Gene Association: CTSS

UniProt Search: CTSS (PROTEIN_CODING)
Function Description: cathepsin S

found 34 associated metabolites with current gene based on the text mining result from the pubmed database.

Sudan_IV

2-Naphthalenol, 1-(2-(2-methyl-4-(2-(2-methylphenyl)diazenyl)phenyl)diazenyl)-

C24H20N4O (380.1637)


Sudan IV is a bis(azo) compound that is 2-naphthol substituted at position 1 by a {2-methyl-4-[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a histological dye, a fluorochrome and a carcinogenic agent. It is a bis(azo) compound, a member of naphthols and a member of azobenzenes. It is functionally related to a 2-naphthol. D004396 - Coloring Agents

   

Gossypetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7,8-tetrahydroxy-

C15H10O8 (318.0376)


Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.

   

Desmedipham

1-3-{[ethoxy(hydroxy)methylidene]amino}phenoxy-N-phenylmethanimidic acid

C16H16N2O4 (300.111)


CONFIDENCE standard compound; INTERNAL_ID 3738

   

3,5-Diiodo-L-tyrosine

(2S)-2-Amino-3-(4-hydroxy-3,5-diiodophenyl)propanoic acid

C9H9I2NO3 (432.8672)


3,5-Diiodo-L-tyrosine, also known as diiy or DIT, belongs to the class of organic compounds known as tyrosine and derivatives. Tyrosine and derivatives are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. 3,5-Diiodo-L-tyrosine exists in all living organisms, ranging from bacteria to humans. In humans, 3,5-diiodo-L-tyrosine is involved in thyroid hormone synthesis. 3,5-Diiodo-L-tyrosine is a product from the iodination of monoiodotyrosine. A product from the iodination of monoiodotyrosine. In the biosynthesis of thyroid hormones, diiodotyrosine residues are coupled with other monoiodotyrosine or diiodotyrosine residues to form T4 or T3 thyroid hormones (thyroxine and triiodothyronine). [HMDB] H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones KEIO_ID D056

   

L-Cysteine

(2R)-2-amino-3-sulfanylpropanoic acid

C3H7NO2S (121.0197)


Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].

   

Chlorhexidine

N-(4-chlorophenyl)-1-3-(6-{N-[3-(4-chlorophenyl)carbamimidamidomethanimidoyl]amino}hexyl)carbamimidamidomethanimidamide

C22H30Cl2N10 (504.2032)


Chlorhexidine is only found in individuals that have used or taken this drug. It is a disinfectant and topical anti-infective agent used also as mouthwash to prevent oral plaque. [PubChem]Chlorhexidines antimicrobial effects are associated with the attractions between chlorhexidine (cation) and negatively charged bacterial cells. After chlorhexidine is absorpted onto the organisms cell wall, it disrupts the integrity of the cell membrane and causes the leakage of intracellular components of the organisms. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AC - Biguanides and amidines D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D004202 - Disinfectants

   

Kaempferol 3-O-beta-robinoside 7-O-alpha-L-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C33H40O19 (740.2164)


Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside, also known as kaempherol-3-O-robinoside-7-O-rhamnoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside can be found in common bean, which makes kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Cyclohexylamine

Aminohexahydrobenzene

C6H13N (99.1048)


Cyclohexylamine is a food contaminant arising from its use as a boiler water additive Cyclohexylamine, also called hexahydroaniline, 1-aminocyclohexane, or aminohexahydrobenzene, is an organic chemical, an amine derived from cyclohexane. It is a clear to yellowish liquid with fishy odor, with melting point of 17.7 °C and boiling point 134.5 °C, miscible with water. Like other amines, it is of mildly alkaline nature, compared to strong bases such as NaOH, but it is a stronger base than its aromatic sister compound aniline, which differs only in that its ring is aromatic. It is flammable, with flash point at 28.6 °C. Explosive mixtures with air can be formed above 26 °C. It is toxic by both ingestion and inhalation; the inhalation itself may be fatal. It readily absorbs through skin, which it irritates. It is corrosive. Cyclohexylamine is listed as an extremely hazardous substance as defined by Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 2441 CONFIDENCE standard compound; INTERNAL_ID 8266 KEIO_ID C114

   

pyrazole

1H-pyrazole

C3H4N2 (68.0374)


CONFIDENCE standard compound; INTERNAL_ID 8154 D004791 - Enzyme Inhibitors KEIO_ID P095 1H-pyrazole is an endogenous metabolite.

   

Morpholine

Morpholine, 4-soya alkyl derivs.

C4H9NO (87.0684)


Morpholine is a permitted (FDA) in edible coatings for fruit and vegetables. Morpholine is a food contaminant arising from its use as a boiler water additive Morpholine is a common additive, in ppm concentrations, for pH adjustment in both fossil fuel and nuclear power plant steam systems. Morpholine is used because its volatility is about the same as water, so once it is added to the water, its concentration becomes distributed rather evenly in both the water and steam phases. Its pH adjusting qualities then become distributed throughout the steam plant to provide corrosion protection. Morpholine is often used in conjunction with low concentrations of hydrazine or ammonia to provide a comprehensive all-volatile treatment chemistry for corrosion protection for the steam systems of such plants. Morpholine decomposes reasonably slowly in the absence of oxygen even at the high temperatures and pressures in these steam systems. Morpholine is an organic chemical compound having the chemical formula O(CH2CH2)2NH. This heterocycle, pictured at right, features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. For example, when morpholine is neutralized by hydrochloric acid, one obtains the salt morpholinium chloride. Morpholine is widely used in organic synthesis. For example, it is a building block in the preparation of the antibiotic linezolid and the anticancer agent gefitinib (Iressa) Permitted (FDA) in edible coatings for fruit and vegetables. Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 8365

   

Nalpha-Methylhistidine

Nalpha-Methylhistidine

C7H11N3O2 (169.0851)


   

Phosphate

Sodium pyrophosphate decahydrate biochemica

H3O4P (97.9769)


Phosphate is a salt of phosphoric acid and is an essential component of life. Organic phosphates are important in biochemistry, biogeochemistry, and ecology. In biological systems, phosphorus is found as a free phosphate ion in solution and is called inorganic phosphate, to distinguish it from phosphates bound in various phosphate esters. Inorganic phosphate is generally denoted Pi and at physiological (neutral) pH primarily consists of a mixture of HPO2-4 and H2PO-4 ions. Phosphates are most commonly found in the form of adenosine phosphates (AMP, ADP, and ATP) and in DNA and RNA, and can be released by the hydrolysis of ATP or ADP. Similar reactions exist for the other nucleoside diphosphates and triphosphates. Phosphoanhydride bonds in ADP and ATP, or other nucleoside diphosphates and triphosphates, contain high amounts of energy which give them their vital role in all living organisms. Phosphate must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+-dependent Pi transporters carry out this task. Remarkably, the two families transport different Pi species: whereas type II Na+/Pi cotransporters (SCL34) prefer divalent HPO4(2), type III Na+/Pi cotransporters (SLC20) transport monovalent H2PO4. The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body Pi homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the Pi content of luminal fluids. Phosphate levels in the blood play an important role in hormone signalling and in bone homeostasis. In classical endocrine regulation, low serum phosphate induces the renal production of the secosteroid hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This active metabolite of vitamin D acts to restore circulating mineral (i.e. phosphate and calcium) levels by increasing absorption in the intestine, reabsorption in the kidney, and mobilization of calcium and phosphate from bone. Thus, chronic renal failure is associated with hyperparathyroidism, which in turn contributes to osteomalacia (softening of the bones). Another complication of chronic renal failure is hyperphosphatemia (low levels of phosphate in the blood). Hyperphosphatemia (excess levels of phosphate in the blood) is a prevalent condition in kidney dialysis patients and is associated with increased risk of mortality. Hypophosphatemia (hungry bone syndrome) has been associated with postoperative electrolyte aberrations and after parathyroidectomy (PMID: 17581921, 11169009, 11039261, 9159312, 17625581). Fibroblast growth factor 23 (FGF-23) has recently been recognized as a key mediator of phosphate homeostasis and its most notable effect is the promotion of phosphate excretion. FGF-23 was discovered to be involved in diseases such as autosomal dominant hypophosphatemic rickets, X-linked hypophosphatemia, and tumour-induced osteomalacia in which phosphate wasting was coupled to inappropriately low levels of 1,25(OH)2D3. FGF-23 is regulated by dietary phosphate in humans. In particular, it was found that phosphate restriction decreased FGF-23, and phosphate loading increased FGF-23. In agriculture, phosphate refers to one of the three primary plant nutrients, and it is a component of fertilizers. In ecological terms, because of its important role in biological systems, phosphate is a highly sought after resource. Consequently, it is often a limiting reagent in environments, and its availability may govern the rate of growth of organisms. Addition of high levels of phosphate to environments and to micro-environments in which it is typically rare can have significant ecological consequences. In the context of pollution, phosphates are a principal component of total dissolved solids, a major indicator of water quality. Dihydrogen phosphate is an inorganic sal... Found in fruit juices. It is used in foods as an acidulant for drinks and candies, pH control agent, buffering agent, flavour enhancer, flavouring agent, sequestrant, stabiliser and thickener, and synergist D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Proteinase inhibitor E 64

3-[[[(1S)-1-[[[4-[(aminoiminomethyl)amino]butyl]amino]carbonyl]-3-methylbutyl]amino]carbonyl]-(2S,3S)-oxiranecarboxylic acid

C15H27N5O5 (357.2012)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents KEIO_ID E015; [MS2] KO008950 KEIO_ID E015

   

Leupeptin

2-(2-Acetamido-4-methylvaleramido)-N-(1-formyl-4-guanidinobutyl)-4-methylvaleramide

C20H38N6O4 (426.2954)


A tripeptide composed of N-acetylleucyl, leucyl and argininal residues joined in sequenceby peptide linkages. It is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D007976 - Leupeptins Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L006; [MS2] KO009038 KEIO_ID L006

   

Dihydroergotamine

(2R,4R,7R)-N-[(1S,2S,4R,7S)-7-benzyl-2-hydroxy-4-methyl-5,8-dioxo-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene-4-carboxamide

C33H37N5O5 (583.2795)


Dihydroergotamine is only found in individuals that have used or taken this drug. It is a 9,10alpha-dihydro derivative of ergotamine. It is used as a vasoconstrictor, specifically for the therapy of migraine disorders. [PubChem]Two theories have been proposed to explain the efficacy of 5-HT1D receptor agonists in migraine: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Homophenylalanine

L-Homophenylalanine

C10H13NO2 (179.0946)


   

Pepstatin

Pepstatinum

C34H63N5O9 (685.4626)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D010436 - Pepstatins C471 - Enzyme Inhibitor > C783 - Protease Inhibitor Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2]. Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2].

   
   

Robinin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chromen-4-one

C33H40O19 (740.2164)


Robinin is a glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone and a dihydroxyflavone. It is functionally related to a kaempferol. Robinin is a natural product found in Aconitum anthora, Astragalus aegobromus, and other organisms with data available. A glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Phosphoric acid

Phosphoric acid

H3O4P (97.9769)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Scarlet red

1-(2-{2-methyl-4-[2-(2-methylphenyl)diazen-1-yl]phenyl}diazen-1-yl)naphthalen-2-ol

C24H20N4O (380.1637)


D004396 - Coloring Agents

   

Phosphoric acid

Hydrogen phosphate

H3O4P (97.9769)


A phosphorus oxoacid that consists of one oxo and three hydroxy groups joined covalently to a central phosphorus atom. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

DESMEDIPHAM

Pesticide9_Desmedipham_C16H16N2O4_3-[(Ethoxycarbonyl)amino]phenyl phenylcarbamate

C16H16N2O4 (300.111)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 144

   

dihydroergotamine

dihydroergotamine

C33H37N5O5 (583.2795)


Ergotamine in which a single bond replaces the double bond between positions 9 and 10. A semisynthetic ergot alkaloid with weaker oxytocic and vasoconstrictor properties than ergotamine, it is used (as the methanesulfonic or tartaric acid salts) for the treatment of migraine and orthostatic hypotension. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.880 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.878 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.874

   

Cysteine

D,L-Cysteine

C3H7NO2S (121.0197)


A sulfur-containing amino acid that is propanoic acid with an amino group at position 2 and a sulfanyl group at position 3. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 18 L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].

   

LS-473

4-12-00-00008 (Beilstein Handbook Reference)

C6H13N (99.1048)


   

CYCLOHEXYLAMINE

CYCLOHEXYLAMINE

C6H13N (99.1048)


A primary aliphatic amine consisting of cyclohexane carrying an amino substituent.

   

Chlorhexidine

Chlorhexidine

C22H30Cl2N10 (504.2032)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AC - Biguanides and amidines D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D000890 - Anti-Infective Agents D004202 - Disinfectants

   

pyrazole

pyrazole

C3H4N2 (68.0374)


D004791 - Enzyme Inhibitors 1H-pyrazole is an endogenous metabolite.

   

3,5-Diiodo-L-tyrosine

3,5-Diiodo-L-tyrosine

C9H9I2NO3 (432.8672)


A diiodotyrosine that is L-tyrosine carrying iodo-substituents at positions C-3 and C-5 of the benzyl group. It is an intermediate in the thyroid hormone synthesis. H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

L-Homophenylalanine

L-Homophenylalanine

C10H13NO2 (179.0946)


A non-proteinogenic L-alpha-amino acid that is an analogue of L-phenylalanine having a 2-phenylethyl rather than a benzyl side-chain.

   

e-64

e-64

C15H27N5O5 (357.2012)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

N-Methyl-L-histidine

N-Methyl-L-histidine

C7H11N3O2 (169.0851)


   

Tetrahydro-1,4-oxazine

Tetrahydro-1,4-oxazine

C4H9NO (87.0684)