Gene Association: EDN3

UniProt Search: EDN3 (PROTEIN_CODING)
Function Description: endothelin 3

found 45 associated metabolites with current gene based on the text mining result from the pubmed database.

2,3-Diaminopropionic acid

2,3-Diaminopropionic acid, (DL)-isomer, monohydrochloride

C3H8N2O2 (104.0586)


2,3-Diaminopropionic acid, also known as L-2,3-diaminopropanoate or Dpr, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,3-Diaminopropionic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,3-Diaminopropionic acid (2,3-diaminopropionate) is a non-proteinogenic amino acid found in certain secondary metabolites, including zwittermicin A and tuberactinomycin.2,3-Diaminopropionate is formed by the pyridoxal phosphate (PLP) mediated amination of serine. 2,3-Diaminopropionic acid exists in all living organisms, ranging from bacteria to humans. 2,3-Diaminopropionic acid is a metabolite of b-oxalyl-L-a,b-diaminopropionic acid a neurotoxic amino acid (ODAP). (PMID 5774501) COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diltiazem

Acetic acid (2S,3S)-5-(2-dimethylamino-ethyl)-2-(4-methoxy-phenyl)-4-oxo-2,3,4,5-tetrahydro-benzo[b][1,4]thiazepin-3-yl ester

C22H26N2O4S (414.1613)


Diltiazem is only found in individuals that have used or taken this drug. It is a benzothiazepine derivative with vasodilating action due to its antagonism of the actions of the calcium ion in membrane functions. It is also teratogenic. [PubChem]Possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, diltiazem, like verapamil, inhibits the influx of extracellular calcium across both the myocardial and vascular smooth muscle cell membranes. The resultant inhibition of the contractile processes of the myocardial smooth muscle cells leads to dilation of the coronary and systemic arteries and improved oxygen delivery to the myocardial tissue. C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DB - Benzothiazepine derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Cinchonidine

(S)-[(2R,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-quinolin-4-ylmethanol

C19H22N2O (294.1732)


Cinchonine is found in fruits. Cinchonine is an alkaloid from the leaves of Olea europaea Cinchonine is an alkaloidwith molecular formula C19H22N2O used in asymmetric synthesis in organic chemistry. It is a stereoisomer and pseudo-enantiomer of cinchonidine D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents [Raw Data] CB216_Cinchonine_pos_10eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_30eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_40eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_50eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_20eV_CB000075.txt Alkaloid from the leaves of Olea europaea Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].

   

Tridecanoic acid

(S)-2-Aminotridecanoic acid

C13H26O2 (214.1933)


Tridecanoic acid, also known as N-tridecanoate or C13:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Tridecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tridecanoic acid is a potentially toxic compound. Tridecanoic acid is a short-chain fatty acid. Tridecanoic acid is found in many foods, some of which are nutmeg, muskmelon, black elderberry, and coconut. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

Meclofenamic acid

Benzoic acid, 2-((2,6-dichloro-3-methylphenyl)amino)-, monosodium salt, monohydrate

C14H11Cl2NO2 (295.0167)


Meclofenamic acid is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. It also inhibits prostaglandin biosynthesis. [PubChem]The mode of action, like that of other nonsteroidal anti-inflammatory agents, is not known. Therapeutic action does not result from pituitary-adrenal stimulation. In animal studies, meclofenamic acid was found to inhibit prostaglandin synthesis and to compete for binding at the prostaglandin receptor site. In vitro meclofenamic acid was found to be an inhibitor of human leukocyte 5-lipoxygenase activity. These properties may be responsible for the anti-inflammatory action of meclofenamic acid. There is no evidence that meclofenamic acid alters the course of the underlying disease. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3690 D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Nicardipine

3-{2-[benzyl(methyl)amino]ethyl} 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C26H29N3O6 (479.2056)


A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3807; ORIGINAL_PRECURSOR_SCAN_NO 3803 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3813; ORIGINAL_PRECURSOR_SCAN_NO 3810 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7839; ORIGINAL_PRECURSOR_SCAN_NO 7837 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7818; ORIGINAL_PRECURSOR_SCAN_NO 7816 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7789; ORIGINAL_PRECURSOR_SCAN_NO 7787 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3822; ORIGINAL_PRECURSOR_SCAN_NO 3819 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3813; ORIGINAL_PRECURSOR_SCAN_NO 3811 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3884; ORIGINAL_PRECURSOR_SCAN_NO 3883 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3807; ORIGINAL_PRECURSOR_SCAN_NO 3805 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7827; ORIGINAL_PRECURSOR_SCAN_NO 7825 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7806; ORIGINAL_PRECURSOR_SCAN_NO 7805 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7845; ORIGINAL_PRECURSOR_SCAN_NO 7843 C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Trichlorfon

1-Hydroxy-2,2,2-trichloroethylphosphonic acid dimethyl ester

C4H8Cl3O4P (255.9226)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BB - Organophosphorous compounds D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

6-Keto-prostaglandin F1a

7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoic acid

C20H34O6 (370.2355)


6-keto-Prostaglandin F1a is the physiologically active and stable metabolite of prostacyclin. (A prostaglandin found in nearly all mammalian tissue that is a powerful vasodilator and inhibits platelet aggregation; it is biosynthesized enzymatically from prostaglandin endoperoxides in human vascular tissue; the sodium salt has been also used to treat primary pulmonary hypertension (Hypertension, Pulmonary). A delayed and prolonged increase in 6-keto-PGF1 alpha is reported in animals with septic shock, i.e., those with fecal peritonitis or cecal ligation. 6-keto-Prostaglandin F1a plasma levels has been found increased in patients with epidemic hemorrhagic fever, in patients with acute obstructive suppurative cholangitis, in patients with gynecologic cancer and has significant correlation with the level of high density lipoprotein cholesterol in plasma. (PMID 1976492, 2298410, 2379443, 2111556)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 6-keto-Prostaglandin F1a is the physiologically active and stable metabolite of prostacyclin. (A prostaglandin found in nearly all mammalian tissue that is a powerful vasodilator and inhibits platelet aggregation; it is biosynthesized enzymatically from prostaglandin endoperoxides in human vascular tissue; the sodium salt has been also used to treat primary pulmonary hypertension (Hypertension, Pulmonary).

   

4-Methoxybenzaldehyde

4-anisaldehyde, 1,2,3,4,5,6-(14)C6-labeled

C8H8O2 (136.0524)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Biuret

1-(carbamoylamino)formamide

C2H5N3O2 (103.0382)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Methoxamine

Glaxo wellcome brand 1 OF methoxamine hydrochloride

C11H17NO3 (211.1208)


Methoxamine is only found in individuals that have used or taken this drug. It is an alpha-adrenergic agonist that causes prolonged peripheral vasoconstriction. It has little if any direct effect on the central nervous system. [PubChem]Methoxamine acts through peripheral vasoconstriction by acting as a pure alpha-1 adrenergic receptor agonist, consequently increasing systemic blood pressure (both systolic and diastolic). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents KEIO_ID M169; [MS2] KO009056 KEIO_ID M169

   

L-Targinine

(2S)-2-amino-5-(3-methylcarbamimidamido)pentanoic acid

C7H16N4O2 (188.1273)


L-Targinine is found in pulses. L-Targinine is isolated from broad bean seed L-Targinine has been identified in the human placenta (PMID: 32033212). C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D004791 - Enzyme Inhibitors

   

phosphoramidon

phosphoramidon

C23H34N3O10P (543.1982)


A dipeptide isolated from the cultures of Streptomyces tanashiensis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors KEIO_ID P122

   

Guanethidine

((2-Hexahydro-1(2H)-azocinyl)ethyl)guanidine

C10H22N4 (198.1844)


An antihypertensive agent that acts by inhibiting selectively transmission in post-ganglionic adrenergic nerves. It is believed to act mainly by preventing the release of norepinephrine at nerve endings and causes depletion of norepinephrine in peripheral sympathetic nerve terminals as well as in tissues. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CC - Guanidine derivatives D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents KEIO_ID I063

   

Glycerophosphoinositol

[(2R)-2,3-dihydroxypropoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C9H19O11P (334.0665)


Glycerophosphoinositol (CAS: 16824-65-0), also known as 1-(sn-glycero-3-phospho)-1D-myo-inositol, is produced through deacylation by phospholipase B of the essential phospholipid phosphatidylinositol. Glycerophosphoinositols are ubiquitous phosphoinositide metabolites involved in the control of several cell functions. They exert their actions both intracellularly and by rapidly equilibrating across the plasma membrane. Their transport is mediated by the Glut2 transporter, the human ortholog of GIT1 (PMID: 17141226). Glycerophosphoinositol is a substrate for glycerophosphoinositol inositolphosphodiesterase (EC 3.1.4.43) and is involved in the following reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = glycerol + 1D-myo-inositol 1-phosphate. It is also a substrate for glycerophosphoinositol glycerophosphodiesterase (EC 3.1.4.44) which catalyzes the chemical reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = myo-inositol + sn-glycerol 3-phosphate. Isolated from beef liver. Glycerylphosphoinositol is found in animal foods.

   

Inositol 1,3,4-trisphosphate

(2,3,5-Trihydroxy-4,6-diphosphonooxycyclohexyl) dihydrogen phosphate

C6H15O15P3 (419.9624)


Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]

   

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Nitroarginine

N(gamma)-nitro-L-arginine

C6H13N5O4 (219.0967)


An L-arginine derivative that is L-arginine in which the terminal nitrogen of the guanidyl group is replaced by a nitro group. C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor D004791 - Enzyme Inhibitors

   

Triacetylene

Triacetylene; 1,3,5-Hexatriyne

C6H2 (74.0156)


   

BQ-123

Cyclo[D-trp-D-asp-L-pro-D-val-L-leu]

C31H42N6O7 (610.3115)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D065128 - Endothelin Receptor Antagonists BQ-123 is a potent and selective endothelin A (ETA) receptor antagonist with an IC50 of 7.3 nM and a Ki of 25 nM. BQ-123 inhibits endothelin-1-mediated proliferation of human pulmonary artery smooth muscle cells and lowers blood pressure in different rat models of hypertension[1][2][3].

   

nemonapride

nemonapride

C21H26ClN3O2 (387.1713)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Same as: D01468

   

Methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate

3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, methyl ester

C16H15F3N2O4 (356.0984)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

3-aminoalanine

DL-2,3-Diaminopropionic acid monohydrochloride

C3H8N2O2 (104.0586)


A diamino acid that is alanine in which one of the hydrogens of the methyl group is replaced by an amino group. KEIO_ID D037

   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Diltiazem

Dilacor XR

C22H26N2O4S (414.1613)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DB - Benzothiazepine derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker CONFIDENCE standard compound; EAWAG_UCHEM_ID 3017

   

Cinchonine

(R)-alpha-[(8R)-8-Vinyl-1-azabicyclo[2.2.2]octane-2-yl]-4-quinolinemethanol

C19H22N2O (294.1732)


Cinchonan in which a hydrogen at position 9 is substituted by hydroxy (S configuration). It occurs in the bark of most varieties of Cinchona shrubs, and is frequently used for directing chirality in asymmetric synthesis. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents Origin: Plant; Formula(Parent): C19H22N2O; Bottle Name:Cinchonine; PRIME Parent Name:Cinchonine; PRIME in-house No.:V0325; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.610 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2401; CONFIDENCE confident structure Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].

   

Tridecylic acid

TRIDECANOIC ACID

C13H26O2 (214.1933)


A C13 straight-chain saturated fatty acid. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

Metrifonate

Pesticide1_Trichlorfon_C4H8Cl3O4P_Cekufon

C4H8Cl3O4P (255.9226)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BB - Organophosphorous compounds D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Biuret

Biuret

C2H5N3O2 (103.0382)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

methoxamine

methoxamine

C11H17NO3 (211.1208)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

meclofenamic acid

2-[(2,6-dichloro-3-methylphenyl)amino]-benzoic acid, monosodium salt

C14H11Cl2NO2 (295.0167)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

nicardipine

nicardipine

C26H29N3O6 (479.2056)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

C13:0

TRIDECANOIC ACID

C13H26O2 (214.1933)


Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

FA 20:3;O4

(S)-5-hydroxy-5-((2S,4S,5S)-4-hydroxy-5-((S,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)tetrahydrofuran-2-yl)pentanoic acid

C20H34O6 (370.2355)


   

Obepin

InChI=1\C8H8O2\c1-10-8-4-2-7(6-9)3-5-8\h2-6H,1H

C8H8O2 (136.0524)


4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Tridecanoic acid

tridecanoic acid

C13H26O2 (214.1933)


Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

GUANETHIDINE

GUANETHIDINE

C10H22N4 (198.1844)


C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CC - Guanidine derivatives D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents

   

6-Oxoprostaglandin F1α

6-keto-Prostaglandin F1alpha

C20H34O6 (370.2355)


   

Tilarginine

Tilarginine

C7H16N4O2 (188.1273)


C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D004791 - Enzyme Inhibitors

   

Inositol 1,3,4-trisphosphate

1D-Myo-inositol 1,3,4-trisphosphate

C6H15O15P3 (419.9624)


   

THIORPHAN

THIORPHAN

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

1,3,5-Hexatriyne

1,3,5-Hexatriyne

C6H2 (74.0156)


   

1-(sn-Glycero-3-phospho)-1D-myo-inositol

1-(sn-Glycero-3-phospho)-1D-myo-inositol

C9H19O11P (334.0665)


A myo-inositol monophosphate derivative that is 1D-myo-inositol substituted at position 1 by an sn-glycero-3-phospho group.

   

Bay K-8644

Methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate

C16H15F3N2O4 (356.0984)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators