Gene Association: CPA1
UniProt Search:
CPA1 (PROTEIN_CODING)
Function Description: carboxypeptidase A1
found 18 associated metabolites with current gene based on the text mining result from the pubmed database.
Glycylleucine
Glycylleucine is a dipeptide composed of glycine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. It appears to be a common substrate for glycyl-leucine dipeptidase. A dipeptide that appears to be a common substrate for glycyl-leucine dipeptidase. [HMDB] KEIO_ID G071 Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.
Hydrocinnamic acid
Hydrocinnamic acid, also known as 3-phenylpropanoic acid or dihydrocinnamic acid, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (C6-C3). Phenylpropanoic acid can be prepared from cinnamic acid by hydrogenation. Hydrocinnamic acid is a sweet, balsamic, and cinnamon tasting compound. This compound is used frequently in cosmetic products such as perfumes, bath gels, detergent powders, liquid detergents, fabric softeners, and soaps as it gives off a floral scent. A characteristic reaction of phenylpropanoic acid is its cyclization to indanones. Phenylpropanoic acid is used in the food industry to preserve and maintain the original aroma quality of frozen foods. Phenylpropanoic acid is also added to food for technological purposes in a wide variety including manufacturing, processing, preparation, treatment, packaging, transportation or storage, and food additives. This compound is used as a sweetener as well to sweeten food and can be found in tabletop sweeteners. Hydrocinnamic acid is an analogue of phenylalanine. It is a substrate of the enzyme oxidoreductases [EC 1.14.12.-] in the pathway phenylalanine metabolism (KEGG). 3-Phenylpropanoic acid is found in many foods, some of which are purple laver, quinoa, custard apple, and conch. KEIO_ID P109 Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
penicillic acid
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE isolated standard
(R)-2-Benzylsuccinate
(R)-2-Benzylsuccinate is an aromatic compounds that is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. (R)-2-Benzylsuccinate can be generated from toluene via the enzyme benzylsuccinate synthase (EC 4.1.99.11). It is then converted to Benzylsuccinyl-CoA via the enzyme benzylsuccinate CoA-transferase BbsE subunit (EC 2.8.3.15). [HMDB] (R)-2-Benzylsuccinate is an aromatic compounds that is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. (R)-2-Benzylsuccinate can be generated from toluene via the enzyme benzylsuccinate synthase (EC 4.1.99.11). It is then converted to Benzylsuccinyl-CoA via the enzyme benzylsuccinate CoA-transferase BbsE subunit (EC 2.8.3.15). KEIO_ID B005
Carbamoyl phosphate
Carbamoyl phosphate is a precursor of both arginine and pyrimidine biosynthesis. It is a labile and potentially toxic intermediate. Carbamoyl phosphate is a molecule that is involved in ridding the body of excess nitrogen in the urea cycle, and also in the synthesis of pyrimidines. It is produced from carbon dioxide, ammonia, and phosphate (from ATP) by the enzyme carbamoyl phosphate synthase. -- Wikipedia. Carbamoyl phosphate is a molecule that is involved in ridding the body of excess nitrogen in the urea cycle, and also in the synthesis of pyrimidines. It is produced from carbon dioxide, ammonia, and phosphate (from ATP) by the enzyme carbamoyl phosphate synthase. -- Wikipedia [HMDB]. Carbamoylphosphate is found in many foods, some of which are pepper (spice), rapini, endive, and rye.
Leukotriene F4
Leukotriene F4 is an intermediate in Arachidonic acid metabolism. Leukotriene F4 is converted from Leukotriene E4 via the enzyme Transferases (EC 2.3.2.-).Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene F4 is an intermediate in Arachidonic acid metabolism. Leukotriene F4 is converted from Leukotriene E4 via the enzyme Transferases (EC 2.3.2.-).
CHAPS
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents
Cyclopropanamine
A primary aliphatic amine that consists of cyclopropane bearing a single amino substituent.
Angiotensin (1-9)
A nine amino acid peptide which is formed when angiotensin converting enzyme 2 (ACE2) hydrolyzes the carboxy terminal leucine from angiotensin I. It is a anti-cardiac hypertrophy agent. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
3-phenylpropanoic acid
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Leukotriene F4
A leukotriene composed of (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid having (5S)-hydroxy and (6R)-(L-gamma-glutamyl-L-cystein-S-yl) substituents.
3-phenylpropanoic acid
A monocarboxylic acid that is propionic acid substituted at position 3 by a phenyl group. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
H-Gly-Leu-OH
Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.