of DNA repair through an effect on beta-DNA polymerase, and incorporation into DNA. The latter mechanism is probably the most important. Cytotoxicity is highly specific for the S phase of the cell cycle. Cytarabine is a chemotherapy agent used mainly in the treatment of hematological malignancies such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It is also known as ara C. Cytosine arabinoside is an antimetabolic agent with the chemical name of 1 -arabinofuranosylcytosine. Its mode of action is due to its rapid conversion into cytosine arabinoside triphosphate, which damages DNA when the cell cycle holds in the S phase (synthesis of DNA). Rapidly dividing cells, which require DNA replication for mitosis, are therefore most affected. Cytosine arabinoside also inhibits both DNA and RNA polymerases and nucleotide reductase enzymes needed for DNA synthesis L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents KEIO_ID C119; [MS2] KO008896 KEIO_ID C119 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.

   

D-Phenylalanine

alpha-Amino-beta-phenylpropionic acid

C9H11NO2 (165.079)


Flavouring ingredient. (±)-Phenylalanine is found in many foods, some of which are cucumber, green bell pepper, yellow bell pepper, and saskatoon berry.

   

beta-Bixin

2,4,6,8,10,12,14,16,18-EICOSANONAENEDIOIC ACID, 4,8,13,17-TETRAMETHYL-, 1-METHYL ESTER, (2E,4E,6E,8E,10E,12E,14E,16E,18E)-

C25H30O4 (394.2144)


beta-Bixin is a constituent of the pigment annatto found in Bixa orellana (achiote). Annatto has been linked with many cases of food-related allergies, and is the only natural food coloring believed to cause as many allergic-type reactions as artificial food coloring. Because it is a natural colorant, companies using annatto may label their products "all natural" or "no artificial colors". Annatto, sometimes called Roucou, is a derivative of the achiote trees of tropical regions of the Americas, used to produce a red food coloring and also as a flavoring. Its scent is described as "slightly peppery with a hint of nutmeg" and flavor as "slightly sweet and peppery". It is a major ingredient in the popular spice blend "Sazn" made by Goya Foods D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of Bixa orellana (annatto) Beta-Bixin is a diterpenoid. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].

   

METHYLAMINE

METHYLAMINE

CH5N (31.0422)


The simplest of the methylamines, consisting of ammonia bearing a single methyl substituent.

   

5-hydroxylysine

L-Erythro-5-hydroxylysine

C6H14N2O3 (162.1004)


The lysine derivative that is 2,6-diamino-5-hydroxyhexanoic acid, a chiral alpha-amino acid. KEIO_ID H064

   

Benzamidine

Benzamidine hydrochloride hydrate

C7H8N2 (120.0687)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors CONFIDENCE standard compound; INTERNAL_ID 2169

   

2-Adenylic acid

Adenosine-2-monophosphate

C10H14N5O7P (347.0631)


Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2]. Adenosine-2'-monophosphate (2'-AMP) is converted by extracellular 2’,3'-CAMP. Adenosine-2'-monophosphate is further metabolized to extracellular adenosine (a mechanism called the extracellular 2’,3’-cAMP-adenosine pathway). Adenosine-2'-monophosphate inhibits LPS-induced TNF-α and CXCL10 production via A2A receptor activation[1][2].

   

Bixin

(2Z,4Z,6E,8Z,10E,12E,14Z,16Z,18Z)-20-methoxy-4,8,13,17-tetramethyl-20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid

C25H30O4 (394.2144)


A carotenoic acid that is the 6-monomethyl ester of 9-cis-6,6-diapocarotene-6,6-dioic acid. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].

   

Isoreserpin

Isoreserpin

C33H40N2O9 (608.2734)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-1

   

ACRYLIC ACID

Polyacrylic acid, sodium salt

C3H4O2 (72.0211)


A alpha,beta-unsaturated monocarboxylic acid that is ethene substituted by a carboxy group. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives It is used as a food additive .

   

FA 3:1

2-Propenoic acid

C3H4O2 (72.0211)


D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives

   

decanol

Alcohols, C8-10

C10H22O (158.1671)


   

Oxirane

Ethylene oxide

C2H4O (44.0262)


A saturated organic heteromonocyclic parent that is a three-membered heterocycle of two carbon atoms and one oxygen atom. D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Ascarite II

Sodium hydroxide

HNaO (39.9925)


D009676 - Noxae > D002424 - Caustics Same as: D01169

   

CH3-NH2

Methylamine, aqueous solution [UN1235] [Flammable liquid]

CH5N (31.0422)


   

terthiophene

InChI=1\C12H8S3\c1-3-9(13-7-1)11-5-6-12(15-11)10-4-2-8-14-10\h1-8

C12H8S3 (247.9788)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.

   

Antak

InChI=1\C10H22O\c1-2-3-4-5-6-7-8-9-10-11\h11H,2-10H2,1H

C10H22O (158.1671)


   

Ethox

Ethylene oxide, or ethlene oxide with nitrogen up to a total pressure of 1Mpa (10 bar) at 50 degrees C [UN1040] [Poison gas]

C2H4O (44.0262)


D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Terthiophene

2,2 inverted exclamation mark :5 inverted exclamation mark ,2 inverted exclamation mark inverted exclamation mark -Terthiophene

C12H8S3 (247.9788)


2,2:5,2-terthiophene is a terthiophene. 2,2:5,2-Terthiophene is a natural product found in Schoenia cassiniana, Lawrencella rosea, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.

   

isoniazid

isoniazid

C6H7N3O (137.0589)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AC - Hydrazides D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Edetic Acid

Ethylenediaminetetraacetic acid

C10H16N2O8 (292.0907)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants

   

Isoflurophate

diisopropyl fluorophosphate

C6H14FO3P (184.0665)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

DL-Phenylalanine

l-phenylalanine (2-13c)

C9H11NO2 (165.079)


   

Ethyl N-acetyl-L-tyrosinate

N-Acetyl-L-tyrosinemethylester

C13H17NO4 (251.1158)


   

(3R)-3-hydroxy-L-aspartic acid

D-Aspartic acid,3-hydroxy-, (3S)-rel-

C4H7NO5 (149.0324)


D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids