Gene Association: ADAMTS4

UniProt Search: ADAMTS4 (PROTEIN_CODING)
Function Description: ADAM metallopeptidase with thrombospondin type 1 motif 4

found 20 associated metabolites with current gene based on the text mining result from the pubmed database.

Mesaconitine

[(1S,2R,3R,4R,5R,6S,7S,8R,9R,10S,13R,14R,16S,17S,18R)-8-acetyloxy-5,7,14-trihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-methyl-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-4-yl] benzoate

C33H45NO11 (631.2992)


Mesaconitine is a diterpenoid. Mesaconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3]. Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3].

   

Senkyunolide

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (3S)-

C12H16O2 (192.115)


Senkyunolide is a member of 2-benzofurans. Senkyunolide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery (part of); Scutellaria baicalensis Root (part of); Angelica acutiloba Root (part of) ... View More ... Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

Hypaconitine

(3S,6S,6aS,7R,7aR,8R,9R,10S,11S,11aR,12R,13R,14R)-11a-acetoxy-9,11-dihydroxy-6,10,13-trimethoxy-3-(methoxymethyl)-1-methyltetradecahydro-1H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocin-8-yl benzoate

C33H45NO10 (615.3043)


Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:

   

1,4-Dimethyl-7-ethylazulene

InChI=1/C14H16/c1-4-12-7-5-10(2)13-8-6-11(3)14(13)9-12/h5-9H,4H2,1-3H3

C14H16 (184.1252)


Chamazulene is a sesquiterpenoid. Chamazulene is a natural product found in Artemisia macrocephala, Otanthus maritimus, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). Isol. as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia subspecies 1,4-Dimethyl-7-ethylazulene is found in roman camomile, german camomile, and anise. 1,4-Dimethyl-7-ethylazulene is found in anise. 1,4-Dimethyl-7-ethylazulene is isolated as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia species.

   

Cirsimaritin

5-Hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-4H-chromen-4-one

C17H14O6 (314.079)


Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.

   

Stanozolol

1,2,3,3a,3b,4,5,5a,6,7,10,10a,10b,11,12,12a-hexadecahydro-1,10a,12a-Trimethyl-cyclopenta[7,8]phenanthro[2,3-c]pyrazol-1-ol

C21H32N2O (328.2515)


Stanozolol is only found in individuals that have used or taken this drug. Stanozolol has is a synthetic anabolic steroid with therapeutic uses in treating hereditary angioedema. Stanozolol was first synthesized by Clinton et al. in 1959, as a heterocyclic anabolic androgenic steroid. The structure of Stanozolol differs from endogenous steroid hormones and most commercially available anabolic steroids. It most closely resembles methyl testosterone. Instead of the 3-ketogroup in methyltestosterone, there is a pyrazole ring fused to the androstane ring system. This slightly different structure has the disadvantage of making extraction and isolation of the molecule from matrices more difficult. Like most other anabolic steroids, Stanozolol has poor gas chromatographic behavior and is difficult to detect in urine, because of renal clearance and low urinary excretion. This is due to the rapid metabolization, leading to low concentration levels of the parent compound found in urine. Therefore, most research studies had focused on the detection of urinary metabolites. Androgens are drugs, derived from the natural male sex hormone testosterone, with high anabolic potential and minimized androgenic activity. It has been abused by several high profile professional athletes. Stanozolol binds to androgen receptors, such as membrane bound receptor proteins LAGS and stanozolol-binding protein (STBP). Anabolic steroids stimulate protein synthesis, resulting in an acceleration of the food conversion rate and increasing muscle growth, body mass and enhanced performance. Androgens can be used as therapeutics, because they accelerate the recovery of protein deficiency and protein-wasting disorders (e.g. osteoporosis), but they are also widely abused in doping, as well in animals as in men. (PMID: 10404632, 10435307, 11175645, 11284331, 12064656, 12580506, 1448813, 14698206, 15013688, 15458725, 15631866, 15664350, 16040239, 16259046, 16288903, 1640693, 17066372, 17146762, 2306548, 2362445, 2625454, 2663904, 6539197, 9001957, 9300863, 9580049). Stanozolol was first synthesized by Clinton et al. in 1959, as a heterocyclic anabolic androgenic steroid. The structure of Stan differs from endogenous steroid hormones and most commercially available anabolic steroids. It most closely resembles methyl testosterone. Instead of the 3-ketogroup in methyltestosterone, there is a pyrazole ring fused to the androstane ring system. This slightly different structure has the disadvantage of making extraction and isolation of the molecule from matrices more difficult. Like most other anabolic steroids, Stan has poor gas chromatographic behavior and is difficult to detect in urine, because of renal clearance and low urinary excretion. This is due to the rapid metabolization, leading to low concentration levels of the parent compound found in urine. Therefore, most research studies had focused on the detection of urinary metabolites. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Ginkgolide C

8-tert-butyl-6,9,12,17-tetrahydroxy-16-methyl-2,4,14,19-tetraoxahexacyclo[8.7.2.0¹,¹¹.0³,⁷.0⁷,¹¹.0¹³,¹⁷]nonadecane-5,15,18-trione

C20H24O11 (440.1319)


Ginkgolide C is found in fats and oils. Ginkgolide C is a bitter principle from Ginkgo biloba (ginkgo). Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide C is found in ginkgo nuts and fats and oils. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.

   

Eupatilin

2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one; 5,7-Dihydroxy-3,4,6-trimethoxyflavone; 2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxychromen-4-one; 4H-1-Benzopyran-4-one, 2-(3,4-diMethoxyphenyl)-5,7-dihydroxy-6-Methoxy-

C18H16O7 (344.0896)


Eupatilin is a trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. It has a role as an anti-ulcer drug, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent, an anti-inflammatory agent and a metabolite. It is a trimethoxyflavone and a dihydroxyflavone. Eupatilin is a natural product found in Eupatorium capillifolium, Chromolaena odorata, and other organisms with data available. A trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. Eupatilin is found in herbs and spices. Eupatilin is isolated from Tanacetum vulgare (tansy Isolated from Tanacetum vulgare (tansy). Eupatilin is found in herbs and spices. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

Hydantoin

Imidazole-2,4(3H,5H)-dione

C3H4N2O2 (100.0273)


Hydantoin, also known as glycolylurea or 2,4-imidazolidinedione, is a member of the class of compounds known as imidazoles. Imidazoles are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. Hydantoin is soluble (in water) and a very weakly acidic compound (based on its pKa). Hydantoin can be found in a number of food items such as cabbage, common verbena, black radish, and brazil nut, which makes hydantoin a potential biomarker for the consumption of these food products. Hydantoin, or glycolylurea, is a heterocyclic organic compound with the formula CH2C(O)NHC(O)NH. It is a colorless solid that arises from the reaction of glycolic acid and urea. It is an oxidized derivative of imidazolidine. In a more general sense, hydantoins can refer to a groups and a class of compounds with the same ring structure as the parent. For example, phenytoin (mentioned below) has two phenyl groups substituted onto the number 5 carbon in a hydantoin molecule . COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Plicamycin

(2S,3S)-3-[(1S,3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-2-{[(2S,4R,5R,6R)-4-{[(2S,4R,5S,6R)-4-{[(2S,4S,5R,6R)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-6-{[(2S,4R,5R,6R)-4-{[(2S,4R,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-8,9-dihydroxy-7-methyl-1,2,3,4-tetrahydroanthracen-1-one

C52H76O24 (1084.4726)


Plicamycin is only found in individuals that have used or taken this drug. It is an antineoplastic antibiotic produced by Streptomyces plicatus. It has been used in the treatment of testicular cancer, Pagets disease of bone, and, rarely, the management of hypercalcemia. The manufacturer discontinued plicamycin in 2000. Plicamycin is presumed to inhibit cellular and enzymic RNA synthesis by forming a complex with DNA. Plicamycin may also lower calcium serum levels by inhibiting the effect of parathyroid hormone upon osteoclasts or by blocking the hypercalcemic action of pharmacologic doses of vitamin D. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468

   

Toxoflavin

Toxoflavine

C7H7N5O2 (193.06)


A pyrimidotriazine that is 1,6-dimethyl-1,5,6,7-tetrahydropyrimido[5,4-e][1,2,4]triazine with oxo groups at positions 5 and 7.

   

skrofulein

Skrofulein;Scrophulein;5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxychromen-4-one

C17H14O6 (314.079)


Cirsimaritin is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5 and 4 respectively. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsimaritin is a natural product found in Achillea santolina, Schoenia cassiniana, and other organisms with data available. See also: Tangerine peel (part of).

   

Stanozolol

Stanozolol

C21H32N2O (328.2515)


A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Ginkgolide C

Ginkgolide C, analytical standard

C20H24O11 (440.1319)


Annotation level-1 Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.

   

Plicamycin

mithramycin a

C52H76O24 (1084.4726)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468

   

Senkyunolide A

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (S)-

C12H16O2 (192.115)


Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

Euptailin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-

C18H16O7 (344.0896)


Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

skrofulein

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-

C17H14O6 (314.079)


   

Chamazulen

4-05-00-01736 (Beilstein Handbook Reference)

C14H16 (184.1252)


   

Imidazolidine-2,4-dione

Imidazolidine-2,4-dione

C3H4N2O2 (100.0273)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS