Gene Association: ACAN
UniProt Search:
ACAN (PROTEIN_CODING)
Function Description: aggrecan
found 168 associated metabolites with current gene based on the text mining result from the pubmed database.
Carnosol
Carnosol is a naturally occurring phenolic diterpene found in rosemary (Rosemarinus officinalis, Labiatae). It has been known that an extract of rosemary leaves contains high antioxidative activity. Ninety percent of this antioxidative activity can be attributed to carnosol and carnosic acid. Carnosic acid is easily converted to carnosol by oxidation. Carnosol has multiple beneficial medicinal effects including anti-inflammatory, anti-microbial and anti-cancer activities in various disease models. Carnosol may possess important neuroprotective effects against rotenone-induced DA neuronal damage. Naturally occurring antioxidants reduce the risk of neurodegenerative diseases. In addition, carnosol and carnosic acid promoted the synthesis of nerve growth factor in glial cells. Carnosol-mediated neuroprotection in DA neurons is involved in the attenuation of caspase-3 activity, which was induced by rotenone. Furthermore, carnosol-mediated tyrosine hydroxylase (TH) increase, which is dependent on the Raf-mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK)1/2 signaling pathway, is responsible for the neuroprotection in SN4741 DA cells. (PMID: 17047462). Carnosol, a phenolic diterpene compound of the labiate herbs rosemary and sage, is an activator of the human peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand activated transcription factor, belonging to the metazoan family of nuclear hormone receptors. Activation of PPARgamma increases the transcription of enzymes involved in primary metabolism, leading to lower blood levels of fatty acids and glucose. Hence, PPARgamma represents the major target for the glitazone type of drugs currently being used clinically for the treatment of type 2 diabetes. (PMID: 16858665). Bitter principle in Salvia carnosa, Salvia officinalis (sage), Salvia triloba (Greek sage) and Rosmarinus officinalis (rosemary). Nutriceutical with anticancer props. Carnosol is a diterpenoid. Carnosol is a natural product found in Podocarpus rumphii, Lepechinia salviae, and other organisms with data available.
Cynaropicrin
Constituent of Cynara scolymus (artichoke). Cynaropicrin is found in cardoon, globe artichoke, and root vegetables. Cynaropicrin is found in cardoon. Cynaropicrin is a constituent of Cynara scolymus (artichoke). Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.
Protopine
Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].
Mesaconitine
Mesaconitine is a diterpenoid. Mesaconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3]. Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3].
Icariin
Icariin is a member of the class of flavonols that is kaempferol which is substituted at position 8 by a 3-methylbut-2-en-1-yl group and in which the hydroxy groups at positions 3, 4, and 7 have been converted to the corresponding 6-deoxy-alpha-L-mannopyranoside, methyl ether, and beta-D-glucopyranoside, respectively. A phoshphodiesterase-5 inhibitor, it is obtained from several species of plants in the genus Epimedium and is thought to be the main active ingredient of the Chinese herbal medicine Herba Epimedii (yinyanghuo). It has a role as a bone density conservation agent, a phytoestrogen, an EC 3.1.4.35 (3,5-cyclic-GMP phosphodiesterase) inhibitor and an antioxidant. It is a glycosyloxyflavone and a member of flavonols. Icariin has been investigated for the basic science of the Pharmacokinetic Profile of Icariin in Humans. Icariin is a natural product found in Epimedium pubescens, Epimedium grandiflorum, and other organisms with data available. Origin: Plant, Pyrans Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.077 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.073 Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator.
Isofraxidin
Isofraxidin, also known as 6,8-dimethoxy-7-hydroxycoumarin or 7-hydroxy-6,8-dimethoxy-2h-1-benzopyran-2-one, is a member of the class of compounds known as 7-hydroxycoumarins. 7-hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the C7 position the coumarin skeleton. Isofraxidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isofraxidin can be found in muskmelon, tarragon, and watermelon, which makes isofraxidin a potential biomarker for the consumption of these food products. Isofraxidin is a chemical compound found in a variety of plants including Eleutherococcus senticosus . Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].
Irigenin
Irigenin, also known as 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone, is a member of the class of compounds known as 3-hydroxy,4-methoxyisoflavonoids. 3-hydroxy,4-methoxyisoflavonoids are isoflavonoids carrying a methoxy group attached to the C4 atom, as well as a hydroxyl group at the C3-position of the isoflavonoid backbone. Thus, irigenin is considered to be a flavonoid lipid molecule. Irigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Irigenin can be synthesized from isoflavone. Irigenin can also be synthesized into iridin. Irigenin can be found in lima bean, which makes irigenin a potential biomarker for the consumption of this food product. Irigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from the rhizomes of the leopard lily (Belamcanda chinensis), and Iris kemaonensis . Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].
Aconitine
D049990 - Membrane Transport Modulators > D062687 - Sodium Channel Agonists > D061585 - Voltage-Gated Sodium Channel Agonists D007155 - Immunologic Factors Aconitine is a diterpenoid that is 20-ethyl-3alpha,13,15alpha-trihydroxy-1alpha,6alpha,16beta-trimethoxy-4-(methoxymethyl)aconitane-8,14alpha-diol having acetate and benzoate groups at the 8- and 14-positions respectively. It is functionally related to an aconitane. Aconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Aconitine is a plant toxin found in species of wolfsbane (Aconitum genus). It is a neurotoxin previously used as an antipyretic and analgesic, and still has some limited application in herbal medicine. (L1235). The toxic effects of Aconitine have been tested in a variety of different test animals, including mammals (dog, cat, guinea pig, mouse, rat and rabbit), frogs and pigeons. Depending on the route of exposure, the observed toxic effects were: local anesthetic effect, diarrhea, convulsions, arrhythmias or death. According to a review of different reports of aconite poisoning in humans the following clinical features were observed: Neurological, Cardiovascular, Ventricular arrhythmias, Gastrointestinal. A C19 norditerpenoid alkaloid (DITERPENES) from the root of ACONITUM; DELPHINIUM and larkspurs. It activates VOLTAGE-GATED SODIUM CHANNELS. It has been used to induce ARRHYTHMIAS in experimental animals and it has anti-inflammatory and anti-neuralgic properties. See also: Aconitum coreanum root (part of). Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2309
Alizarina
Alizarin is a dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2. It has a role as a chromophore, a dye and a plant metabolite. Alizarin has been reported in Rubia lanceolata, Rubia argyi COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8028 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Alizarin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-48-0 (retrieved 2024-12-18) (CAS RN: 72-48-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Aucubin
Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].
Zongorine
Songorine is a kaurane diterpenoid. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].
dehydrocorydalin
Dehydrocorydaline is an alkaloid. Dehydrocorydaline is a natural product found in Corydalis turtschaninovii, Corydalis nobilis, and other organisms with data available. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Haematoxylin
An organic heterotetracyclic compound 7,11b-dihydroindeno[2,1-c]chromene carrying five hydroxy substituents at positions 3, 4, 6a, 9 and 10. The most important and most used dye in histology, histochemistry, histopathology and in cytology. Hematoxylin appears as white to yellowish crystals that redden on exposure to light. (NTP, 1992) (+)-haematoxylin is a haematoxylin. It is an enantiomer of a (-)-haematoxylin. Hematoxylin is a natural product found in Haematoxylum brasiletto and Haematoxylum campechianum with data available. A dye obtained from the heartwood of logwood (Haematoxylon campechianum Linn., Leguminosae) used as a stain in microscopy and in the manufacture of ink. D004396 - Coloring Agents
Senkyunolide
Senkyunolide is a member of 2-benzofurans. Senkyunolide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery (part of); Scutellaria baicalensis Root (part of); Angelica acutiloba Root (part of) ... View More ... Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].
