Gene Association: DLK1

UniProt Search: DLK1 (PROTEIN_CODING)
Function Description: delta like non-canonical Notch ligand 1

found 210 associated metabolites with current gene based on the text mining result from the pubmed database.

Lupenone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

L-Tyrosine

(2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid

C9H11NO3 (181.0739)


Tyrosine (Tyr) or L-tyrosine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tyrosine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tyrosine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tyrosine is a non-essential amino acid, meaning the body can synthesize it – usually from phenylalanine. The conversion of phenylalanine to tyrosine is catalyzed by the enzyme phenylalanine hydroxylase, a monooxygenase. This enzyme catalyzes the reaction causing the addition of a hydroxyl group to the end of the 6-carbon aromatic ring of phenylalanine, such that it becomes tyrosine. Tyrosine is found in many high-protein food products such as chicken, turkey, fish, milk, yogurt, cottage cheese, cheese, peanuts, almonds, pumpkin seeds, sesame seeds, soy products, lima beans, avocados and bananas. Tyrosine is one of the few amino acids that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, including thyroid hormones (diiodotyrosine), catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism have been identified, such as hawkinsinuria and tyrosinemia I. The most common feature of these diseases is the increased amount of tyrosine in the blood, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements can help reverse these disease symptoms. Some adults also develop elevated tyrosine in their blood. This typically indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can help aleviate biochemical depression. However, tyrosine may not be good for treating psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-Dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-Dopa (http://www.dcnutrition.com). In addition to its role as a precursor for neurotransmitters, tyrosine plays an important role for the function of many proteins. Within many proteins or enzymes, certain tyrosine residues can be tagged (at the hydroxyl group) with a phosphate group (phosphorylated) by specialized protein kinases. In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Tyrosine (or its precursor phenylalanine) is also needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. L-tyrosine is an optically active form of tyrosine having L-configuration. It has a role as an EC 1.3.1.43 (arogenate dehydrogenase) inhibitor, a nutraceutical, a micronutrient and a fundamental metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tyrosine and a L-alpha-amino acid. It is functionally related to a L-tyrosinal. It is a conjugate base of a L-tyrosinium. It is a conjugate acid of a L-tyrosinate(1-). It is an enantiomer of a D-tyrosine. It is a tautomer of a L-tyrosine zwitterion. Tyrosine is a non-essential amino acid. In animals it is synthesized from [phenylalanine]. It is also the precursor of [epinephrine], thyroid hormones, and melanin. L-Tyrosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Tyrosine is the levorotatory isomer of the aromatic amino acid tyrosine. L-tyrosine is a naturally occurring tyrosine and is synthesized in vivo from L-phenylalanine. It is considered a non-essential amino acid; however, in patients with phenylketonuria who lack phenylalanine hydroxylase and cannot convert phenylalanine into tyrosine, it is considered an essential nutrient. In vivo, tyrosine plays a role in protein synthesis and serves as a precursor for the synthesis of catecholamines, thyroxine, and melanin. Tyrosine is an essential amino acid that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, thyroid, catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism occur. Most common is the increased amount of tyrosine in the blood of premature infants, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements reverse the disease. Some adults also develop elevated tyrosine in their blood. This indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can cure biochemical depression. However, tyrosine may not be good for psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-dopa. A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. Dietary supplement, nutrient. Flavouring ingredient. L-Tyrosine is found in many foods, some of which are blue crab, sweet rowanberry, lemon sole, and alpine sweetvetch. An optically active form of tyrosine having L-configuration. L-Tyrosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-18-4 (retrieved 2024-07-01) (CAS RN: 60-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

Jujuboside A1

2-[(4-{[4,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C58H94O26 (1206.6033)


Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is found in fruits. Jujuboside A is isolated from seeds of Zizyphus jujuba (Chinese date Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.

   

Steviol

(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O3 (318.2195)


Steviol is an ent-kaurane diterpenoid that is 5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid in which the hydrogen at position 13 has been replaced by a hydroxy group. It has a role as an antineoplastic agent. It is a tetracyclic diterpenoid, a tertiary allylic alcohol, a monocarboxylic acid, a bridged compound and an ent-kaurane diterpenoid. It is a conjugate acid of a steviol(1-). Steviol is a natural product found in Ceriops decandra, Cucurbita, and other organisms with data available. Steviol is found in fruits. Steviol is isolated from Cucurbita maxima Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two majority compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931. Isolated from Cucurbita maxima Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1]. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].

   

Zeatin

InChI=1/C10H13N5O/c1-7(4-16)2-3-11-9-8-10(13-5-12-8)15-6-14-9/h2,5-6,16H,3-4H2,1H3,(H2,11,12,13,14,15)/b7-2

C10H13N5O (219.112)


Zeatin belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Zeatin is a cytokinin (plant growth hormone) derived from the purine adenine, which occurs in the form of a cis- and a trans-isomer and conjugates. Zeatin was first discovered in immature corn kernels from the genus Zea. Zeatin has also been detected, but not quantified in several different foods, such as figs, rowanberries, red raspberries, garlic, and tree ferns. Zeatin has also been shown to promote the resistance of tobacco against the bacterial pathogen Pseudomonas syringae, in which trans-zeatin has a more prominent effect than cis-zeatin. Zeatin has several anti-ageing effects on human skin fibroblasts. It promotes the growth of lateral buds and, when sprayed on meristems, stimulates cell division to produce bushier plants. Zeatin and its derivatives occur in many plant extracts and are the active ingredient in coconut milk, which causes plant growth. Zeatin is a 6-isopentenylaminopurine. It has a role as a cytokinin. An aminopurine factor in plant extracts that induces cell division. (Grant & Hackhs Chemical Dict, 5th ed) trans-Zeatin is a natural product found in Cichorium intybus, Prunus cerasus, and other organisms with data available. An aminopurine factor in plant extracts that induces cell division. (Grant and Hackhs Chemical Dict, 5th ed) D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Isolated from sweet corn (Zea mays) and numerous other plants Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID Z002; [MS2] KO009317 KEIO_ID Z002 trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.

   

Methyldopa

3-(3,4-Dihydroxyphenyl)-alpha-methyl-L-a lanine

C10H13NO4 (211.0845)


Methyl dopa appears as colorless or almost colorless crystals or white to yellowish-white fine powder. Almost tasteless. In the sesquihydrate form. pH (saturated aqueous solution) about 5.0. (NTP, 1992) Alpha-methyl-L-dopa is a derivative of L-tyrosine having a methyl group at the alpha-position and an additional hydroxy group at the 3-position on the phenyl ring. It has a role as a hapten, an antihypertensive agent, an alpha-adrenergic agonist, a peripheral nervous system drug and a sympatholytic agent. It is a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. Methyldopa, or α-methyldopa, is a centrally acting sympatholytic agent and an antihypertensive agent. It is an analog of DOPA (3,4‐hydroxyphenylanine), and it is a prodrug, meaning that the drug requires biotransformation to an active metabolite for therapeutic effects. Methyldopa works by binding to alpha(α)-2 adrenergic receptors as an agonist, leading to the inhibition of adrenergic neuronal outflow and reduction of vasoconstrictor adrenergic signals. Methyldopa exists in two isomers D-α-methyldopa and L-α-methyldopa, which is the active form. First introduced in 1960 as an antihypertensive agent, methyldopa was considered to be useful in certain patient populations, such as pregnant women and patients with renal insufficiency. Since then, methyldopa was largely replaced by newer, better-tolerated antihypertensive agents; however, it is still used as monotherapy or in combination with [hydrochlorothiazide]. Methyldopa is also available as intravenous injection, which is used to manage hypertension when oral therapy is unfeasible and to treat hypertensive crisis. Methyldopa anhydrous is a Central alpha-2 Adrenergic Agonist. The mechanism of action of methyldopa anhydrous is as an Adrenergic alpha2-Agonist. Methyldopa (alpha-methyldopa or α-methyldopa) is a centrally active sympatholytic agent that has been used for more than 50 years for the treatment of hypertension. Methyldopa has been clearly linked to instances of acute and chronic liver injury that can be severe and even fatal. Methyldopa is a phenylalanine derivative and an aromatic amino acid decarboxylase inhibitor with antihypertensive activity. Methyldopa is a prodrug and is metabolized in the central nervous system. The antihypertensive action of methyldopa seems to be attributable to its conversion into alpha-methylnorepinephrine, which is a potent alpha-2 adrenergic agonist that binds to and stimulates potent central inhibitory alpha-2 adrenergic receptors. This results in a decrease in sympathetic outflow and decreased blood pressure. Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hy... Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur. Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output. When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs (Wikipedia). Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension).; Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur.; Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output.; When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Methyldopa (L-(-)-α-Methyldopa), a potent antihyoertensive agent, is an alpha-adrenergic agonist (selective for α2-adrenergic receptors). Methyldopa is a proagent and is metabolized (α-Methylepinephrine) in the central nervous system[1][2].

   

Cholestenone

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C27H44O (384.3392)


Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

5-Aminopentanoic acid

5-Aminovaleric acid hydrochloride

C5H11NO2 (117.079)


5-Aminopentanoic acid (or 5-aminovalerate) is a lysine degradation product. It can be produced both endogenously or through bacterial catabolism of lysine. 5-aminovalerate is formed via the following multi-step reaction: L-lysine leads to cadverine leads to L-piperideine leads 5-aminovalerate (PMID:405455). In other words it is a metabolite of cadaverine which is formed via the intermediate, 1-piperideine (PMID:6436440). Cadaverine is a foul-smelling diamine compound produced by protein hydrolysis during putrefaction of animal tissue. High levels of 5-aminovalerate in biofluids may indicate bacterial overgrowth or endogenous tissue necrosis. In most cases endogenous 5-aminovalerate is thought to be primarily a microbial metabolite produced by the gut or oral microflora, although it can be produced endogenously. 5-aminovalerate is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is primarily responsible for elevated salivary levels (PMID 3481959). Beyond being a general waste product, 5-aminovalerate is also believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist (PMID:4031870). It is also known as an antifibrinolytic amino acid analog and so it functions as a weak inhibitor of the blood clotting pathway (PMID:6703712). 5- aminovalerate is an in vivo substrate of 4-aminobutyrate:2-oxoglutarate aminotransferase (PMID:4031870). It can be found in Corynebacterium (PMID:27717386). 5-aminopentanoic acid is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is responsible for the elevated salivary levels (PMID 3481959) [HMDB] 5-Aminovaleric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=660-88-8 (retrieved 2024-07-17) (CAS RN: 660-88-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

Acetamiprid

Pesticide4_Acetamiprid_C10H11ClN4_(1E)-N-[(6-chloropyridin-3-yl)methyl]-N-cyano-N-methylethanimidamide

C10H11ClN4 (222.0672)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2327 CONFIDENCE standard compound; INTERNAL_ID 8448 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2986 Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].

   

Epinephrine

(R)-(-)-3,4-Dihydroxy-α-(methylaminomethyl)benzyl alcohol, L-Adrenaline, L-Epinephrine

C9H13NO3 (183.0895)


Epinephrine, also known as adrenaline, is both a neurotransmitter and a hormone. It plays an important role in your body’s “fight-or-flight” response. It’s also used as a medication to treat many life-threatening conditions. Epinephrine is a catecholamine, a sympathomimetic monoamine derived from the amino acids phenylalanine and tyrosine. It is the active sympathomimetic hormone secreted from the adrenal medulla in most species. It stimulates both the alpha- and beta- adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. It is used in asthma and cardiac failure and to delay absorption of local anesthetics. Epinephrine also constricts arterioles in the skin and gut while dilating arterioles in leg muscles. It elevates the blood sugar level by increasing hydrolysis of glycogen to glucose in the liver, and at the same time begins the breakdown of lipids in adipocytes. Epinephrine has a suppressive effect on the immune system. [HMDB] Epinephrine, also called adrenaline, is both a hormone and a neurotransmitter. As a hormone, it’s made and released by your adrenal glands, which are hat-shaped glands that sit on top of each kidney. As a central nervous system neurotransmitter, it’s a chemical messenger that helps transmit nerve signals across nerve endings to another nerve cell, muscle cell or gland cell. Epinephrine is part of your sympathetic nervous system, which is part of your body’s emergency response system to danger — the “fight-or-flight” response. Medically, the flight-or-flight response is known as the acute stress response. Epinephrine is also called a catecholamine, as are norepinephrine and dopamine. They’re given this name because of a certain molecule in its structure. As a hormone, epinephrine is made from norepinephrine inside of your adrenal gland. As a neurotransmitter, epinephrine plays a small role. Only a small amount is produced in your nerves. It plays a role in metabolism, attention, focus, panic and excitement. Abnormal levels are linked to sleep disorders, anxiety, hypertension and lowered immunity. Epinephrine’s major action is in its role as a hormone. Epinephrine is released by your adrenal glands in response to stress. This reaction causes a number of changes in your body and is known as the fight-or-flight response.

   

Norepinephrine

L-alpha-(Aminomethyl)-3,4-dihydroxybenzyl alcohol

C8H11NO3 (169.0739)


Norepinephrine is the precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic. Norepinephrine is elevated in the urine of people who consume bananas. Norepinephrine is also a microbial metabolite; urinary noradrenaline is produced by Escherichia, Bacillus, and Saccharomyces (PMID: 24621061). Norepinephrine is found in alcoholic beverages, banana peels and pulp (Musa paradisiaca), red plum fruit (Prunus domestica), orange pulp (Citrus sinensis), potato tubers (Solanum tuberosum), and whole purslane (Portulaca oleracea). P. oleracea is the richest of these sources. Norepinephrine has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Present in banana peel and pulp (Musa paradisiaca), red plum fruit (Prunus domestica), orange pulp (Citrus sinensis), potato tubers (Solanum tuberosum) and whole purslane (Portulaca oleracea). P. oleracea is the richest of these sources. xi-Norepinephrine is found in many foods, some of which are potato, green vegetables, alcoholic beverages, and fruits.

   

Aminoadipic acid

(2S)-2-Azaniumyl-6-hydroxy-6-oxohexanoate

C6H11NO4 (161.0688)


Aminoadipic acid (CAS: 542-32-5), also known as 2-aminoadipate, is a metabolite in the principal biochemical pathway of lysine. It is an intermediate in the metabolism (i.e. breakdown or degradation) of lysine and saccharopine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor N-methyl-D-aspartate (NMDA). Aminoadipic acid has also been shown to inhibit the production of kynurenic acid, a broad spectrum excitatory amino acid receptor antagonist, in brain tissue slices (PMID: 8566117). Recent studies have shown that aminoadipic acid is elevated in prostate biopsy tissues from prostate cancer patients (PMID: 23737455). Mutations in DHTKD1 (dehydrogenase E1 and transketolase domain-containing protein 1) have been shown to cause human 2-aminoadipic aciduria and 2-oxoadipic aciduria via impaired decarboxylation of 2-oxoadipate to glutaryl-CoA, which is the last step in the lysine degradation pathway (PMID: 23141293). Aging, diabetes, sepsis, and renal failure are known to catalyze the oxidation of lysyl residues to form 2-aminoadipic acid in human skin collagen and potentially other tissues (PMID: 18448817). Proteolytic breakdown of these tissues can lead to the release of free 2-aminoadipic acid. Studies in rats indicate that aminoadipic acid (along with the three branched-chain amino acids: leucine, valine, and isoleucine) levels are elevated in the pre-diabetic phase and so aminoadipic acid may serve as a predictive biomarker for the development of diabetes (PMID: 15389298). Long-term hyperglycemia of endothelial cells can also lead to elevated levels of aminoadipate which is thought to be a sign of lysine breakdown through oxidative stress and reactive oxygen species (ROS) (PMID: 21961526). 2-Aminoadipate is a potential small-molecule marker of oxidative stress (PMID: 21647514). Therefore, depending on the circumstances aminoadipic acid can act as an acidogen, a diabetogen, an atherogen, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A diabetogen is a compound that can lead to type 2 diabetes. An atherogen is a compound that leads to atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of aminoadipic acid are associated with at least two inborn errors of metabolism including 2-aminoadipic aciduria and 2-oxoadipic aciduria. Aminoadipic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. As a diabetogen, serum aminoadipic levels appear to regulate glucose homeostasis and have been highly predictive of individuals who later develop diabetes (PMID: 24091325). In particular, aminoadipic acid lowers fasting plasma glucose levels and enhances insulin secretion from human islets. As an atherogen, aminoadipic acid has been found to be produced at high levels via protein lysine oxidation in atherosclerotic plaques (PMID: 28069522). A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA). L-α-Aminoadipic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-90-7 (retrieved 2024-07-01) (CAS RN: 1118-90-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.

   

Argininosuccinic acid disodium

(2S)-2-[[N-[(4S)-4-amino-4-carboxybutyl]carbamimidoyl]amino]butanedioic acid

C10H18N4O6 (290.1226)


Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039

   

Sphinganine

D-Erythro-1,3-dihydroxy-2-aminooctadecane

C18H39NO2 (301.2981)


Sphinganine, also known as c18-dihydrosphingosine or safingol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine can be found in a number of food items such as agar, biscuit, herbs and spices, and pasta, which makes sphinganine a potential biomarker for the consumption of these food products. Sphinganine can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Sphinganine exists in all eukaryotes, ranging from yeast to humans. In humans, sphinganine is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Sphinganine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, sphinganine is found to be associated with pregnancy. Sphinganine is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin . Sphinganine belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphinganine exists in all living species, ranging from bacteria to humans. Within humans, sphinganine participates in a number of enzymatic reactions. In particular, sphinganine can be converted into 3-dehydrosphinganine through its interaction with the enzyme 3-ketodihydrosphingosine reductase. In addition, sphinganine can be converted into sphinganine 1-phosphate; which is catalyzed by the enzyme sphingosine kinase 2. Outside of the human body, sphinganine has been detected, but not quantified in, several different foods, such as Mexican oregano, jostaberries, winter squash, angelica, and epazotes. This could make sphinganine a potential biomarker for the consumption of these foods. Sphinganine blocks postlysosomal cholesterol transport by inhibiting low-density lipoprotein-induced esterification of cholesterol and causing unesterified cholesterol to accumulate in perinuclear vesicles. It has been suggested that endogenous sphinganine may inhibit cholesterol transport in Niemann-Pick Type C (NPC) disease (PMID: 1817037). D004791 - Enzyme Inhibitors KEIO_ID D078 D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.

   

Levorphanol

(1R,9R,10R)-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5-trien-4-ol

C17H23NO (257.178)


Levorphanol is only found in individuals that have used or taken this drug. It is a narcotic analgesic that may be habit-forming. It is nearly as effective orally as by injection. [PubChem]Like other mu-agonist opioids it is believed to act at receptors in the periventricular and periaqueductal gray matter in both the brain and spinal cord to alter the transmission and perception of pain. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Saccharopine

(2S)-2-{[(5S)-5-amino-5-carboxypentyl]amino}pentanedioic acid

C11H20N2O6 (276.1321)


Saccharopine is an intermediate in the degradation of lysine, formed by the condensation of lysine and alpha-ketoglutarate. The saccharopine pathway is the main route for lysine degradation in mammals, and its first two reactions are catalyzed by enzymatic activities known as lysine-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH), which reside on a single bifunctional polypeptide (LOR/SDH) (EC 1.5.1.8). The reactions involved with saccharopine dehydrogenases have very strict substrate specificity for L-lysine, 2-oxoglutarate, and NADPH. LOR/SDH has been detected in a number of mammalian tissues, mainly in the liver and kidney, contributing not only to the general nitrogen balance in the organism but also to the controlled conversion of lysine into ketone bodies. A tetrameric form has also been observed in human liver and placenta. LOR activity has also been detected in brain mitochondria during embryonic development, and this opens up the question of whether or not lysine degradation has any functional significance during brain development. As a result, there is now a new focus on the nutritional requirements for lysine in gestation and infancy. Finally, LOR and/or SDH deficiencies seem to be involved in a human autosomal genetic disorder known as familial hyperlysinemia, which is characterized by serious defects in the functioning of the nervous system and characterized by a deficiency in lysine-ketoglutarate reductase, saccharopine dehydrogenase, and saccharopine oxidoreductase activities. Saccharopinuria (high amounts of saccharopine in the urine) and saccharopinemia (an excess of saccharopine in the blood) are conditions present in some inherited disorders of lysine degradation (PMID: 463877, 10567240, 10772957, 4809305). If present in sufficiently high levels, saccharopine can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Saccharopine is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). Many affected children with organic acidemias experience intellectual disability or delayed development. Amino acid from Saccharomyces cerevisiae and Neurospora crassaand is also found in mushrooms and seeds

   

L-Lysine

(2S)-2,6-diaminohexanoic acid

C6H14N2O2 (146.1055)


Lysine (Lys), also known as L-lysine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Lysine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Lysine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. In humans, lysine is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. Lysine is high in foods such as wheat germ, cottage cheese and chicken. Of meat products, wild game and pork have the highest concentration of lysine. Fruits and vegetables contain little lysine, except avocados. Normal requirements for lysine have been found to be about 8 g per day or 12 mg/kg in adults. Children and infants need more, 44 mg/kg per day for an eleven to-twelve-year old, and 97 mg/kg per day for three-to six-month old. In organisms that synthesise lysine, it has two main biosynthetic pathways, the diaminopimelate and α-aminoadipate pathways, which employ distinct enzymes and substrates and are found in diverse organisms. Lysine catabolism occurs through one of several pathways, the most common of which is the saccharopine pathway. Lysine plays several roles in humans, most importantly proteinogenesis, but also in the crosslinking of collagen polypeptides, uptake of essential mineral nutrients, and in the production of carnitine, which is key in fatty acid metabolism. Lysine is also often involved in histone modifications, and thus, impacts the epigenome. Lysine is highly concentrated in muscle compared to most other amino acids. Normal lysine metabolism is dependent upon many nutrients including niacin, vitamin B6, riboflavin, vitamin C, glutamic acid and iron. Excess arginine antagonizes lysine. Several inborn errors of lysine metabolism are known, such as cystinuria, hyperdibasic aminoaciduria I, lysinuric protein intolerance, propionic acidemia, and tyrosinemia I. Most are marked by mental retardation with occasional diverse symptoms such as absence of secondary sex characteristics, undescended testes, abnormal facial structure, anemia, obesity, enlarged liver and spleen, and eye muscle imbalance. Lysine also may be a useful adjunct in the treatment of osteoporosis. Although high protein diets result in loss of large amounts of calcium in urine, so does lysine deficiency. Lysine may be an adjunct therapy because it reduces calcium losses in urine. Lysine deficiency also may result in immunodeficiency. Requirements for lysine are probably increased by stress. Lysine toxicity has not occurred with oral doses in humans. Lysine dosages are presently too small and may fail to reach the concentrations necessary to prove potential therapeutic applications. Lysine metabolites, amino caproic acid and carnitine have already shown their therapeutic potential. Thirty grams daily of amino caproic acid has been used as an initial daily dose in treating blood clotting disorders, indicating that the proper doses of lysine, its precursor, have yet to be used in medicine. Low lysine levels have been found in patients with Parkinsons, hypothyroidism, kidney disease, asthma and depression. The exact significance of these levels is unclear, yet lysine therapy can normalize the level and has been associated with improvement of some patients with these conditions. Abnormally elevated hydroxylysines have been found in virtually all chronic degenerative diseases and those treated with coumadin therapy. The levels of this stress marker may be improved by high doses of vitamin C. Lysine is particularly useful in therapy for marasmus (wasting) (http://www.dcnutrition.com). Lysine has also been sh... [Spectral] L-Lysine (exact mass = 146.10553) and Carnosine (exact mass = 226.10659) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, nutrient. Found widely in protein hydrolysates, e.g. casein, egg albumen, fibrin, gelatin, beet molasses. Flavouring agent for a variety of foods L-Lysine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-87-1 (retrieved 2024-07-01) (CAS RN: 56-87-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].

   

L-Ornithine

(2S)-2,5-diaminopentanoic acid

C5H12N2O2 (132.0899)


Ornithine, also known as (S)-2,5-diaminopentanoic acid or ornithine, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Ornithine is soluble (in water) and a moderately acidic compound (based on its pKa). Ornithine can be found in a number of food items such as pine nut, lingonberry, turnip, and cassava, which makes ornithine a potential biomarker for the consumption of these food products. Ornithine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ornithine exists in all living species, ranging from bacteria to humans. In humans, ornithine is involved in few metabolic pathways, which include arginine and proline metabolism, glycine and serine metabolism, spermidine and spermine biosynthesis, and urea cycle. Ornithine is also involved in several metabolic disorders, some of which include ornithine transcarbamylase deficiency (OTC deficiency), prolidase deficiency (PD), citrullinemia type I, and arginine: glycine amidinotransferase deficiency (AGAT deficiency). Moreover, ornithine is found to be associated with cystinuria, alzheimers disease, leukemia, and uremia. Ornithine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ornithine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. it has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl . L-Ornithine is metabolised to L-arginine. L-arginine stimulates the pituitary release of growth hormone. Burns or other injuries affect the state of L-arginine in tissues throughout the body. As De novo synthesis of L-arginine during these conditions is usually not sufficient for normal immune function, nor for normal protein synthesis, L-ornithine may have immunomodulatory and wound-healing activities under these conditions (by virtue of its metabolism to L-arginine) (DrugBank). Chronically high levels of ornithine are associated with at least 9 inborn errors of metabolism including: Cystathionine Beta-Synthase Deficiency, Hyperornithinemia with gyrate atrophy, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperprolinemia Type II, Lysinuric Protein Intolerance, Ornithine Aminotransferase Deficiency, Ornithine Transcarbamylase Deficiency and Prolinemia Type II (T3DB). Ornithine or L-ornithine, also known as (S)-2,5-diaminopentanoic acid is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-ornithine is soluble (in water) and a moderately basic compound. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. It is considered to be a non-essential amino acid. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. L-Ornithine is one of the products of the action of the enzyme arginase on L-arginine, creating urea. Therefore, ornithine is a central part of the urea cycle, which allows for the disposal of excess nitrogen. Outside the human body, L-ornithine is abundant in a number of food items such as wild rice, brazil nuts, common oregano, and common grapes. L-ornithine can be found throughout most human tissues; and in most biofluids, some of which include blood, urine, cerebrospinal fluid (CSF), sweat, saliva, and feces. L-ornithine exists in all living species, from bacteria to plants to humans. L-Ornithine is also a precursor of citrulline and arginine. In order for ornithine that is produced in the cytosol to be converted to citrulline, it must first cross the inner mitochondrial membrane into the mitochondrial matrix where it is carbamylated by the enzyme known as ornithine transcarbamylase. This transfer is mediated by the mitochondrial ornithine transporter (SLC25A15; AF112968; ORNT1). Mutations in the mitochondrial ornithine transporter result in hyperammonemia, hyperornithinemia, homocitrullinuria (HHH) syndrome, a disorder of the urea cycle (PMID: 16256388). The pathophysiology of the disease may involve diminished ornithine transport into mitochondria, resulting in ornithine accumulation in the cytoplasm and reduced ability to clear carbamoyl phosphate and ammonia loads (OMIM 838970). In humans, L-ornithine is involved in a number of other metabolic disorders, some of which include, ornithine transcarbamylase deficiency (OTC deficiency), argininemia, and guanidinoacetate methyltransferase deficiency (GAMT deficiency). Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. Moreover, Ornithine is found to be associated with cystinuria, hyperdibasic aminoaciduria I, and lysinuric protein intolerance, which are inborn errors of metabolism. It has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing. L-Ornithine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-26-8 (retrieved 2024-07-01) (CAS RN: 70-26-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2]. L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2].

   

Parathion

p-Nitrophenol O-ester with O,O-diethylphosphorothioic acid

C10H14NO5PS (291.033)


Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

6-Acetylmorphine

10-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraen-14-yl acetate

C19H21NO4 (327.1471)


6-acetylmorphine belongs to the family of Morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

Pyrrole-2-carboxylic acid

1H-Pyrrole-2-carboxylic acid

C5H5NO2 (111.032)


Pyrrole-2-carboxylic acid was synthesized over a century ago, but its history as a compound of biological origin is rather recent. It was first identified as a degradation product of sialic acids, then as a derivative of the oxidation of the D-hydroxyproline isomers by mammalian D-amino acid oxidase. The latter relationship results from the lability of the direct oxidation product, A-pyrroline-4-hydroxy-2-carboxylic acid, which loses water spontaneously to form the pyrrole. A similar reaction is catalyzed by the more specific allohydroxy-D-proline oxidase of Pseudomonas. In whole animal observations, pyrrole-2-carboxylate (PCA) was identified in rat or human urine after administration of the D-isomers of hydroxyproline, a finding ascribable to the action of D-amino acid oxidase. (PMID:4430715). Urinary excretion of N-(pyrrole-2-carboxyl) glycine has been reported in a 5-year-old affected with type II hyperprolinemia; The child has mild developmental delay, recurrent seizures of the grand mal type and EEG alterations. The urinary excretion of the conjugate is stressed, since it appears that only one previous report in the literature described this compound in the urine of two patients affected by this disturbance (PMID 2383933). Pyrrole-2-carboxylic acid was synthesized over a century ago, but its history as a compound of biological origin is rather recent. It was first identified as a degradation product of sialic acids, then as a derivative of the oxidation of the D-hydroxyproline isomers by mammalian D-amino acid oxidase. The latter relationship results from the lability of the direct oxidation product, A-pyrroline-4-hydroxy-2-carboxylic acid, which loses water spontaneously to form the pyrrole. A similar reaction is catalyzed by the more specific allohydroxy-D-proline oxidase of Pseudomonas. In whole animal observations, pyrrole-2-carboxylate (PCA) was identified in rat or human urine after administration of the D-isomers of hydroxyproline, a finding ascribable to the action of D-amino acid oxidase. (PMID: 4430715) KEIO_ID P112 Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov. Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov.

   

Boldenon

(8xi,9xi,14xi)-17-Hydroxyandrosta-1,4-dien-3-one

C19H26O2 (286.1933)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D07536 Origin: Animal; SubCategory_DNP: The sterols, Androstanes

   

Naltrexone

(1S,5R,13R,17S)-4-(cyclopropylmethyl)-10,17-dihydroxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C20H23NO4 (341.1627)


Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of naloxone. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. [PubChem] N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist CONFIDENCE standard compound; EAWAG_UCHEM_ID 2830 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thiacloprid

(E)-Thiacloprid

C10H9ClN4S (252.0236)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7159; ORIGINAL_PRECURSOR_SCAN_NO 7155 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7152; ORIGINAL_PRECURSOR_SCAN_NO 7150 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7161; ORIGINAL_PRECURSOR_SCAN_NO 7158 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7190; ORIGINAL_PRECURSOR_SCAN_NO 7188 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7200; ORIGINAL_PRECURSOR_SCAN_NO 7197 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 INTERNAL_ID 52; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 CONFIDENCE standard compound; INTERNAL_ID 3024 CONFIDENCE standard compound; INTERNAL_ID 8424 CONFIDENCE standard compound; INTERNAL_ID 4044 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2954 EAWAG_UCHEM_ID 2954; CONFIDENCE standard compound

   

Fumonisin B1

1,2,3-propanetricarboxylic acid, 1,-1-[1-(12-amino-4,9,11-trihydroxy-2-methyltridecyl)-2-(1-methylpentyl)-1,2-ethanediyl] ester

C34H59NO15 (721.3885)


Fumonisin B1 is from Fusarium moniliforme Fumonisin B1 is an inhibitor of ceramide synthase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens D004791 - Enzyme Inhibitors From Fusarium moniliforme

   

Glutaric acid

1,3-Propanedicarboxylic acid

C5H8O4 (132.0423)


Glutaric acid is a simple five-carbon linear dicarboxylic acid. Glutaric acid is naturally produced in the body during the metabolism of some amino acids, including lysine and tryptophan. Glutaric acid may cause irritation to the skin and eyes. When present in sufficiently high levels, glutaric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of glutaric acid are associated with at least three inborn errors of metabolism, including glutaric aciduria type I, malonyl-CoA decarboxylase deficiency, and glutaric aciduria type III. Glutaric aciduria type I (glutaric acidemia type I, glutaryl-CoA dehydrogenase deficiency, GA1, or GAT1) is an inherited disorder in which the body is unable to completely break down the amino acids lysine, hydroxylysine, and tryptophan due to a deficiency of mitochondrial glutaryl-CoA dehydrogenase (EC 1.3.99.7, GCDH). Excessive levels of their intermediate breakdown products (e.g. glutaric acid, glutaryl-CoA, 3-hydroxyglutaric acid, glutaconic acid) can accumulate and cause damage to the brain (and also other organs). Babies with glutaric acidemia type I are often born with unusually large heads (macrocephaly). Macrocephaly is amongst the earliest signs of GA1. GA1 also causes secondary carnitine deficiency because glutaric acid, like other organic acids, is detoxified by carnitine. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glutaric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Treatment of glutaric aciduria is mainly based on the restriction of lysine intake, supplementation of carnitine, and an intensification of therapy during intercurrent illnesses. The major principle of dietary treatment is to reduce the production of glutaric acid and 3-hydroxyglutaric acid by restriction of natural protein, in general, and of lysine, in particular (PMID: 17465389, 15505398). Glutaric acid has also been found in Escherichia (PMID: 30143200). Isolated from basidiomycete fungi and fruits of Prunus cerasus (CCD). Glutaric acid is found in many foods, some of which are red beetroot, common beet, soy bean, and tamarind. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3]. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3].

   

Dibutyl succinate

2,4-Dinitrofluorobenzene Sulfonic Acid

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

Cannabidiol

1,3-Benzenediol, 2-(3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl)-5-pentyl-, (1R-trans)-

C21H30O2 (314.2246)


An cannabinoid that is cyclohexene which is substituted by a methyl group at position 1, a 2,6-dihydroxy-4-pentylphenyl group at position 3, and a prop-1-en-2-yl group at position 4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cannabinol

3-Amyl-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran

C21H26O2 (310.1933)


C308 - Immunotherapeutic Agent > C574 - Immunosuppressant

   

Fludrocortisone

(1R,2S,10S,11S,14R,15S,17S)-1-fluoro-14,17-dihydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C21H29FO5 (380.1999)


Fludrocortisone is only found in individuals that have used or taken this drug. It is a synthetic mineralocorticoid with anti-inflammatory activity. [PubChem]Fludrocortisone binds the mineralocorticoid receptor (aldosterone receptor). This binding (or activation of the mineralocorticoid receptor by fludrocortisone) in turn causes an increase in ion and water transport and thus raises extracellular fluid volume and blood pressure and lowers potassium levels. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Flupentixol

cis-(Z)-Flupenthixol

C23H25F3N2OS (434.164)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

nalorphine

nalorphine

C19H21NO3 (311.1521)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

Clothianidin

((e)-1-(2-chloro-1,3-Thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine)

C6H8ClN5O2S (249.0087)


CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3164; ORIGINAL_PRECURSOR_SCAN_NO 3162 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3102; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6570; ORIGINAL_PRECURSOR_SCAN_NO 6567 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3103; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3100; ORIGINAL_PRECURSOR_SCAN_NO 3098 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6580; ORIGINAL_PRECURSOR_SCAN_NO 6577 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6605; ORIGINAL_PRECURSOR_SCAN_NO 6603 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6531; ORIGINAL_PRECURSOR_SCAN_NO 6529 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3091; ORIGINAL_PRECURSOR_SCAN_NO 3089 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6599; ORIGINAL_PRECURSOR_SCAN_NO 6595 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids CONFIDENCE standard compound; INTERNAL_ID 8455 CONFIDENCE standard compound; INTERNAL_ID 2328 D016573 - Agrochemicals

   

Nornicotine

Nornicotine tartrate, (S)-(R-(r*,r*))-isomer

C9H12N2 (148.1)


Nornicotine is an alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. An alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. [HMDB] CONFIDENCE standard compound; EAWAG_UCHEM_ID 3280 CONFIDENCE standard compound; INTERNAL_ID 2228 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Isatidine

retrorsine

C18H25NO6 (351.1682)


Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

Fludrocortisone acetate

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-en-3,20-dione 21-acetate

C23H31O6F (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; INTERNAL_ID 2101 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Naloxone

(1S,5R,13R,17S)-10,17-dihydroxy-4-(prop-2-en-1-yl)-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C19H21NO4 (327.1471)


Naloxone is only found in individuals that have used or taken this drug. It is a specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. [PubChem]While the mechanism of action of naloxone is not fully understood, the preponderance of evidence suggests that naloxone antagonizes the opioid effects by competing for the same receptor sites, especially the opioid mu receptor. Recently, naloxone has been shown to bind all three opioid receptors (mu, kappa and gamma) but the strongest binding is to the mu receptor. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AH - Peripheral opioid receptor antagonists V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

Cannabidiolate

Cannabidiolic acid

C22H30O4 (358.2144)


A dihydroxybenzoic acid that is olivetolic acid in which the hydrogen at position 3 is substituted by a 3-p-mentha-1,8-dien-3-yl (limonene) group.

   

Cannabichromene

2-methyl-2-(4-methylpent-3-en-1-yl)-7-pentyl-2H-chromen-5-ol

C21H30O2 (314.2246)


   

Anatabine

(2S)-1,2,3,6-tetrahydro-2,3-bipyridine

C10H12N2 (160.1)


Anatabine is one of the minor alkaloids found in plants in the family Solanaceae, which includes the tobacco plant and tomato. Commercial tobacco plants typically produce alkaloids at levels between 2\\\% and 4\\\% of total dry weight, with nicotine accounting for about 90\\\% of the total alkaloid content, and the related compounds anabatine, nornicotine, and anabasine making up nearly all the rest. These compounds are thought to be biologically active, and part of plants natural defense system against insects. It belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. Anatabine is tobacco alkaloid in urine of smokers and smokeless tobacco users (PMID: 8245163). This Nicotine-related alkaloid is an inhibitor of human cytochrome P-450 2A6 (PMID:14757175). Anatabine is tobacco alkaloid in urine of smokers and smokeless tobacco users (PubMed ID 8245163 ); this Nicotine-related alkaloid is an inhibitor of human cytochrome P-450 2A6 (PubMed ID 14757175 ) [HMDB] (R,S)-Anatabine is a a minor tobacco alkaloid found in the Solanaceae family of plants that can be used as a specific marker for the detection of tobacco use[1].

   

Sterigmatocystin

15-hydroxy-11-methoxy-6,8,20-trioxapentacyclo[10.8.0.0²,⁹.0³,⁷.0¹⁴,¹⁹]icosa-1(12),2(9),4,10,14,16,18-heptaen-13-one

C18H12O6 (324.0634)


Sterigmatocystin is a mycotoxin of Aspergillus versicolor and Chaetomium species Sterigmatocystin is a poison of the type dermatoxin, from the fungi genus Aspergillus. It appears on crusts of cheese with mold. Sterigmatocystin is a toxic metabolite structurally closely related to the aflatoxins (compare general fact sheet number 2), and consists of a xanthone nucleus attached to a bifuran structure. Sterigmatocystin is mainly produced by the fungi Aspergillus nidulans and A. versicolor. It has been reported in mouldy grain, green coffee beans and cheese although information on its occurrence in foods is limited. It appears to occur much less frequently than the aflatoxins, although analytical methods for its determination have not been as sensitive until recently, and so it is possible that small concentrations in food commodities may not always have been detected. Although it is a potent liver carcinogen similar to aflatoxin B1, current knowledge suggests that it is nowhere near as widespread in its occurrence. If this is the true situation it would be justified to consider sterigmatocystin as no more than a risk to consumers in special or unusual circumstances. Sterigmatocystin is a number of closely related compounds such o-methyl sterigmatocystin are known and some may also occur naturally. The IARC-classification of sterigmatocystin is group 2B, which means it is possibly carcinogenic to humans. In practice, the risk is quite low however, because this substance only appears on cheese crusts with mold, and because of that the chance of daily exposure is very low. Sterigmatocystin is a molded crust is best not to be consumed in whole, but after removing the crust, the cheese can still be consumed. Sterigmatocystin is a different kind of mold than that which appears on cheese itself, which can simply be removed before further consumption D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2320

   

3,9,15-Tribenzyl-4,10,16-trimethyl-6,12,18-tri(propan-2-yl)-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone

3,9,15-tribenzyl-4,10,16-trimethyl-6,12,18-tris(propan-2-yl)-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone

C45H57N3O9 (783.4095)


[Raw Data] CBA19_Beauvericin_pos_20eV_1-1_01_1374.txt [Raw Data] CBA19_Beauvericin_pos_50eV_1-1_01_1485.txt [Raw Data] CBA19_Beauvericin_pos_10eV_1-1_01_1352.txt [Raw Data] CBA19_Beauvericin_pos_40eV_1-1_01_1376.txt [Raw Data] CBA19_Beauvericin_pos_30eV_1-1_01_1483.txt Beauvericin is a Fusarium mycotoxin. Beauvericin inhibits acyl-CoA: cholesterol acyltransferase (ACAT) activity with an IC50 of 3 μM in an enzyme assay using rat liver microsomes[1]. Beauvericin is a Fusarium mycotoxin. Beauvericin inhibits acyl-CoA: cholesterol acyltransferase (ACAT) activity with an IC50 of 3 μM in an enzyme assay using rat liver microsomes[1].

   

cannabigerolate

Cannabigerolic acid

C22H32O4 (360.23)


   

Zaleplon

N-(3-(3-Cyanopyrazolo(1,5-a)pyrimidin-7-yl)phenyl)-N-ethylacetamide

C17H15N5O (305.1277)


Zaleplon is a sedative/hypnotic, mainly used for insomnia. It is known as a nonbenzodiazepine hypnotic. Zaleplon interacts with the GABA receptor complex and shares some of the pharmacological properties of the benzodiazepines. Zaleplon is a schedule IV drug in the United States. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Boldione

(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-diene-5,14-dione

C19H24O2 (284.1776)


Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993) [HMDB] Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993).

   

Dermorphin

Dermorphin

C40H50N8O10 (802.365)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1].

   

5a-Pregnane-3,20-dione

(1S,2S,7S,10R,11S,14S,15S)-14-acetyl-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-one

C21H32O2 (316.2402)


5a-Pregnane-3,20-dione is a biologically active 5-alpha-reduced metabolite of plasma progesterone. It is the immediate precursor of 5-alpha-pregnan-3-alpha-ol-20-one (allopregnanolone), a neuroactive steroid that binds with GABA(A) receptor. A biologically active 5-alpha-reduced metabolite of plasma progesterone. It is the immediate precursor of 5-alpha-pregnan-3-alpha-ol-20-one (allopregnanolone), a neuroactive steroid that binds with GABA(A) receptor. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 5a-Pregnane-3,20-dione is the endogenous progesterone metabolite.

   

Alpha-ketobutyrate

2-oxobutanoic acid

C4H6O3 (102.0317)


3-methyl pyruvic acid, also known as alpha-ketobutyric acid or 2-oxobutyric acid, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, 3-methyl pyruvic acid is considered to be a fatty acid lipid molecule. 3-methyl pyruvic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3-methyl pyruvic acid can be found in a number of food items such as pepper (c. baccatum), triticale, european plum, and black walnut, which makes 3-methyl pyruvic acid a potential biomarker for the consumption of these food products. 3-methyl pyruvic acid can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine. 3-methyl pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, 3-methyl pyruvic acid is involved in several metabolic pathways, some of which include methionine metabolism, homocysteine degradation, threonine and 2-oxobutanoate degradation, and propanoate metabolism. 3-methyl pyruvic acid is also involved in several metabolic disorders, some of which include dimethylglycine dehydrogenase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), s-adenosylhomocysteine (SAH) hydrolase deficiency, and hyperglycinemia, non-ketotic. 2-Ketobutyric acid, also known as alpha-ketobutyrate or 2-oxobutyrate, belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms. 2-Ketobutyric acid is a substance that is involved in the metabolism of many amino acids (glycine, methionine, valine, leucine, serine, threonine, isoleucine) as well as propanoate metabolism and C-5 branched dibasic acid metabolism. It is also one of the degradation products of threonine. It can be converted into propionyl-CoA (and subsequently methylmalonyl CoA, which can be converted into succinyl CoA, a citric acid cycle intermediate), and thus enter the citric acid cycle. More specifically, 2-ketobutyric acid is a product of the lysis of cystathionine. 2-Oxobutanoic acid is a product in the enzymatic cleavage of cystathionine.

   

Imidazole

N,N-1,2-ethenediylmethanimidamide

C3H4N2 (68.0374)


Imidazole is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and has non-adjacent nitrogen atoms. Imidazole is a heterocyclic aromatic organic compound. It is classified as an alkaloid. The ring system of the molecule is present in important biological building blocks such as histidine and histamine. Imidazole can act as a base and as a weak acid. Imidazole exists in two tautomeric forms with the hydrogen atom moving between the two nitrogens. Many drugs contain an imidazole ring, such as antifungal drugs and nitroimidazole. Imidazole is a 5 membered planar ring which is soluble in water and polar solvents. Imidazole is a base and an excellent nucleophile. It reacts at the NH nitrogen, attacking alkylating and acylating compounds. It is not particularly susceptible to electrophilic attacks at the carbon atoms, and most of these reactions are substitutions that keep the aromaticity intact. One can see from the resonance structure that the carbon-2 is the carbon most likely to have a nucleophile attack it, but in general nucleophilic substitutions are difficult with imidazole. Imidazole is incorporated into many important biological molecules. The most obvious is the amino acid histidine, which has an imidazole side chain. histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Isolated from the seeds of Lens culinaris (lentil)and is also present in the seeds of other legumes: Macrotyloma uniflorum (horse gram), Psophocarpus tetragonolobus (winged bean), Vigna radiata (mung bean) CONFIDENCE standard compound; INTERNAL_ID 8091 D004791 - Enzyme Inhibitors KEIO_ID I046

   

2-Phenylacetamide

(alpha-)2-Phenylacetamide

C8H9NO (135.0684)


2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. [HMDB] 2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. 2-Phenylacetamide is an endogenous metabolite.

   

Dihydrozeatin

(2R)-2-methyl-4-[(9H-purin-6-yl)amino]butan-1-ol

C10H15N5O (221.1277)


Dihydrozeatin (CAS: 23599-75-9) belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Dihydrozeatin is an intermediate in zeatin biosynthesis. It is converted from dihydrozeatin riboside and is then converted into dihydrozeatin-O-glucoside via glycosyltransferases (EC 2.4.1.- ). Dihydrozeatin is a very strong basic compound (based on its pKa). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins

   

2-Acetylaminofluorene

N-(9H-fluoren-2-yl)ethanimidic acid

C15H13NO (223.0997)


D009676 - Noxae > D002273 - Carcinogens

   

LSM-1839

Naltrindole

C26H26N2O3 (414.1943)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

Methyl beta-D-glucopyranoside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-methoxyoxane-3,4,5-triol

C7H14O6 (194.079)


Methyl beta-D-glucopyranoside is found in cereals and cereal products. Methyl beta-D-glucopyranoside is present in Medicago sativa (alfalfa Methyl β-D-Galactopyranoside is an endogenous metabolite.

   

Moniliformin

3-hydroxycyclobut-3-ene-1,2-dione

C4H2O3 (98.0004)


   

Tetrahydrocannabinol

(6aR,10aR)-6,6,9-trimethyl-3-pentyl-6H,6aH,7H,8H,10aH-benzo[c]isochromen-1-ol

C21H30O2 (314.2246)


Tetrahydrocannabinol, abbreviated THC, is a cannabinoid identified in cannabis and is its principal psychoactive constituent. First isolated in 1964, in its pure form, it is a glassy solid when cold, and becomes viscous and sticky if warmed. Synthetically prepared THC, officially referred to by its INN, dronabinol, is available by prescription in the U.S. and Canada under the brand name Marinol. The mechanism of action of THC is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of cannabinoids. Animal studies suggest that Marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata. A literature review on the subject concluded that "Cannabis use appears to be neither a sufficient nor a necessary cause for psychosis. It is a component cause, part of a complex constellation of factors leading to psychosis." Likewise, a French review from 2009 came to a conclusion that cannabis use, particularly that before age 15, was a factor in the development of schizophrenic disorders. An aromatic terpenoid, THC has a very low solubility in water, but good solubility in most organic solvents, specifically lipids and alcohols. The presence of these specialized cannabinoid receptors in the brain led researchers to the discovery of endocannabinoids, such as anandamide and 2-arachidonoyl glyceride (2-AG). THC targets receptors in a manner far less selective than endocannabinoid molecules released during retrograde signalling, as the drug has a relatively low cannabinoid receptor efficacy and affinity. In populations of low cannabinoid receptor density, THC may act to antagonize endogenous agonists that possess greater receptor efficacy. THC is a lipophilic molecule and may bind non-specifically to a variety of receptors in the brain and body, such as adipose tissue. Dronabinol is only found in individuals that have used or taken this drug. It is extracted from the resin of Cannabis sativa (marijuana, hashish). The isomer delta-9-tetrahydrocannabinol is considered the most active form, producing the characteristic mood and perceptual changes associated with this compound. In the United States, Marinol has been rescheduled from Schedule II to Schedule III of the Controlled Substances Act in 1999, reflecting a finding that THC had a potential for abuse less than that of cocaine and heroin. As a Schedule III drug, it is available by prescription and is considered to be non-narcotic and to have a low risk of physical or mental dependence. Marinol has been approved by the U.S. Food and Drug Administration (FDA) in the treatment of anorexia in AIDS patients, as well as for refractory nausea and vomiting of patients undergoing chemotherapy, which has raised much controversy as to why natural THC is still a Schedule I drug. Efforts to get cannabis rescheduled as analogous to Marinol have not succeeded thus far. In April 2005, Canadian authorities approved the marketing of Sativex, a mouth spray for multiple sclerosis patients, who can use it to alleviate neuropathic pain and spasticity. Sativex contains tetrahydrocannabinol together with cannabidiol and is a preparation of whole cannabis rather than individual cannabinoids. It is marketed in Canada by GW Pharmaceuticals, being the first cannabis-based prescription drug in the world (in modern times). In addition, Sativex received European regulatory approval in 2010. An analog of dronabinol, nabilone, is available commercially in Canada under the trade name Cesamet, manufactured by Valeant Pharmaceuticals. Cesamet has also received FDA approval and began marketing in the U.S. in 2006. It is a Schedule II drug. Δ9tetrahydrocannabinol, also known as delta(9)-thc or marinol, is a member of the class of compounds known as 2,2-dimethyl-1-benzopyrans. 2,2-dimethyl-1-benzopyrans are organic compounds containing a 1-benzopyran moiety that carries two methyl groups at the 2-position. Δ9tetrahydrocannabinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Δ9tetrahydrocannabinol can be found in a number of food items such as wakame, cloves, burbot, and black cabbage, which makes Δ9tetrahydrocannabinol a potential biomarker for the consumption of these food products. Δ9tetrahydrocannabinol can be found primarily in blood and urine. Δ9tetrahydrocannabinol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Δ9tetrahydrocannabinol is a drug which is used for the treatment of anorexia associated with weight loss in patients with aids, and nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatment. The mechanism of action of marinol is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of dronabinol and other cannabinoids. Animal studies with other cannabinoids suggest that marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata (DrugBank). A potentially serious oral ingestion, if recent, should be managed with gut decontamination. In unconscious patients with a secure airway, instill activated charcoal (30 to 100 g in adults, 1 to 2 g/kg in infants) via a nasogastric tube. A saline cathartic or sorbitol may be added to the first dose of activated charcoal. Patients experiencing depressive, hallucinatory or psychotic reactions should be placed in a quiet area and offered reassurance. Benzodiazepines (5 to 10 mg diazepam po) may be used for treatment of extreme agitation. Hypotension usually responds to Trendelenburg position and IV fluids. Pressors are rarely required (L1712) (T3DB). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid

(S)-2,3,4,5-Tetrahydropiperidine-2-carboxylic acid

C6H9NO2 (127.0633)


2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid (CAS: 3038-89-9), also known as 2,3,4,5-tetrahydropiperidine-2-carboxylate and 1-piperideine-6-carboxylic acid, is a cyclic intermediate in lysine degradation. L-Lysine is an essential amino acid that is a necessary building block for all protein in the body and It plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. In the lysine degradation pathway, 2,3,4,5-tetrahydro-2-pyridinecarboxylic acid is a substrate for L-aminoadipate-semialdehyde dehydrogenase (amaA) and can be formed by the spontaneous cyclization of 2-aminoadipate-6-semialdehyde. 2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid is also an intermediate in glycine, serine, and threonine metabolism. It is a substrate for peroxisomal sarcosine oxidase. KEIO_ID I015

   

DAMGO

(D-Ala(2)-mephe(4)-gly-ol(5))enkephalin

C26H35N5O6 (513.2587)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins KEIO_ID A226; [MS2] KO008836 KEIO_ID A226; [MS3] KO008837 KEIO_ID A226 DAMGO is a μ-opioid receptor (μ-OPR ) selective agonist with a Kd of 3.46 nM for native μ-OPR[1].

   

2-Cyanopyridine

2-Cyanopyridine

C6H4N2 (104.0374)


KEIO_ID C089

   

Myosmine

NICOTINE DITARTRATE DIHYDRATE IMPURITY D [EP IMPURITY]

C9H10N2 (146.0844)


Myosmine is a member of the class of pyridines that is pyridine substituted by a 3,4-dihydro-2H-pyrrol-5-yl group at position 3. It is an alkaloid found in tobacco plants and exhibits genotoxic effects. It has a role as a plant metabolite, an EC 1.14.14.14 (aromatase) inhibitor and a mutagen. It is a pyrroline and a pyridine alkaloid. Myosmine is a natural product found in Euglena gracilis, Nicotiana tabacum, and Duboisia hopwoodii with data available. A member of the class of pyridines that is pyridine substituted by a 3,4-dihydro-2H-pyrrol-5-yl group at position 3. It is an alkaloid found in tobacco plants and exhibits genotoxic effects. Present in hazelnuts and peanuts. Myosmine is found in papaya and nuts. Myosmine is found in nuts. Myosmine is present in hazelnuts and peanut KEIO_ID M172 Myosmine, a specific tobacco alkaloid in nuts and nut products, has low affinity for a4b2 nicotinic acetylcholinergic receptors (nAChR) with a Ki of 3300 nM[1][2]. Myosmine, a specific tobacco alkaloid in nuts and nut products, has low affinity for a4b2 nicotinic acetylcholinergic receptors (nAChR) with a Ki of 3300 nM[1][2].

   

UDP Xylose

{[(2R,3S,4R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[hydroxy({[(3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy})phosphoryl]oxy})phosphinic acid

C14H22N2O16P2 (536.0445)


Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1-Pyrroline-5-carboxylic acid

delta-1-Pyrroline-5-carboxylate, 14C-labeled, (+-)-isomer

C5H7NO2 (113.0477)


1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.

   

Cellobionic acid

Cellobionic Acid Ammonium Salt

C12H22O12 (358.1111)


A disaccharide consisting beta-D-glucosyl and D-gluconic acid residues joined by a (1->4)-linkage.

   

Cytidine 2',3'-cyclic phosphate

4-amino-1-[2-hydroxy-6-(hydroxymethyl)-2-oxidotetrahydrofuro[3,4-d][1,3,2]dioxaphosphol-4-yl]pyrimidin-2(1H)-one

C9H12N3O7P (305.0413)


   

Allysine

alpha-Aminoadipic acid delta-semialdehyde

C6H11NO3 (145.0739)


Allysine (CAS: 1962-83-0), also known as 2-amino-6-oxohexanoic acid or 6-oxonorleucine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Outside of the human body, allysine has been detected, but not quantified in, several different foods, such as winged beans, wasabi, common verbena, arrowhead, and oats. This could make allysine a potential biomarker for the consumption of these foods. Allysine is a derivative of lysine used in the production of elastin and collagen. It is produced by the actions of the enzyme lysyl oxidase in the extracellular matrix and is essential in the crosslink formation that stabilizes collagen and elastin.

   

Sulfite

Sulfuric(IV) acid (H2SO3)

H2O3S (81.9725)


Endogenous sulfite is generated as a consequence of the bodys normal processing of sulfur-containing amino acids. Sulfites occur as a consequence of fermentation and also occur naturally in a number of foods and beverages. As food additives, sulfiting agents were first used in 1664 and have been approved in the United States since the 1800s. Sulfite is an allergen, a neurotoxin, and a metabotoxin. An allergen is a compound that causes allergic reactions such as wheezing, rash, or rhinitis. A neurotoxin is a substance that causes damage to nerves or brain tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an allergen, sulfite is known to induce asthmatic reactions. Sulfite sensitivity occurs most often in asthmatic adults (predominantly women), but it is also occasionally reported in preschool children. Adverse reactions to sulfites in nonasthmatics are extremely rare. Asthmatics who are steroid-dependent or who have a higher degree of airway hyperreactivity may be at greater risk of experiencing a reaction to sulfite-containing foods. Sulfite sensitivity reactions vary widely, ranging from no reaction to severe. The majority of reactions are mild. These manifestations may include dermatologic, respiratory, or gastrointestinal signs and symptoms. The precise mechanisms of the sensitivity responses have not been completely elucidated: inhalation of sulfur dioxide (SO2) generated in the stomach following ingestion of sulfite-containing foods or beverages, a deficiency in a mitochondrial enzyme, and an IgE-mediated immune response have all been implicated. Exogenously supplied sulfite is detoxified by the enzyme sulfite oxidase. Sulfite oxidase (EC 1.8.3.1) is 1 of 3 enzymes in humans that require molybdenum as a cofactor. Under certain circumstances, chronically high levels of sulfite can lead to serious neurotoxicity. Sulfite oxidase deficiency (also called molybdenum cofactor deficiency) is a rare autosomal inherited disease that is typified by high concentrations of sulfite in the blood and urine. It is characterized by severe neurological symptoms such as untreatable seizures, attenuated growth of the brain, and mental retardation. It results from defects in the enzyme sulfite oxidase, which is responsible for the oxidation of sulfite to sulfate. This sulfite to sulfate reaction is the final step in the degradation of sulfur-containing metabolites (including the amino acids cysteine and methionine). The term "isolated sulfite oxidase deficiency" is used to define the deficiency caused by mutations in the sulfite oxidase gene. This differentiates it from another version of sulfite oxidase deficiency that is due to defects in the molybdenum cofactor biosynthetic pathway (with mutations in the MOCS1 or MOCS2 genes). Isolated sulfite oxidase deficiency is a rare but devastating neurologic disease that usually presents in early infancy with seizures and alterations in muscle tone (PMID: 16234925, 16140720, 8586770). Sulfite oxidase deficiency (as caused by MOCS1 or MOCS2) may be treated with cPMP, a precursor of the molybdenum cofactor (PMID: 20385644). The mechanism behind sulfite neurotoxicity appears to be related to its ability to bind and inhibit glutamate dehydrogenase (GDH). Inhibition of GDH leads to a decrease in alpha-ketoglutarate and a diminished flux through the tricarboxylic acid cycle. This is accompanied by a decrease in NADH through the mitochondrial electron transport chain, which leads to a decrease in mitochondrial membrane potential and in ATP synthesis. Since glutamate is a major metabolite in the brain, inhibition of GDH by sulfite appears to contribute to neural damage characteristic of sulfite oxidase deficiency in human infants (PMID: 15273247). The hydrogen sulfite, or bisulfite, ion is the ion HSO3-. It is the conjugate base of sulfurous acid, H2SO3. Bisulfite has long been recognized as a reagent to react with organic compound... Food additive listed on the EAFUS Food Additive Database (Jan. 2001)

   

Tridecane

InChI=1/C13H28/c1-3-5-7-9-11-13-12-10-8-6-4-2/h3-13H2,1-2H

C13H28 (184.2191)


Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

3-Dehydroquinic acid

(1R,3R,4S)-1,3,4-trihydroxy-5-oxocyclohexane-1-carboxylic acid

C7H10O6 (190.0477)


3-Dehydroquinic acid belongs to the class of organic compounds known as alpha-hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon. 3-Dehydroquinic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). In most organisms, 3-dehydroquinic acid is synthesized from D-erythrose-4-phosphate in two steps. However, archaea genomes contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinic acid is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde. These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate, which cyclizes to 3-dehydroquinic acid. From 3-dehydroquinic acid and on to chorismate, the archaeal pathway appears to be identical to the bacterial pathway. In most organisms, 3-dehydroquinate is synthesized from D-erythrose-4-phosphate in two steps . However, the genomes of the archaea contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinate is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde . These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate , which cyclizes to 3-dehydroquinate . From 3-dehydroquinate and on to chorismate , the archaeal pathway appears to be identical to the bacterial pathway [HMDB]. 3-Dehydroquinate is found in many foods, some of which are allium (onion), cashew nut, american cranberry, and common wheat.

   

Ascorbate radical

Monodehydroascorbate radical

C6H7O6 (175.0243)


   

L-Glutamic gamma-semialdehyde

Glutamic acid gamma-semialdehyde, (L)-isomer

C5H9NO3 (131.0582)


L-glutamic-gamma-semialdehyde, also known as 5-oxo-L-norvaline or glutamic acid gamma-semialdehyde, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamic-gamma-semialdehyde is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamic-gamma-semialdehyde can be found in a number of food items such as rubus (blackberry, raspberry), jackfruit, loganberry, and plains prickly pear, which makes L-glutamic-gamma-semialdehyde a potential biomarker for the consumption of these food products. L-glutamic-gamma-semialdehyde exists in all living species, ranging from bacteria to humans. In humans, L-glutamic-gamma-semialdehyde is involved in the arginine and proline metabolism. L-glutamic-gamma-semialdehyde is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], prolidase deficiency (PD), arginine: glycine amidinotransferase deficiency (AGAT deficiency), and ornithine aminotransferase deficiency (OAT deficiency). Glutamic gamma-semialdehyde is the metabolic precursor for proline biosynthesis. The conversion from L-Glutamate, an ATP- and NADPH-dependent reaction, is catalyzed by the enzyme Delta-1-pyrroline-5-carboxylate synthetase (P5CS) (OMIM 138250). L-Glutamic-gamma-semialdehyde can also be converted to or be formed from the amino acids L-ornithine (EC 2.6.1.13) and L-proline (EC 1.5.99.8 and EC 1.5.1.2). It is also one of the few metabolites that can be a precursor to other metabolites of both the urea cycle and the citric acid cycle (BioCyc).

   

Glycerophosphoinositol

[(2R)-2,3-dihydroxypropoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C9H19O11P (334.0665)


Glycerophosphoinositol (CAS: 16824-65-0), also known as 1-(sn-glycero-3-phospho)-1D-myo-inositol, is produced through deacylation by phospholipase B of the essential phospholipid phosphatidylinositol. Glycerophosphoinositols are ubiquitous phosphoinositide metabolites involved in the control of several cell functions. They exert their actions both intracellularly and by rapidly equilibrating across the plasma membrane. Their transport is mediated by the Glut2 transporter, the human ortholog of GIT1 (PMID: 17141226). Glycerophosphoinositol is a substrate for glycerophosphoinositol inositolphosphodiesterase (EC 3.1.4.43) and is involved in the following reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = glycerol + 1D-myo-inositol 1-phosphate. It is also a substrate for glycerophosphoinositol glycerophosphodiesterase (EC 3.1.4.44) which catalyzes the chemical reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = myo-inositol + sn-glycerol 3-phosphate. Isolated from beef liver. Glycerylphosphoinositol is found in animal foods.

   

5a-androstane

5alpha-androstane

C19H32 (260.2504)


The 5alpha-stereoisomer of androstane.

   

Gentiotriose

6-({[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol

C18H32O16 (504.169)


Manninotriose is found in cocoa and cocoa products. Manninotriose is found free in cocoa beans, hazelnuts and in various plant mannans. Selectively utilised by bifidobacteria in the intestine but hardly utilised by other microorganisms. Increases faecal bifidobacteria and decreases Clostridia.

   

Questiomycin A

2-Acetylamino-(3H)-phenoxazin-3-one

C12H8N2O2 (212.0586)


Questiomycin A, also known as 2-aminophenoxazin-3-one (APO), is found in mushrooms such as Calocybe gambosa (St Georges mushroom). 2-Aminophenoxazin-3-one is a benzoxazinoid metabolite. It was found excreted in the feces of rats that were fed a rye bread-based diet which makes this compound a potential fecal biomarker of whole grain intake (PMID: 23113707).

   

Testolactone

(4aS,4bR,10aR,10bS,12aS)-10a,12a-dimethyl-3,4,4a,5,6,10a,10b,11,12,12a-decahydro-2H-naphtho[2,1-f]chromene-2,8(4bH)-dione

C19H24O3 (300.1725)


Testolactone is only found in individuals that have used or taken this drug. It is an antineoplastic agent that is a derivative of progesterone and used to treat advanced breast cancer. [PubChem]Although the precise mechanism by which testolactone produces its clinical antineoplastic effects has not been established, its principal action is reported to be inhibition of steroid aromatase activity and consequent reduction in estrone synthesis from adrenal androstenedione, the major source of estrogen in postmenopausal women. Based on in vitro studies, the aromatase inhibition may be noncompetitive and irreversible. This phenomenon may account for the persistence of testolactones effect on estrogen synthesis after drug withdrawal. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents

   

Thiamine triphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy({[hydroxy(phosphonooxy)phosphoryl]oxy})phosphoryl]oxy}ethyl)-4-methyl-1,3-thiazol-3-ium

C12H20N4O10P3S+ (505.0113)


Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. [HMDB] Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. D018977 - Micronutrients > D014815 - Vitamins

   

5-Acetamidovalerate

5-acetamidopentanoic acid

C7H13NO3 (159.0895)


5-Acetamidovalerate is involved in the lysine degradation III pathway. It can be generated from the enzymatic reduction of 5-aminopentanoate or enzymatic oxidation of 2-keto-6-acetamidocaproate. Experiment using DL-{4,5-3H}lysine showed 5-acetamidovalerate as the major product. If radiolabeled N6-acetyl-L-lysine was used with added α-ketoglutarate, and pyridoxal phosphate, radiolabeled 2-keto-6-acetamidocaproate was produced. α-Ketoglutarate was preferred over pyruvate, and there was little or no dependence on pyridoxal phosphate. If thiamine pyrophosphate and NAD were added to a similar reaction, virtually all of the label was in 5-acetamidovalerate. If labeled 5-acetamidovalerate was used, labeled 5-aminovalerate (5-aminopentanoate) was identified. In addition, whole cell cultures of R. leguminicola incubated with labeled 5-acetamidovalerate accumulated radiolabeled glutarate. Whole cell cultures incubated with radiolabeled glutarate produced a mixture of tricarboxylic acid cycle acids and other carboxylic acids. 5-Acetamidovalerate is involved in the lysine degradation III pathway. It can be generated from the enzymatic reduction of 5-aminopentanoate or enzymatic oxidation of 2-keto-6-acetamidocaproate.

   

1-Pyrroline-2-carboxylic acid

3,4-dihydro-2H-pyrrol-1-ium-5-carboxylate

C5H7NO2 (113.0477)


1-Pyrroline-2-carboxylic acid is a terminal product of D-proline metabolism. Specifically D-proline is converted to 1-Pyrroline-2-carboxylic acid via D-amino acid oxidase. This spontaneously breaks down to 2-oxo-5-amino-valerate. [HMDB] 1-Pyrroline-2-carboxylic acid is a terminal product of D-proline metabolism. Specifically D-proline is converted to 1-Pyrroline-2-carboxylic acid via D-amino acid oxidase. This spontaneously breaks down to 2-oxo-5-amino-valerate.

   

1-Piperideine-2-carboxylic acid

3,4,5,6-Tetrahydro-2-pyridinecarboxylic acid

C6H9NO2 (127.0633)


1-Piperideine-2-carboxylic acid (P2C), also known as Δ1-pipecolic acid, is classified as a member of the tetrahydropyridines. Tetrahydropyridines are derivatives of pyridine in which two double bonds in the pyridine moiety are reduced by adding four hydrogen atoms. 1-Piperideine-2-carboxylic acid is considered to be slightly soluble (in water) and acidic. 1-Piperideine-2-carboxylic acid is an intermediate of the L-lysine metabolic pathway in the brain; the uptake of P2C into the synaptosome of the cerebral cortex was Na+ and temperature-dependent (PMID: 7654748). delta 1-Piperidine-2-carboxylic acid (P2C), an intermediate of the L-lysine metabolic pathway in the brain; the uptake of P2C into the synaptosome of the cerebral cortex was Na+ and temperature-dependent (PMID 7654748 ) [HMDB]

   

Inositol cyclic phosphate

(3aR,4R,5S,6S,7R,7aS)-2,4,5,6,7-pentahydroxy-hexahydro-2H-1,3,2λ⁵-benzodioxaphosphol-2-one

C6H11O8P (242.0192)


Inositol cyclic phosphate is a substrate for Annexin A3. [HMDB] Inositol cyclic phosphate is a substrate for Annexin A3.

   

Testololactone

10a,12a-Dimethyl-3,4,4a,5,6,9,10,10a,10b,11,12,12a-dodecahydro-2H-naphtho[2,1-f]chromene-2,8(4bh)-dione

C19H26O3 (302.1882)


   

Piperideine

1-Piperideine

C5H9N (83.0735)


   

Azlocillin

(2S,5R,6R)-3,3-Dimethyl-7-oxo-6-{[(2R)-2-{[(2-oxoimidazolidin-1-yl)carbonyl]amino}-2-phenylacetyl]amino}-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C20H23N5O6S (461.1369)


Azlocillin is only found in individuals that have used or taken this drug. It is a semisynthetic ampicillin-derived acylureido penicillin.By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, azlocillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that azlocillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Oxandrolone

(1S,2S,7S,10R,11S,14S,15S)-14-hydroxy-2,14,15-trimethyl-4-oxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-one

C19H30O3 (306.2195)


Oxandrolone is only found in individuals that have used or taken this drug. It is a synthetic hormone with anabolic and androgenic properties. [PubChem]Oxandrolones interact with androgen receptors in target tissues. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Thiamylal

Dihydro-5-(1-methylbutyl)-5-(2-propenyl)-2-thioxo-4,6(1H,5H)-pyrimidinedione

C12H18N2O2S (254.1089)


Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

eremantholide

Eremantholide A

C19H24O6 (348.1573)


   

Salonitenolide

Salonitenolide

C15H20O4 (264.1362)


   

Verrucarin A

Muconomycin A

C27H34O9 (502.2203)


A trichothecene antibiotic which incorporates a triester macrocyclic structure and an exocyclic methylene epoxide group. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000970 - Antineoplastic Agents

   

Nicotyrine

3-(1-Methyl-1H-pyrrol-2-yl)pyridine

C10H10N2 (158.0844)


   

Bikaverin

Bikaverin

C20H14O8 (382.0689)


A organic heterotetracyclic compound that is 10H-benzo[b]xanthene-7,10,12-trione substituted by hydroxy groups at positions 6 and 11, methoxy groups at positions 3 and 8 and a methyl group at position 1.

   

methoxymethane

methoxymethane

C2H6O (46.0419)


   

Bremazocine

Bremazocine

C20H29NO2 (315.2198)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Ethylketocyclazocine

Ethylketocyclazocine

C19H25NO2 (299.1885)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

3-Amino-2,3-dihydrobenzoic acid

5-Amino-1,3-cyclohexadiene-1-carboxylic acid

C7H9NO2 (139.0633)


D004791 - Enzyme Inhibitors

   

Chimyl alcohol

1-O-HEXADECYL-RAC-GLYCEROL

C19H40O3 (316.2977)


   

Metribolone

17-HYDROXY-13,17-DIMETHYL-1,2,6,7,8,13,14,15,16,17-DECAHYDROCYCLOPENTA[A]PHENANTHREN-3-ONE

C19H24O2 (284.1776)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Ethisterone

(1S,2R,10R,11S,14R,15S)-14-ethynyl-14-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C21H28O2 (312.2089)


Ethisterone is a metabolite of danazol. Ethisterone is a progestogen hormone. The first orally active progestin, ethisterone (pregneninolone, 17α-ethynyltestosterone or 19–norandrostane), the 17α-ethynyl analog of testosterone, was synthesized in 1938 by Hans Herloff Inhoffen, Willy Logemann, Walter Hohlweg, and Arthur Serini at Schering AG in Berlin and marketed in Germany in 1939 as Proluton C and by Schering in the U.S. in 1945 as Pranone. Ethisterone was also marketed in the U.S. (Wikipedia) G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DC - Estren derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone ATC code: G03DC04

   

4a-Hydroxytetrahydrobiopterin

(4aS,6R)-2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-4a-hydroxy-4,4a,5,6,7,8-hexahydropteridin-4-one

C9H15N5O4 (257.1124)


Tetrahydrobiopterin (BH4) is essential for catalyzing the conversion of phenylalanine into tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin (CAS: 70110-58-6) intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both be derived from alternate breakdown routes of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin (PMID: 8323303). Tetrahydrobiopterin (BH4) is essential to catalyze the conversion of phenylalanine to tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both derive from alternate routes of breakdown of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin. (PMID 8323303) [HMDB]

   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds which differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine while 2-pyrroline and 3-pyrroline are cyclic amines. Present in clam and squid. Flavouring agent for fish products and other foods. 3,4-Dihydro-2H-pyrrole is found in many foods, some of which are garden onion (variety), breadnut tree seed, chinese bayberry, and kiwi.

   

Myxothiazol

Myxothiazol A

C25H33N3O3S2 (487.1963)


A 2,4-bi-1,3-thiazole substituted at the 4-position with a (1E,3S,4R,5E)-7-amino-3,5-dimethoxy-4-methyl-7-oxohepta-1,5-dien-1-yl] group and at the 2-position with a (2S,3E,5E)-7-methylocta-3,5-dien-2-yl group. It is an inhibitor of coenzyme Q - cytochrome c reductase. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors

   

Pyrrolysine

N~6~-{[(2s,3s)-3-Methyl-3,4-Dihydro-2h-Pyrrol-2-Yl]carbonyl}-L-Lysine

C12H21N3O3 (255.1583)


A N(6)-acyl-L-lysine having a (2R,3R)-3-methyl-3,4-dihydro-2H-pyrrol-2-ylcarboxy group at the N(6)-position.

   
   

Anabaseine

3-(3,4,5,6-tetrahydropyridin-2-yl)pyridine

C10H12N2 (160.1)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Anabaseine is a non-selective nicotinic agonist. Anabaseine stimulates all AChRs, preferentially stimulates skeletal muscle and brain α7 subtypes[1][2]. Anabaseine is also a weak partial agonist at α4β2 nAChRs[3].

   

Deltorphin

Deltorphin A; Dermenkephalin

C44H62N10O10S2 (954.4092)


   

5alpha-Pregnan-20alpha-ol-3-one

(1S,2S,7S,10R,11S,14S,15S)-14-[(1S)-1-hydroxyethyl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-one

C21H34O2 (318.2559)


This compound belongs to the family of Gluco/mineralocorticoids, Progestogins and Derivatives. These are steroids whose structure is based on an hydroxylated prostane moiety.

   

D-Tyrosine

2-amino-3-(4-hydroxyphenyl)propanoic acid

C9H11NO3 (181.0739)


   

1-Pyrroline-5-carboxylic acid

3,4-dihydro-2H-pyrrole-2-carboxylic acid

C5H7NO2 (113.0477)


A 1-pyrrolinecarboxylic acid that is 1-pyrroline in which one of the hydrogens at position 5 is replaced by a carboxy group. The stereoisomer (S)-1-pyrroline-5-carboxylate (also referred to as L-P5C) is an intermediate metabolite in the biosynthesis and degradation of proline and arginine.[4][5][6] In prokaryotic proline biosynthesis, GSA is synthesized from γ-glutamyl phosphate by the enzyme γ-glutamyl phosphate reductase. In most eukaryotes, GSA is synthesised from the amino acid glutamate by the bifunctional enzyme 1-pyrroline-5-carboxylate synthase (P5CS). The human P5CS is encoded by the ALDH18A1 gene.[7][8] The enzyme pyrroline-5-carboxylate reductase converts P5C into proline. In proline degradation, the enzyme proline dehydrogenase produces P5C from proline, and the enzyme 1-pyrroline-5-carboxylate dehydrogenase converts GSA to glutamate. In many prokaryotes, proline dehydrogenase and P5C dehydrogenase form a bifunctional enzyme that prevents the release of P5C during proline degradation. 1-Pyrroline-5-carboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2906-39-0 (retrieved 2024-07-09) (CAS RN: 2906-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

UDP-D-Xylose

[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy})phosphinic acid

C14H22N2O16P2 (536.0445)


Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG); The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis.; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Udp-xylose is found in soy bean. Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG). The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


L-pipecolic acid is a normal human metabolite present in human blood, where is present as the primary enantiomer of pipecolic acid. L-pipecolic acid is a cyclic imino acid (contains both imino (>C=NH) and carboxyl (-C(=O)-OH) functional groups) produced during the degradation of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, including Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), and infantile Refsum disease (OMIM 266510). L-pipecolic acid levels are also elevated in patients with chronic liver diseases. L-pipecolic acid is the substrate of delta1-piperideine-2-carboxylate reductase (EC 1.5.1.21) in the pathway of lysine degradation (PMID: 2717271, 8305590, 1050990). Present in beans and other legumes, and in lesser quantities in other plants including barley, hops, malt and mushrooms. L-Pipecolic acid is found in many foods, some of which are macadamia nut (m. tetraphylla), linden, tinda, and cumin. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

DL-Adrenaline

4-[1-hydroxy-2-(methylamino)ethyl]benzene-1,2-diol

C9H13NO3 (183.0895)


Oxidized-adrenal-ferredoxin, also known as Epinephrine racemic or Racepinefrine, is classified as a member of the Catechols. Catechols are compounds containing a 1,2-benzenediol moiety. Oxidized-adrenal-ferredoxin is considered to be soluble (in water) and acidic D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Acetamiprid

(1E)-N-((6-Chloro-3-pyridinyl)methyl)-n-cyano-N-methylethanimidamide

C10H11ClN4 (222.0672)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].

   

ARGININOSUCCINATE

2-[N-(4-amino-4-carboxybutyl)carbamimidamido]butanedioic acid

C10H18N4O6 (290.1226)


   

3-Hydroxy-alpha-methyl-DL-tyrosine

2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid

C10H13NO4 (211.0845)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

LUTEOSKYRIN

5,8,10,14,20,23,25,28-octahydroxy-6,21-dimethyloctacyclo[14.11.1.0²,¹¹.0²,¹⁵.0⁴,⁹.0¹³,¹⁷.0¹⁷,²⁶.0¹⁹,²⁴]octacosa-4,6,8,10,19,21,23,25-octaene-3,12,18,27-tetrone

C30H22O12 (574.1111)


   

Thiacloprid

({3-[(6-chloropyridin-3-yl)methyl]-1,3-thiazolidin-2-ylidene}amino)formonitrile

C10H9ClN4S (252.0236)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals

   

2-Aminoadipic acid

DL-2-Aminohexanedioic acid

C6H11NO4 (161.0688)


Aminoadipic acid, also known as a-aminoadipate or Aad, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Aminoadipic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Aminoadipic acid exists in all eukaryotes, ranging from yeast to humans. Within humans, aminoadipic acid participates in a number of enzymatic reactions. In particular, aminoadipic acid can be biosynthesized from allysine; which is mediated by the enzyme Alpha-aminoadipic semialdehyde dehydrogenase. In addition, aminoadipic acid and oxoglutaric acid can be converted into oxoadipic acid and L-glutamic acid; which is catalyzed by the enzyme kynurenine/alpha-aminoadipate aminotransferase, mitochondrial. In humans, aminoadipic acid is involved in the metabolic disorder called 2-aminoadipic 2-oxoadipic aciduria. Outside of the human body, Aminoadipic acid is found, on average, in the highest concentration within a few different foods, such as wheats, milk (cow), and ryes and in a lower concentration in dills, garden onions, and white cabbages. Aminoadipic acid has also been detected, but not quantified in, several different foods, such as barley, cow milks, cow milks, cow milks, and cow milks. This could make aminoadipic acid a potential biomarker for the consumption of these foods. Aminoadipic acid is a potentially toxic compound. Aminoadipic acid, with regard to humans, has been found to be associated with several diseases such as alpha-aminoadipic and alpha-ketoadipic aciduria, colorectal cancer, metastatic melanoma, and eosinophilic esophagitis; aminoadipic acid has also been linked to the inborn metabolic disorder 2-ketoadipic acidemia. A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.

   

Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

Cannabigerolic acid

Cannabigerolic acid

C22H32O4 (360.23)


A dihydroxybenzoic acid that is olivetolic acid in which the hydrogen at position 3 is substituted by a geranyl group. A biosynthetic precursor to Delta(9)-tetrahydrocannabinol, the principal psychoactive constituent of the cannabis plant.

   

Sulfurous acid

Sulfurous acid

H2O3S (81.9725)


   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Pyrrole 2-carboxylate

Pyrrole-3-carboxylic acid

C5H5NO2 (111.032)


A pyrrolecarboxylic acid that is 1H-pyrrole substituted by a carboxy group at position 3. It has been isolated from Penicillium chrysogenum. A pyrrolecarboxylic acid that is 1H-pyrrole carrying a carboxy substituent at position 2. Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov. Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov.

   

Sterigmatocystin

Sterigmatocystine

C18H12O6 (324.0634)


An organic heteropentacyclic compound whose skeleton comprises a xanthene ring system ortho-fused to a dihydrofuranofuran moiety. The parent of the class of sterigmatocystins. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)

   

1ST40320

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-(hydroxymethyl)-5-methyl-, (3Z,5R,6S,14aR,14bR)-

C18H25NO6 (351.1682)


Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

6-acetylmorphine

6-O-Monoacetylmorphine

C19H21NO4 (327.1471)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids CONFIDENCE standard compound; INTERNAL_ID 1574

   

Clothianidin

Pesticide5_Clothianidin_C6H8ClN5O2S_[C(E)]-N-[(2-Chloro-5-thiazolyl)methyl]-N?-methyl-N?-nitroguanidine

C6H8ClN5O2S (249.0087)


An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3. D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933

   

fludrocortisone

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-en-3,20-dione 21-acetate

C23H31O6F (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3240 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

α-Aminoadipic acid

DL-α-Aminoadipic acid

C6H11NO4 (161.0688)


An optically active form of 2-aminoadipic acid having D-configuration. The L-enantiomer of 2-aminoadipic acid. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 9 Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.

   

trans-Zeatin

trans-Zeatin

C10H13N5O (219.112)


The trans-isomer of zeatin. (e)-zeatin, also known as (E)-2-methyl-4-(1h-purin-6-ylamino)-2-buten-1-ol or n6-(4-hydroxyisopentenyl)adenine, is a member of the class of compounds known as 6-alkylaminopurines. 6-alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring (e)-zeatin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (e)-zeatin can be found in a number of food items such as chia, cornmint, java plum, and small-leaf linden, which makes (e)-zeatin a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.451 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.449 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.442 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.444 Acquisition and generation of the data is financially supported by the Max-Planck-Society CONFIDENCE standard compound; ML_ID 56 trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.

   

Tyrosine

L-(-)-Tyrosine

C9H11NO3 (181.0739)


An alpha-amino acid that is phenylalanine bearing a hydroxy substituent at position 4 on the phenyl ring. Annotation level-2 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 56 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

naltrexone

naltrexone

C20H23NO4 (341.1627)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Ethisterone

17alpha-Ethynyl-17beta-hydroxyandrost-4-en-3-one

C21H28O2 (312.2089)


A 17beta-hydroxy steroid that is testosterone in which the 17beta hydrogen is replaced by an ethynyl group. Ethisterone was the first orally active progestin and is a metabolite of danazol. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DC - Estren derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone ATC code: G03DC04

   

L-Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


The L-enantiomer of pipecolic acid. It is a metabolite of lysine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HXEACLLIILLPRG-YFKPBYRVSA-N_STSL_0204_L-pipecolic Acid_0500fmol_180831_S2_L02M02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

Saccharopine

L-Saccharopine

C11H20N2O6 (276.1321)


The N(6)-(1,3-dicarboxypropan-1-yl) derivative of L-lysine.

   

5-Aminovaleric acid

5-Aminopentanoic acid

C5H11NO2 (117.079)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JJMDCOVWQOJGCB-UHFFFAOYSA-N_STSL_0196_5-Aminovaleric acid_0500fmol_180831_S2_L02M02_26; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

GLUTARIC ACID

GLUTARIC ACID

C5H8O4 (132.0423)


An alpha,omega-dicarboxylic acid that is a linear five-carbon dicarboxylic acid. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3]. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3].

   

2-Oxobutyric acid

Sodium 2-Oxobutyrate

C4H6O3 (102.0317)


A 2-oxo monocarboxylic acid that is the 2-oxo derivative of butanoic acid. 2-Oxobutanoic acid is a product in the enzymatic cleavage of cystathionine.

   

Norepinephrine

4-(2-Amino-1-hydroxyethyl)benzene-1,2-diol

C8H11NO3 (169.0739)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78274 - Agent Affecting Cardiovascular System > C126567 - Vasopressor C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

L-Argininosuccinic acid

L-Argininosuccinic acid

C10H18N4O6 (290.1226)


   

Pipecolic acid

2-Pyrrolidineacetic acid

C6H11NO2 (129.079)


A piperidinemonocarboxylic acid in which the carboxy group is located at position C-2. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

Sphinganine

D-erythro-2-Amino-1,3-octadecanediol

C18H39NO2 (301.2981)


A 2-aminooctadecane-1,3-diol having (2S,3R)-configuration. D004791 - Enzyme Inhibitors D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. DL-erythro-Dihydrosphingosine is a potent inhibitor of PKC and phospholipase A2 (PLA2)[1][2].

   

Cholestenone

Cholestenone (delta 4)

C27H44O (384.3392)


Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

imidazole

imidazole

C3H4N2 (68.0374)


D004791 - Enzyme Inhibitors

   

2-PHENYLACETAMIDE

2-PHENYLACETAMIDE

C8H9NO (135.0684)


A monocarboxylic acid amide that is acetamide substituted by a phenyl group at position 2. 2-Phenylacetamide is an endogenous metabolite.

   

Naltrindole

Naltrindole

C26H26N2O3 (414.1943)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

Zaleplon

Zaleplon

C17H15N5O (305.1277)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Zeatin

InChI=1\C10H13N5O\c1-7(4-16)2-3-11-9-8-10(13-5-12-8)15-6-14-9\h2,5-6,16H,3-4H2,1H3,(H2,11,12,13,14,15)\b7-2

C10H13N5O (219.112)


D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.

   

cannabinol

6H-Dibenzo[b,d]pyran-1-ol, 6,6,9-trimethyl-3-pentyl- (7CI,8CI,9CI)

C21H26O2 (310.1933)


C308 - Immunotherapeutic Agent > C574 - Immunosuppressant

   

Testolactone

Testolactone

C19H24O3 (300.1725)


C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents SubCategory_DNP: : The sterols, Androstanes

   

Naloxone

Naloxone

C19H21NO4 (327.1471)


A synthetic morphinane alkaloid that is morphinone in which the enone double bond has been reduced to a single bond, the hydrogen at position 14 has been replaced by a hydroxy group, and the methyl group attached to the nitrogen has been replaced by an allyl group. A specific opioid antagonist, it is used (commonly as its hydrochloride salt) to reverse the effects of opioids, both following their use of opioids during surgery and in cases of known or suspected opioid overdose. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AH - Peripheral opioid receptor antagonists V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

Macrofusine

fumonisin b1

C34H59NO15 (721.3885)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 5968

   

polyornithine

polyornithine

C5H12N2O2 (132.0899)


An optically active form of ornithine having L-configuration. L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2]. L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2].

   

Steviol

(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O3 (318.2195)


Steviol is an ent-kaurane diterpenoid that is 5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid in which the hydrogen at position 13 has been replaced by a hydroxy group. It has a role as an antineoplastic agent. It is a tetracyclic diterpenoid, a tertiary allylic alcohol, a monocarboxylic acid, a bridged compound and an ent-kaurane diterpenoid. It is a conjugate acid of a steviol(1-). Steviol is a natural product found in Ceriops decandra, Cucurbita, and other organisms with data available. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1]. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].

   

Eremantholide A

Eremantholide A

C19H24O6 (348.1573)


   

Levorphanol

17-Methylmorphinan-3-ol

C17H23NO (257.178)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Racepinephrine

Alipogene tiparvovec

C9H13NO3 (183.0895)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

allysine

allysine

C6H11NO3 (145.0739)


An alpha-amino acid consisting of lysine having an oxo group in place of the side-chain amino group.

   

5-Acetamidovalerate

5-acetamidopentanoic acid

C7H13NO3 (159.0895)


   

ST 19:0

5alpha-androstane

C19H32 (260.2504)


   

Teslac

(4aS,4bR,10aR,10bS,12aS)-10a,12a-dimethyl-3,4,4a,5,6,10a,10b,11,12,12a-decahydro-2H-naphtho[2,1-f]chromene-2,8(4bH)-dione

C19H24O3 (300.1725)


C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents

   

fludrocortisone

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-ene-3,20-dione

C21H29FO5 (380.1999)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

ST 21:2;O2

Pregn-4-en-3-one,20-hydroxy-, (20S)-

C21H32O2 (316.2402)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins 5a-Pregnane-3,20-dione is the endogenous progesterone metabolite.

   

DL-Lysine

Lysine, DL-

C6H14N2O2 (146.1055)


DL-Lysine is a racemic mixture of the D-Lysine and L-Lysine. Lysine is an α-amino acid that is used in the biosynthesis of proteins[1].

   

2-amino-6-oxohexanoic acid

L-2-Amino-6-oxohexanoic acid

C6H11NO3 (145.0739)


Found in collagen, elastin and heart muscle

   

6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol

6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol

C21H30O2 (314.2246)


   

Methyltrienolone

Methyltrienolone

C19H24O2 (284.1776)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Tridekan

InChI=1\C13H28\c1-3-5-7-9-11-13-12-10-8-6-4-2\h3-13H2,1-2H

C13H28 (184.2191)


Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

Androstane

(5R,8S,9S,10S,13S,14S)-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene

C19H32 (260.2504)


   

Marinol

InChI=1\C21H30O2\c1-5-6-7-8-15-12-18(22)20-16-11-14(2)9-10-17(16)21(3,4)23-19(20)13-15\h11-13,16-17,22H,5-10H2,1-4H

C21H30O2 (314.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Minalin

1H-Pyrrole-2-carboxylic acid (9ci)

C5H5NO2 (111.032)


Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov. Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov.

   

Dymel A

Dimethyl ether [UN1033] [Flammable gas]

C2H6O (46.0419)


   

Jujuboside

alpha-L-Arabinopyranoside, (3beta,16beta,23R)-16,23:16,30-diepoxy-20-hydroxydammar-24-en-3-yl O-6-deoxy-alpha-L-mannopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->6)-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-glucopyranosyl-(1-->3)]-

C58H94O26 (1206.6033)


Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.

   

Dronabinol

(-)-δ9-trans-Tetrahydrocannabinol

C21H30O2 (314.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Oxandrolone

Oxandrolone

C19H30O3 (306.2195)


A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

2-Acetamidofluorene

2-Acetylaminofluorene

C15H13NO (223.0997)


D009676 - Noxae > D002273 - Carcinogens

   

5α-Dihydroprogesterone

5alpha-pregnane-3,20-dione

C21H32O2 (316.2402)


A C21-steroid hormone that is 5alpha-pregnane substituted by oxo groups at positions 3 and 20. It is a metabolite of progestrone. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 5a-Pregnane-3,20-dione is the endogenous progesterone metabolite.

   

Azlocillin

Azlocillin

C20H23N5O6S (461.1369)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum A semisynthetic penicillin antibiotic used in treating infections caused by Pseudomonas aeruginosa, Escherichia coli, and Haemophilus influenzae. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

DIBUTYL SUCCINATE

DIBUTYL SUCCINATE

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

thiamylal

thiamylal

C12H18N2O2S (254.1089)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Fludrocortisone acetate

Fludrocortisone acetate

C23H31FO6 (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cholest-4-en-3-one

Cholest-4-en-3-one

C27H44O (384.3392)


A cholestanoid that is cholest-4-ene substituted by an oxo group at position 3. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

Androsta-1,4-diene-3,17-dione

Androsta-1,4-diene-3,17-dione

C19H24O2 (284.1776)


   

DL-Tyrosine

L-(-)-Tyrosine

C9H11NO3 (181.0739)


   

2-Amino-3H-phenoxazin-3-one

2-Amino-3H-phenoxazin-3-one

C12H8N2O2 (212.0586)


   

CANNABICHROMENE

CANNABICHROMENE

C21H30O2 (314.2246)


   

Anabaseine

Anabaseine

C10H12N2 (160.1)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Anabaseine is a non-selective nicotinic agonist. Anabaseine stimulates all AChRs, preferentially stimulates skeletal muscle and brain α7 subtypes[1][2]. Anabaseine is also a weak partial agonist at α4β2 nAChRs[3].

   

3,4-dihydro-2H-pyrrole-2-carboxylic acid

3,4-dihydro-2H-pyrrole-2-carboxylic acid

C5H7NO2 (113.0477)


   

1-Pyrroline-2-carboxylic acid

3,4-Dihydro-2H-pyrrole-5-carboxylic acid

C5H7NO2 (113.0477)


The product resulting from formal oxidation of DL-proline by loss of hydrogen from the nitrogen and from the carbon alpha to the carboxylic acid, with the formation of a C=N bond.

   

1-Piperideine

1-Piperideine

C5H9N (83.0735)


   

3-Dehydroquinic acid

3-Dehydroquinic acid

C7H10O6 (190.0477)


A 4-oxo monocarboxylic acid derived from quinic acid by oxidation of the hydroxy group at position 3 to the corresponding keto group.

   

3,4,5,6-tetrahydropyridine-2-carboxylic acid

3,4,5,6-tetrahydropyridine-2-carboxylic acid

C6H9NO2 (127.0633)


   

(S)-1-piperideine-6-carboxylic acid

(S)-2,3,4,5-Tetrahydropyridine-2-carboxylic acid

C6H9NO2 (127.0633)


The (S)-enantiomer of 1-piperideine-6-carboxylic acid.

   

5-acetamidopentanoic acid

5-acetamidopentanoic acid

C7H13NO3 (159.0895)


A member of the class of acetamides that is the acetyl derivative of 5-aminopentanoic acid.

   

Thiamine triphosphate

Thiamine triphosphate

C12H20N4O10P3S+ (505.0113)


D018977 - Micronutrients > D014815 - Vitamins

   

(S)-1-Pyrroline-5-carboxylate

(S)-1-Pyrroline-5-carboxylate

C5H7NO2 (113.0477)


   

(2S)-2-amino-5-oxopentanoic acid

(2S)-2-amino-5-oxopentanoic acid

C5H9NO3 (131.0582)


   

1D-Myo-inositol 1,2-cyclic phosphate

1D-Myo-inositol 1,2-cyclic phosphate

C6H11O8P (242.0192)


   

Monodehydroascorbate radical

Monodehydroascorbate radical

C6H7O6 (175.0243)


   

Cifostodine

2,3-cyclic CMP

C9H12N3O7P (305.0413)


   

Allopregnan-20alpha-ol-3-one

Allopregnan-20alpha-ol-3-one

C21H34O2 (318.2559)


   

1-(sn-Glycero-3-phospho)-1D-myo-inositol

1-(sn-Glycero-3-phospho)-1D-myo-inositol

C9H19O11P (334.0665)


A myo-inositol monophosphate derivative that is 1D-myo-inositol substituted at position 1 by an sn-glycero-3-phospho group.

   

CID 443409

CID 443409

C19H25NO2 (299.1885)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

METHYL BETA-D-GLUCOPYRANOSIDE

METHYL β-D-GLUCOPYRANOSIDE HEMIHYDRATE

C7H14O6 (194.079)


   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


   

Anatabine

(-)-Anatabine

C10H12N2 (160.1)


   

gabaculine

3-Amino-2,3-dihydrobenzoic acid

C7H9NO2 (139.0633)


D004791 - Enzyme Inhibitors

   

(N(omega)-L-arginino)succinic acid

(N(omega)-L-arginino)succinic acid

C10H18N4O6 (290.1226)


   

L-Methyldopa

3-Hydroxy-alpha-methyl-DL-tyrosine

C10H13NO4 (211.0845)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Nicotyrine

3-(1-Methyl-1H-pyrrol-2-yl)pyridine

C10H10N2 (158.0844)


   

2-Amino-6-(1,2-dihydroxypropyl)-4a-hydroxy-1,5,6,7-tetrahydropteridin-4-one

2-Amino-6-(1,2-dihydroxypropyl)-4a-hydroxy-1,5,6,7-tetrahydropteridin-4-one

C9H15N5O4 (257.1124)