Gene Association: GPI

UniProt Search: GPI (PROTEIN_CODING)
Function Description: glucose-6-phosphate isomerase

found 106 associated metabolites with current gene based on the text mining result from the pubmed database.

L-Tryptophan

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

C11H12N2O2 (204.0899)


Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Scopolin

6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one

C16H18O9 (354.0951)


Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].

   

Aromadendrin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H12O6 (288.0634)


(+)-dihydrokaempferol is a tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. It has a role as a metabolite. It is a tetrahydroxyflavanone, a member of dihydroflavonols, a secondary alpha-hydroxy ketone and a member of 4-hydroxyflavanones. It is functionally related to a kaempferol. It is a conjugate acid of a (+)-dihydrokaempferol 7-oxoanion. Aromadendrin is a natural product found in Smilax corbularia, Ventilago leiocarpa, and other organisms with data available. See also: Acai fruit pulp (part of). Isolated from Citrus subspecies and many other plants. Aromadendrin is found in many foods, some of which are thistle, coriander, adzuki bean, and almond. Aromadendrin is found in citrus. Aromadendrin is isolated from Citrus species and many other plant A tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. Dihydrokaempferol is isolated from Bauhinia championii (Benth). Dihydrokaempferol induces apoptosis and inhibits Bcl-2 and Bcl-xL expression. Dihydrokaempferol is a good candidate for new antiarthritic agents[1]. Dihydrokaempferol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-20-6 (retrieved 2024-09-18) (CAS RN: 480-20-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

alpha-Carotene

(6R)-1,5,5-trimethyl-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4382)


alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

alpha-Farnesene

3,7,11-Trimethyl-1,3,6,10-dodecatetraene, (trans,trans)-

C15H24 (204.1878)


alpha-Farnesene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. (3E,6E)-alpha-Farnesene, also known as trans-alpha-Farnesene, is a sweet, bergamot, and citrus tasting flavouring ingredient. (3E,6E)-alpha-Farnesene is a constituent of the natural coating of apples and pears and other fruit. It has been identified in gingers, cottonseeds, common oregano, sweet oranges, spearmints, guava, pomes, and pears. This could make (3E,6E)-alpha-farnesene a potential biomarker for the consumption of these foods. Alpha-farnesene is a farnesene that is 1,3,6,10-tetraene substituted by methyl groups at positions 3, 7 and 11 respectively. alpha-Farnesene is a natural product found in Eupatorium cannabinum, Lonicera japonica, and other organisms with data available. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of). Constituent of the natural coating of apples and pears and other fruit. Flavouring ingredient. (3E,6E)-alpha-Farnesene is found in many foods, some of which are cottonseed, spearmint, ginger, and fruits.

   

(+)-Epicatechin

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


(+)-epicatechin is a catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). It has a role as a cyclooxygenase 1 inhibitor and a plant metabolite. It is a catechin and a polyphenol. It is an enantiomer of a (-)-epicatechin. (+)-Epicatechin is a natural product found in Gambeya perpulchra, Pavetta owariensis, and other organisms with data available. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. ent-Epicatechin is found in many foods, some of which are tea, apple, star fruit, and common buckwheat. A catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). (+)-Epicatechin is found in apple. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Deoxythymidine diphosphate-L-rhamnose

[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl]methyl (2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl dihydrogen diphosphate (non-preferred name)

C16H26N2O15P2 (548.0808)


Deoxythymidine diphosphate-L-rhamnose (dTDP-L-rhamnose) is the precursor of L-rhamnose, a saccharide required for the virulence of some pathogenic bacteria. In gram-negative bacteria such as Salmonella enterica, Vibrio cholerae, or Escherichia coli 075:K5, L-rhamnose is an important residue in the O-antigen of lipopolysaccharides, which are essential for resistance to serum killing and colonization. In gram-positive bacteria such as streptococci, the capsule is a recognized virulence factor. For example, L-rhamnose is known to be present in the capsule of Streptococcus suis, a causative agent of meningitis in humans. In Streptococcus mutans, L-rhamnose containing polysaccharides have been implicated in tooth surface colonization and adherence to kidney, muscle, and heart tissues. In mycobacteria, L-rhamnose is fundamental to the structural integrity of the cell wall since it connects the inner peptidoglycan layer to the arabinogalactan polysaccharides. dTDP-L-rhamnose is synthesized from glucose-1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway involving four distinct enzymes. Whereas common sugars such as glucose, fructose, and mannose are all D-configured, bacteria commonly utilize the L-configured carbohydrates in pharmacologically active compounds and their cell-wall structures. The bacterial cell wall is unique to bacteria; neither the cell wall nor the enzymes and chemical intermediates in its formation have analogues in humans. The enzymes involved in dTDP-L-rhamnose synthesis are potential targets for the design of new therapeutic agents (PMID: 10802738, 12773151). 2-deoxy-thymidine-beta-l-rhamnose, also known as dtdp-6-deoxy-L-mannose or thymidine diphosphate-L-rhamnose, is a member of the class of compounds known as pyrimidine nucleotide sugars. Pyrimidine nucleotide sugars are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. 2-deoxy-thymidine-beta-l-rhamnose is soluble (in water) and a moderately acidic compound (based on its pKa). 2-deoxy-thymidine-beta-l-rhamnose can be found in a number of food items such as black salsify, dill, roman camomile, and tea leaf willow, which makes 2-deoxy-thymidine-beta-l-rhamnose a potential biomarker for the consumption of these food products. DTDP-beta-L-rhamnose is the beta-anomer of dTDP-L-rhamnose. It has a role as an Escherichia coli metabolite. It is functionally related to a dTDP-L-mannose. It is a conjugate acid of a dTDP-6-deoxy-beta-L-mannose(2-). Deoxythymidine diphosphate-L-rhamnose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). The beta-anomer of dTDP-L-rhamnose.

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Melezitose

(2R,3R,4S,5S,6R)-2-[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydrofuran-3-yl]oxy-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C18H32O16 (504.169)


Melezitose, also spelled melicitose, is a nonreducing trisaccharide sugar that is produced by many plant sap eating insects, including aphids such as Cinara pilicornis by an enzyme reaction. This is beneficial to the insects, as it reduces the stress of osmosis by reducing their own water potential. The melezitose is part of the honeydew which acts as an attractant for ants and also as a food for bees. This is useful to the lice as they have a symbiotic relationship with ants. Melezitose can be partially hydrolyzed to glucose and turanose the latter of which is an isomer of sucrose (Wikipedia). Melezitose is a trisaccharide produced by insects such as aphids. It has a role as an animal metabolite. Melezitose is a natural product found in Pogostemon cablin, Arabidopsis thaliana, and Drosophila melanogaster with data available. A trisaccharide produced by insects such as aphids. Constituent of honey Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 231 D-(+)-Melezitose can be used to identify clinical isolates of indole-positive and indole-negative Klebsiella spp.

   

(-)-Menthone

InChI=1/C10H18O/c1-7(2)9-5-4-8(3)6-10(9)11/h7-9H,4-6H2,1-3H3/t8-,9+/m1/s

C10H18O (154.1358)


(-)-menthone, also known as P-menthan-3-one or (2s,5r)-2-isopropyl-5-methylcyclohexanone, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule (-)-menthone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (-)-menthone is a fresh, green, and minty tasting compound and can be found in a number of food items such as lemon, kai-lan, babassu palm, and linden, which makes (-)-menthone a potential biomarker for the consumption of these food products (-)-menthone exists in all eukaryotes, ranging from yeast to humans. (-)-Menthone, also known as (1R,4S)-menthone or L-menthone, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. (-)-Menthone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule. (-)-menthone is a menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). It is an enantiomer of a (+)-menthone. Menthone is a natural product found in Xylopia aromatica, Hedeoma multiflora, and other organisms with data available. Menthone is a metabolite found in or produced by Saccharomyces cerevisiae. A menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].

   

(±)-Metalaxyl

methyl 2-[N-(2,6-dimethylphenyl)-2-methoxyacetamido]propanoate

C15H21NO4 (279.1471)


CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8605; ORIGINAL_PRECURSOR_SCAN_NO 8603 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8560 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8595; ORIGINAL_PRECURSOR_SCAN_NO 8594 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8508; ORIGINAL_PRECURSOR_SCAN_NO 8507 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8543 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8588; ORIGINAL_PRECURSOR_SCAN_NO 8583 CONFIDENCE standard compound; EAWAG_UCHEM_ID 135 CONFIDENCE standard compound; INTERNAL_ID 8391 CONFIDENCE standard compound; INTERNAL_ID 2567 Systemic agricultural fungicid

   

D-Glycerate 3-phosphate

(2R)-2-Hydroxy-3-(phosphonatooxy)propanoic acid

C3H7O7P (185.9929)


3-phospho-d-glyceric acid, also known as 3-phosphoglycerate or D-glycerate 3-phosphate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-phospho-d-glyceric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceric acid can be found in a number of food items such as towel gourd, orange mint, guava, and mulberry, which makes 3-phospho-d-glyceric acid a potential biomarker for the consumption of these food products. 3-phospho-d-glyceric acid can be found primarily in saliva. 3-phospho-d-glyceric acid exists in all living species, ranging from bacteria to humans. (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate, also known as 3-phospho-(R)-glycerate or D-glycerate 3-phosphate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group (2R)-2-Hydroxy-3-(phosphonatooxy)propanoate is a drug (2R)-2-hydroxy-3-(phosphonatooxy)propanoate has been detected, but not quantified, in several different foods, such as poppies, small-leaf lindens, lupines, pomegranates, and kombus. These are compounds containing a saccharide unit which bears a carboxylic acid group.

   

Glycylleucine

(2S)-2-(2-aminoacetamido)-4-methylpentanoic acid

C8H16N2O3 (188.1161)


Glycylleucine is a dipeptide composed of glycine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. It appears to be a common substrate for glycyl-leucine dipeptidase. A dipeptide that appears to be a common substrate for glycyl-leucine dipeptidase. [HMDB] KEIO_ID G071 Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

1204-06-4

3-Indoleacrylic acid

C11H9NO2 (187.0633)


trans-3-Indoleacrylic acid is an endogenous metabolite.

   

Saccharopine

(2S)-2-{[(5S)-5-amino-5-carboxypentyl]amino}pentanedioic acid

C11H20N2O6 (276.1321)


Saccharopine is an intermediate in the degradation of lysine, formed by the condensation of lysine and alpha-ketoglutarate. The saccharopine pathway is the main route for lysine degradation in mammals, and its first two reactions are catalyzed by enzymatic activities known as lysine-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH), which reside on a single bifunctional polypeptide (LOR/SDH) (EC 1.5.1.8). The reactions involved with saccharopine dehydrogenases have very strict substrate specificity for L-lysine, 2-oxoglutarate, and NADPH. LOR/SDH has been detected in a number of mammalian tissues, mainly in the liver and kidney, contributing not only to the general nitrogen balance in the organism but also to the controlled conversion of lysine into ketone bodies. A tetrameric form has also been observed in human liver and placenta. LOR activity has also been detected in brain mitochondria during embryonic development, and this opens up the question of whether or not lysine degradation has any functional significance during brain development. As a result, there is now a new focus on the nutritional requirements for lysine in gestation and infancy. Finally, LOR and/or SDH deficiencies seem to be involved in a human autosomal genetic disorder known as familial hyperlysinemia, which is characterized by serious defects in the functioning of the nervous system and characterized by a deficiency in lysine-ketoglutarate reductase, saccharopine dehydrogenase, and saccharopine oxidoreductase activities. Saccharopinuria (high amounts of saccharopine in the urine) and saccharopinemia (an excess of saccharopine in the blood) are conditions present in some inherited disorders of lysine degradation (PMID: 463877, 10567240, 10772957, 4809305). If present in sufficiently high levels, saccharopine can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Saccharopine is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). Many affected children with organic acidemias experience intellectual disability or delayed development. Amino acid from Saccharomyces cerevisiae and Neurospora crassaand is also found in mushrooms and seeds

   

DL-Malic acid

2-Hydroxyethane-1,2-dicarboxylic acid

C4H6O5 (134.0215)


Malic acid (CAS: 6915-15-7) is a tart-tasting organic dicarboxylic acid that plays a role in many sour or tart foods. Apples contain malic acid, which contributes to the sourness of a green apple. Malic acid can make a wine taste tart, although the amount decreases with increasing fruit ripeness (Wikipedia). In its ionized form, malic acid is called malate. Malate is an intermediate of the TCA cycle along with fumarate. It can also be formed from pyruvate as one of the anaplerotic reactions. In humans, malic acid is both derived from food sources and synthesized in the body through the citric acid cycle or Krebs cycle which takes place in the mitochondria. Malates importance to the production of energy in the body during both aerobic and anaerobic conditions is well established. Under aerobic conditions, the oxidation of malate to oxaloacetate provides reducing equivalents to the mitochondria through the malate-aspartate redox shuttle. During anaerobic conditions, where a buildup of excess reducing equivalents inhibits glycolysis, malic acids simultaneous reduction to succinate and oxidation to oxaloacetate is capable of removing the accumulating reducing equivalents. This allows malic acid to reverse hypoxias inhibition of glycolysis and energy production. In studies on rats, it has been found that only tissue malate is depleted following exhaustive physical activity. Other key metabolites from the citric acid cycle needed for energy production were found to be unchanged. Because of this, a deficiency of malic acid has been hypothesized to be a major cause of physical exhaustion. Notably, the administration of malic acid to rats has been shown to elevate mitochondrial malate and increase mitochondrial respiration and energy production. Malic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). Acidulant, antioxidant, flavouring agent, flavour enhancer. Not for use in baby foods (GRAS) Malic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=617-48-1 (retrieved 2024-07-01) (CAS RN: 6915-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.

   

Mannitol 1-phosphate

{[(2R,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl]oxy}phosphonic acid

C6H15O9P (262.0454)


Mannitol-1-phosphate is a sugar alcohol. Mannitol-1-phosphate dehydrogenase, (EC 1.1.1.17) reduces fructose 6-phosphate into mannitol 1-phosphate, in the mannitol cycle of organisms such as Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals. Mannitol-1-phosphate is also produced in many organisms that have a range of biological interactions with humans: parasitic, mutualism, or commensalism (Examples. A. niger; A. parasiticus; B. subtilis; C. difficile; E. faecalis; E. coli; K. pneumoniae; L. salivarius; M. hyopneumoniae; M. mycoides; M. pneumoniae; P. multocida; S. typhi; S. typhimurium; S. aureus; S. pneumoniae; V. cholerae; V. parahaemolyticus; Y. pestis). [HMDB] Mannitol 1-phosphate is a sugar alcohol. Mannitol 1-phosphate dehydrogenase (EC 1.1.1.17) reduces fructose 6-phosphate into mannitol 1-phosphate in the gastrointestinal tract of mammals and the mannitol cycle of organisms such as Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products. Mannitol 1-phosphate is also produced in many organisms that have a range of biological interactions with humans (e.g. A. niger, A. parasiticus, B. subtilis, C. difficile, E. faecalis, E. coli, K. pneumoniae, L. salivarius, M. hyopneumoniae, M. mycoides, M. pneumoniae, P. multocida, S. typhi, S. typhimurium, S. aureus, S. pneumoniae, V. cholerae, V. parahaemolyticus, Y. pestis). KEIO_ID M011

   

Sedoheptulose 7-phosphate

[(2R,3R,4R,5S)-2,3,4,5,7-pentahydroxy-6-oxoheptyl] dihydrogen phosphate

C7H15O10P (290.0403)


KEIO_ID S083

   

D-Ribulose 5-phosphate

{[(2R,3R)-2,3,5-trihydroxy-4-oxopentyl]oxy}phosphonic acid

C5H11O8P (230.0192)


D-Ribulose 5-phosphate is a metabolite in the Pentose phosphate pathway, Pentose and glucuronate interconversions, and in the Riboflavin metabolism (KEGG) [HMDB]. D-Ribulose 5-phosphate is found in many foods, some of which are olive, cocoa bean, common chokecherry, and orange mint. D-Ribulose 5-phosphate is a metabolite in the following pathways: pentose phosphate pathway, pentose and glucuronate interconversions, and riboflavin metabolism (KEGG). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Mefloquine

alpha-2-Piperidinyl-2,8-bis(trifluoromethyl)-4-quinolinemethanol

C17H16F6N2O (378.1167)


Mefloquine is only found in individuals that have used or taken this drug. It is a phospholipid-interacting antimalarial drug (antimalarials). It is very effective against plasmodium falciparum with very few side effects. [PubChem]Mefloquine has been found to produce swelling of the Plasmodium falciparum food vacuoles. It may act by forming toxic complexes with free heme that damage membranes and interact with other plasmodial components. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials COVID info from clinicaltrials, clinicaltrial Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FLUTOLANIL

Pesticide4_Flutolanil_C17H16F3NO2_Benzamide, N-[3-(1-methylethoxy)phenyl]-2-(trifluoromethyl)-

C17H16F3NO2 (323.1133)


CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4349; ORIGINAL_PRECURSOR_SCAN_NO 4346 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4226; ORIGINAL_PRECURSOR_SCAN_NO 4222 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9058; ORIGINAL_PRECURSOR_SCAN_NO 9056 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9153; ORIGINAL_PRECURSOR_SCAN_NO 9152 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4249; ORIGINAL_PRECURSOR_SCAN_NO 4247 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9072; ORIGINAL_PRECURSOR_SCAN_NO 9070 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9189; ORIGINAL_PRECURSOR_SCAN_NO 9186 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4277; ORIGINAL_PRECURSOR_SCAN_NO 4275 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9107; ORIGINAL_PRECURSOR_SCAN_NO 9105 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4271; ORIGINAL_PRECURSOR_SCAN_NO 4268 CONFIDENCE standard compound; INTERNAL_ID 1175; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9124; ORIGINAL_PRECURSOR_SCAN_NO 9123

   

Carbendazim

Kid pest project (carbendazim) (see also carbendazim)

C9H9N3O2 (191.0695)


CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5355; ORIGINAL_PRECURSOR_SCAN_NO 5354 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5355; ORIGINAL_PRECURSOR_SCAN_NO 5353 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5335; ORIGINAL_PRECURSOR_SCAN_NO 5333 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5352; ORIGINAL_PRECURSOR_SCAN_NO 5350 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5299; ORIGINAL_PRECURSOR_SCAN_NO 5297 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5335; ORIGINAL_PRECURSOR_SCAN_NO 5330 C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; EAWAG_UCHEM_ID 278 Systemic agricultural and horticultural fungicid CONFIDENCE standard compound; INTERNAL_ID 8792 CONFIDENCE standard compound; INTERNAL_ID 2861 CONFIDENCE standard compound; INTERNAL_ID 4050 D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides KEIO_ID C170

   

Carboxin

2-methyl-N-phenyl-5,6-dihydro-1,4-oxathiine-3-carboxamide

C12H13NO2S (235.0667)


CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8170; ORIGINAL_PRECURSOR_SCAN_NO 8169 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8163; ORIGINAL_PRECURSOR_SCAN_NO 8162 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8129; ORIGINAL_PRECURSOR_SCAN_NO 8127 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8224; ORIGINAL_PRECURSOR_SCAN_NO 8222 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8211; ORIGINAL_PRECURSOR_SCAN_NO 8210 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8221; ORIGINAL_PRECURSOR_SCAN_NO 8218 D016573 - Agrochemicals D010575 - Pesticides Carboxin (Carboxine) is a systemic agricultural fungicide and seed protectant.

   

Pencycuron

Pencycuron

C19H21ClN2O (328.1342)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3064

   

Natamycin

(1R,3S,5R,7R,8E,12R,14E,16E,18E,20E,22R,24S,25R,26S)-22-{[(3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.0⁵,⁷]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid

C33H47NO13 (665.3047)


Natamycin is only found in individuals that have used or taken this drug. It is an amphoteric macrolide antifungal antibiotic from Streptomyces natalensis or S. chattanoogensis. It is used for a variety of fungal infections, mainly topically. [PubChem]Like other polyene antibiotics, Natamycin inhibits fungal growth by binding to sterols. Specifically, Natamycin binds to ergosterol in the plasma membrane, preventing ergosterol-dependent fusion of vacuoles, as well as membrane fusion and fission. This differs from the mechanism of most other polyene antibiotics, which tend to work by altering fungal membrane permeability instead. Primarily used as a surface treatment to prevent growth of yeasts and moulds, especies on cheese. Permitted agent in USA for surface treatment of cheeses as mould-inhibitor. No reported allergic reactions and it has GRAS status G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].

   

Glucosamine 6-phosphate

Phosphoric acid mono-((2R,3S,4R,5R)-5-amino-2,3,4-trihydroxy-6-oxo-hexyl) ester

C6H14NO8P (259.0457)


Glucosamine 6-phosphate (CAS: 3616-42-0) is normally produced in endothelial cells via de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals.It is a member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus (PMID:11270676, 11842094). Glucosamine 6-phosphate is normally produced in endothelial cells via the de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus. (PMID 11270676, 11842094) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G021; [MS2] KO008968 KEIO_ID G021

   

Medrysone

(1S,2R,8S,10S,11S,14S,15S,17S)-14-acetyl-17-hydroxy-2,8,15-trimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C22H32O3 (344.2351)


Medrysone is only found in individuals that have used or taken this drug. It is a corticosteroid used in ophthalmology. [Wikipedia]There is no generally accepted explanation for the mechanism of action of ocular corticosteroids. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Initially, the drug binds to the glucocorticoid receptor in the cytosol. This migrates to the nucleus and binds to genetic elements which cause activation and repression of the involved genes in the inflammatory pathway. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289

   

Gluconolactone

(3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-one

C6H10O6 (178.0477)


Gluconolactone, also known as glucono-delta-lactone or GDL (gluconate), belongs to the class of organic compounds known as gluconolactones. These are polyhydroxy acids (PHAs) containing a gluconolactone molecule, which is characterized by a tetrahydropyran substituted by three hydroxyl groups, one ketone group, and one hydroxymethyl group. Gluconolactone is a lactone of D-gluconic acid. Gluconolactone can be produced by enzymatic oxidation of D-glucose via the enzyme glucose oxidase. It is a fundamental metabolite found in all organisms ranging from bacteria to plants to animals. Gluconolactone has metal chelating, moisturizing and antioxidant activities. Its ability in free radicals scavenging accounts for its antioxidant properties. Gluconolactone, is also used as a food additive with the E-number E575. In foods it is used as a sequestrant, an acidifier or a curing, pickling, or leavening agent. Gluconolactone is also used as a coagulant in tofu processing. Gluconolactone is widely used as a skin exfoliant in cosmetic products, where it is noted for its mild exfoliating and hydrating properties. Pure gluconolactone is a white odorless crystalline powder. It is pH-neutral, but hydrolyses in water to gluconic acid which is acidic, adding a tangy taste to foods. Gluconic acid has roughly a third of the sourness of citric acid. One gram of gluconolactone yields roughly the same amount of metabolic energy as one gram of sugar. Food additive; uses include acidifier, pH control agent, sequestrant C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.

   

Fructose 1,6-bisphosphate

D-fructofuranose 1,6-bisphosphate

C6H14O12P2 (339.9961)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C - Cardiovascular system > C01 - Cardiac therapy D007155 - Immunologic Factors D020011 - Protective Agents KEIO_ID F008

   

Glyceraldehyde

(2R)-2,3-dihydroxypropanal

C3H6O3 (90.0317)


DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

D-Arabinose 5-phosphate

{[(2R,3R,4S)-2,3,4-trihydroxy-5-oxopentyl]oxy}phosphonic acid

C5H11O8P (230.0192)


D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide. It is reversibly converted to D-ribulose 5-phosphate by arabinose-5-phosphate isomerase (EC 5.3.1.13). Acquisition and generation of the data is financially supported in part by CREST/JST. D-Arabinose 5-phosphate is an intermediate in biosynthesis of lipopolysaccharide. KEIO_ID A147

   

Amifostine

Ethanethiol, 2-((3-aminopropyl)amino)-, dihydrogen phosphate (ester), trihydrate

C5H15N2O3PS (214.0541)


Amifostine is only found in individuals that have used or taken this drug. It is a phosphorothioate proposed as a radiation-protective agent. It causes splenic vasodilation and may block autonomic ganglia. [PubChem]The thiol metabolite is responsible for most of the cytoprotective and radioprotective properties of amifostine. It is readily taken up by cells where it binds to and detoxifies reactive metabolites of platinum and alkylating agents as well as scavenges free radicals. Other possible effects include inhibition of apoptosis, alteration of gene expression and modification of enzyme activity. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AF - Detoxifying agents for antineoplastic treatment C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent D020011 - Protective Agents > D011837 - Radiation-Protective Agents KEIO_ID A170 Amifostine (WR2721) is a broad-spectrum cytoprotective agent and a radioprotector. Amifostine selectively protects normal tissues from damage caused by radiation and chemotherapy. Amifostine is potent hypoxia-inducible factor-α1 (HIF-α1) and p53 inducer. Amifostine protects cells from damage by scavenging oxygen-derived free radicals. Amifostine reduces renal toxicity and has antiangiogenic action[1][2][3][4].

   

2-Deoxystreptamine

4,6-diaminocyclohexane-1,2,3-triol

C6H14N2O3 (162.1004)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents KEIO_ID D061

   

gibberellin A20

gibberellin A20

C19H24O5 (332.1624)


A C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and development. Initially identified in Gibberella fujikuroi, it differs from gibberellin A1 in lacking an OH group at C-2 (gibbane numbering).

   

O-acetylhomoserine

O-Acetyl-L-homoserine hydrochloride

C6H11NO4 (161.0688)


Acetylhomoserine is found in pulses. Acetylhomoserine is found in Pisum sativum (peas) Acquisition and generation of the data is financially supported in part by CREST/JST. Found in green tissues of pea (Pisum sativum)

   

Fraxin

InChI=1/C16H18O10/c1-23-7-4-6-2-3-9(18)25-14(6)15(11(7)20)26-16-13(22)12(21)10(19)8(5-17)24-16/h2-4,8,10,12-13,16-17,19-22H,5H2,1H3/t8-,10-,12+,13-,16+/m1/s

C16H18O10 (370.09)


Fraxin is a beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. It has a role as a plant metabolite, an anti-inflammatory agent and a hepatoprotective agent. It is a beta-D-glucoside, a hydroxycoumarin and an aromatic ether. It is functionally related to a fraxetin. Fraxin is a natural product found in Acer nikoense, Prunus prostrata, and other organisms with data available. A beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. Origin: Plant, Coumarins Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2]. Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2].

   

Levulose

(3S,4S,5R)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol

C6H12O6 (180.0634)


D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

Chlorophyll b

magnesium;methyl (21S,22S)-16-ethenyl-11-ethyl-12-formyl-17,21,26-trimethyl-4-oxo-22-[3-oxo-3-[(E,7R,11R)-3,7,11,15-tetramethylhexadec-2-enoxy]propyl]-23,25-diaza-7,24-diazanidahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,5,8(26),9,11,13(25),14,16,18,20(23)-decaene-3-carboxylate

C55H70MgN4O6 (906.5146)


   

Isopentanol

Isoamyl alcohol (3-methyl butanol)

C5H12O (88.0888)


Isopentanol, also known as isoamyl alcohol or 3-methylbutanol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, isopentanol is considered to be a fatty alcohol lipid molecule. Isopentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Isopentanol exists in all eukaryotes, ranging from yeast to humans. Isopentanol is an alcoholic, banana, and burnt tasting compound. Isopentanol is found, on average, in the highest concentration within milk (cow). Isopentanol has also been detected, but not quantified, in several different foods, such as chinese cinnamons, grapefruits, walnuts, wild leeks, and spearmints. This could make isopentanol a potential biomarker for the consumption of these foods. Isopentanol is one of several isomers of amyl alcohol. Isopentanol is the major higher chain alcohol in alcoholic beverages and is present in cider, mead, beer, wine, and spirits to varying degrees, being obtained by the fermentation of starches. Isopentanol, with regard to humans, has been found to be associated with the diseases such as ulcerative colitis; isopentanol has also been linked to the inborn metabolic disorder celiac disease. Isopentanol is a metabolite found in Escherichia (PMID:18676713). Isopentyl alcohol is one of several isomers of amyl alcohol. It is a by-product of gut microbial fermentation (PMID: 17452087). It can be produced by 3-methylbutanal reductase (EC 1.1.1.265) from 3 methylbutanal. Isopentyl alcohol is the major higher chain alcohol in alcoholic beverages and is present in cider, mead, beer, wine, and spirits to varying degrees, being obtained by the fermentation of starches. Isopentanol has been shown to induce expression of CYP3A and CYP2E1 in human liver (PMID: 7574728). Isopentyl alcohol can also be found in many foods, some of which are chinese cabbage, white cabbage, elliotts blueberry, and pasta. It can be used as a flavouring agent.

   

Glyceric acid 1,3-biphosphate

(R)-2-Hydroxy-3-(phosphonooxy)-1-monoanhydride with phosphoric propanoic acid

C3H8O10P2 (265.9593)


Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

O-Phosphohomoserine

L-2-amino-4-Hydroxy-butyric acid dihydrogen phosphate (ester)

C4H10NO6P (199.0246)


O-phosphohomoserine is a naturally occurring analogue of phosphonate amino acids. O-phosphohomoserine has been found in trace amounts in shotgun-metabolomics analysis in mouse tissue extracts, and is the substrate of a threonine analog enzyme in murine species. O-phosphohomoserine, an analogue of the excitatory amino acid antagonist 2-amino-phosphonovalerate is an N-methyl-D-aspartate (NMDA) antagonist. (PMID: 3528930, 17034760, 17665876) [HMDB] O-phosphohomoserine is a naturally occurring analogue of phosphonate amino acids. O-phosphohomoserine has been found in trace amounts in shotgun-metabolomics analysis in mouse tissue extracts, and is the substrate of a threonine analog enzyme in murine species. O-phosphohomoserine, an analogue of the excitatory amino acid antagonist 2-amino-phosphonovalerate is an N-methyl-D-aspartate (NMDA) antagonist. (PMID: 3528930, 17034760, 17665876).

   

3-deoxy-D-manno-octulosonate

(4R,5R,6R,7R)-4,5,6,7,8-pentahydroxy-2-oxooctanoic acid

C8H14O8 (238.0689)


3-deoxy-d-manno-octulosonate, also known as kdo or 2-dehydro-3-deoxy-D-octonate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-deoxy-d-manno-octulosonate is soluble (in water) and a moderately acidic compound (based on its pKa). 3-deoxy-d-manno-octulosonate can be found in a number of food items such as peppermint, okra, horseradish tree, and hazelnut, which makes 3-deoxy-d-manno-octulosonate a potential biomarker for the consumption of these food products. 3-deoxy-d-manno-octulosonate may be a unique E.coli metabolite.

   

Paromamine

CHEMBL431061

C12H25N3O7 (323.1692)


   

Pheophytin a

3,7,11,15-tetramethylhexadec-2-en-1-yl [3S-[3alpha(2E,7S*,11S*),4beta,21beta]]-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9-vinylphorbine-3-propionate

C55H74N4O5 (870.5659)


Pheophytin a is practically insoluble (in water) and an extremely strong acidic compound (based on its pKa). Pheophytin a can be found in a number of food items such as tea, wasabi, corn salad, and pigeon pea, which makes pheophytin a a potential biomarker for the consumption of these food products.

   

Halofantrine

3-(dibutylamino)-1-[1,3-dichloro-6-(trifluoromethyl)phenanthren-9-yl]propan-1-ol

C26H30Cl2F3NO (499.1656)


Halofantrine is a drug used to treat malaria. It belongs to the phenanthrene class of compounds that includes quinine and lumefantrine. It appears to inhibit polymerisation of heme molecules (by the parasite enzyme heme polymerase), resulting in the parasite being poisoned by its own waste. Halofantrine has been shown to preferentially block open and inactivated HERG channels leading to some degree of cardiotoxicity. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Triethylenemelamine

2,4,6-Tris(aziridin-1-yl)-1,3,5-triazine

C9H12N6 (204.1123)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

Benomyl

N-butyl-2-{[hydroxy(methoxy)methylidene]amino}-1H-1,3-benzodiazole-1-carboximidic acid

C14H18N4O3 (290.1379)


Benomyl is an Agricultural and horticultural systemic fungicide mainly used on rice and soybea D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D016573 - Agrochemicals D010575 - Pesticides

   

Ansamitocin P3

2-De(acetylmethylamino)-2-methylmaytansine

C32H43ClN2O9 (634.2657)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Ansamitocin P-3 (Antibiotic C 15003P3) is a microtubule inhibitor. Ansamitocin P-3 is a macrocyclic antitumor antibiotic.

   

2-Deoxyinosose

2-Deoxy-scyllo-inosose

C6H10O5 (162.0528)


   

Glyceraldehyde

alpha,beta-Dihydroxypropionaldehyde

C3H6O3 (90.0317)


Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet, colourless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word "glyceraldehyde" comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. Glyceraldehyde is produced from the action of the enzyme glyceraldehyde dehydrogenase, which converts glycerol to glyceraldehyde using NADP as a cofactor. When present at sufficiently high levels, glyceraldehyde can be a cytotoxin and a mutagen. A cytotoxin is a compound that kills cells. A mutagen is a compound that causes mutations in DNA. Glyceraldehyde is a highly reactive compound that can modify and cross-link proteins. Glyceraldehyde-modified proteins appear to be cytotoxic, depress intracellular glutathione levels, and induce reactive oxygen species (ROS) production (PMID:14981296). Glyceraldehyde has been shown to cause chromosome damage to human cells in culture and is mutagenic in the Ames bacterial test. Glyceraldehyde is a triose monosaccharide with chemical formula C3H6O3. It is the simplest of all common aldoses. It is a sweet colorless crystalline solid that is an intermediate compound in carbohydrate metabolism. The word comes from combining glycerine and aldehyde, as glyceraldehyde is merely glycerine with one hydroxide changed to an aldehyde. [HMDB] DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

(±)-Tryptophan

alpha-Amino-beta-(3-indolyl)-propionic acid

C11H12N2O2 (204.0899)


(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.

   

METALAXYL

Pesticide4_Metalaxyl_C15H21NO4_N-(2,6-Dimethylphenyl)-N-(methoxyacetyl)-DL-alanine methyl ester

C15H21NO4 (279.1471)


D016573 - Agrochemicals D010575 - Pesticides

   

Sedoheptulose 7-phosphate

sedoheptulose-7-phosphate

C7H15O10P (290.0403)


   

Indoleacrylic acid

(2E)-3-(1H-indol-3-yl)prop-2-enoic acid

C11H9NO2 (187.0633)


Indoleacrylic acid (CAS: 1204-06-4), also known as indoleacrylate, IA, and IAcrA, is a member of the class of compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole. Indoleacrylic acid is practically insoluble (in water) and a weak acidic compound (based on its pKa). Within the cell, indoleacrylic acid is primarily located in the membrane (predicted from logP). Indoleacrylic acid is best known as a plant growth hormone (a natural auxin), whereas its biological role in animals is still unknown. A two-stage production of this compound is likely: intestinal microorganisms catabolize tryptophan to indole derivatives which are then absorbed and converted into indoleacrylic acid and its glycine conjugate, indolylacryloylglycine (IAcrGly). Indolylacryloylglycine excretion in urine is especially pronounced in some myopathies, namely in boys with Duchenne muscular dystrophy (PMID: 10707769). It has been recently found that indoleacrylic acid promotes intestinal epithelial barrier function and mitigates inflammatory responses. Stimulating indoleacrylic acid production could promote anti-inflammatory responses and have therapeutic benefits (PMID: 28704649). Urinary Indole-3-acrylate is produced by Clostridium sporogenes (PMID: 29168502). Indoleacrylic acid is also a metabolite of Peptostreptococcus (PMID: 28704649, 29168502). trans-3-Indoleacrylic acid is an endogenous metabolite.

   

pimaricin

22-[(4-amino-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.0⁵,⁷]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid

C33H47NO13 (665.3047)


   

Keto-3-deoxy-D-manno-octulosonic acid

Ion(1-),(D)-isomer OF 2-keto-3-deoxyoctonate

C8H14O8 (238.0689)


   

D-Gluconic acid, delta-lactone

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-one

C6H10O6 (178.0477)


   

Ansamitocin P-3

11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1¹⁰,¹⁴.0³,⁵]hexacosa-10(26),11,13,16,18-pentaen-6-yl 2-methylpropanoate

C32H43ClN2O9 (634.2657)


   

3-Indoleacrylic acid

Indole-3-acrylic acid

C11H9NO2 (187.0633)


trans-3-Indoleacrylic acid is an endogenous metabolite.

   

Gluconolactone

d-(+)-glucono-1,5-lactone

C6H10O6 (178.0477)


C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.

   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0689)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

3-phosphoglycerate

3-Phosphoglyceric acid

C3H7O7P (185.9929)


A monophosphoglyceric acid having the phospho group at the 3-position. It is an intermediate in metabolic pathways like glycolysis and calvin cycle.

   

Menthone

Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2R,5S)-rel-

C10H18O (154.1358)


P-menthan-3-one is a p-menthane monoterpenoid that is p-menthane substituted by an oxo group at position 3. It has a role as a plant metabolite and a volatile oil component. p-Menthan-3-one is a natural product found in Citrus hystrix, Mentha aquatica, and other organisms with data available. The trans-stereoisomer of p-menthan-3-one. Flavouring compound [Flavornet] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Trehalose

D-(+)-Trehalose dihydrate,from Saccharomyces cerevisiae

C12H22O11 (342.1162)


Trehalose, also known as alpha,alpha-trehalose or D-(+)-trehalose, is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Trehalose is soluble (in water) and a very weakly acidic compound (based on its pKa). Trehalose can be found in a number of food items such as european chestnut, chicory, wild celery, and shallot, which makes trehalose a potential biomarker for the consumption of these food products. Trehalose can be found primarily in feces and urine, as well as throughout most human tissues. Trehalose exists in all living species, ranging from bacteria to humans. In humans, trehalose is involved in the trehalose degradation. Acquisition and generation of the data is financially supported by the Max-Planck-Society D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Harden-Young ester

1,6-Di-O-phosphono-beta-D-fructofuranose

C6H14O12P2 (339.9961)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C - Cardiovascular system > C01 - Cardiac therapy D007155 - Immunologic Factors D020011 - Protective Agents The furanose form of D-fructose 1,6-bisphosphate. A D-fructofuranose 1,6-bisphosphate with a beta-configuration at the anomeric position.

   

L-Malic acid

(2S)-2-hydroxybutanedioic acid

C4H6O5 (134.0215)


An optically active form of malic acid having (S)-configuration. Occurs naturally in apples and various other fruits. Flavour enhancer, pH control agent. L-Malic acid is found in many foods, some of which are mulberry, black cabbage, european plum, and fig. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive.

   

Glyceraldehyde

DL-Glyceric aldehyde

C3H6O3 (90.0317)


An aldotriose comprising propanal having hydroxy groups at the 2- and 3-positions. It plays role in the formation of advanced glycation end-products (AGEs), a deleterious accompaniment to ageing. DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].

   

Saccharopine

L-Saccharopine

C11H20N2O6 (276.1321)


The N(6)-(1,3-dicarboxypropan-1-yl) derivative of L-lysine.

   

3-Phosphoglyceric acid

3-Phospho-D-glyceric acid

C3H7O7P (185.9929)


The D-enantiomer of 3-phosphoglyceric acid

   

Glucosamine 6-phosphate

Glucosamine 6-phosphate

C6H14NO8P (259.0457)


   

Melezitose

Glc(alpha1-3)Fruf(beta2-1alpha)Glc

C18H32O16 (504.169)


Origin: Plant; Formula(Parent): C18H32O16; Bottle Name:D-(+)-Melezitose monohydrate / D-(+)-Melezitose hydrate; PRIME Parent Name:D-Melezitose; PRIME in-house No.:?V0068 S0210, Polysaccharides (?V0068: D-Melezitose, ?S0210: D-Melezitose) D-(+)-Melezitose can be used to identify clinical isolates of indole-positive and indole-negative Klebsiella spp.

   

mefloquine

(+)-Mefloquine

C17H16F6N2O (378.1167)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrials, clinicaltrial Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

CARBOXIN

Pesticide5_Carboxin_C12H13NO2S_Vitavax

C12H13NO2S (235.0667)


D016573 - Agrochemicals D010575 - Pesticides Carboxin (Carboxine) is a systemic agricultural fungicide and seed protectant.

   

Carbendazim

Pesticide10_Carbendazim_C9H9N3O2_mecarzole

C9H9N3O2 (191.0695)


A member of the class of benzimidazoles that is 2-aminobenzimidazole in which the primary amino group is substituted by a methoxycarbonyl group. A fungicide, carbendazim controls Ascomycetes, Fungi Imperfecti, and Basidiomycetes on a wide variety of crops, including bananas, cereals, cotton, fruits, grapes, mushrooms, ornamentals, peanuts, sugarbeet, soybeans, tobacco, and vegetables. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides

   

Catechin C

(2S-cis)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-Benzopyran-3,5,7-triol

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

Ansamitocin P-3

Ansamitocin P-3

C32H43ClN2O9 (634.2657)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Ansamitocin P-3 (Antibiotic C 15003P3) is a microtubule inhibitor. Ansamitocin P-3 is a macrocyclic antitumor antibiotic.

   

D-Sedoheptulose 7-phosphate

{[(2R,3S,4R,5S,6S)-3,4,5,6-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}phosphonic acid

C7H15O10P (290.0403)


D-Sedoheptulose 7-phosphate (CAS: 2646-35-7) is an intermediate of the pentose phosphate pathway (PPP) that has two functions: (1) the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and (2) the formation of ribose residues for nucleotide and nucleic acid biosynthesis (PMID: 16055050). It is formed by transketolase and acted upon (degraded) by transaldolase. Sedoheptulose 7-phosphate can be increased in the blood of patients affected with a transaldolase deficiency, a genetic disorder (PMID: 12881455). Sedoheptulose is a ketoheptose, a monosaccharide with seven carbon atoms and a ketone functional group. It is one of the few heptoses found in nature (Wikipedia). D-Sedoheptulose 7-phosphate is an intermediate of the Pentose phosphate pathway (PPP) that has two functions: the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and the formation of ribose residues for nucleotide and nucleic acid biosynthesis. (PMID 16055050)

   

Medrysone

11beta-Hydroxy-6alpha-methylpregn-4-ene-3,20-dione

C22H32O3 (344.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289

   

AIDS-026330

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

Farnesene

1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (6E)-

C15H24 (204.1878)


Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

97-67-6

(S)-(−)-2-Hydroxysuccinic acid

C4H6O5 (134.0215)


(S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive.

   

Fuseloel

InChI=1\C5H12O\c1-5(2)3-4-6\h5-6H,3-4H2,1-2H

C5H12O (88.0888)


   

fusel oil

3-Methyl-1-butanol

C5H12O (88.0888)


   

amifostine

amifostine

C5H15N2O3PS (214.0541)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AF - Detoxifying agents for antineoplastic treatment C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine (WR2721) is a broad-spectrum cytoprotective agent and a radioprotector. Amifostine selectively protects normal tissues from damage caused by radiation and chemotherapy. Amifostine is potent hypoxia-inducible factor-α1 (HIF-α1) and p53 inducer. Amifostine protects cells from damage by scavenging oxygen-derived free radicals. Amifostine reduces renal toxicity and has antiangiogenic action[1][2][3][4].

   

tretamine

Triethylenemelamine

C9H12N6 (204.1123)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

DL-Tryptophan

DL-Tryptophan

C11H12N2O2 (204.0899)


DL-Tryptophan is an endogenous metabolite.

   

Halofantrine

Halofantrine

C26H30Cl2F3NO (499.1656)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

D-Ribulose 5-phosphate

D-Ribulose 5-phosphate

C5H11O8P (230.0192)


The D-enantiomer of ribulose 5-phosphate that is one of the end-products of the pentose phosphate pathway.

   

H-Gly-Leu-OH

Glycyl-L-leucine

C8H16N2O3 (188.1161)


Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.

   

Pimafucin

Pimafucin

C33H47NO13 (665.3047)


A macrolide antibiotic that has formula C33H47NO13, produced by several Streptomyces species including Streptomyces natalensis. It exhibits broad spectrum antifungal activity and used in eye drops, and as a food preservative, and also as a postharvest biofungicide for citrus and other fruit crops. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].

   

D-Arabinose 5-phosphate

aldehydo-D-arabinose 5-phosphate

C5H11O8P (230.0192)


The 5-phospho derivative of D-arabinose. It is an intermediate in the synthesis of lipopolysaccharides.

   

D-Mannitol 1-phosphate

D-Mannitol 1-phosphate

C6H15O9P (262.0454)


An alditol 1-phosphate that is the 1-O-phospho derivative of mannitol with D-configuration.

   

3-phospho-D-glyceroyl dihydrogen phosphate

3-phospho-D-glyceroyl dihydrogen phosphate

C3H8O10P2 (265.9593)


The (R)-enantiomer of 3-phosphoglyceroyl dihydrogen phosphate.

   

O-Phosphohomoserine

O-Phosphohomoserine

C4H10NO6P (199.0246)


   

D-Fructofuranose

D-Fructofuranose

C6H12O6 (180.0634)


A fructofuranose that has D configuration. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

Sedoheptulose 7-phosphate

Sedoheptulose 7-phosphate

C7H15O10P (290.0403)


A ketoheptose phosphate consisting of sedoheptulose having a phosphate group at the 7-position. It is an intermediate metabolite in the pentose phosphate pathway.

   

O-Acetyl-L-homoserine

O-Acetyl-L-homoserine

C6H11NO4 (161.0688)


The O-acetyl derivative of L-homoserine.

   

3-deoxy-D-manno-octulosonate

3-deoxy-D-manno-octulosonate

C8H14O8 (238.0689)


   

2-Deoxy-scyllo-inosose

2-Deoxy-scyllo-inosose

C6H10O5 (162.0528)


   

Lariam

mefloquine

C17H16F6N2O (378.1167)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Benlate

Benlate

C14H18N4O3 (290.1379)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D016573 - Agrochemicals D010575 - Pesticides

   

D-Gluconic acid, delta-lactone

D-Gluconic acid, delta-lactone

C6H10O6 (178.0477)


   

Glyceric acid 1,3-biphosphate

phosphono 2-hydroxy-3-phosphonooxypropanoate

C3H8O10P2 (265.9593)


1,3-Bisphosphoglycerate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1981-49-3 (retrieved 2024-10-16) (CAS RN: 1981-49-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).