4-Methylumbelliferone
Beta-methylumbelliferone appears as colorless crystals. Insoluble in water. (NTP, 1992) 4-methylumbelliferone is a hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. It has a role as an antineoplastic agent and a hyaluronic acid synthesis inhibitor. It is functionally related to an umbelliferone. Hymecromone is a natural product found in Ferula fukanensis, Dalbergia volubilis, and other organisms with data available. 4-methylumbelliferone is a metabolite found in or produced by Saccharomyces cerevisiae. A coumarin derivative possessing properties as a spasmolytic, choleretic and light-protective agent. It is also used in ANALYTICAL CHEMISTRY TECHNIQUES for the determination of NITRIC ACID. 4-methylumbelliferone is a substrate for: Liver carboxylesterase 1, Cocaine esterase, and S-formylglutathione hydrolase. A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy A hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
Trans-4-hydroxyproline
Trans-4-hydroxy-L-proline is an optically active form of 4-hydroxyproline having L-trans-configuration. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is a tautomer of a trans-4-hydroxy-L-proline zwitterion. Hydroxyproline is a neutral heterocyclic protein amino acid. It is found in collagen and as such it is common in many gelatin products. Hydroxyproline is mostly used as a diagnostic marker of bone turnover and liver fibrosis. Therapeutically, hydroxyproline is being studied as an an experimental medicine but is approved in France as a combination topical gel product called Cicactive for small, superficial wounds. Hydroxyproline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Hydroxyproline is a nonessential amino acid derivative formed during post-translational protein modification through hydroxylation of the amino acid proline by the enzyme prolyl hydroxylase which requires vitamin C as a co-factor. Hydroxyproline is a major component of the protein collagen and plays a key role in the stability of the collagen triple helix. It can be used as an indicator to determine the amount of collagen. Increased hydroxyproline levels in the urine and/or serum are normally associated with degradation of connective tissue. Vitamin C deficiency decreases the conversion of proline to hydroxyproline, which leads to reduced collagen stability. 4-Hydroxyproline (or hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified amino acid. Hydroxyproline and proline play key roles for collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals Elevated levels of urinary hydroxyproline are also indicative of muscle damage Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (A3486, A3487, A3488, A3489). See also: Hydroxyproline; niacinamide (component of); Hydroxyproline; octinoxate (component of) ... View More ... 4-Hydroxyproline (hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified, non-essential amino acid. Hydroxyproline and proline play key roles in collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease (PMID: 436278). Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals (PMID: 10706420). Elevated levels of urinary hydroxyproline are also indicative of muscle damage (PMID: 21988268). Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (PMID: 21483218). 4-Hydroxyproline is found to be associated with Alzheimers disease, and also hydroxyprolinemia and iminoglycinuria which are both inborn errors of metabolism. 4-Hydroxyproline is also involved in metabolic disorders such as hyperprolinemia type I, hyperornithinemia with gyrate atrophy (HOGA), L-arginine:glycine amidinotransferase deficiency, creatine deficiency, and guanidinoacetate methyltransferase deficiency. A deficiency in ascorbic acid can result in impaired hydroxyproline formation (PubChem). trans-4-Hydroxy-L-proline is a biomarker for the consumption of processed meat. Constituent of proteins [DFC]. 4-hydroxyproline is a biomarker for the consumption of processed meat An optically active form of 4-hydroxyproline having L-trans-configuration. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.
Luteolin 7-glucoside
Luteolin 7-O-beta-D-glucoside is a glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and a plant metabolite. It is a beta-D-glucoside, a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a luteolin. It is a conjugate acid of a luteolin 7-O-beta-D-glucoside(1-). Cynaroside is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. See also: Cynara scolymus leaf (part of); Lonicera japonica flower (part of); Chamaemelum nobile flower (part of). Luteolin 7-glucoside is found in anise. Luteolin 7-glucoside is a constituent of the leaves of Capsicum annuum (red pepper).Cynaroside is a flavone, a flavonoid-like chemical compound. It is a 7-O-glucoside of luteolin and can be found in dandelion coffee, in Ferula varia and F. foetida in Campanula persicifolia and C. rotundifolia and in Cynara scolymus (artichoke) A glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Constituent of the leaves of Capsicum annuum (red pepper) Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].
Mukurozidiol
Constituent of Japanese drug byakusi obtained from Angelica subspecies Also from lemon oil and other Citrus subspecies [DFC]. (R)-Byakangelicin is found in lemon, citrus, and herbs and spices. Byakangelicin is a member of psoralens. Byakangelicin is a natural product found in Murraya koenigii, Triphasia trifolia, and other organisms with data available. (S)-Byakangelicin is found in herbs and spices. (S)-Byakangelicin is a constituent of common rue (Ruta graveolens). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].
Cyasteron
Cyasterone is a steroid lactone, a 21-hydroxy steroid, a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Cyasterone is a natural product found in Ajuga decumbens, Ajuga iva, and other organisms with data available. Cyasterone, a natural EGFR inhibitor, mainly isolated from Ajuga decumbens Thunb (Labiatae). Cyasterone manifests anti-proliferation effect by induced apoptosis and cell cycle arrests. Cyasterone may serves as a therapeutic anti-tumor agent against human tumors[1]. Cyasterone, a natural EGFR inhibitor, mainly isolated from Ajuga decumbens Thunb (Labiatae). Cyasterone manifests anti-proliferation effect by induced apoptosis and cell cycle arrests. Cyasterone may serves as a therapeutic anti-tumor agent against human tumors[1].
Plantamoside
Plantamajoside is a hydroxycinnamic acid. Plantamajoside is a natural product found in Primulina eburnea, Plantaginaceae, and other organisms with data available. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1]. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1].
Hocogenin
Hecogenin is a triterpenoid. Hecogenin is a natural product found in Yucca gloriosa, Allium rotundum, and other organisms with data available.
Pinosylvin
Pinosylvin is a stilbenol. Pinosylvin is a natural product found in Alnus pendula, Calligonum leucocladum, and other organisms with data available. Pinosylvin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=22139-77-1 (retrieved 2024-07-12) (CAS RN: 22139-77-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2]. Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].
Hypaconitine
Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:
Genipin
Genipin is found in beverages. Genipin is a constituent of Genipa americana (genipap) Genipin is an aglycone derived from an iridoid glycoside called geniposide present in fruit of Gardenia jasminoides. Genipin is an excellent natural cross-linker for proteins, collagen, gelatin, and chitosan cross-linking. It has a low acute toxicity, with LD50 i.v. 382 mg/kg in mice, therefore, much less toxic than glutaraldehyde and many other commonly used synthetic cross-linking regents. It is also used for pharmaceutical purposes, such as choleretic action for liver diseases control Genipin is an iridoid monoterpenoid. It has a role as an uncoupling protein inhibitor, a hepatotoxic agent, an apoptosis inhibitor, an antioxidant, an anti-inflammatory agent and a cross-linking reagent. Genipin is a natural product found in Gardenia jasminoides, Rothmannia globosa, and other organisms with data available. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Constituent of Genipa americana (genipap) Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2].
Karacoline
Karakoline is an organonitrogen heterocyclic compound that is aconitane bearing hydroxy groups at the 1alpha, 8, and 14alpha positions and substituted at on the nitrogen and at positions 4 and 16beta by ethyl, methyl, and methoxy groups, respectively. It has a role as a phytotoxin. It is a tertiary amino compound, a tertiary alcohol, a secondary alcohol, an alkaloid, an organonitrogen heterocyclic compound and a bridged compound. It derives from a hydride of an aconitane. Carmicheline is a natural product found in Aconitum karakolicum, Euglena gracilis, and Aconitum carmichaelii with data available. Origin: Plant; Formula(Parent): C22H35NO4; Bottle Name:Karakoline hydrochloride; PRIME Parent Name:Karakoline; PRIME in-house No.:V0337; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid
Betulin
Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
1,4-Dimethyl-7-ethylazulene
Chamazulene is a sesquiterpenoid. Chamazulene is a natural product found in Artemisia macrocephala, Otanthus maritimus, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). Isol. as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia subspecies 1,4-Dimethyl-7-ethylazulene is found in roman camomile, german camomile, and anise. 1,4-Dimethyl-7-ethylazulene is found in anise. 1,4-Dimethyl-7-ethylazulene is isolated as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia species.
Santamarin
Santamarin, also known as (+)-santamarine or balchanin, belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Santamarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Santamarin can be found in sweet bay, which makes santamarin a potential biomarker for the consumption of this food product. Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.
Valencene
(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Valencene is found in citrus. Valencene is a constituent of orange oil Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].
napelline
LSM-1634 is a kaurane diterpenoid. Napelline is a natural product found in Aconitum karakolicum, Aconitum baicalense, and other organisms with data available. 12-Epinapelline is a kaurane diterpenoid. 12-Epinapelline is a natural product found in Aconitum napellus, Delphinium leroyi, and other organisms with data available. Annotation level-1 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2]. 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2].
Ethyl cinnamate
Occurs in storaxand is also present in many fruits, e.g. cherry, American cranberry, pineapple, blackberry and passion fruit. Ethyl cinnamate is found in many foods, some of which are corn, tarragon, tamarind, and ceylon cinnamon. Ethyl cinnamate is an alkyl cinnamate and an ethyl ester. Ethyl cinnamate is a natural product found in Hedychium spicatum, Cinnamomum verum, and other organisms with data available. Ethyl cinnamate is found in ceylan cinnamon. Ethyl cinnamate occurs in storax. Also present in many fruits, e.g. cherry, American cranberry, pineapple, blackberry and passion fruit. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2]. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2].
5-Hydroxylysine
5-Hydroxylysine (Hyl), also known as hydroxylysine or 5-Hydroxy-L-lysine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. 5-Hydroxylysine is a hydroxylated derivative of the amino acid lysine that is present in certain collagens, the chief structural protein of mammalian skin and connective tissue. 5-Hydroxylysine arises from a post-translational hydroxy modification of lysine and is biosynthesized from lysine via oxidation by lysyl hydroxylase enzymes. 5-Hydroxylysine can then undergo further modification by glycosylation, giving rise to galactosyl hydroxylysine (GH) and glucosylgalactosyl hydroxylysine (GGH). These glycosylated forms of hydroxylysine contribute to collagen’s unusual toughness and resiliency. The monoglycosylated, galactosyl-hydroxylysine is enriched in bone compared with the disaccharide form, glucosyl-galactosyl-hydroxylysine, which is the major form in skin. 5-Hydroxylysine exists in all eukaryotes, ranging from yeast to humans. It was first discovered in 1921 by Donald Van Slyke. Free forms of hydroxylysine arise through proteolytic degradation of collagen. Urinary excretion of 5-Hydroxylysine and its glycosides can be used as an index of collagen degradation, with high levels being indicative of more rapid or extensive collagen degradation (often seen in patients with thermal burns, Pagets disease of bone or hyperphosphatasia) (PMID: 404321). One of the natural protein-bound amino acids. Occurs free in plant tissues, e.g. Medicago sativa (alfalfa)
N-Acetylhistamine
N-Acetylhistamine is a 4-(beta-Acetylaminoethyl)imidazole that is an intermediate in Histidine metabolism. It is generated from Histamine via the enzyme Transferases (EC 2.3.1.-). Histamine is an amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Isolated from leaves of Spinacia oleracea (spinach). N-Acetylhistamine is found in green vegetables and spinach. KEIO_ID A093 N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
Cysteinylglycine
Cysteinylglycine is a naturally occurring dipeptide. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized and protein-bound form (aminothiol) and interact via redox and disulphide exchange reactions, in a dynamic system referred to as redox thiol status. (PMID 8642471) Spermatozoa of sub fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy, another member of the thiol group) concentration in the ejaculate and in follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome. (PMID 16556671) Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols. (PMID 15895891) Imipenem (thienamycin formamidine), is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized. (PMID 15843241) [HMDB]. Cysteinylglycine is found in many foods, some of which are chinese cabbage, wax apple, garden tomato (variety), and japanese pumpkin. Cysteinylglycine is a naturally occurring dipeptide composed of cysteine and glycine. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized, and protein-bound form (aminothiol) and interacts via redox and disulphide exchange reactions in a dynamic system referred to as redox thiol status (PMID: 8642471). Spermatozoa of sub-fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy) concentration in the ejaculate and in the follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome (PMID: 16556671). Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols (PMID: 15895891). Imipenem (thienamycin formamidine) is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized (PMID: 15843241). L-Cysteinylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=19246-18-5 (retrieved 2024-07-02) (CAS RN: 19246-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
S-Lactoylglutathione
S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442). [HMDB]. S-Lactoylglutathione is found in many foods, some of which are blackcurrant, oat, pomegranate, and brussel sprouts. S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442). Acquisition and generation of the data is financially supported in part by CREST/JST. D000970 - Antineoplastic Agents KEIO_ID L016; [MS3] KO009026 KEIO_ID L016; [MS2] KO009024 KEIO_ID L016
Ketorolac
Ketorolac is only found in individuals that have used or taken this drug. It is a pyrrolizine carboxylic acid derivative structurally related to indomethacin. It is an NSAID and is used principally for its analgesic activity (from Martindale The Extra Pharmacopoeia, 31st ed). Ketorolac is a nonsteroidal anti-inflammatory drug (NSAID) chemically related to indomethacin and tolmetin. Ketorolac tromethamine is a racemic mixture of [-]S- and [+]R-enantiomeric forms, with the S-form having analgesic activity. Its antiinflammatory effects are believed to be due to inhibition of both cylooxygenase-1 (COX-1) and cylooxygenase-2 (COX-2) which leads to the inhibition of prostaglandin synthesis leading to decreased formation of precursors of prostaglandins and thromboxanes from arachidonic acid. The resultant reduction in prostaglandin synthesis and activity may be at least partially responsible for many of the adverse, as well as the therapeutic, effects of these medications. Analgesia is probably produced via a peripheral action in which blockade of pain impulse generation results from decreased prostaglandin activity. However, inhibition of the synthesis or actions of other substances that sensitize pain receptors to mechanical or chemical stimulation may also contribute to the analgesic effect. In terms of the ophthalmic applications of ketorolac - ocular administration of ketorolac reduces prostaglandin E2 levels in aqueous humor, secondary to inhibition of prostaglandin biosynthesis. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
thiram
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products CONFIDENCE standard compound; EAWAG_UCHEM_ID 3724 D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114
Prostaglandin E2
The naturally occurring prostaglandin E2 (PGE2) is known in medicine as dinoprostone, and it is the most common and most biologically active of the mammalian prostaglandins. It has important effects during labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 is also the prostaglandin that ultimately induces fever. PGE2 has been shown to increase vasodilation and cAMP production, enhance the effects of bradykinin and histamine, and induce uterine contractions and platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus, decreasing T-cell proliferation and lymphocyte migration, and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation, and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC). PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID:16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, induction of uterine contractions and of platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535) G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins Chemical was purchased from CAY14010, (Lot 0410966-34); Diagnostic ions: 351.8, 333.1, 271.1, 188.9 D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.
D-Glucuronate
Glucuronic acid (CAS: 6556-12-3) is a carboxylic acid that has the structure of a glucose molecule that has had its sixth carbon atom (of six total) oxidized. The salts of glucuronic acid are known as glucuronates. Glucuronic acid is highly soluble in water. In humans, glucuronic acid is often linked to toxic or poisonous substances to allow for subsequent elimination, and to hormones to allow for easier transport. These linkages involve O-glycosidic bonds. The process is known as glucuronidation, and the resulting substances are known as glucuronides (or glucuronosides). Glucuronidation uses UDP-glucuronic acid (glucuronic acid linked via a glycosidic bond to uridine diphosphate) as an intermediate. UDP-glucuronic acid is formed in the liver of all animals. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1]. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].
terbutol
CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10877; ORIGINAL_PRECURSOR_SCAN_NO 10876 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10902; ORIGINAL_PRECURSOR_SCAN_NO 10901 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10932; ORIGINAL_PRECURSOR_SCAN_NO 10927 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10957; ORIGINAL_PRECURSOR_SCAN_NO 10956 CONFIDENCE standard compound; INTERNAL_ID 1079; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10982; ORIGINAL_PRECURSOR_SCAN_NO 10981
Phosphoadenosine phosphosulfate
3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms. [HMDB] 3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms.
Tyramine
Tyramine is a monoamine compound derived from the amino acid tyrosine. Tyramine is metabolized by the enzyme monoamine oxidase. In foods, it is often produced by the decarboxylation of tyrosine during fermentation or decay. Foods containing considerable amounts of tyramine include fish, chocolate, alcoholic beverages, cheese, soy sauce, sauerkraut, and processed meat. A large dietary intake of tyramine can cause an increase in systolic blood pressure of 30 mmHg or more. Tyramine acts as a neurotransmitter via a G protein-coupled receptor with high affinity for tyramine called TA1. The TA1 receptor is found in the brain as well as peripheral tissues including the kidney. An indirect sympathomimetic, Tyramine can also serve as a substrate for adrenergic uptake systems and monoamine oxidase so it prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine is a biomarker for the consumption of cheese [Spectral] Tyramine (exact mass = 137.08406) and L-Methionine (exact mass = 149.05105) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Tyramine (exact mass = 137.08406) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents IPB_RECORD: 267; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 5105 D049990 - Membrane Transport Modulators KEIO_ID T008 Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].
Glucosamine
Glucosamine (C6H13NO5) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of two polysaccharides, chitosan and chitin. Glucosamine is one of the most abundant monosaccharides. Produced commercially by the hydrolysis of shellfish exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat, glucosamine has many names depending on country. Although a common dietary supplement, there is little evidence that it is effective for relief of arthritis or pain, and is not an approved prescription drug. In the United States, glucosamine is not approved by the Food and Drug Administration for medical use in humans. Since glucosamine is classified as a dietary supplement, evidence of safety and efficacy is not required as long as it is not advertised as a treatment for a medical condition. Nevertheless, glucosamine is a popular alternative medicine used by consumers for the treatment of osteoarthritis. Glucosamine is also extensively used in veterinary medicine as an unregulated but widely accepted supplement. Treatment with oral glucosamine is commonly used for the treatment of osteoarthritis. Since glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, supplemental glucosamine may help to rebuild cartilage and treat arthritis. However, there is little evidence that any clinical effect of glucosamine works this way. Its use as a therapy for osteoarthritis appears safe but there is conflicting evidence as to its effectiveness. Glucosamine is naturally present in the shells of shellfish, animal bones, bone marrow, and fungi. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. Specifically in humans, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine by glutamine—fructose-6-phosphate transaminase as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is then used for making glycosaminoglycans, proteoglycans, and glycolipids. As the formation of glucosamine-6-phosphate is the first step for the synthesis of these products, glucosamine may be important in regulating their production; however, the way that the hexosamine biosynthesis pathway is actually regulated, and whether this could be involved in contributing to human disease remains unclear. Present in mucopolysaccharides and in polysaccharides found in bacteria, fungi, higher plants, invertebrates, vertebrates, antibiotics and UDP complexes. Obt. comly. by hydrol. of seashells [CCD] M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G051 Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1].
Extracort
CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8728; ORIGINAL_PRECURSOR_SCAN_NO 8723 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8791; ORIGINAL_PRECURSOR_SCAN_NO 8789 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8741; ORIGINAL_PRECURSOR_SCAN_NO 8739 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8700; ORIGINAL_PRECURSOR_SCAN_NO 8699 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8788; ORIGINAL_PRECURSOR_SCAN_NO 8786 CONFIDENCE standard compound; INTERNAL_ID 637; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8777; ORIGINAL_PRECURSOR_SCAN_NO 8775 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents CONFIDENCE standard compound; INTERNAL_ID 2826 D000893 - Anti-Inflammatory Agents
Meperidine
A narcotic analgesic that can be used for the relief of most types of moderate to severe pain, including postoperative pain and the pain of labor. Prolonged use may lead to dependence of the morphine type; withdrawal symptoms appear more rapidly than with morphine and are of shorter duration. [PubChem] D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AB - Phenylpiperidine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Piroxicam
Piroxicam is only found in individuals that have used or taken this drug. It is a cyclooxygenase inhibiting, non-steroidal anti-inflammatory agent (NSAID) that is well established in treating rheumatoid arthritis and osteoarthritis and used for musculoskeletal disorders, dysmenorrhea, and postoperative pain. Its long half-life enables it to be administered once daily. [PubChem]The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AC - Oxicams S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents KEIO_ID P068; [MS2] KO009199 D004791 - Enzyme Inhibitors KEIO_ID P068
L-Lactic acid
Lactic acid is an organic acid. It is a chiral molecule, consisting of two optical isomers, L-lactic acid and D-lactic acid, with the L-isomer being the most common in living organisms. Lactic acid plays a role in several biochemical processes and is produced in the muscles during intense activity. In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal. This is governed by a number of factors, including monocarboxylate transporters, lactate concentration, the isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1-2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion. There are some indications that lactate, and not glucose, is preferentially metabolized by neurons in the brain of several mammalian species, including mice, rats, and humans. Glial cells, using the lactate shuttle, are responsible for transforming glucose into lactate, and for providing lactate to the neurons. Lactate measurement in critically ill patients has been traditionally used to stratify patients with poor outcomes. However, plasma lactate levels are the result of a finely tuned interplay of factors that affect the balance between its production and its clearance. When the oxygen supply does not match its consumption, organisms adapt in many different ways, up to the point when energy failure occurs. Lactate, being part of the adaptive response, may then be used to assess the severity of the supply/demand imbalance. In such a scenario, the time to intervention becomes relevant: early and effective treatment may allow tissues and cells to revert to a normal state, as long as the oxygen machinery (i.e. mitochondria) is intact. Conversely, once the mitochondria are deranged, energy failure occurs even in the presence of normoxia. The lactate increase in critically ill patients may, therefore, be viewed as an early marker of a potentially reversible state (PMID: 16356243). When present in sufficiently high levels, lactic acid can act as an oncometabolite, an immunosuppressant, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumor growth and survival. An immunosuppressant reduces or arrests the activity of the immune system. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of lactic acid are associated with at least a dozen inborn errors of metabolism, including 2-methyl-3-hydroxybutyryl CoA dehydrogenase deficiency, biotinidase deficiency, fructose-1,6-diphosphatase deficiency, glycogen storage disease type 1A (GSD1A) or Von Gierke disease, glycogenosis type IB, glycogenosis type IC, glycogenosis type VI, Hers disease, lactic acidemia, Leigh syndrome, methylmalonate semialdehyde dehydrogenase deficiency, pyruvate decarboxylase E1 component deficiency, pyruvate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency, and short chain acyl CoA dehydrogenase deficiency (SCAD deficiency). Locally high concentrations of lactic acid or lactate are found near many tumors due to the upregulation of lactate dehydrogenase (PMID: 15279558). Lactic acid produced by tumors through aerobic glycolysis acts as an immunosuppressant and tumor promoter (PMID: 23729358). Indeed, lactic acid has been found to be a key player or regulator in the development and malignant progression of a variety of cancers (PMID: 22084445). A number of studies have demonstrated that malignant transformation is associated with an increase in aerobic cellular lactate excretion. Lactate concentrations in various carcinomas (e.g. uterine cervix, head and neck, colorectal regi... Occurs in the juice of muscular tissue, bile etc. Flavour ingredient, food antioxidant. Various esters are also used in flavourings L-Lactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-33-4 (retrieved 2024-07-01) (CAS RN: 79-33-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.
T2 Toxin
T2 Toxin is isolated from Fusarium species and Trichoderma lignorum. T2 Toxin is an important mycotoxin occurring naturally in various agricultural products. Isolated from Fusarium subspecies and Trichoderma lignorum. Important mycotoxin occurring naturally in various agricultural products D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2].
(+)-Sesamin
(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].
3,4-Di-O-caffeoylquinic acid
Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Glycolic acid
Glycolic acid (or hydroxyacetic acid) is the smallest alpha-hydroxy acid (AHA). This colourless, odourless, and hygroscopic crystalline solid is highly soluble in water. Due to its excellent capability to penetrate skin, glycolic acid is often used in skin care products, most often as a chemical peel. It may reduce wrinkles, acne scarring, and hyperpigmentation and improve many other skin conditions, including actinic keratosis, hyperkeratosis, and seborrheic keratosis. Once applied, glycolic acid reacts with the upper layer of the epidermis, weakening the binding properties of the lipids that hold the dead skin cells together. This allows the outer skin to dissolve, revealing the underlying skin. It is thought that this is due to the reduction of calcium ion concentrations in the epidermis and the removal of calcium ions from cell adhesions, leading to desquamation. Glycolic acid is a known inhibitor of tyrosinase. This can suppress melanin formation and lead to a lightening of skin colour. Acute doses of glycolic acid on skin or eyes leads to local effects that are typical of a strong acid (e.g. dermal and eye irritation). Glycolate is a nephrotoxin if consumed orally. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. Glycolic acids renal toxicity is due to its metabolism to oxalic acid. Glycolic and oxalic acid, along with excess lactic acid, are responsible for the anion gap metabolic acidosis. Oxalic acid readily precipitates with calcium to form insoluble calcium oxalate crystals. Renal tissue injury is caused by widespread deposition of oxalate crystals and the toxic effects of glycolic acid. Glycolic acid does exhibit some inhalation toxicity and can cause respiratory, thymus, and liver damage if present in very high levels over long periods of time. Elevated glycolic acid without elevated oxalic acid is most likely a result of GI yeast overgrowth (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). (http://drweyrich.weyrich.com/labs/oat.html). Glycolic acid has also been found to be a metabolite in Acetobacter, Acidithiobacillus, Alcaligenes, Corynebacterium, Cryptococcus, Escherichia, Gluconobacter, Kluyveromyces, Leptospirillum, Pichia, Rhodococcus, Rhodotorula and Saccharomyces (PMID: 11758919; PMID: 26360870; PMID: 14390024). D003879 - Dermatologic Agents > D007641 - Keratolytic Agents Found in sugar cane (Saccharum officinarum) KEIO_ID G012 Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour. Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.
Acrylic acid
Polyacrylic acid, sodium salt is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Monomer component of packaging materials for food. Acrylic acid is found in pineapple. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives KEIO_ID A041
Cyclohexylamine
Cyclohexylamine is a food contaminant arising from its use as a boiler water additive Cyclohexylamine, also called hexahydroaniline, 1-aminocyclohexane, or aminohexahydrobenzene, is an organic chemical, an amine derived from cyclohexane. It is a clear to yellowish liquid with fishy odor, with melting point of 17.7 °C and boiling point 134.5 °C, miscible with water. Like other amines, it is of mildly alkaline nature, compared to strong bases such as NaOH, but it is a stronger base than its aromatic sister compound aniline, which differs only in that its ring is aromatic. It is flammable, with flash point at 28.6 °C. Explosive mixtures with air can be formed above 26 °C. It is toxic by both ingestion and inhalation; the inhalation itself may be fatal. It readily absorbs through skin, which it irritates. It is corrosive. Cyclohexylamine is listed as an extremely hazardous substance as defined by Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 2441 CONFIDENCE standard compound; INTERNAL_ID 8266 KEIO_ID C114
Maltol
Maltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. annuum), and coffee and coffee products. Maltols sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances. Maltol is a white crystalline powder with a fragrant caramel-butterscotch odor. pH (5\\\\% aqueous solution) 5.3. (NTP, 1992) 3-hydroxy-2-methyl-4-pyrone is a member of 4-pyranones. It has a role as a metabolite. Maltol is a natural product found in Cercidiphyllum japonicum, Coffea arabica, and other organisms with data available. 3-Hydroxy-2-methyl-4-pyrone is a metabolite found in or produced by Saccharomyces cerevisiae. Found in chicory, roasted malt, breads, milk, heated butter, uncured smoked pork, cocoa, coffee, roasted barley, roasted peanuts, roasted filbert, soybean etc. Flavour enhancer and flavouring agent C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].
(2E)-Decenoyl-ACP
(2E)-Decenoyl-ACP, also known as Cycloleucine or 1-Aminocyclopentanecarboxylic acid, is classified as a member of the L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. (2E)-Decenoyl-ACP is considered to be soluble (in water) and acidic Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C574 - Immunosuppressant KEIO_ID A050
3,4-Dihydroxyhydrocinnamic acid
3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. KEIO_ID D047 Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].
Glutamylglutamic acid
Glutamylglutamic acid is a dipeptide composed of two glutamic acid residues, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. Glutamylglutamic acid is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. KEIO_ID G043; [MS2] KO008970 KEIO_ID G043
Butyrylcarnitine
Butyrylcarnitine, also known as (3R)-3-(butyryloxy)-4-(trimethylammonio)butanoate or L-carnitine butyryl ester, is classified as a member of the acylcarnitines. Acylcarnitines are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. Butyrylcarnitine is considered to be practically insoluble (in water) and acidic. Butyrylcarnitine is elevated in patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, in infants with acute acidosis and generalized muscle weakness, and in middle-aged patients with chronic myopathy localized in muscle (OMIM: 201470). Butyrylcarnitine is elevated in patients with acyl-coa dehydrogenase, short-chain (SCAD) deficiencyin; in infants with acute acidosis and generalized muscle weakness; and in middle-aged patients with chronic myopathy localized in muscle. (OMIM 201470) [HMDB] Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.
beta-Glycerophosphoric acid
beta-Glycerophosphoric acid, also known as BGA or glycerol 2-phosphate, is a component of glycerolipid metabolism. It is formed in minor quanitites because the alpha glycerophosphorate is preferentially formed in this manner. beta-Glycerophosphoric acid is used as a biological buffer (Sigma-Aldrich). Glycerol-2-phosphate is a component of glycerolipid metabolism. It is formed in minor quanitites, as the alpha glycerophosphorate is preferentially formed in this manner. Also used as a biological buffer (Sigma-Aldrich) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST.
Gardenoside
A cyclopentapyran that is 7-deoxyloganin with a methyl and hydrogen replaced by hydroxy and hydroxymethyl groups at position 7. Gardenoside is a natural product found in Gardenia jasminoides, Catunaregam obovata, and other organisms with data available. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2].
Cyanidin
Cyanidin, also known as cyanidin chloride (CAS: 528-58-5), belongs to the class of organic compounds known as 7-hydroxyflavonoids. These are flavonoids that bear one hydroxyl group at the C-7 position of the flavonoid skeleton. Thus, cyanidin is considered to be a flavonoid lipid molecule. Cyanidin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin is a product of cyanidin 3-glucoside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Widely distributed anthocyanidin, found especies in Vaccinium subspecies (blueberries, bilberries, whortleberries), cherries, raspberries, red onions, red wine and black tea. Cyanidin is found in many foods, some of which are papaya, hyacinth bean, sweet basil, and abalone.
Nivalenol
Nivalenol is a trichothecene produced by Fusaria, Stachybotrys, Trichoderma and other fungi, and some higher plants. They may contaminate food or feed grains, induce emesis and hemorrhage in lungs and brain, and damage bone marrow due to protein and DNA synthesis inhibition.(PubChem). It has been reported in the urine of patients suffering chronic idiopathic spastic paraparesis. These patients are usually found in hot and humid regions, most of which have heavy rains, and these conditions allow foods to be polluted by fungi some of which become toxigenic (PubMed ID 8855894 ). Nivalenol is a trichothecene produced by Fusaria, Stachybotrys, Trichoderma and other fungi, and some higher plants. They may contaminate food or feed grains, induce emesis and hemorrhage in lungs and brain, and damage bone marrow due to protein and DNA synthesis inhibition.(PubChem) D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
P-Coumaraldehyde
p-Coumaraldehyde (CAS: 2538-87-6), also known as 4-hydroxycinnamaldehyde or 3-(4-hydroxyphenyl)-2-propenal, belongs to the class of organic compounds known as cinnamaldehydes. These are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. p-Coumaraldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, p-coumaraldehyde has been detected, but not quantified in, several different foods, such as red rice, lindens, peaches, white lupines, and evergreen huckleberries. This could make p-coumaraldehyde a potential biomarker for the consumption of these foods. p-Coumaraldehyde is also a constituent of Alpinia galanga (greater galangal) rhizomes and Cucurbita maxima. Constituent of Alpinia galanga (greater galangal) rhizomes Cucurbita maxima. (E)-3-(4-Hydroxyphenyl)-2-propenal is found in many foods, some of which are climbing bean, japanese walnut, chicory leaves, and walnut.
Pantetheine 4'-phosphate
Pantetheine 4-phosphate, or 4-phosphopantetheine, is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. 4-phosphopantetheine is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. [HMDB]
o-Cresol
o-Cresol is a minor urinary metabolite of toluene, O-cresol is a cresol that is phenol substituted by a methyl group at position 2. It is a minor urinary metabolite of toluene. It has a role as a human xenobiotic metabolite. It is widely used chemical with neurotoxicological properties (PMID:15687000). o-Cresol is used commercially as a disinfectant. Exposure may occur by inhalation, by cutaneous adsorption or by oral ingestion. o-Cresol denature and precipitate cellular proteins and thus may rapidly cause poisoning. o-Cresol is metabolized by conjugation and oxidation. Ingestion of o-Cresol cause intense burning of mouth and throat, followed by marked abdominal pain and distress. The minimum lethal dose of cresol by mouth is about 2 g (PMID 15040915). o-Cresol is a microbial metabolite that can be found in Pseudomonas. Besides, o-Cresol is one of the chemical compounds found in castoreum. This compound is gathered from the beavers castor glands and found in the white cedar consumed by the beavers. Together with many other compounds, o-cresol is traditionally extracted from coal tar, the volatile materials obtained in the production of coke from coal. A similar source material is petroleum residues. These residue contains a few percent by weight of phenol and isomeric cresols. In addition to the materials derived from these natural sources, about two thirds of the Western worlds supply is produced by methylation of phenol using methanol. Flavouring ingredient. 2-Methylphenol is found in many foods, some of which are yellow bell pepper, pepper (c. annuum), arabica coffee, and asparagus.
epsilon-Caprolactone
ε-Caprolactone, also known simply as caprolactone, is a compound belonging to the family of compounds known as lactones. Lactones are cyclic esters of hydroxyl carboxylic acids, wherein the functional group has become part of a ring structure with carbon atoms. Caprolactone consists of a seven membered ring derived from the cyclization of caproic acid. As a monomer it used in the production of highly specialized plastics and polymers. Caprolactone is produced by the Baeyer-Villiger oxidation of cyclohexanone with peracetic acid, and was used previously (until economically inviable) as a precursor in the production of caprolactam. Several other caprolactone isomers are known. These isomers include α-, β-, γ-, and δ-caprolactones. All are chiral. (R)-γ-caprolactone is a component of floral scents and of the aromas of some fruits and vegetables (Journal of Agricultural and Food Chemistry. 37: 413–418), while δ-caprolactone is found in heated milk fat (Journal of Dairy Science. 48 (5): 615–616).
Hydantoin
Hydantoin, also known as glycolylurea or 2,4-imidazolidinedione, is a member of the class of compounds known as imidazoles. Imidazoles are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. Hydantoin is soluble (in water) and a very weakly acidic compound (based on its pKa). Hydantoin can be found in a number of food items such as cabbage, common verbena, black radish, and brazil nut, which makes hydantoin a potential biomarker for the consumption of these food products. Hydantoin, or glycolylurea, is a heterocyclic organic compound with the formula CH2C(O)NHC(O)NH. It is a colorless solid that arises from the reaction of glycolic acid and urea. It is an oxidized derivative of imidazolidine. In a more general sense, hydantoins can refer to a groups and a class of compounds with the same ring structure as the parent. For example, phenytoin (mentioned below) has two phenyl groups substituted onto the number 5 carbon in a hydantoin molecule . COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Pamidronate
Pamidronate is only found in individuals that have used or taken this drug.Pamidronate, marketed as pamidronate disodium pentahydrate under the brand name Aredia, is a bisphosphonate. [Wikipedia]The mechanism of action of pamidronate is inhibition of bone resorption. Pamidronate adsorbs to calcium phosphate (hydroxyapatite) crystals in bone and may directly block dissolution of this mineral component of bone. In vitro studies also suggest that inhibition of osteoclast activity contributes to inhibition of bone resorption. Pamidronate also targets farnesyl pyrophosphate (FPP) synthase. Nitrogen-containing bisphosphonates (such as pamidronate, alendronate, risedronate, ibandronate and zoledronate) appear to act as analogues of isoprenoid diphosphate lipids, thereby inhibiting FPP synthase, an enzyme in the mevalonate pathway. Inhibition of this enzyme in osteoclasts prevents the biosynthesis of isoprenoid lipids (FPP and GGPP) that are essential for the post-translational farnesylation and geranylgeranylation of small GTPase signalling proteins. This activity inhibits osteoclast activity and reduces bone resorption and turnover. In postmenopausal women, it reduces the elevated rate of bone turnover, leading to, on average, a net gain in bone mass. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates
Phosphoramide mustard
Phosphoramide mustard is a metabolite of cyclophosphamide. Cyclophosphamide (trade names Endoxan, Cytoxan, Neosar, Procytox, Revimmune), also known as cytophosphane, is a nitrogen mustard alkylating agent, from the oxazophorines group. An alkylating agent adds an alkyl group (CnH2n+1) to DNA. It attaches the alkyl group to the guanine base of DNA, at the number 7 nitrogen atom of the imidazole ring. It is used to treat various types of cancer and some autoimmune disorders. (Wikipedia) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
24,25-Dihydroxyvitamin D
24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formation. Also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746). D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents
Calcium phosphate
A - Alimentary tract and metabolism > A12 - Mineral supplements > A12A - Calcium > A12AA - Calcium Component of flour bleaching mixtures, anticaking agent, dietary supplement, flavouring ingredient
Tiludronate
Tiludronate is only found in individuals that have used or taken this drug. It is a bisphosphonate characterized by a (4-chlorophenylthio) group on the carbon atom of the basic P-C-P structure common to all bisphosphonates.The bisphosphonate group binds strongly to the bone mineral, hydroxyapatite. This explains the specific pharmacological action of these compounds on mineralized tissues, especially bone. In vitro studies indicate that tiludronate acts primarily on bone through a mechanism that involves inhibition of osteoclastic activity with a probable reduction in the enzymatic and transport processes that lead to resorption of the mineralized matrix. Bone resorption occurs following recruitment, activation, and polarization of osteoclasts. Tiludronate appears to inhibit osteoclasts by at least two mechanisms: disruption of the cytoskeletal ring structure, possibly by inhibition of protein-tyrosine-phosphatase, thus leading to detachment of osteoclasts from the bone surface and the inhibition of the osteoclastic proton pump. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates
Methylprednisolone acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents
Cyclopamine
Cyclopamine is a member of piperidines. It has a role as a glioma-associated oncogene inhibitor. Cyclopamine is a natural product found in Veratrum grandiflorum, Veratrum dahuricum, and Veratrum californicum with data available. Cyclopamine is a naturally occurring chemical that belongs to the group of steroidal jerveratrum alkaloids. It is a teratogen isolated from the corn lily (Veratrum californicum) that causes usually fatal birth defects. It can prevent the fetal brain from dividing into two lobes (holoprosencephaly) and cause the development of a single eye (cyclopia). It does so by inhibiting the hedgehog signaling pathway (Hh). Cyclopamine is useful in studying the role of Hh in normal development, and as a potential treatment for certain cancers in which Hh is overexpressed. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7995; ORIGINAL_PRECURSOR_SCAN_NO 7993 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8001 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8041; ORIGINAL_PRECURSOR_SCAN_NO 8038 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8047; ORIGINAL_PRECURSOR_SCAN_NO 8046 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8048; ORIGINAL_PRECURSOR_SCAN_NO 8045 CONFIDENCE standard compound; INTERNAL_ID 654; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7958; ORIGINAL_PRECURSOR_SCAN_NO 7956 Data obtained from a cyclopamine standard purchased from Logan Natural Products, Logan, Utah USA. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor. Cyclopamine is a Hedgehog (Hh) pathway antagonist with an IC50 of 46 nM in the Hh cell assay. Cyclopamine is also a selective Smo inhibitor.
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents
1-((4-Methylsulfonyl)phenyl)-3-trifluoromethyl-5-(4-fluorophenyl)pyrazole
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
2-Aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Plicamycin
Plicamycin is only found in individuals that have used or taken this drug. It is an antineoplastic antibiotic produced by Streptomyces plicatus. It has been used in the treatment of testicular cancer, Pagets disease of bone, and, rarely, the management of hypercalcemia. The manufacturer discontinued plicamycin in 2000. Plicamycin is presumed to inhibit cellular and enzymic RNA synthesis by forming a complex with DNA. Plicamycin may also lower calcium serum levels by inhibiting the effect of parathyroid hormone upon osteoclasts or by blocking the hypercalcemic action of pharmacologic doses of vitamin D. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468
Cyclopropanamine
A primary aliphatic amine that consists of cyclopropane bearing a single amino substituent.
7-a,25-Dihydroxycholesterol
7α, 25-dihydroxycholesterol (7α,25-OHC) is a potent and selective agonist and endogenous ligand of the orphan GPCR receptor EBI2 (GPR183). 7α, 25-dihydroxycholesterol is highly potent at activating EBI2 (EC50=140 pM; Kd=450 pM). 7α, 25-dihydroxycholesterol can serve as a chemokine directing migration of B cells, T cells and dendritic cells[1][2].
Cytarabine
Cytarabine, or cytosine arabinoside, a pyrimidine nucleoside analog, is found in mushrooms. Cytarabine is isolated from the mushroom Xerocomus nigromaculatus of unknown palatability. Cytarabine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute myelogenous leukemia and meningeal leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle to stop normal cell development and division. Cytarabine is metabolized intracellularly into its active triphosphate form (cytosine arabinoside triphosphate). This metabolite then damages DNA by multiple mechanisms, including the inhibition of alpha-DNA polymerase, inhibition of DNA repair through an effect on beta-DNA polymerase, and incorporation into DNA. The latter mechanism is probably the most important. Cytotoxicity is highly specific for the S phase of the cell cycle. Cytarabine is a chemotherapy agent used mainly in the treatment of hematological malignancies such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It is also known as ara C. Cytosine arabinoside is an antimetabolic agent with the chemical name of 1 -arabinofuranosylcytosine. Its mode of action is due to its rapid conversion into cytosine arabinoside triphosphate, which damages DNA when the cell cycle holds in the S phase (synthesis of DNA). Rapidly dividing cells, which require DNA replication for mitosis, are therefore most affected. Cytosine arabinoside also inhibits both DNA and RNA polymerases and nucleotide reductase enzymes needed for DNA synthesis L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents KEIO_ID C119; [MS2] KO008896 KEIO_ID C119 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.
Isofraxidin
Isofraxidin is a hydroxycoumarin. Isofraxidin is a natural product found in Artemisia alba, Artemisia assoana, and other organisms with data available. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].
Alizarin
Alizarin is a dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2. It has a role as a chromophore, a dye and a plant metabolite. Alizarin is a natural product found in Oldenlandia umbellata, Rubia alata, and other organisms with data available. See also: Rubia tinctorum root (part of). A dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2.
24R,25-Dihydroxyvitamin D3
24R,25-Dihydroxyvitamin D3, also known as 24(R),25(OH)2D3, is a vitamin D metabolite; a dihydroxylated form of the seco-steroid. With the identification of a target cell, the growth plate resting zone (RC) chondrocyte, studies indicate that there are specific membrane-associated signal transduction pathways that mediate both rapid, nongenomic, and genomic responses of RC cells to 24(R),25(OH)2D3. These studies indicate that 24(R),25(OH)2D3 plays an important role in endochondral ossification by regulating less mature chondrocytes and promoting their maturation in the endochondral lineage. 24(R),25(OH)2D3 binds RC chondrocyte membranes with high specificity, increasing protein kinase C (PKC) activity. The effect is stereospecific; 24R,25(OH)2D3, but not 24S,25(OH)2D3, causes the increase, indicating a receptor-mediated response. Phospholipase D-2 (PLD2) activity is increased, resulting in increased production of diacylglycerol (DAG), which in turn activates PKC. 24(R),25(OH)2D3 does not cause translocation of PKC to the plasma membrane but activates existing PKCα. There is a rapid decrease in Ca2+ efflux, and the influx is stimulated. 24(R),25(OH)2D3 also reduces arachidonic acid release by decreasing phospholipase A2 (PLA2) activity, thereby decreasing the available substrate for prostaglandin production via the action of cyclooxygenase-1. PGE2 that is produced acts on the EP1 and EP2 receptors expressed by RC cells to downregulate PKC via protein kinase A, but the reduction in PGE2 decreases this negative feedback mechanism. Both pathways converge on MAP kinase, leading to new gene expression. One consequence of this is the production of new matrix vesicles containing PKCα and PKCγ, and an increase in PKC activity. The chondrocytes also produce 24(R),25(OH)2D3, and the secreted metabolite acts directly on the matrix vesicle membrane. Only PKCγ is directly affected by 24(R),25(OH)2D3 in the matrix vesicles, and activity of this isoform is inhibited. This effect may be involved in the control of matrix maturation and turnover. 24(R),25(OH)2D3 causes RC cells to mature along the endochondral developmental pathway, where they become responsive to 1α,25(OH)2D3 and lose responsiveness to 24(R),25(OH)2D3, a characteristic of more mature growth zone (GC) chondrocytes. 1α,25(OH)2D3 elicits its effects on GC through different signal transduction pathways than those used by 24(R),25(OH)2D3 (PMID: 11179745). 24R,25-Dihydroxyvitamin D3 (24(R),25(OH)2D3 ) is a vitamin D metabolite, a dihydroxylated form of the seco-steroid. With the identification of a target cell, the growth plate resting zone (RC) chondrocyte, studies indicate that there are specific membrane-associated signal transduction pathways that mediate both rapid, nongenomic and genomic responses of RC cells to 24(R),25(OH)2D3. These studies indicate that 24(R),25(OH)2D3 plays an important role in endochondral ossification by regulating less mature chondrocytes and promoting their maturation in the endochondral lineage. D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents
(-)-Haematoxylin
D004396 - Coloring Agents
Hydroxyproline
L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.
sesamin
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Dehydrocorydaline
Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Hematoxylin
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.308 D004396 - Coloring Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.309
Irigenin
Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].
Cynaropicrin
Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.
Aucubin
Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids; Origin: Plant Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].
Mukurozidiol
Constituent of Japanese drug byakusi obtained from Angelica subspecies Also from lemon oil and other Citrus subspecies [DFC]. (R)-Byakangelicin is found in lemon, citrus, and herbs and spices. Mukurozidiol is a member of psoralens. (Rac)-Byakangelicin is a natural product found in Ruta graveolens, Angelica, and other organisms with data available. (S)-Byakangelicin is found in herbs and spices. (S)-Byakangelicin is a constituent of common rue (Ruta graveolens). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].
3,4-Dihydroxyhydrocinnamic acid
3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. 3-(3,4-dihydroxyphenyl)propanoic acid is a monocarboxylic acid that is 3-phenylpropionic acid substituted by hydroxy groups at positions 3 and 4. Also known as dihydrocaffeic acid, it is a metabolite of caffeic acid and exhibits antioxidant activity. It has a role as an antioxidant and a human xenobiotic metabolite. It is functionally related to a 3-phenylpropionic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)propanoate. 3-(3,4-Dihydroxyphenyl)propionic acid is a natural product found in Liatris elegans, Polyscias murrayi, and other organisms with data available. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].
meperidine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AB - Phenylpiperidine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3331 EAWAG_UCHEM_ID 3331; CONFIDENCE standard compound
Protopine
Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].
Tyramine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics A primary amino compound obtained by formal decarboxylation of the amino acid tyrosine. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2741; CONFIDENCE confident structure Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].
5-hydroxylysine
The lysine derivative that is 2,6-diamino-5-hydroxyhexanoic acid, a chiral alpha-amino acid. KEIO_ID H064
Hymecromone
CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3335; ORIGINAL_PRECURSOR_SCAN_NO 3333 A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3322; ORIGINAL_PRECURSOR_SCAN_NO 3320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3312; ORIGINAL_PRECURSOR_SCAN_NO 3309 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3317; ORIGINAL_PRECURSOR_SCAN_NO 3316 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3331; ORIGINAL_PRECURSOR_SCAN_NO 3329 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3329; ORIGINAL_PRECURSOR_SCAN_NO 3326 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7326; ORIGINAL_PRECURSOR_SCAN_NO 7323 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7324; ORIGINAL_PRECURSOR_SCAN_NO 7320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7332; ORIGINAL_PRECURSOR_SCAN_NO 7328 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7356 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7355 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7342; ORIGINAL_PRECURSOR_SCAN_NO 7340 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3396; ORIGINAL_PRECURSOR_SCAN_NO 3391 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3389; ORIGINAL_PRECURSOR_SCAN_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3360; ORIGINAL_PRECURSOR_SCAN_NO 3358 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3383; ORIGINAL_PRECURSOR_SCAN_NO 3380 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3363; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7291; ORIGINAL_PRECURSOR_SCAN_NO 7286 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7335; ORIGINAL_PRECURSOR_SCAN_NO 7331 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7307; ORIGINAL_PRECURSOR_SCAN_NO 7303 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7337; ORIGINAL_PRECURSOR_SCAN_NO 7335 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7336; ORIGINAL_PRECURSOR_SCAN_NO 7332 CONFIDENCE standard compound; INTERNAL_ID 4193 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
ketorolac
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors This spectrum was obtained at The Multidisciplinary Research Laboratory at Antenor Orrego Private University, Trujillo, La Libertad, Peru.The sample was obtained from a pharmacy.; The sample was dissolved in 1:1 acetonitrile:water and passed through a ACQUITY UPLC BEH C18 1.7um column at 0.6 mL/min in ramp of MPA: 0.1\\% Formic Acid in water; MPB: 0.1\\% Formic Acid in Acetonitrile; Contact us: http://www.upao.edu.pe/labinm/
Dehydrocorydaline
Annotation level-1 Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Isofraxidin
Annotation level-1 Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].
Genipin
Genipin is an iridoid monoterpenoid. It has a role as an uncoupling protein inhibitor, a hepatotoxic agent, an apoptosis inhibitor, an antioxidant, an anti-inflammatory agent and a cross-linking reagent. Genipin is a natural product found in Gardenia jasminoides, Rothmannia globosa, and other organisms with data available. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.593 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.589 Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2].
Karakoline
An organonitrogen heterocyclic compound that is aconitane bearing hydroxy groups at the 1alpha, 8, and 14alpha positions and substituted at on the nitrogen and at positions 4 and 16beta by ethyl, methyl, and methoxy groups, respectively. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.396 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.391
piroxicam
A monocarboxylic acid amide resulting from the formal condensation of the carboxy group of 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide with the exocyclic nitrogen of 2-aminopyridine. A non-steroidal anti-inflammatory drug of the oxicam class, it is used to relieve pain and works by preventing the production of endogenous prostaglandins involved in the mediation of pain, stiffness, tenderness and swelling. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AC - Oxicams S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
Cycloleucine
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
Betulin
Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
4β,15-Diacetoxy-8α-(3-methylbutyryloxy)-12,13-epoxytrichothec-9-en-3α-ol
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2]. T 2 Toxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=21259-20-1 (retrieved 2024-09-06) (CAS RN: 21259-20-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
glycolic acid
A 2-hydroxy monocarboxylic acid that is acetic acid where the methyl group has been hydroxylated. D003879 - Dermatologic Agents > D007641 - Keratolytic Agents Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour. Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.
N-Acetylhistamine
A member of the class of acetamides that is acetamide comprising histamine having an acetyl group attached to the side-chain amino function. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
CID 440908
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)
Triamcinolone acetonide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000893 - Anti-Inflammatory Agents
L-Lactic acid
L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.
D-Glucosamine
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1].
ACRYLIC ACID
A alpha,beta-unsaturated monocarboxylic acid that is ethene substituted by a carboxy group. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives It is used as a food additive .
Plicamycin
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468
Prostin E2
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.
ST 27:1;O3
7α, 25-dihydroxycholesterol (7α,25-OHC) is a potent and selective agonist and endogenous ligand of the orphan GPCR receptor EBI2 (GPR183). 7α, 25-dihydroxycholesterol is highly potent at activating EBI2 (EC50=140 pM; Kd=450 pM). 7α, 25-dihydroxycholesterol can serve as a chemokine directing migration of B cells, T cells and dendritic cells[1][2].
thiram
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114
cinaroside
Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].
LM-94
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
Tyramin
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].
Senkyunolide A
Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].
AI3-00667
Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2]. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2].
HYKOP
Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].
Vetol
C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].
Phytodolor
Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].
Byakangelicin
Byakangelicin is a member of psoralens. Byakangelicin is a natural product found in Murraya koenigii, Triphasia trifolia, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. (Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2]. Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].
Nemerol
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AB - Phenylpiperidine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Balchanin
Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.
Valencene
(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Constituent of orange oil. Valencene is found in many foods, some of which are citrus, common oregano, rosemary, and sweet orange. Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].
Ethyl_cinnamate
Ethyl cinnamate is an alkyl cinnamate and an ethyl ester. Ethyl cinnamate is a natural product found in Hedychium spicatum, Cinnamomum verum, and other organisms with data available. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2]. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2].
CYCLOHEXYLAMINE
A primary aliphatic amine consisting of cyclohexane carrying an amino substituent.
Dinoprostone
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.
PAMIDRONIC ACID
M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates
Secalciferol
D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents
Imidazolidine-2,4-dione
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Tiludronic Acid
M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates
Phosphoramide mustard
D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
O-Butanoylcarnitine
A C4-acylcarnitine that is the O-butanoyl derivative of carnitine.
(R)-S-Lactoylglutathione
The S-[(R)-lactoyl] derivative of glutathione. It is an intermediate in the pyruvate metabolism. D000970 - Antineoplastic Agents
SC-58125
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
2-aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents