Gene Association: RETN

UniProt Search: RETN (PROTEIN_CODING)
Function Description: resistin

found 124 associated metabolites with current gene based on the text mining result from the pubmed database.

(S)-Boldine

4,16-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene-5,15-diol

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). (S)-Boldine is found in sweet bay. (S)-Boldine is an alkaloid from Sassafras and the leaves of Peumus boldus (boldo). (S)-Boldine is a flavouring ingredient. Alkaloid from Sassafras and the leaves of Peumus boldus (boldo). Flavouring ingredient. (S)-Boldine is found in sweet bay. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

Methyl hexadecanoic acid

Methyl palmitate, United States Pharmacopeia (USP) Reference Standard

C17H34O2 (270.2559)


Methyl hexadecanoate, also known as methyl palmitate or palmitic acid methyl ester, is a member of the class of compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Thus, methyl hexadecanoate is considered to be a fatty ester lipid molecule. Methyl hexadecanoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl hexadecanoate is a fatty, oily, and waxy tasting compound found in cloves, which makes methyl hexadecanoate a potential biomarker for the consumption of this food product. Methyl hexadecanoate can be found primarily in saliva. Methyl hexadecanoic acid belongs to the class of organic compounds known as fatty acid methyl esters. These are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl palmitate is a fatty acid methyl ester. It has a role as a metabolite. Methyl palmitate is a natural product found in Zanthoxylum beecheyanum, Lonicera japonica, and other organisms with data available. A natural product found in Neolitsea daibuensis. Methyl palmitate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-39-0 (retrieved 2024-07-03) (CAS RN: 112-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. Eriocitrin is a flavonoid glycoside that can be found in plants like Citrus grandis, Citrus limon, Mentha longifolia, Mentha piperita, Thymus vulgaris. It shows important antioxidant activities. Isolated from Mentha piperita (peppermint) leaves and from Citrus subspecies Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Alliin

2-Amino-3-(prop-2-ene-1-sulphinyl)propanoic acid

C6H11NO3S (177.046)


Alliin /ˈæli.ɪn/ is a sulfoxide that is a natural constituent of fresh garlic.[1] It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene.[2] Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds. Alliin was the first natural product found to have both carbon- and sulfur-centered stereochemistry.[3] Constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). (R)C(S)S-Alliin is found in garden onion, garlic, and onion-family vegetables. (R)C(S)S-Alliin is found in garden onion. (R)C(S)S-Alliin is a constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].

   

Fenofibrate

propan-2-yl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate

C20H21ClO4 (360.1128)


Fenofibrate is a chlorobenzophenone that is (4-chlorophenyl)(phenyl)methanone substituted by a [2-methyl-1-oxo-1-(propan-2-yloxy)propan-2-yl]oxy group at position 1 on the phenyl ring. It has a role as an antilipemic drug, an environmental contaminant, a xenobiotic and a geroprotector. It is a chlorobenzophenone, a member of monochlorobenzenes, an aromatic ether and an isopropyl ester. It is functionally related to a benzophenone. Fenofibrate is a fibric acid derivative like [clofibrate] and [gemfibrozil]. Fenofibrate is used to treat primary hypercholesterolemia, mixed dyslipidemia, severe hypertriglyceridemia. Fenofibrate was granted FDA approval on 31 December 1993. Fenofibrate is a Peroxisome Proliferator Receptor alpha Agonist. The mechanism of action of fenofibrate is as a Peroxisome Proliferator-activated Receptor alpha Agonist. Fenofibrate is a fibric acid derivative used in the therapy of hypertriglyceridemia and dyslipidemia. Fenofibrate therapy is associated with mild and transient serum aminotransferase elevations and with rare instances of acute liver injury, which can be severe and prolonged and lead to significant hepatic fibrosis. Fenofibrate is a synthetic phenoxy-isobutyric acid derivate and prodrug with antihyperlipidemic activity. Fenofibrate is hydrolyzed in vivo to its active metabolite fenofibric acid that binds to and activates peroxisome proliferator activated receptor alpha (PPARalpha), resulting in the activation of lipoprotein lipase and reduction of the production of apoprotein C-III, an inhibitor of lipoprotein lipase activity. Increased lipolysis and a fall in plasma triglycerides, in turn, leads to the modification of the small, dense low density lipoporotein (LDL) particles into larger particles that are catabolized more rapidly due to a greater affinity for cholesterol receptors. In addition, activation of PPARalpha also increases the synthesis of apoproteins A-I, A-II, and high density lipoprotein (HDL)-cholesterol. Overall, fenofibrate reduces total cholesterol, LDL cholesterol, apolipoprotein B, total triglycerides and triglyceride rich lipoprotein (VLDL) while increasing HDL cholesterol. An antilipemic agent which reduces both cholesterol and triglycerides in the blood. An antilipemic agent which reduces both CHOLESTEROL and TRIGLYCERIDES in the blood. See also: Fenofibric Acid (has active moiety). Fenofibrate is only found in individuals that have used or taken this drug. It is an antilipemic agent which reduces both cholesterol and triglycerides in the blood. [PubChem]Fenofibrate exerts its therapeutic effects through activation of peroxisome proliferator activated receptor a (PPARa). This increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of apoprotein C-III. The resulting fall in triglycerides produces an alteration in the size and composition of LDL from small, dense particles, to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly. Fenofibrate is mainly used for primary hypercholesterolemia or mixed dyslipidemia. Fenofibrate may slow the progression of diabetic retinopathy and the need for invasive treatment such as laser therapy in patients with type 2 diabetes with pre-existing retinopathy.[11][12][13] It was initially indicated for diabetic retinopathy in patients with type 2 diabetes and diabetic retinopathy in Australia.[14] The large scale, international FIELD and ACCORD-Eye trials found that fenofibrate therapy reduced required laser treatment for diabetic retinopathy by 1.5\\% over 5 years, as well as reducing progression by 3.7\\% over 4 years. [11][12][13][15] Further studies looking at the role of fenofibrate in the progression of diabetic retinopathy as the primary outcome is warranted to understand its role in this condition. Although no statistically significant cardiovascular risk benefits were identified in these trials, benefits may accrue to add on therapy to patients with high triglyceride dyslipidaemia currently taking statin medications.[16][17] Fenofibrate appears to reduce the risk of below ankle amputations in patients with Type 2 diabetes without microvascular disease.[18] The FIELD study reported that fenofibrate at doses of 200 mg daily, reduced the risk for any amputation by 37\\% independent of glycaemic control, presence or absence of dyslipidaemia and its lipid-lowering mechanism of action.[18][19] However, the cohort of participants who underwent amputations were more likely to have had previous cardiovascular disease (e.g. angina, myocardial infarction), longer duration of diabetes and had baseline neuropathy.[18][19] Fenofibrate has an off-label use as an added therapy of high blood uric acid levels in people who have gout.[20] It is used in addition to diet to reduce elevated low-density lipoprotein cholesterol (LDL), total cholesterol, triglycerides (TG), and apolipoprotein B (apo B), and to increase high-density lipoprotein cholesterol (HDL) in adults with primary hypercholesterolemia or mixed dyslipidemia. Fenofibrate is a selective PPARα agonist with an EC50 of 30 μM. Fenofibrate also inhibits human cytochrome P450 isoforms, with IC50s of 0.2, 0.7, 9.7, 4.8 and 142.1 μM for CYP2C19, CYP2B6, CYP2C9, CYP2C8, and CYP3A4, respectively.

   

Bergamottin

7H-Furo[3,2-g][1]benzopyran-7-one, 4-[[(2E)-3,7-dimethyl-2,6-octadien-1-yl]oxy]-

C21H22O4 (338.1518)


Bergomottin is a furanocoumarin. It has a role as a metabolite. Bergamottin is a natural product found in Hansenia forbesii, Citrus hystrix, and other organisms with data available. See also: Lime (Citrus) (part of). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins A natural product found in Citrus hystrix. Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM. Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM.

   

Acarbose

(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-{[(1S,4S,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol

C25H43NO18 (645.248)


Acarbose is a tetrasaccharide derivative consisting of a dideoxy-4-{[4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl C7 cyclitol moiety [called valienol (or valienamine)] linked via nitrogen to isomaltotriose. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an EC 3.2.1.1 (alpha-amylase) inhibitor, a hypoglycemic agent and a geroprotector. It is a conjugate base of an acarbose(1+). Acarbose is an alpha glucosidase inhibitor which decreases intestinal absorption of carbohydrates and is used as an adjunctive therapy in the management of type 2 diabetes. Acarbose has been linked to rare instances of clinically apparent acute liver injury. Acarbose is a natural product found in Streptomyces glaucescens, Streptomyces coelicoflavus, and other organisms with data available. Acarbose is a pseudotetrasaccharide and inhibitor of alpha-glucosidase and pancreatic alpha-amylase with antihyperglycemic activity. Acarbose binds to and inhibits alpha-glucosidase, an enteric enzyme found in the brush border of the small intestines that hydrolyzes oligosaccharides and disaccharides into glucose and other monosaccharides. This prevents the breakdown of larger carbohydrates into glucose and decreases the rise in postprandial blood glucose levels. In addition, acarbose inhibits pancreatic alpha-amylase which hydrolyzes complex starches to oligosaccharides in the small intestines. An inhibitor of ALPHA-GLUCOSIDASES that retards the digestion and absorption of DIETARY CARBOHYDRATES in the SMALL INTESTINE. An inhibitor of alpha glucosidase that retards the digestion and absorption of carbohydrates in the small intestine and hence reduces the increase in blood-glucose concentrations after a carbohydrate load. It is given orally to non-insulin dependent diabetes mellitus patients where diet modification or oral hypoglycemic agents do not control their condition. (From Martindale The Extra Pharmacopoeia, 31st ed) A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D004791 - Enzyme Inhibitors Acarbose (BAY g 5421), antihyperglycemic agent, is an orally active alpha-glucosidase inhibitor (IC50=11 nM). Acarbose can potentiate the hypoglycemic effects of sulfonylureas or insulin[1][2][3].

   

Soyasapogenol B

(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,9-diol

C30H50O3 (458.376)


Soyasapogenol b-1, also known as 24-hydroxysophoradiol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Soyasapogenol b-1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Soyasapogenol b-1 can be synthesized from oleanane. Soyasapogenol b-1 is also a parent compound for other transformation products, including but not limited to, soyasapogenol B 3-O-beta-glucuronide, soyasaponin III, and soyasaponin I. Soyasapogenol b-1 can be found in soy bean, which makes soyasapogenol b-1 a potential biomarker for the consumption of this food product. Soyasapogenol B is a pentacyclic triterpenoid that is oleanane containing a double bond between positions 12 and 13 and substituted by hydroxy groups at the 3beta, 22beta and 24-positions. It derives from a hydride of an oleanane. Soyasapogenol B is a natural product found in Astragalus mongholicus, Melilotus messanensis, and other organisms with data available. See also: Trifolium pratense flower (part of); Medicago sativa whole (part of). Soyasapogenol B, also known as 24-hydroxysophoradiol, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Soyasapogenol B is an extremely weak basic (essentially neutral) compound (based on its pKa). Soyasapogenol B is found in alfalfa. Soyasapogenol B is a constituent of soya bean saponin, Medicago, Astragalus, and Trifolium species. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2]. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2].

   

Soyasapogenol A

OLEAN-12-ENE-3,21,22,23-TETROL, (3.BETA.,4.BETA.,21.BETA.,22.BETA.)-

C30H50O4 (474.3709)


Soyasapogenol A is a pentacyclic triterpenoid that is oleanane containing a double bond between positions 12 and 13 and substituted by hydroxy groups at the 3beta, 21beta, 22beta and 24-positions. It derives from a hydride of an oleanane. Soyasapogenol A is a natural product found in Delphinium barbeyi, Glycine max, and other organisms with data available. Soyasapogenol A, a triterpene compound, isolated from soybean. Soyasapogenol A directly prevents apoptosis of hepatocytes, and secondly, inhibits the elevation of plasma TNF-α, which consequently results in the prevention of liver damage in the Concanavalin A-induced hepatitis model[1][2]. Soyasapogenol A, a triterpene compound, isolated from soybean. Soyasapogenol A directly prevents apoptosis of hepatocytes, and secondly, inhibits the elevation of plasma TNF-α, which consequently results in the prevention of liver damage in the Concanavalin A-induced hepatitis model[1][2].

   

(-)-Guttiferone E

(1S,3Z,5R,7R)-3-[(3,4-dihydroxyphenyl)-hydroxy-methylene]-1-[(2S)-2-isopropenyl-5-methyl-hex-4-enyl]-6,6-dimethyl-5,7-bis(3-methylbut-2-enyl)bicyclo[3.3.1]nonane-2,4,9-trione

C38H50O6 (602.3607)


Garcinol is a monoterpenoid. CID 5281560 is a natural product found in Garcinia assugu, Garcinia pedunculata, and other organisms with data available. (-)-Guttiferone E is found in fruits. (-)-Guttiferone E is a constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. Constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. (-)-Guttiferone E is found in fruits. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].

   

Gossypetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7,8-tetrahydroxy-

C15H10O8 (318.0376)


Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.

   

Capsanthin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17-tetramethyl-19-[(4R)-2,6,6-trimethyl-4-oxidanyl-cyclohexen-1-yl]-1-[(1R,4S)-1,2,2-trimethyl-4-oxidanyl-cyclopentyl]nonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O3 (584.4229)


Capsanthin is found in green vegetables. Capsanthin is a constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical.Paprika oleoresin (also known as paprika extract) is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens(Indian red chillies), and is primarily used as a colouring and/or flavouring in food products. It is composed of capsaicin, the main flavouring compound giving pungency in higher concentrations, and capsanthin and capsorubin, the main colouring compounds (among other carotenoids) Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). Constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Punicic_acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


(9Z,11E,13Z)-octadecatrienoic acid is a 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum). It has a role as an antineoplastic agent and a plant metabolite. Punicic acid is a natural product found in Trichosanthes nervifolia, Punica granatum, and other organisms with data available. Punicic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 5th, 7th and 9th positions from the methyl end, with these three bonds in the cis-, trans- and cis- configurations, respectively. See also: Pomegranate Seed Oil (has part). A 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum).

   

Accent

N-(Oleoyl, cocoyl)glutamic acid monosodium salt

C5H8NNaO4 (169.0351)


One of the FLAVORING AGENTS used to impart a meat-like flavor. See also: Monosodium Glutamate (preferred); Glutamic Acid (has active moiety) ... View More ... D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Selenomethionine

Selenomethionine, United States Pharmacopeia (USP) Reference Standard

C5H11NO2Se (196.9955)


L-selenomethionine is the L-enantiomer of selenomethionine. It is an enantiomer of a D-selenomethionine. It is a tautomer of a L-selenomethionine zwitterion. Selenomethionine is a naturally occuring amino acid in some plant materials such as cereal grains, soybeans and enriched yeast but it cannot be synthesized from animals or humans. It can be produced from post-structural modifications. *In vivo*, selenomethionine plays an essential role in acting as an antioxidant, where it depletes reactive oxygen species (ROS) and aids in the formation and recycling of glutathione, another important antioxidant. In comparison to selenite, which is the inorganic form of selenium, the organic form of selenomethionine is more readily absorbed in the human body. Selenomethionin is used in biochemical laboratories where its incorporation into proteins that need to be visualized enhances the performance of X-ray crystallography. L-Selenomethionine is the amino acid methionine with selenium substituting for the sulphur moiety. Methionine is an essential amino acid in humans, whereas selenium is a free-radical scavenging anti-oxidant, essential for the protection of various tissues from the damages of lipid peroxidation. As a trace mineral that is toxic in high doses, selenium is a cofactor for glutathione peroxidase, an anti-oxidant enzyme that neutralizes hydrogen peroxide. L-Selenomethionine is considered a safe, efficacious form of selenium and is readily bioavailable. Selenium may be chemoprotective for certain cancers, particularly prostate cancer. (NCI04) Diagnostic aid in pancreas function determination. Selenomethionine (CAS: 1464-42-2) is an amino acid containing selenium that cannot be synthesized by higher animals but can be obtained from plant material. Selenomethionine is the major seleno-compound in cereal grains (wheat grain, maize, and rice), soybeans, and enriched yeast. Seleno-compounds present in plants may have a profound effect on the health of animals and human subjects. It is now known that the total Se content cannot be used as an indication of its efficacy, but knowledge of individual selenocompounds is necessary to fully assess the significance. Thus, speciation of the seleno-compounds has moved to the forefront. Since animals and man are dependent upon plants for their nutritional requirements, this makes the types of seleno-compounds in plants even more critical. Se enters the food chain through incorporation into plant proteins, mostly as selenocysteine and selenomethionine at normal Se levels. There are two possible pathways for the catabolism of selenomethionine. One is the transsulfuration pathway via selenocystathionine to produce selenocysteine, which in turn is degraded into H2Se by the enzyme beta-lyase. The other pathway is the transamination-decarboxylation pathway. It was estimated that 90\\\\% of methionine is metabolized through this pathway and thus could be also the major route for selenomethionine catabolism (PMID:14748935). Found in onion, cabbage, coco de mono (Lecythis elliptica), Brazil nuts (Bertholletia excelsa), wheat grains and other plants. Dietary supplement for avoidance of Se deficiency in humans and ruminants C26170 - Protective Agent > C275 - Antioxidant The L-enantiomer of selenomethionine. L-SelenoMethionine, an L-isomer of Selenomethionine, is a major natural food-form of selenium. L-SelenoMethionin is a cancer chemopreventive agent that can reduce cancer incidence by dietary supplementation and induce apoptosis of cancer cells. L-SelenoMethionine also can increase expression of glutathione peroxidase[1][2][3]. Selenomethionine is a naturally occurring amino acid containing selenium and is a common natural food source.

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0477)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Soyasapogenol C

(3S,4S,4aR,6aR,6bS,8aS,12aR,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,12,12a,14,14a-dodecahydropicen-3-ol

C30H48O2 (440.3654)


Constituent of soya bean saponin, green gram (Phaseolus radiatus), Trifolium repens (white clover) and other plants. Soyasapogenol C is found in many foods, some of which are herbs and spices, pulses, tea, and green vegetables. Soyasapogenol C is a triterpenoid. Soyasapogenol C is a natural product found in Glycine max, Medicago sativa, and other organisms with data available. See also: Trifolium pratense flower (part of). Soyasapogenol C is found in green vegetables. Soyasapogenol C is a constituent of soya bean saponin, green gram (Phaseolus radiatus), Trifolium repens (white clover) and other plants

   

1-Methylxanthine

2-hydroxy-1-methyl-6,9-dihydro-1H-purin-6-one

C6H6N4O2 (166.0491)


1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

L-Glutamine

(2S)-2,5-diamino-5-oxopentanoic acid

C5H10N2O3 (146.0691)


Glutamine (Gln), also known as L-glutamine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Structurally, glutamine is similar to the amino acid glutamic acid. However, instead of having a terminal carboxylic acid, it has an amide. Glutamine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, polar amino acid. In humans glutamine is considered a non-essential amino acid. Enzymatically, glutamine is formed by replacing a side-chain hydroxyl of glutamic acid with an amine functional group. More specifically, glutamine is synthesized by the enzyme glutamine synthetase from glutamate and ammonia. The most relevant glutamine-producing tissue are skeletal muscles, accounting for about 90\\\\\\% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. In human blood, glutamine is the most abundant free amino acid. Dietary sources of glutamine include protein-rich foods such as beef, chicken, fish, dairy products, eggs, beans, beets, cabbage, spinach, carrots, parsley, vegetable juices, wheat, papaya, Brussels sprouts, celery and kale. Glutamine is one of the few amino acids that can directly cross the blood–brain barrier. Glutamine is often used as a supplement in weightlifting, bodybuilding, endurance and other sports, as well as by those who suffer from muscular cramps or pain, particularly elderly people. In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac. The main use of glutamine within the diet of either group is as a means of replenishing the bodys stores of amino acids that have been used during exercise or everyday activities. Studies which have looked into problems with excessive consumption of glutamine thus far have proved inconclusive. However, normal supplementation is healthy mainly because glutamine is supposed to be supplemented after prolonged periods of exercise (for example, a workout or exercise in which amino acids are required for use) and replenishes amino acid stores. This is one of the main reasons glutamine is recommended during fasting or for people who suffer from physical trauma, immune deficiencies, or cancer. There is a significant body of evidence that links glutamine-enriched diets with positive intestinal effects. These include maintenance of gut barrier function, aiding intestinal cell proliferation and differentiation, as well as generally reducing septic morbidity and the symptoms of Irritable Bowel Syndrome (IBS). The reason for such "cleansing" properties is thought to stem from the fact that the intestinal extraction rate of glutamine is higher than that for other amino acids, and is therefore thought to be the most viable option when attempting to alleviate conditions relating to the gastrointestinal tract. These conditions were discovered after comparing plasma concentration within the gut between glutamine-enriched and non glutamine-enriched diets. However, even though glutamine is thought to have "cleansing" properties and effects, it is unknown to what extent glutamine has clinical benefits, due to the varied concentrations of glutamine in varieties of food. It is also known that glutamine has positive effects in reducing healing time after operations. Hospital waiting times after abdominal s... L-glutamine, also known as L-2-aminoglutaramic acid or levoglutamide, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamine is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamine can be found in a number of food items such as acorn, yautia, ohelo berry, and oregon yampah, which makes L-glutamine a potential biomarker for the consumption of these food products. L-glutamine can be found primarily in most biofluids, including blood, sweat, breast milk, and cerebrospinal fluid (CSF), as well as throughout most human tissues. L-glutamine exists in all living species, ranging from bacteria to humans. In humans, L-glutamine is involved in several metabolic pathways, some of which include amino sugar metabolism, the oncogenic action of 2-hydroxyglutarate, mercaptopurine metabolism pathway, and transcription/Translation. L-glutamine is also involved in several metabolic disorders, some of which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, tay-sachs disease, xanthinuria type I, and adenosine deaminase deficiency. Moreover, L-glutamine is found to be associated with carbamoyl Phosphate Synthetase Deficiency, epilepsy, schizophrenia, and alzheimers disease. L-glutamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. L-glutamine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

1,1-Dimethylbiguanide

1-carbamimidamido-N,N-dimethylmethanimidamide

C4H11N5 (129.1014)


1,1-Dimethylbiguanide, commonly known as metformin, is a member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1. It has a role as a hypoglycemic agent, a xenobiotic and an environmental contaminant. It derives from a biguanide. It is a conjugate base of a metformin(1+). Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. It is also used in the treatment of polycystic ovary syndrome. It is not associated with weight gain and is taken by mouth. It is sometimes used as an off-label augment to attenuate the risk of weight gain in people who take antipsychotics as well as phenelzine. 1,1-Dimethylbiguanide or Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. [HMDB] A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; INTERNAL_ID 4124 CONFIDENCE standard compound; INTERNAL_ID 8678 CONFIDENCE standard compound; INTERNAL_ID 1127 C1892 - Chemopreventive Agent KEIO_ID M032 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].

   

Amlodipine

3-Ethyl-5-methyl (+-)-2-(2-aminoethoxymethyl)-4-(O-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid

C20H25ClN2O5 (408.1452)


Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium.; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. [HMDB] Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium. Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tris(2-butoxyethyl) phosphate

Phosphoric acid, tris(2-butoxyethyl) ester

C18H39O7P (398.2433)


CONFIDENCE standard compound; INTERNAL_ID 610; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10134; ORIGINAL_PRECURSOR_SCAN_NO 10129 CONFIDENCE standard compound; INTERNAL_ID 610; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10034; ORIGINAL_PRECURSOR_SCAN_NO 10029 CONFIDENCE standard compound; INTERNAL_ID 610; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10135; ORIGINAL_PRECURSOR_SCAN_NO 10134 CONFIDENCE standard compound; INTERNAL_ID 610; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10156; ORIGINAL_PRECURSOR_SCAN_NO 10155 CONFIDENCE standard compound; INTERNAL_ID 610; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10080; ORIGINAL_PRECURSOR_SCAN_NO 10079 CONFIDENCE standard compound; INTERNAL_ID 610; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10078; ORIGINAL_PRECURSOR_SCAN_NO 10077 CONFIDENCE standard compound; INTERNAL_ID 2467 CONFIDENCE standard compound; INTERNAL_ID 8244 CONFIDENCE standard compound; INTERNAL_ID 8806

   

Allidochlor

2-chloro-N,N-bis(prop-2-en-1-yl)acetamide

C8H12ClNO (173.0607)


   

Diethylpropion

Investigacion farmaceutica brand OF amfepramone hydrochloride

C13H19NO (205.1467)


Diethylpropion is only found in individuals that have used or taken this drug. It is a appetite depressant considered to produce less central nervous system disturbance than most drugs in this therapeutic category. It is also considered to be among the safest for patients with hypertension. (From AMA Drug Evaluations Annual, 1994, p2290)Diethylpropion is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. Diethylpropion (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that diethylpropion can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Bendroflumethiazide

+--3-Benzyl-3,4-dihydro-6-(trifluoromethyl)-2H-1,2,4-benzothiadiazine-7-sulphonamide 1,1-dioxide

C15H14F3N3O4S2 (421.0378)


Bendroflumethiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with actions and uses similar to those of hydrochlorothiazide. It has been used in the treatment of familial hyperkalemia, hypertension, edema, and urinary tract disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p810)As a diuretic, bendroflumethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like bendroflumethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of bendroflumethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Bisoprolol

1-[(propan-2-yl)amino]-3-(4-{[2-(propan-2-yloxy)ethoxy]methyl}phenoxy)propan-2-ol

C18H31NO4 (325.2253)


Bisoprolol is a cardioselective β1-adrenergic blocking agent used for secondary prevention of myocardial infarction (MI), heart failure, angina pectoris and mild to moderate hypertension. Bisoprolol is structurally similar to metoprolol, acebutolol and atenolol in that it has two substituents in the para position of the benzene ring. The β1-selectivity of these agents is thought to be due in part to the large substituents in the para position. At lower doses (less than 20 mg daily), bisoprolol selectively blocks cardiac β1-adrenergic receptors with little activity against β2-adrenergic receptors of the lungs and vascular smooth muscle. Receptor selectivity decreases with daily doses of 20 mg or greater. Unlike propranolol and pindolol, bisoprolol does not exhibit membrane-stabilizing or sympathomimetic activity. Bisoprolol possesses a single chiral centre and is administered as a racemic mixture. Only l-bisoprolol exhibits significant β-blocking activity. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3013 CONFIDENCE standard compound; INTERNAL_ID 8595 CONFIDENCE standard compound; INTERNAL_ID 2677

   

Glimepiride

3-Ethyl-4-methyl-N-{2-[4-({[(4-methylcyclohexyl)-C-hydroxycarbonimidoyl]amino}sulphonyl)phenyl]ethyl}-2-oxo-2,5-dihydro-1H-pyrrole-1-carboximidic acid

C24H34N4O5S (490.225)


Glimepiride is only found in individuals that have used or taken this drug. It is the first III generation sulphonyl urea it is a very potent sulphonyl urea with long duration of action.The mechanism of action of glimepiride in lowering blood glucose appears to be dependent on stimulating the release of insulin from functioning pancreatic beta cells, and increasing sensitivity of peripheral tissues to insulin. Glimepiride likely binds to ATP-sensitive potassium channel receptors on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Membrane depolarization stimulates calcium ion influx through voltage-sensitive calcium channels. This increase in intracellular calcium ion concentration induces the secretion of insulin. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BB - Sulfonylureas C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C97936 - Sulfonylurea Antidiabetic Agent D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D007004 - Hypoglycemic Agents

   

Iervin

Jervine

C27H39NO3 (425.293)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2330 Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].

   

Pioglitazone

(+-)-5-((4-(2-(5-Ethyl-2-pyridinyl)ethoxy)phenyl)methyl)-2,4-thiazolidinedione

C19H20N2O3S (356.1195)


Pioglitazone is used for the treatment of diabetes mellitus type 2. Pioglitazone selectively stimulates nuclear receptor peroxisone proliferator-activated receptor gamma (PPAR-gamma). It modulates the transcription of the insulin-sensitive genes involved in the control of glucose and lipid metabolism in the lipidic, muscular tissues and in the liver. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BG - Thiazolidinediones C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98241 - Thiazolidinedione Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pioglitazone (U 72107) is an orally active and selective PPARγ (peroxisome proliferator-activated receptor) agonist with high affinity binding to the PPARγ ligand-binding domain with EC50 of 0.93 and 0.99 μM for human and mouse PPARγ, respectively. Pioglitazone can be used in diabetes research[2][3][4].

   

Phendimetrazine

Phendimetrazine tartrate, (2S-trans(R-(r*,r*)))-isomer

C12H17NO (191.131)


Phendimetrazine is a weight loss medication. Phendimetrazine is chemically related to amphetamines and is a Schedule III drug under the Convention on Psychotropic Substances. In the United States, phendimetrazine is a Schedule III controlled substance under the Uniform Controlled Substances Act of 1970. D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Glucose

(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0634)


Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 226 KEIO_ID G002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Perindopril

(2S,3aS,7aS)-1-[(2S)-2-{[(2S)-1-ethoxy-1-oxopentan-2-yl]amino}propanoyl]-octahydro-1H-indole-2-carboxylic acid

C19H32N2O5 (368.2311)


Perindopril is a nonsulfhydryl prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly metabolized in the liver to perindoprilat, its active metabolite, following oral administration. Perindoprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Perindopril may be used to treat mild to moderate essential hypertension, mild to moderate congestive heart failure, and to reduce the cardiovascular risk of individuals with hypertension or post-myocardial infarction and stable coronary disease. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

Tangeritin

5,6,7,8-Tetramethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one, 9CI

C20H20O7 (372.1209)


Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.

   

Phentermine

(alpha,alpha)-Dimethylphenethylamine

C10H15N (149.1204)


Phentermine is only found in individuals that have used or taken this drug. It is a central nervous system stimulant and sympathomimetic with actions and uses similar to those of dextroamphetamine. It has been used most frequently in the treatment of obesity. [PubChem]Phentermine is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. The drug seems to inhibit reuptake of noradrenaline, dopamine, and seratonin through inhibition or reversal of the reuptake transporters. It may also inhibit MAO enzymes leaving more neurotransmitter available at the synapse.Phentermine (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that phentermine can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products CONFIDENCE standard compound; INTERNAL_ID 7; HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

17-Hydroxyprogesterone

(1S,2R,10R,11S,14R,15S)-14-acetyl-14-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O3 (330.2195)


17-Hydroxyprogesterone also known as 17-OH progesterone (17-OHP), or hydroxyprogesterone (OHP), is an endogenous progestogen steroid hormone related to progesterone. Formally it is a 17alpha-hydroxy steroid that is the 17alpha-hydroxy derivative of progesterone. 17-Hydroxyprogesterone is found in all vertebrates. It is a chemical intermediate in the biosynthesis of many endogenous steroids, including androgens, estrogens, glucocorticoids, mineralocorticoids and neurosteroids. In particular, 17-Hydroxyprogesterone serves as an intermediate in the biosynthesis of hydrocortisone and gonadal steroid hormones. It is derived from progesterone via the enzyme known as 17-hydroxylase, a cytochrome P450 enzyme also known as CYP17A1. It can also be biosynthesized from 17-hydroxypregnenolone via the enzyme 3beta-hydroxysteroid dehydrogenase/delta5-4 isomerase (PMID: 1955079). 17-OHP is an agonist of the progesterone receptor (PR). It is also an antagonist of the mineralocorticoid receptor (MR) as well as a partial agonist of the glucocorticoid receptor (GR). 17-Hydroxyprogesterone is a natural progestin and in pregnancy it increases in the third trimester primarily due to fetal adrenal production. 17-Hydroxyprogesterone is primarily produced in the adrenal glands and to some degree in the gonads, specifically the corpus luteum of the ovary. Normal levels are 3-90 ng/dl in children, and in women, 15-70 ng/dl prior to ovulation, and 35-290 ng/dl during the luteal phase. Measurements of levels of 17-hydroxyprogesterone are useful in the evaluation of patients with suspected congenital adrenal hyperplasia as the typical enzymes that are defective, namely 21-hydroxylase, lead to a build-up of 17-OHP. 17-OHP levels can also be used to measure contribution of progestational activity of the corpus luteum during pregnancy as progesterone but not 17-OHP is also contributed by the placenta. It serves as an intermediate in the biosynthesis of hydrocortisone and gonadal steroid hormones. It is derived from progesterone via 17-hydroxylase, a P450c17 enzyme, or from 17-hydroxypregnenolone via 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase. 17-Hydroxyprogesterone is a natural progestin and in pregnancy increases in the third trimester primarily due to fetal adrenal production. CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9336; ORIGINAL_PRECURSOR_SCAN_NO 9331 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9427; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9386; ORIGINAL_PRECURSOR_SCAN_NO 9384 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9370 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9329 CONFIDENCE standard compound; INTERNAL_ID 1144; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9378; ORIGINAL_PRECURSOR_SCAN_NO 9376 G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17α-Hydroxyprogesterone (17-Hydroxyprogesterone) is an endogenous progesterone that serves as a chemical intermediate in the biosynthesis of other steroid hormones, including glucocorticoids, androgens, and estrogens.

   

Asymmetric dimethylarginine

(2S)-2-amino-5-[(E)-[amino(dimethylamino)methylidene]amino]pentanoic acid

C8H18N4O2 (202.143)


Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally-essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide, a key chemical to endothelial and hence cardiovascular health. Asymmetric dimethylarginine is created in protein methylation, a common mechanism of post-translational protein modification. This reaction is catalyzed by an enzyme set called S-adenosylmethionine protein N-methyltransferases (protein methylases I and II). The methyl groups transferred to create ADMA are derived from the methyl group donor S-adenosylmethionine, an intermediate in the metabolism of homocysteine. (Homocysteine is an important blood chemical, because it is also a marker of cardiovascular disease). After synthesis, ADMA migrates into the extracellular space and thence into blood plasma. Asymmetric dimethylarginine is measured using high performance liquid chromatography. ADMA has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Isolated from broad bean seeds (Vicia faba). NG,NG-Dimethyl-L-arginine is found in many foods, some of which are yellow wax bean, spinach, green zucchini, and white cabbage. D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

Butyric acid

Butyric acid magnesium salt

C4H8O2 (88.0524)


Butyric acid is a short-chain fatty acid (SCFA) formed in the mammalian colon by bacterial fermentation of carbohydrates (including dietary fibre). It is a straight-chain alkyl carboxylic acid that appears as an oily, colorless liquid with an unpleasant (rancid butter) odor. The name butyric acid comes from the Greek word for "butter", the substance in which it was first found. Triglycerides of butyric acid constitute 3‚Äì4\\% of butter. When butter goes rancid, butyric acid is liberated from the short-chain triglycerides via hydrolysis. Butyric acid is a widely distributed SCFA and is found in all organisms ranging from bacteria to plants to animals. It is present in animal fat and plant oils, bovine milk, breast milk, butter, parmesan cheese, body odor and vomit. While butyric acid has an unpleasant odor, it does have a pleasant buttery taste. As a result, butyric acid is used as a flavoring agent in food manufacturing. Low-molecular-weight esters of butyric acid, such as methyl butyrate, also have very pleasant aromas or tastes. As a result, several butyrate esters are used as food and perfume additives. Butyrate is naturally produced by fermentation processes performed by obligate anaerobic bacteria found in the mammalian gut. It is a metabolite of several bacterial genera including Anaerostipes, Coprococcus, Eubacterium, Faecalibacterium and Roseburia (PMID: 12324374; PMID: 27446020). Highly-fermentable fiber residues, such as those from resistant starch, oat bran, pectin, and guar can be transformed by colonic bacteria into butyrate. One study found that resistant starch consistently produces more butyrate than other types of dietary fibre (PMID: 14747692). The production of butyrate from fibres in ruminant animals such as cattle is responsible for the butyrate content of milk and butter. Butyrate has a number of important biological functions and binds to several specific receptors. In humans, butyric acid is one of two primary endogenous agonists of human hydroxycarboxylic acid receptor 2 (HCA2), a G protein-coupled receptor. Like other SCFAs, butyrate is also an agonist at the free fatty acid receptors FFAR2 and FFAR3, which function as nutrient sensors that facilitate the homeostatic control of energy balance. Butyrate is essential to host immune homeostasis (PMID: 25875123). Butyrates effects on the immune system are mediated through the inhibition of class I histone deacetylases (specifically, HDAC1, HDAC2, HDAC3, and HDAC8) and activation of its G-protein coupled receptor targets including HCA2, FFAR2 and FFAR3. Among the short-chain fatty acids, butyrate is the most potent promoter of intestinal regulatory T cells in vitro and the only SCFA that is an HCA2 ligand (PMID: 25741338). Butyrate has been shown to be a critical mediator of the colonic inflammatory response. It possesses both preventive and therapeutic potential to counteract inflammation-mediated ulcerative colitis and colorectal cancer. As a short-chain fatty acid, butyrate is metabolized by mitochondria as an energy source through fatty acid metabolism. In particular, it is an important energy source for cells lining the mammalian colon (colonocytes). Without butyrate, colon cells undergo autophagy (i.e., self-digestion) and die. Butyric acid, also known as butyrate or butanoic acid, is a member of the class of compounds known as straight chain fatty acids. Straight chain fatty acids are fatty acids with a straight aliphatic chain. Thus, butyric acid is considered to be a fatty acid lipid molecule. Butyric acid is soluble (in water) and a weakly acidic compound (based on its pKa). Butyric acid can be found in a number of food items such as cinnamon, pepper (c. baccatum), burdock, and mandarin orange (clementine, tangerine), which makes butyric acid a potential biomarker for the consumption of these food products. Butyric acid can be found primarily in most biofluids, including saliva, breast milk, feces, and cerebrospinal fluid (CSF), as well as throughout most human tissues. Butyric acid exists in all eukaryotes, ranging from yeast to humans. In humans, butyric acid is involved in a couple of metabolic pathways, which include butyrate metabolism and fatty acid biosynthesis. Moreover, butyric acid is found to be associated with aIDS. Butyric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Butyric acid was first observed in impure form in 1814 by the French chemist Michel Eugène Chevreul. By 1818, he had purified it sufficiently to characterize it. However, Chevreul did not publish his early research on butyric acid; instead, he deposited his findings in manuscript form with the secretary of the Academy of Sciences in Paris, France. Henri Braconnot, a French chemist, was also researching the composition of butter and was publishing his findings, and this led to disputes about priority. As early as 1815, Chevreul claimed that he had found the substance responsible for the smell of butter. By 1817, he published some of his findings regarding the properties of butyric acid and named it. However, it was not until 1823 that he presented the properties of butyric acid in detail. The name of butyric acid comes from the Latin word for butter, butyrum (or buturum), the substance in which butyric acid was first found . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists KEIO_ID B006

   

Sibutramine

N-1-(1-(4-Chlorophenyl)cyclobutyl)-3-methylbutyl-N,N-dimethylamine HCL

C17H26ClN (279.1754)


Sibutramine (trade name Meridia in the USA, Reductil in Europe and other countries), usually as sibutramide hydrochloride monohydrate, is an orally administered agent for the treatment of obesity. It is a centrally acting stimulant chemically related to amphetamines. Sibutramine is classified as a Schedule IV controlled substance in the United States. In October 2010, Sibutramine was withdrawn from Canadian and U.S. markets due to concerns that the drug increases the risk of heart attack and stroke in patients with a history of heart disease. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Dehydroepiandrosterone sulfate

[(1S,2R,5S,10R,11S,15S)-2,15-dimethyl-14-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl]oxidanesulfonic acid

C19H28O5S (368.1657)


Dehydroepiandrosterone sulfate or DHEA-S is the sulfated form of dehydroepiandrosterone (DHEA). This sulfation is reversibly catalyzed by sulfotransferase 2A1 (SULT2A1) primarily in the adrenals, the liver, and small intestine. In the blood, most DHEA is found as DHEA-S with levels that are about 300 times higher than those of free DHEA. Orally-ingested DHEA is converted into its sulfate when passing through the intestines and liver. Whereas DHEA levels naturally reach their peak in the early morning hours, DHEAS levels show no diurnal variation. From a practical point of view, measurement of DHEA-S is preferable to DHEA since levels are more stable. DHEA (from which DHEA-S comes from) is a natural steroid prohormone produced from cholesterol by the adrenal glands, the gonads, adipose tissue, brain, and in the skin (by an autocrine mechanism). DHEA is the precursor of androstenedione, which can undergo further conversion to produce the androgen testosterone and the estrogens estrone and estradiol. DHEA is also a potent sigma-1 agonist. Serum dehydroepiandrosterone sulfate is a classic marker for adrenarche, and subsequently for the individual hormonal milieu (PMID: 10599744). Dehydroepiandrosterone sulfate is an endogenously produced sex steroid that has been hypothesized to have anti-aging effects (PMID: 16960027). It also has been inversely associated with the development of atherosclerosis (PMID: 8956025). DHEAS or Dehydroepiandrosterone sulfate is the sulfated form of DHEA. This sulfation is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestine. In the blood, most DHEA is found as DHEAS with levels that are about 300 times higher than those of free DHEA. Orally-ingested DHEA is converted to its sulfate when passing through intestines and liver. Whereas DHEA levels naturally reach their peak in the early morning hours, DHEAS levels show no diurnal variation. From a practical point of view, measurement of DHEAS is preferable to DHEA, as levels are more stable. DHEA (from which DHEAS comes from) is a natural steroid prohormone produced from cholesterol by the adrenal glands, the gonads, adipose tissue, brain and in the skin (by an autocrine mechanism). DHEA is the precursor of androstenedione, which can undergo further conversion to produce the androgen testosterone and the estrogens estrone and estradiol. DHEA is also a potent sigma-1 agonist. DHEAS can serve as a precursor for testosterone; androstenedione; estradiol; and estrone. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Benz[a]anthracene

2,3-Benzphenanthrene

C18H12 (228.0939)


   

Benzo[b]fluoranthene

pentacyclo[10.7.1.0²,⁷.0⁸,²⁰.0¹³,¹⁸]icosa-1(19),2,4,6,8(20),9,11,13,15,17-decaene

C20H12 (252.0939)


   

Phenanthrene

Phenanthracene

C14H10 (178.0782)


Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) and has been frequently used as an indicator for monitoring PAH contaminated matrices[1]. Phenanthrene induces oxidative stress and inflammation[2].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Masoprocol

4-[(2S,3R)-3-[(3,4-dihydroxyphenyl)methyl]-2-methylbutyl]benzene-1,2-diol

C18H22O4 (302.1518)


Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.

   

HOMATROPINE

HOMATROPINE

C16H21NO3 (275.1521)


S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics Annotation level-1

   

Prostaglandin B2

(5Z)-7-{2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}hept-5-enoic acid

C20H30O4 (334.2144)


Prostaglandin B2 (PGB2) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B2 (PGB2) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)

   

Capsorubin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-1,20-bis[(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaene-1,20-dione

C40H56O4 (600.4178)


Capsorubin is found in herbs and spices. Capsorubin is a constituent of paprika (Capsicum annuum). Potential nutriceutical.Capsorubin is one of the main colouring constituant of paprika oleoresin (paprika extract). (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of paprika (Capsicum annuum). Potential nutriceutical

   

2-Deoxy-D-glucose

6-(hydroxymethyl)oxane-2,4,5-triol

C6H12O5 (164.0685)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites

   

Stearoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(octadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H70N7O17P3S (1033.3762)


Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.) [HMDB]. Stearoyl-CoA is found in many foods, some of which are romaine lettuce, grapefruit/pummelo hybrid, radish, and european cranberry. Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.).

   

Calcidiol

(1S,3Z)-3-{2-[(1R,3aS,4E,7aR)-1-[(2R)-6-hydroxy-6-methylheptan-2-yl]-7a-methyl-octahydro-1H-inden-4-ylidene]ethylidene}-4-methylidenecyclohexan-1-ol

C27H44O2 (400.3341)


Calfcifediol is a prehormone that is produced in the liver by hydroxylation of vitamin D3 (cholecalciferol) by the enzyme cholecalciferol 25-hydroxylase. Calcifediol is then converted in the kidneys into calcitriol (1,25-(OH)2D3), a secosteroid hormone that is the active form of vitamin D. It can also be converted into 24-hydroxycalcidiol in the kidneys via 24-hydroxylation. [Wikipedia]. 25-Hydroxycholecalciferol is found in many foods, some of which are green zucchini, green bell pepper, red bell pepper, and other animal fat. The major circulating metabolite of vitamin D3 (calciferon). It is produced in the liver and is the best indicator of the bodys vitamin D stores. It is effective in the treatment of rickets and osteomalacia, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties. A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D050071 - Bone Density Conservation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Zymosterol intermediate 2

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H44O (384.3392)


Zymosterol, also known as 5alpha-cholesta-8,24-dien-3beta-ol or delta8,24-cholestadien-3beta-ol, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, zymosterol is considered to be a sterol lipid molecule. Zymosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Zymosterol can be synthesized from 5alpha-cholestane. Zymosterol is also a parent compound for other transformation products, including but not limited to, 4beta-methylzymosterol-4alpha-carboxylic acid, 3-dehydro-4-methylzymosterol, and zymosterol intermediate 1b. Zymosterol can be found in a number of food items such as squashberry, hard wheat, salmonberry, and loquat, which makes zymosterol a potential biomarker for the consumption of these food products. Zymosterol exists in all eukaryotes, ranging from yeast to humans. In humans, zymosterol is involved in several metabolic pathways, some of which include zoledronate action pathway, alendronate action pathway, pravastatin action pathway, and atorvastatin action pathway. Zymosterol is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, lysosomal acid lipase deficiency (wolman disease), smith-lemli-opitz syndrome (SLOS), and chondrodysplasia punctata II, X linked dominant (CDPX2). Zymosterol is an intermediate in cholesterol biosynthesis. Disregarding some intermediate compounds (e.g. 4-4-dimethylzymosterol) lanosterol can be considered a precursor of zymosterol in the cholesterol synthesis pathway. The conversion of zymosterol into cholesterol happens in the endoplasmic reticulum. Zymosterol accumulates quickly in the plasma membrane coming from the cytosol. The movement of zymosterol across the cytosol is more than twice as fast as the movement of cholesterol itself . Zymosterol is the precursor of cholesterol and is found in the plasma membrane. zymosterol circulates within the cells. The structural features of zymosterol provided optimal substrate acceptability. In human fibroblasts, zymosterol is converted to cholesterol solely in the rough ER. Little or no zymosterol or cholesterol accumulates in the rough ER in vivo. Newly synthesized zymosterol moves to the plasma membrane without a detectable lag and with a half-time of 9 min, about twice as fast as cholesterol. The pool of radiolabeled zymosterol in the plasma membrane turns over rapidly, faster than does intracellular cholesterol. Thus, plasma membrane zymosterol is not stagnant. [3H]Zymosterol pulsed into intact cells is initially found in the plasma membrane. (PMID: 1939176). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Desogestrel

(1S,2R,10S,11S,14R,15S)-15-ethyl-14-ethynyl-17-methylidenetetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-ol

C22H30O (310.2297)


Desogestrel is only found in individuals that have used or taken this drug. It is a synthetic progestational hormone used often as the progestogenic component of combined oral contraceptive agents. [PubChem]Binds to the progesterone and estrogen receptors. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progestins like desogestrel will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

Dalfopristin

(6R,10R,11R,12Z,17Z,19Z,21S)-6-[2-(Diethylamino)ethanesulphonyl]-14,21-dihydroxy-11,19-dimethyl-10-(propan-2-yl)-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.0³,⁷]octacosa-1(27),12,14,17,19,25(28)-hexaene-2,8,23-trione

C34H50N4O9S (690.3298)


Dalfopristin is a combination of two antibiotics (Dalfopristin and quinupristin) used to treat infections by staphylococci and by vancomycin-resistant Enterococcus faecium. It is not effective against Enterococcus faecalis infections. Dalfopristin inhibits the early phase of protein synthesis in the bacterial ribosome and quinupristin inhibits the late phase of protein synthesis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D025361 - Streptogramins

   

Aurothioglucose

Aurothioglucose

C6H11AuO5S (391.9993)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CB - Gold preparations D018501 - Antirheumatic Agents

   
   

Archaeol

2,3-Di-O-phytanyl-sn-glycerol

C43H88O3 (652.6733)


   

Soyasapogenol E

10-hydroxy-9-(hydroxymethyl)-2,2,4a,6a,6b,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicen-4-one

C30H48O3 (456.3603)


Constituent of soya bean (Glycine max). Soyasapogenol E is found in many foods, some of which are sapodilla, strawberry guava, purple mangosteen, and napa cabbage. Soyasapogenol E is found in pulses. Soyasapogenol E is a constituent of soya bean (Glycine max)

   

DL-Glutamine

DL-Glutamine

C5H10N2O3 (146.0691)


DL-Glutamine is used for biochemical research and drug synthesis.

   

Alliin

(2R)-2-Amino-3-(prop-2-ene-1-sulphinyl)propanoic acid

C6H11NO3S (177.046)


Alliin, also known as (S)-S-allyl-L-cysteine sulfoxide or (S)-3-(allylsulphinyl)-L-alanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Alliin is soluble (in water) and a moderately acidic compound (based on its pKa). Alliin can be found in a number of food items such as red rice, mandarin orange (clementine, tangerine), ceylon cinnamon, and olive, which makes alliin a potential biomarker for the consumption of these food products. Garlic has been used since antiquity as a therapeutic remedy for certain conditions now associated with oxygen toxicity, and, when this was investigated, garlic did indeed show strong antioxidant and hydroxyl radical-scavenging properties, it is presumed owing to the alliin contained within. Alliin has also been found to affect immune responses in blood . 3-(Allylsulphinyl)-L-alanine is a L-alpha-amino acid. Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Alliin is the main active component of garlic. (±)-Alliin is a putative inhibitor of the main protease of SARS-CoV-2 (Mpro)[1]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].

   

2,3-DI-Phytanyl-glycerol

2,3-bis[(3,7,11,15-tetramethylhexadecyl)oxy]propan-1-ol

C43H88O3 (652.6733)


   

Alpha-Acarbose

5-({5-[(3,4-dihydroxy-6-methyl-5-{[4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}oxan-2-yl)oxy]-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl}oxy)-6-(hydroxymethyl)oxane-2,3,4-triol

C25H43NO18 (645.248)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D004791 - Enzyme Inhibitors

   

Garcinol

3-[(3,4-dihydroxyphenyl)(hydroxy)methylidene]-6,6-dimethyl-1-[5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-5,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]nonane-2,4,9-trione

C38H50O6 (602.3607)


   

metformin

metformin

C4H11N5 (129.1014)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2550 C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].

   

Tangeritin

5,6,7,8-Tetramethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one, 9CI

C20H20O7 (372.1209)


Tangeretin is a pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. It has a role as an antineoplastic agent and a plant metabolite. Tangeretin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica A pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.

   

Jervine

(2R,3S,3R,3aS,6S,6aS,6bS,7aR,11aS,1 1bR)-2,3,3a,4,4,5,6,6,6a,6b,7,7,7a,8,11a,11b-hexad ecahydro-3-hydroxy-3,6,10,11b-tetramethyl-Spiro[9H -benzo[a]fluorene-9,2(3H)-furo[3,2-b]pyridin]-11(1 H)-one

C27H39NO3 (425.293)


Jervine is a member of piperidines. Jervine is a natural product found in Veratrum stamineum, Veratrum grandiflorum, and other organisms with data available. Jervine is a steroidal alkaloid with molecular formula C27H39NO3 which is derived from the Veratrum plant genus. Similar to cyclopamine, which also occurs in the Veratrum genus, it is a teratogen implicated in birth defects when consumed by animals during a certain period of their gestation. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].

   

Punicic acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. A disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Tangeretin

4H-1-Benzopyran-4-one, 5,6,7,8-tetra-methoxy-2-(4-methoxyphenyl)-

C20H20O7 (372.1209)


Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.

   

Glucose

alpha-D-Glucose

C6H12O6 (180.0634)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Capsanthin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17-tetramethyl-19-[(4R)-2,6,6-trimethyl-4-oxidanyl-cyclohexen-1-yl]-1-[(1R,4S)-1,2,2-trimethyl-4-oxidanyl-cyclopentyl]nonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O3 (584.4229)


Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(-)-Guttiferone E

3-(3,4-dihydroxybenzoyl)-4-hydroxy-8,8-dimethyl-5-[5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-1,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione

C38H50O6 (602.3607)


(-)-Guttiferone E is found in fruits. (-)-Guttiferone E is a constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. Constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. (-)-Guttiferone E is found in fruits. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].

   

soyasapogenol E

soyasapogenol E

C30H48O3 (456.3603)


   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

cambogin

IsogarcinolMyriceric acid CCrocin IVLyciumin BTraxillasideGlochidoneCeplignanPrunasinCroverin(2α,3β,4α)-2,3,19-Trihydroxyurs-12-ene-23,28-dioic acidEuphoheliosnoid A7α-O-Ethylmorroniside3-O-Acetyl-16α-hydroxydehydrotrametenolic acidL-Hyoscyamine sulfateLuteone

C38H50O6 (602.3607)


Garcinol is a monoterpenoid. CID 5281560 is a natural product found in Garcinia assugu, Garcinia pedunculata, and other organisms with data available. Isogarcinol is a natural product found in Garcinia pedunculata, Garcinia cowa, and other organisms with data available. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].

   

amlodipine

Amlodipine (Norvasc)

C20H25ClN2O5 (408.1452)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1544

   

Pioglitazone

5-(4-(2-(5-Ethylpyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-dione

C19H20N2O3S (356.1195)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BG - Thiazolidinediones C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98241 - Thiazolidinedione Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3418; ORIGINAL_PRECURSOR_SCAN_NO 3417 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3413; ORIGINAL_PRECURSOR_SCAN_NO 3410 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3422; ORIGINAL_PRECURSOR_SCAN_NO 3421 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3410; ORIGINAL_PRECURSOR_SCAN_NO 3408 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3260; ORIGINAL_PRECURSOR_SCAN_NO 3258 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3419; ORIGINAL_PRECURSOR_SCAN_NO 3417 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7098; ORIGINAL_PRECURSOR_SCAN_NO 7097 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7118; ORIGINAL_PRECURSOR_SCAN_NO 7116 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7127; ORIGINAL_PRECURSOR_SCAN_NO 7125 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7146; ORIGINAL_PRECURSOR_SCAN_NO 7145 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7154; ORIGINAL_PRECURSOR_SCAN_NO 7153 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7069; ORIGINAL_PRECURSOR_SCAN_NO 7068 CONFIDENCE standard compound; INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 2203 CONFIDENCE standard compound; INTERNAL_ID 8526 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3286 Pioglitazone (U 72107) is an orally active and selective PPARγ (peroxisome proliferator-activated receptor) agonist with high affinity binding to the PPARγ ligand-binding domain with EC50 of 0.93 and 0.99 μM for human and mouse PPARγ, respectively. Pioglitazone can be used in diabetes research[2][3][4].

   

Perindopril

Perindopril

C19H32N2O5 (368.2311)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3026 Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

BISOPROLOL

BISOPROLOL

C18H31NO4 (325.2253)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE Reference Standard (Level 1)

   

metformin

metformin

C4H11N5 (129.1014)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1) Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].

   

Boldine

4H-Dibenzo[de,g]quinoline-2,9-diol, 5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-, (6aS)-

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (s)-boldine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof (s)-boldine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-boldine can be found in sweet bay, which makes (s)-boldine a potential biomarker for the consumption of this food product. Origin: Plant; Formula(Parent): C19H21NO4; Bottle Name:Boldine hydrochloride; PRIME Parent Name:Boldine; PRIME in-house No.:V0322; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.487 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.480 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.482 IPB_RECORD: 841; CONFIDENCE confident structure Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

glimepiride

cis-Glimepiride

C24H34N4O5S (490.225)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BB - Sulfonylureas C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C97936 - Sulfonylurea Antidiabetic Agent D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D007004 - Hypoglycemic Agents CONFIDENCE standard compound; INTERNAL_ID 2355 CONFIDENCE standard compound; INTERNAL_ID 8512

   

Fenofibrate (Tricor, Trilipix)

propan-2-yl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate

C20H21ClO4 (360.1128)


Fenofibrate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=49562-28-9 (retrieved 2024-07-12) (CAS RN: 49562-28-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fenofibrate is a selective PPARα agonist with an EC50 of 30 μM. Fenofibrate also inhibits human cytochrome P450 isoforms, with IC50s of 0.2, 0.7, 9.7, 4.8 and 142.1 μM for CYP2C19, CYP2B6, CYP2C9, CYP2C8, and CYP3A4, respectively.

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Dehydroepiandrosterone sulfate

Dehydroepiandrosterone sulfate

C19H28O5S (368.1657)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A steroid sulfate that is the 3-sulfooxy derivative of dehydroepiandrosterone.

   

Prostaglandin B2

15S-hydroxy-9-oxo-5Z,8(12),13E-prostatrienoic acid

C20H30O4 (334.2144)


   

butyric acid

Fatty Acid, Vegetable

C4H8O2 (88.0524)


A straight-chain saturated fatty acid that is butane in which one of the terminal methyl groups has been oxidised to a carboxy group. D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

D-Glucose

β-D-Glucopyranose

C6H12O6 (180.0634)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Occurs free in fruits, honey and plant juices. Major component of many oligosaccharides and polysaccharides. Occurs in sucrose combined with fructose. Comly. available by the acid hydrol. of potato starch (Europe) and cornstarch (USA). Food additive: nutritive sweetener, humectant. D-Glucose is found in many foods, some of which are wheat bread, sour cherry, toffee, and other soy product.

   

Acarbose

(3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol

C25H43NO18 (645.248)


Acarbose is a tetrasaccharide derivative consisting of a dideoxy-4-{[4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl C7 cyclitol moiety [called valienol (or valienamine)] linked via nitrogen to isomaltotriose. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an EC 3.2.1.1 (alpha-amylase) inhibitor, a hypoglycemic agent and a geroprotector. It is a conjugate base of an acarbose(1+). Acarbose is an alpha glucosidase inhibitor which decreases intestinal absorption of carbohydrates and is used as an adjunctive therapy in the management of type 2 diabetes. Acarbose has been linked to rare instances of clinically apparent acute liver injury. Acarbose is a natural product found in Streptomyces glaucescens, Streptomyces coelicoflavus, and other organisms with data available. Acarbose is a pseudotetrasaccharide and inhibitor of alpha-glucosidase and pancreatic alpha-amylase with antihyperglycemic activity. Acarbose binds to and inhibits alpha-glucosidase, an enteric enzyme found in the brush border of the small intestines that hydrolyzes oligosaccharides and disaccharides into glucose and other monosaccharides. This prevents the breakdown of larger carbohydrates into glucose and decreases the rise in postprandial blood glucose levels. In addition, acarbose inhibits pancreatic alpha-amylase which hydrolyzes complex starches to oligosaccharides in the small intestines. An inhibitor of ALPHA-GLUCOSIDASES that retards the digestion and absorption of DIETARY CARBOHYDRATES in the SMALL INTESTINE. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D004791 - Enzyme Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent C471 - Enzyme Inhibitor > C2846 - Glucosidase Inhibitor Origin: Microbe, Polysaccharides Acarbose (BAY g 5421), antihyperglycemic agent, is an orally active alpha-glucosidase inhibitor (IC50=11 nM). Acarbose can potentiate the hypoglycemic effects of sulfonylureas or insulin[1][2][3].

   

N,N-Dimethylarginine

L-Arg(Me, Me)-OH (asymmetrical)

C8H18N4O2 (202.143)


D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

phendimetrazine

phendimetrazine

C12H17NO (191.131)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

sibutramine

sibutramine

C17H26ClN (279.1754)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

phentermine

phentermine

C10H15N (149.1204)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu)

   

hydroxyprogesterone

17Alpha-Hydroxyprogesterone

C21H30O3 (330.2195)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17α-Hydroxyprogesterone (17-Hydroxyprogesterone) is an endogenous progesterone that serves as a chemical intermediate in the biosynthesis of other steroid hormones, including glucocorticoids, androgens, and estrogens.

   

1-Methylxanthine

1-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

BENDROFLUMETHIAZIDE

BENDROFLUMETHIAZIDE

C15H14F3N3O4S2 (421.0378)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Calcifediol

9,10-Secocholesta-5,7,10(19)-triene-3beta,25-diol

C27H44O2 (400.3341)


A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D050071 - Bone Density Conservation Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FA 4:0

2-methyl-propanoic acid

C4H8O2 (88.0524)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

CoA 18:0

C18:0-CoA;C18:0-coenzyme A;S-stearoyl-CoA;S-stearoylcoenzyme A;octadecanoyl-CoA;octadecanoyl-coenzyme A;stearoyl-coenzyme A

C39H70N7O17P3S (1033.3762)


   

Zymosterol

5alpha-cholesta-8,24-dien-3beta-ol

C27H44O (384.3392)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Desogestrel

13-ethyl-11-methylene-18,19-dinorpregn-4-en-20-yn-17alpha-ol

C22H30O (310.2297)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

Capsorubin

(3S,5R,3S,5R)-3,3-Dihydroxy-kappa,kappa-carotene-6,6-dione

C40H56O4 (600.4178)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

2,3-DI-Phytanyl-glycerol

2,3-DI-Phytanyl-glycerol

C43H88O3 (652.6733)


   

Benzo[b]fluoranthene

Benzo[b]fluoranthene

C20H12 (252.0939)


   

Masoprocol

Masoprocol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

Uniphat A60

Palmitic acid, methyl ester (8CI)

C17H34O2 (270.2559)


Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Bergaptin

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-((3,7-dimethyl-2,6-octadienyl)oxy)-, (E)-

C21H22O4 (338.1518)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM. Bergamottin is a potent and competitive CYP1A1 inhibitor with a Ki of 10.703 nM.

   

Ravatite

InChI=1\C14H10\c1-3-7-13-11(5-1)9-10-12-6-2-4-8-14(12)13\h1-10

C14H10 (178.0782)


Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) and has been frequently used as an indicator for monitoring PAH contaminated matrices[1]. Phenanthrene induces oxidative stress and inflammation[2].

   

595-15-3

(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,9-diol

C30H50O3 (458.376)


Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2]. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2].

   

LS-443

InChI=1\C4H8O2\c1-2-3-4(5)6\h2-3H2,1H3,(H,5,6

C4H8O2 (88.0524)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

Zymostrol

(3S,5S,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,5,6,7,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3392)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Actinex

4-[(2S,3R)-4-(3,4-dihydroxyphenyl)-2,3-dimethyl-butyl]benzene-1,2-diol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

Monosodium Glutamate

L-(+)Sodium glutamate

C5H8NNaO4 (169.0351)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Glutamate monosodium salt

Glutamate monosodium salt

C5H8NNaO4 (169.0351)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Sapogenol C

(3S,4S,4aR,6aR,6bS,8aS,12aR,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,12,12a,14,14a-dodecahydropicen-3-ol

C30H48O2 (440.3654)


Soyasapogenol C is a triterpenoid. Soyasapogenol C is a natural product found in Glycine max, Medicago sativa, and other organisms with data available. See also: Trifolium pratense flower (part of).

   

Diethylpropion

(S)-diethylpropion

C13H19NO (205.1467)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   
   

stearoyl-CoA

stearoyl-CoA

C39H70N7O17P3S (1033.3762)


A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of stearic acid.

   

D-Arabino-2-deoxyhexose

2-Deoxy-D-arabino-hexopyranose

C6H12O5 (164.0685)


   

Phenanthracene

Phenanthracene

C14H10 (178.0782)


A polycyclic aromatic hydrocarbon composed of three fused benzene rings which takes its name from the two terms phenyl and anthracene. Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) and has been frequently used as an indicator for monitoring PAH contaminated matrices[1]. Phenanthrene induces oxidative stress and inflammation[2].

   

Tris(butoxyethyl)phosphate

Tris(2-butoxyethyl) phosphate

C18H39O7P (398.2433)


   

Benz[a]anthracene

1,2-Benzanthracene

C18H12 (228.0939)


   

3-(Allylsulfinyl)-L-alanine

2-amino-3-prop-2-enylsulfinylpropanoic acid

C6H11NO3S (177.046)


D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].