Exact Mass: 129.0902
Exact Mass Matches: 129.0902
Found 500 metabolites which its exact mass value is equals to given mass value 129.0902
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
N-methylproline
N-Methyl-L-proline, also known as N-methyl-L-proline, (2S)-1-methylpyrrolidine-2-carboxylic acid, hydric acid, or monomethyl proline, is classified as a proline or a proline derivative. It is not naturally produced by humans and can only be obtained from the diet. In particular, it is a metabolically inert cell protectant found in many plants and is used by plants to protect against extremes in osmolarity and growth temperatures. N-Methyl-L-proline is found in the fruit juices of yellow orange, blood orange, lemon, mandarin, and bitter orange (PMID: 21838291). N-methylproline is an L-proline derivative obtained by replacement of the amino hydrogen by a methyl group. It has a role as a plant metabolite and a human metabolite. It is a L-proline derivative and a tertiary amino compound. It is a tautomer of a N-methylproline zwitterion. An L-proline derivative obtained by replacement of the amino hydrogen by a methyl group. Hygric acid (N-Methyl-L-proline) is a proline analogue found in the citrus juices and the juice of bergamot[1].
1,1-Dimethylbiguanide
1,1-Dimethylbiguanide, commonly known as metformin, is a member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1. It has a role as a hypoglycemic agent, a xenobiotic and an environmental contaminant. It derives from a biguanide. It is a conjugate base of a metformin(1+). Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. It is also used in the treatment of polycystic ovary syndrome. It is not associated with weight gain and is taken by mouth. It is sometimes used as an off-label augment to attenuate the risk of weight gain in people who take antipsychotics as well as phenelzine. 1,1-Dimethylbiguanide or Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. [HMDB] A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; INTERNAL_ID 4124 CONFIDENCE standard compound; INTERNAL_ID 8678 CONFIDENCE standard compound; INTERNAL_ID 1127 C1892 - Chemopreventive Agent KEIO_ID M032 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].
Pipecolic acid
Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
Pyroglutamic acid
Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
Vigabatrin
Vigabatrin is only found in individuals that have used or taken this drug. It is an analogue of gamma-aminobutyric acid. It is an irreversible inhibitor of 4-aminobutyrate transaminase, the enzyme responsible for the catabolism of gamma-aminobutyric acid. (From Martindale The Extra Pharmacopoeia, 31st ed)It is believed that vigabatrin increases brain concentrations of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in the CNS, by irreversibly inhibiting enzymes that catabolize GABA (gamma-aminobutyric acid transaminase GABA-T) or block the reuptake of GABA into glia and nerve endings. Vigabatrin may also work by suppressing repetitive neuronal firing through inhibition of voltage-sensitive sodium channels. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3626 D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
Isoquinoline
Isoquinoline is a flavouring agent Being an analog of pyridine, isoquinoline is a weak base, with a pKb of 8.6. It protonates to form salts upon treatment with strong acids, such as HCl. It forms adducts with Lewis acids, such as BF3. Isoquinoline is a colorless hygroscopic liquid at room temperature with a penetrating, unpleasant odor. Impure samples can appear brownish, as is typical for nitrogen heterocycles. It crystallizes platelets that have a low solubility in water but dissolve well in ethanol, acetone, diethyl ether, carbon disulfide, and other common organic solvents. It is also soluble in dilute acids as the protonated derivative. Isoquinoline is a heterocyclic aromatic organic compound. It is a structural isomer of quinoline. Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring. In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in naturally occurring alkaloids including papaverine and morphine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine Flavouring agent KEIO_ID I067
(2E)-Decenoyl-ACP
(2E)-Decenoyl-ACP, also known as Cycloleucine or 1-Aminocyclopentanecarboxylic acid, is classified as a member of the L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. (2E)-Decenoyl-ACP is considered to be soluble (in water) and acidic Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C574 - Immunosuppressant KEIO_ID A050
Quinoline
Quinoline is an alkaloid from various plant species including Mentha species. Also present in cocoa, black tea and scotch whiskey. Quinoline is a flavouring ingredient Quinoline is a heterocyclic aromatic organic compound. It has the formula C9H7N and is a colourless hygroscopic liquid with a strong odour. Aged samples, if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline is found in alcoholic beverages. Quinoline is mainly used as a building block to other specialty chemicals. Approximately 4 tonnes are produced annually according to a report published in 2005.[citation needed] Its principal use is as a precursor to 8-hydroxyquinoline, which is a versatile chelating agent and precursor to pesticides. Its 2- and 4-methyl derivatives are precursors to cyanine dyes. Oxidation of quinoline affords quinolinic acid (pyridine-2,3-dicarboxylic acid), a precursor to the herbicide sold under the name "Assert" Alkaloid from various plant subspecies including Mentha subspeciesand is also present in cocoa, black tea and scotch whiskey. Flavouring ingredient CONFIDENCE standard compound; INTERNAL_ID 2526 KEIO_ID Q008
Pyrroline hydroxycarboxylic acid
Pyrroline hydroxycarboxylic acid is a metabolite identified in the urine of patients with type II hyperprolinemia. (OMIM 239510). The urinary excretion of Pyrroline hydroxycarboxylic acid increased in hyperprolinemic patients but not in healthy controls during oral loading of hydroxyproline and hydroxyproline-ornithine. (PMID: 533224). Hyperprolinemia type II (HP II) is a rare inherited metabolic disease due to the deficiency of pyroline-5-carboxylate dehydrogenase. It is generally believed to be a benign condition although some patients have neurological problems such as refractory convulsions. (PMID: 15214748). The oxidation of pyrroline-carboxylate generates glutamate and pyrroline-hydroxycarboxylate, a reaction catalyzed by hydroxyproline oxidase (PMID: 500817). Pyrroline hydroxycarboxylic acid is a metabolite identified in the urine of patients with type II hyperprolinemia. (OMIM 239510)
1-Pyrroline-4-hydroxy-2-carboxylate
Much or all of the pyrrole-2-carboxylate (PCA) in human urine may be formed in urine from a labile precursor, presumably delta(1)-pyrroline-4-hydroxy-2-carboxylate. Normal human values for endogenous urinary PCA in 16 individuals averaged 0.51 mumol/day, with a range of 0.20-1.3 mumol and a SD of 0.31 mumol. The probable source of human PCA is free hydroxy-L-proline, as inferred from the high value for PCA in the urine of a subject with hereditary hydroxyprolinemia, and from the threeto eightfold elevation in PCA excretion by two normal subjects after a large oral load of hydroxyl-L-proline. (PMID: 4430715). Much or all of the pyrrole-2-carboxylate (PCA) in human urine may be formed in urine from a labile precursor, presumably delta(1)-pyrroline-4-hydroxy-2-carboxylate.
N4-Acetylaminobutanal
N4-Acetylaminobutanal is an intermediate of the urea cycle and metabolism of amino groups, the product of the enzyme monoamine oxidase A [EC:1.4.3.4] and the substrate of the enzyme aldehyde dehydrogenase 2 family (mitochondrial) [EC:1.2.1.3]. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
D-Pyroglutamate
KEIO_ID P092 (R)-5-Oxopyrrolidine-2-carboxylic acid is an endogenous metabolite.
2-Pyrrolidineacetic acid
2-Pyrrolidineacetic acid (CAS: 56879-46-0), also known as homoproline, belongs to the class of organic compounds known as pyrrolidines. Pyrrolidines are compounds containing a pyrrolidine ring, which is a five-membered saturated aliphatic heterocycle with one nitrogen atom and four carbon atoms. 2-Pyrrolidineacetic acid has been identified in the urine of pregnant women (PMID: 32101413). 2-Pyrrolidineacetic acid is found in tea. 2-Pyrrolidineacetic acid occurs in Tussilago farfara (coltsfoot).
L-trans-4-Methyl-2-pyrrolidinecarboxylic acid
L-trans-4-Methyl-2-pyrrolidinecarboxylic acid is found in pomes. L-trans-4-Methyl-2-pyrrolidinecarboxylic acid is a constituent of young apple fruit and perry
2,5-Dihydro-2,4,5-trimethylthiazole
Flavour constituent of cooked meats. 2,5-Dihydro-2,4,5-trimethylthiazole is found in animal foods. 2,5-Dihydro-2,4,5-trimethylthiazole is found in animal foods. Flavour constituent of cooked meats.
L-Pipecolic acid
L-pipecolic acid is a normal human metabolite present in human blood, where is present as the primary enantiomer of pipecolic acid. L-pipecolic acid is a cyclic imino acid (contains both imino (>C=NH) and carboxyl (-C(=O)-OH) functional groups) produced during the degradation of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, including Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), and infantile Refsum disease (OMIM 266510). L-pipecolic acid levels are also elevated in patients with chronic liver diseases. L-pipecolic acid is the substrate of delta1-piperideine-2-carboxylate reductase (EC 1.5.1.21) in the pathway of lysine degradation (PMID: 2717271, 8305590, 1050990). Present in beans and other legumes, and in lesser quantities in other plants including barley, hops, malt and mushrooms. L-Pipecolic acid is found in many foods, some of which are macadamia nut (m. tetraphylla), linden, tinda, and cumin. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
N-Acryloylglycine
N-Acryloylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. N-Acryloylglycine is an acylglycines found in normal human biofluids (PMID 7364920; 912020; 7438429). N-Acryloylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:
D-Pipecolic acid
D-Pipecolic acid is a normal human metabolite found in human biofluids. Normal adults excrete pipecolic acid primarily as the D-enantiomer even though it is present in the blood stream mainly as the L-enantiomer. It is believed that D-Pipecolic acid originates from the metabolism of intestinal bacteria and from dietary sources. High levels of D-Pipecolic acid are not found in plasma, but they are increased in urine of patients with chronic liver disease. (PMID: 6501504, 6490790, 11719476, 8398594) [HMDB] D-Pipecolic acid is a normal human metabolite found in human biofluids. Normal adults excrete pipecolic acid primarily as the D-enantiomer even though it is present in the blood stream mainly as the L-enantiomer. It is believed that D-pipecolic acid originates from the metabolism of intestinal bacteria and from dietary sources. High levels of D-pipecolic acid are not found in plasma, but they are increased in urine of patients with chronic liver disease (PMID: 6501504, 6490790, 11719476, 8398594). D-Pipecolinic acid is a normal human metabolite found in human biofluids. D-Pipecolinic acid is a normal human metabolite found in human biofluids.
3-Methylene-indolenine
3-Methylene-indolenine is an electrophilic molecule produced by the action of cytochrome P450 2F1 on 3-methylindole (3MI). 3-Methylindole (3MI) is a naturally occurring pulmonary toxin that requires metabolic activation. In particular, 3MI-induced pneumotoxicity arises from cytochrome P-450-catalyzed dehydrogenation of 3MI to an electrophilic methylene imine (3-methyleneindolenine), which covalently binds to cellular macromolecules. Members of the CYP2F gene subfamily are selectively expressed in lung tissues and have been implicated as important catalysts in the formation of reactive intermediates from several pneumotoxic chemicals. (PMID: 10383923) [HMDB] 3-Methylene-indolenine is an electrophilic molecule produced by the action of cytochrome P450 2F1 on 3-methylindole (3MI). 3-Methylindole (3MI) is a naturally occurring pulmonary toxin that requires metabolic activation. In particular, 3MI-induced pneumotoxicity arises from cytochrome P-450-catalyzed dehydrogenation of 3MI to an electrophilic methylene imine (3-methyleneindolenine), which covalently binds to cellular macromolecules. Members of the CYP2F gene subfamily are selectively expressed in lung tissues and have been implicated as important catalysts in the formation of reactive intermediates from several pneumotoxic chemicals. (PMID: 10383923).
Isoamyl isothiocyanate
Isoamyl isothiocyanate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
1-Isothiocyanatopentane
1-Isothiocyanatopentane is found in brassicas. 1-Isothiocyanatopentane is isolated from Japanese radish (Raphanus sativus var. niger) roots. Isolated from Japanese radish (Raphanus sativus variety niger) roots. 1-Isothiocyanatopentane is found in brassicas.
3-Acetamidobutanal
3-acetamidobutanal is part of the Amine and polyamine metabolism, and Peroxisome pathways. It is a substrate for: Peroxisomal N(1)-acetyl-spermine/spermidine oxidase.
dimethadione
dimethadione is a metabolite of trimethadione. Trimethadione is an oxazolidinedione anticonvulsant. It is most commonly used to treat epileptic conditions that are resistant to other treatments. (Wikipedia) C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
(3R,5S)-1-pyrroline-3-hydroxy-5-carboxylic Acid
(3R,5S)-1-pyrroline-3-hydroxy-5-carboxylic Acid is also known as 3-Hydroxy-L-1-pyrroline-5-carboxylate. (3R,5S)-1-pyrroline-3-hydroxy-5-carboxylic Acid is considered to be soluble (in water) and acidic
1-Piperidine carboxylic acid
1-piperidine carboxylic acid is classified as a member of the piperidinecarboxylic acids. Piperidinecarboxylic acids are compounds containing a piperidine ring which bears a carboxylic acid group. 1-piperidine carboxylic acid is considered to be a soluble (in water) and a weak acidic compound. 1-piperidine carboxylic acid can be found in humans.
Isonipecotic acid
Isonipecotic acid is a GABAA receptor partial agonist[1].
Nipecotic acid
Nipecotic acid ((±)-β-Homoproline) is a potent inhibitor of neuronal and glial-aminobutyric acid (GABA) uptake in vitro. Nipecotic acid can also directly activate GABAA-like chloride channels, with an EC50 of approximately 300?μM[1][2].
pyrrolidone carboxylic acid
2-Pyrrolidone-5-carboxylic acid (PCA) is a cyclic derivative of glutamic acid, physiologically present in mammalian tissues. It has been shown that PCA releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, PCA significantly shortens the plasma half-life of ethanol during acute intoxication. [HMDB] (R)-5-Oxopyrrolidine-2-carboxylic acid is an endogenous metabolite.
(2S)-6-Oxa-1-azabicyclo[3.1.0]hexane-2-carboxylic acid
5-(Methylthio)-pentanonitrile
5-(methylthio)-pentanonitrile is a member of the class of compounds known as nitriles. Nitriles are compounds having the structure RC#N; thus C-substituted derivatives of hydrocyanic acid, HC#N. 5-(methylthio)-pentanonitrile can be found in kohlrabi, which makes 5-(methylthio)-pentanonitrile a potential biomarker for the consumption of this food product.
3-Phenyl-2-propenenitrile
3-phenyl-2-propenenitrile is a member of the class of compounds known as styrenes. Styrenes are organic compounds containing an ethenylbenzene moiety. 3-phenyl-2-propenenitrile is a cassia, cinnamon, and cumin tasting compound found in fig, which makes 3-phenyl-2-propenenitrile a potential biomarker for the consumption of this food product.
heptanoate
Heptanoic acid or heptanoate, also known as enanthylic acid, or enanthic acid, is an organic compound composed of a seven-carbon chain terminating in a carboxylic acid. It belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Heptanoate is a very weakly acidic compound, is slightly soluble in water, but very soluble in ethanol and ether. It is an oily Liquid with an unpleasant, rancid odor that contributes to the odor of some rancid oils. Present in essential oils, such as violet leaf oil, palm oil, it is also found in apple, feijoa fruit, clove bud, ginger, black tea, morello cherry, grapes, rice bran, scallops, leek and other foodstuffs such as strawberry jam, soups and sauces. Heptanoic acid is used in the preparation of esters, such as ethyl heptanoate, which are used in fragrances and as artificial flavors. It is one of many additives in cigarettes. Heptanoic acid is used to esterify steroids in the preparation of drugs such as testosterone enanthate, trenbolone enanthate, drostanolone enanthate, and methenolone enanthate (Primobolan). It is used as one of the components in washing solutions and used to assist lye peeling (by immersion into a lye solution) of fruit and vegetables. Heptanoate, also known as heptanoic acid or enanthate, is a member of the class of compounds known as medium-chain fatty acids. Medium-chain fatty acids are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Heptanoate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Heptanoate can be found in a number of food items such as highbush blueberry, horseradish tree, asparagus, and yellow wax bean, which makes heptanoate a potential biomarker for the consumption of these food products. Heptanoic acid, also called enanthic acid, is an organic compound composed of a seven-carbon chain terminating in a carboxylic acid. It is an oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether .
L-5-Oxoproline
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
Pipecolic acid
L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.
metformin
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2550 C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].
nipecotic acid
Nipecotic acid ((±)-β-Homoproline) is a potent inhibitor of neuronal and glial-aminobutyric acid (GABA) uptake in vitro. Nipecotic acid can also directly activate GABAA-like chloride channels, with an EC50 of approximately 300?μM[1][2].
4-cyanobutyl methyl sulfide|4-Methylthiobutyl cyanide|5-(methylsulfanyl)pentanenitrile|5-(methylthio)-pentanenitrile|5-(methylthio)pentanenitrile|5-(methylthio)pentanonitrile|5-methylsulfanyl-valeronitrile
2-methyl-fumaramic acid|2-Methyl-fumaramidsaeure|Mesaconsaeure-alpha-amid
(2S,3R)-2-Amino-3-hydroxy-4-pentynoic acid|2(S).3(R)-2-amino-3-hydroxypent-4-ynsaeure
metformin
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1) Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].
L-beta-Homoproline
Acquisition and generation of the data is financially supported in part by CREST/JST.
L-Pyroglutamicacid
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
L-Pipecolic acid
The L-enantiomer of pipecolic acid. It is a metabolite of lysine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HXEACLLIILLPRG-YFKPBYRVSA-N_STSL_0204_L-pipecolic Acid_0500fmol_180831_S2_L02M02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.
D-Pyroglutamic acid
The D-enantiomer of 5-oxoproline. (R)-5-Oxopyrrolidine-2-carboxylic acid is an endogenous metabolite.
Cycloleucine
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
DL-Pipecolinic acid
Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
Pipecolic acid
A piperidinemonocarboxylic acid in which the carboxy group is located at position C-2. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
N-Methyl-L-proline
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; CWLQUGTUXBXTLF-YFKPBYRVSA-N_STSL_0211_Hygric acid (N-Methyl-L-proline)_0125fmol_190326_S2_LC02MS02_015; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
vigabatrin
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
Pipecolate
L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
N,N-Dimethylacetoacetamide
CONFIDENCE standard compound; INTERNAL_ID 925; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2015; ORIGINAL_PRECURSOR_SCAN_NO 2013 CONFIDENCE standard compound; INTERNAL_ID 925; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2112; ORIGINAL_PRECURSOR_SCAN_NO 2109 CONFIDENCE standard compound; INTERNAL_ID 925; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2020; ORIGINAL_PRECURSOR_SCAN_NO 2019 CONFIDENCE standard compound; INTERNAL_ID 925; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2025; ORIGINAL_PRECURSOR_SCAN_NO 2023 CONFIDENCE standard compound; INTERNAL_ID 925; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2022; ORIGINAL_PRECURSOR_SCAN_NO 2018
1-(2-Hydroxyethyl)pyrrolidin-2-one
CONFIDENCE standard compound; INTERNAL_ID 1019; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2137; ORIGINAL_PRECURSOR_SCAN_NO 2135 CONFIDENCE standard compound; INTERNAL_ID 1019; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2132; ORIGINAL_PRECURSOR_SCAN_NO 2129 CONFIDENCE standard compound; INTERNAL_ID 1019; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2138; ORIGINAL_PRECURSOR_SCAN_NO 2137 CONFIDENCE standard compound; INTERNAL_ID 1019; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2145; ORIGINAL_PRECURSOR_SCAN_NO 2144 CONFIDENCE standard compound; INTERNAL_ID 1019; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2114
D-Homoproline
D-Pipecolinic acid is a normal human metabolite found in human biofluids. D-Pipecolinic acid is a normal human metabolite found in human biofluids.
3-Methyleneindolenine
An indole that consists of 3H-indole bearing a methylene substituent at position 3.
1-(hydroxymethyl)cyclobutanecarboxamide(SALTDATA: FREE)
Cyclohexanemethanol,4-amino-, hydrochloride (1:1), trans-
(1s,3s)-3-(MethoxyMethyl)-N-Methylcyclobutan-1-amine
2,4-Dihydro-5-methoxy-4-methyl-3H-1,2,4-triazol-3-one
Cyclopropanecarboxamide, 1-hydroxy-N,N-dimethyl- (9CI)
3-(2-AMINO-4-METHYL-6-OXO-6H-PYRIMIDIN-1-YL)-PROPIONIC ACID
1H-Imidazole-4-carboxylicacid,2-amino-4,5-dihydro-(9CI)
Thiazole,4,5-dihydro-2,4,5-trimethyl-, (4R,5S)-rel-
(1S,2S)-1-amino-2-ethylcyclopropanecarboxylic acid
(1S,2R)-1-amino-2-ethylcyclopropanecarboxylic acid
(1R,2R)-1-amino-2-ethylcyclopropanecarboxylic acid
(1R,2S)-1-amino-2-ethylcyclopropanecarboxylic acid
L-Pipecolate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(S)-3-methyl-2-oxovalerate
The conjugate base of (S)-3-methyl-2-oxopentanoic acid. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
alpha-Ketoisocaproate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
6-Oxohexanoate
A straight-chain fatty acid anion and the conjugate base of 6-oxohexanoic acid, formed by deprotonation of the carboxylic acid group.
5-Oxohexanoate
An oxo fatty acid anion that is the conjugate base of 5-oxohexanoic acid, arising from deprotonation of the carboxy group.
2-Oxohexanoate
A medium-chain fatty acid anion that is the conjugate base of 2-oxohexanoic acid.
4-Methyl-3-oxopentanoate
The monocarboxylic acid anion formed from 3-oxo-4-methylpentanoic acid; principal microspecies at pH 7.3.
4-acetamidobutanal
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
H-D-HomoPhe-OH
D-Pipecolinic acid is a normal human metabolite found in human biofluids. D-Pipecolinic acid is a normal human metabolite found in human biofluids.
Heptanoate
A medium-chain fatty acid anion that is the conjugate base of heptanoic acid; shown in myocardial ischaemia/reperfusion studies to increase levels of C4 Krebs cycle intermediates.
4-Methyl-2-oxopentanoate
A 2-oxo monocarboxylic acid anion that is the conjugate base of 4-methyl-2-oxopentanoic acid.
(R)-piperazine-2-carboxylate
Conjugate base of (R)-piperazine-2-carboxylic acid.
(S)-piperazine-2-carboxylate
An alpha-amino-acid anion that is the conjugate base of piperazine-2-carboxylic acid.
L-pipecolic acid zwitterion
The zwitterion of L-pipecolic acid formed by proton transfer from the carboxy group to nitrogen; major species at pH 7.3.
(R)-nipecotic acid zwitterion
The zwitterion resulting from the transfer of a proton from the carboxylic acid group to the amino group of (R)-nipecotic acid.
3-methyl-2-oxovalerate
A 2-oxo monocarboxylic acid anion that is the conjugate base of 3-methyl-2-oxovaleric acid, arising from deprotonation of the carboxy group; major species at pH 7.3.
N-methylproline zwitterion
An L-alpha-amino acid zwitterion obtained by transfer of a proton from the carboxy to the amino group of N-methylproline; major species at pH 7.3.
2-Phenylpropenal
{"Ingredient_id": "HBIN006323","Ingredient_name": "2-Phenylpropenal","Alias": "2-phenylprop-2-enal; Benzeneacetaldehyde, .alpha.-methylene-; 495-10-3; 2-PHENYLACROLEIN","Ingredient_formula": "C9H7N","Ingredient_Smile": "C=C(C#N)C1=CC=CC=C1","Ingredient_weight": "129.16","OB_score": "30.67538343","CAS_id": "495-10-3","SymMap_id": "SMIT11577","TCMID_id": "NA","TCMSP_id": "MOL010547","TCM_ID_id": "NA","PubChem_id": "521252","DrugBank_id": "NA"}
6ξ-methoxypiperidin-2-one
{"Ingredient_id": "HBIN012843","Ingredient_name": "6\u03be-methoxypiperidin-2-one","Alias": "NA","Ingredient_formula": "C6H11NO2","Ingredient_Smile": "COC1CCCC(=O)N1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "14064","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}