D-myo-Inositol 3,4-bisphosphate (BioDeep_00000005393)
Secondary id: BioDeep_00001869412
human metabolite Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C6H14O12P2 (339.9960504)
中文名称:
谱图信息:
最多检出来源 Macaca mulatta(otcml) 14.29%
分子结构信息
SMILES: C1(C(C(C(C(C1O)OP(=O)(O)O)OP(=O)(O)O)O)O)O
InChI: InChI=1S/C6H14O12P2/c7-1-2(8)4(10)6(18-20(14,15)16)5(3(1)9)17-19(11,12)13/h1-10H,(H2,11,12,13)(H2,14,15,16)/t1-,2-,3-,4+,5-,6-/m0/s1
描述信息
D-myo-Inositol 3,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 3,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). In humans, D-myo-inositol 3,4-bisphosphate participates in a number of enzymatic reactions. In particular, D-myo-inositol 3,4-bisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate through the action of the enzyme inositol polyphosphate 1-phosphatase. D-myo-Inositol 3,4-bisphosphate is an intermediate in inositol phosphate metabolism. D-myo-Inositol 3,4-bisphosphate is converted from D-myo-inositol-3-phosphate via inositol polyphosphate-4-phosphatase (EC 3.1.3.66).
1D-myo-Inositol 3,4-bisphosphate is an intermediate in inositol phosphate metabolism. 1D-myo-Inositol 3,4-bisphosphate is converted from 1D-myo-inositol-3-phosphate via inositol polyphosphate-4-phosphatase [EC:3.1.3.66]. [HMDB]
同义名列表
17 个代谢物同义名
{[(1S,2S,3S,4S,5R,6S)-2,3,4,5-tetrahydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid; [(1S,2S,3S,4S,5R,6S)-2,3,4,5-tetrahydroxy-6-(phosphonooxy)cyclohexyl]oxyphosphonic acid; 1D-myo-Inositol 3,4-bis(dihydrogen phosphate); 1D-Myo-inositol 3,4-bisphosphoric acid; D-Myo-inositol 3,4-bisphosphoric acid; 1D-Myo-inositol 3,4-bisphosphate; D-myo-Inositol 3,4-bisphosphate; Inositol 3,4-bisphosphoric acid; 1D-myo-Inositol 3,4-diphosphate; D-myo-Inositol 3,4-diphosphate; Myo-inositol 1,2-bisphosphate; Inositol 3,4-bisphosphate; Inositol 1,2-bisphosphate; Inositol 3,4-diphosphate; SCHEMBL405897; Ins(3,4)P2; D-myo-Inositol 1,3-bisphosphate
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:28858
- KEGG: C04063
- PubChem: 440211
- PubChem: 2936
- HMDB: HMDB0006235
- Metlin: METLIN58371
- MetaCyc: D-MYO-INOSITOL-34-BISPHOSPHATE
- foodb: FDB023852
- chemspider: 389196
- CAS: 103597-56-4
- CAS: 69256-53-7
- PMhub: MS000018186
- PubChem: 6760
- 3DMET: B01714
- NIKKAJI: J709.339J
- KEGG: C04062
- PubChem: 6759
- KNApSAcK: 18225
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
209 个相关的代谢反应过程信息。
Reactome(39)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Inositol phosphate metabolism:
H2O + I(1,4,5)P3 ⟶ I(1,4)P2 + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I(1,4,5)P3 ⟶ I(1,4)P2 + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Inositol phosphate metabolism:
H2O + I4P ⟶ Ins + Pi
- Synthesis of IP2, IP, and Ins in the cytosol:
H2O + I4P ⟶ Ins + Pi
BioCyc(0)
WikiPathways(0)
Plant Reactome(156)
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lipid-independent phytate biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Lipid-independent phytate biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
H2O + I3P ⟶ Ins + Pi
- Phytic acid biosynthesis:
ATP + Ins ⟶ ADP + I3P
INOH(1)
- Inositol phosphate metabolism ( Inositol phosphate metabolism ):
O2 + myo-Inositol ⟶ D-Glucuronic acid + H2O
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(13)
- Inositol Phosphate Metabolism:
1D-myo-Inositol 3-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xubo Lin, Hongyin Wang, Zhichao Lou, Meng Cao, Zuoheng Zhang, Ning Gu. Roles of PIP2 in the membrane binding of MIM I-BAR: insights from molecular dynamics simulations.
FEBS letters.
2018 08; 592(15):2533-2542. doi:
10.1002/1873-3468.13186
. [PMID: 29995324] - Anna-Karin Johnsson, Roger Karlsson. Synaptotagmin 1 causes phosphatidyl inositol lipid-dependent actin remodeling in cultured non-neuronal and neuronal cells.
Experimental cell research.
2012 Jan; 318(2):114-26. doi:
10.1016/j.yexcr.2011.10.009
. [PMID: 22036579] - Catherine B Dieck, Wendy F Boss, Imara Y Perera. A role for phosphoinositides in regulating plant nuclear functions.
Frontiers in plant science.
2012; 3(?):50. doi:
10.3389/fpls.2012.00050
. [PMID: 22645589] - Fabio Fassetti, Ofelia Leone, Luigi Palopoli, Simona E Rombo, Adolfo Saiardi. IP6K gene identification in plant genomes by tag searching.
BMC proceedings.
2011 May; 5 Suppl 2(?):S1. doi:
10.1186/1753-6561-5-s2-s1
. [PMID: 21554757] - Michelle B Visser, Adeline Koh, Michael Glogauer, Richard P Ellen. Treponema denticola major outer sheath protein induces actin assembly at free barbed ends by a PIP2-dependent uncapping mechanism in fibroblasts.
PloS one.
2011; 6(8):e23736. doi:
10.1371/journal.pone.0023736
. [PMID: 21901132] - Tanja Y Riyahi, Frederike Frese, Michael Steinert, Napoleon N Omosigho, Gernot Glöckner, Ludwig Eichinger, Benoit Orabi, Robin S B Williams, Angelika A Noegel. RpkA, a highly conserved GPCR with a lipid kinase domain, has a role in phagocytosis and anti-bacterial defense.
PloS one.
2011; 6(11):e27311. doi:
10.1371/journal.pone.0027311
. [PMID: 22073313] - Kenneth L White, Barry J Pate, Benjamin R Sessions. Oolemma receptors and oocyte activation.
Systems biology in reproductive medicine.
2010 Oct; 56(5):365-75. doi:
10.3109/19396360903398266
. [PMID: 20397882] - Till Krech, Margarethe Thiede, Ellen Hilgenberg, Reinhold Schäfer, Karsten Jürchott. Characterization of AKT independent effects of the synthetic AKT inhibitors SH-5 and SH-6 using an integrated approach combining transcriptomic profiling and signaling pathway perturbations.
BMC cancer.
2010 Jun; 10(?):287. doi:
10.1186/1471-2407-10-287
. [PMID: 20546605] - Shailja Singh, M Mahmood Alam, Ipsita Pal-Bhowmick, Joseph A Brzostowski, Chetan E Chitnis. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites.
PLoS pathogens.
2010 Feb; 6(2):e1000746. doi:
10.1371/journal.ppat.1000746
. [PMID: 20140184] - Essam Darwish, Christa Testerink, Mohamed Khalil, Osama El-Shihy, Teun Munnik. Phospholipid signaling responses in salt-stressed rice leaves.
Plant & cell physiology.
2009 May; 50(5):986-97. doi:
10.1093/pcp/pcp051
. [PMID: 19369274] - John C Saari, Maria Nawrot, Ronald E Stenkamp, David C Teller, Gregory G Garwin. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids.
Molecular vision.
2009; 15(?):844-54. doi:
NULL
. [PMID: 19390642] - Mustafa E Ercetin, Elitsa A Ananieva, Natasha M Safaee, Javad Torabinejad, Jamille Y Robinson, Glenda E Gillaspy. A phosphatidylinositol phosphate-specific myo-inositol polyphosphate 5-phosphatase required for seedling growth.
Plant molecular biology.
2008 Jul; 67(4):375-88. doi:
10.1007/s11103-008-9327-3
. [PMID: 18392779] - Indu S Ambudkar, Bidhan C Bandyopadhyay, Xibao Liu, Timothy P Lockwich, Biman Paria, Hwei L Ong. Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains.
Cell calcium.
2006 Nov; 40(5-6):495-504. doi:
10.1016/j.ceca.2006.08.011
. [PMID: 17030060] - T Philip Malan, Frank Porreca. Lipid mediators regulating pain sensitivity.
Prostaglandins & other lipid mediators.
2005 Sep; 77(1-4):123-30. doi:
10.1016/j.prostaglandins.2004.09.008
. [PMID: 16099397] - Surendra K Bansal, Rachna Kathayat, Manoj Tyagi, Krishna K Taneja, Seemi F Basir. Phospholipid metabolism and protein kinase C mediated protein phosphorylation in dietary protein deficiency in rat lung.
Indian journal of experimental biology.
2005 Jul; 43(7):606-13. doi:
. [PMID: 16053266]
- Robert V Stahelin, Aura Burian, Karol S Bruzik, Diana Murray, Wonhwa Cho. Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox.
The Journal of biological chemistry.
2003 Apr; 278(16):14469-79. doi:
10.1074/jbc.m212579200
. [PMID: 12556460] - M Kakei. Receptor-operated regulation of ATP-sensitive K+ channels via membrane phospholipid metabolism.
Current medicinal chemistry.
2003 Feb; 10(3):235-43. doi:
10.2174/0929867033368475
. [PMID: 12570710] - Robin W Freeburn, Karen L Wright, Steven J Burgess, Emmanuelle Astoul, Doreen A Cantrell, Stephen G Ward. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors.
Journal of immunology (Baltimore, Md. : 1950).
2002 Nov; 169(10):5441-50. doi:
10.4049/jimmunol.169.10.5441
. [PMID: 12421919] - Yang Li, Ji-Hong Liu. [Influence of protein kinase C on motility and acrosome reaction of sperm].
Zhonghua nan ke xue = National journal of andrology.
2002; 8(5):367-70. doi:
NULL
. [PMID: 12479130] - C Russo, Y Gao, P Mancini, C Vanni, M Porotto, M Falasca, M R Torrisi, Y Zheng, A Eva. Modulation of oncogenic DBL activity by phosphoinositol phosphate binding to pleckstrin homology domain.
The Journal of biological chemistry.
2001 Jun; 276(22):19524-31. doi:
10.1074/jbc.m009742200
. [PMID: 11278560] - A Toker, M Meyer, K K Reddy, J R Falck, R Aneja, S Aneja, A Parra, D J Burns, L M Ballas, L C Cantley. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3.
The Journal of biological chemistry.
1994 Dec; 269(51):32358-67. doi:
10.1016/s0021-9258(18)31643-0
. [PMID: 7798235] - M Sunako, Y Kawahara, K Kariya, S Araki, H Fukuzaki, Y Takai. Endothelin-induced biphasic formation of 1,2-diacylglycerol in cultured rabbit vascular smooth muscle cells--mass analysis with a radioenzymatic assay.
Biochemical and biophysical research communications.
1989 Apr; 160(2):744-50. doi:
10.1016/0006-291x(89)92496-0
. [PMID: 2541708]