Gene Association: THBD

UniProt Search: THBD (PROTEIN_CODING)
Function Description: thrombomodulin

found 80 associated metabolites with current gene based on the text mining result from the pubmed database.

Danshensu

(R)-a,3,4-Trihydroxybenzenepropanoic acid; 3-(3,4-Dihydroxyphenyl)-(2R)-lactic acid; Dan shen suan A; Salvianic acid A;Danshensu

C9H10O5 (198.0528)


(2R)-3-(3,4-dihydroxyphenyl)lactic acid is a (2R)-2-hydroxy monocarboxylic acid that is (R)-lactic acid substituted at position 3 by a 3,4-dihydroxyphenyl group. It is a (2R)-2-hydroxy monocarboxylic acid and a 3-(3,4-dihydroxyphenyl)lactic acid. It is a conjugate acid of a (2R)-3-(3,4-dihydroxyphenyl)lactate. Danshensu is a natural product found in Salvia miltiorrhiza, Melissa officinalis, and other organisms with data available. Salvianic acid A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76822-21-4 (retrieved 2024-06-29) (CAS RN: 76822-21-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway. Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway.

   

Adenine

7H-purin-6-amine

C5H5N5 (135.0545)


Adenine is the parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. It has a role as a human metabolite, a Daphnia magna metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase and a member of 6-aminopurines. It derives from a hydride of a 9H-purine. A purine base and a fundamental unit of adenine nucleotides. Adenine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenine is a natural product found in Fritillaria cirrhosa, Annona purpurea, and other organisms with data available. Adenine is a purine nucleobase with an amine group attached to the carbon at position 6. Adenine is the precursor for adenosine and deoxyadenosine nucleosides. Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (A3372, A3373). Adenine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine base and a fundamental unit of ADENINE NUCLEOTIDES. See also: adenine; dextrose, unspecified form (component of) ... View More ... Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (PMID: 17052198, 17520339). Widespread throughout animal and plant tissue, purine components of DNA, RNA, and coenzymes. Vitamin The parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. Adenine (/ˈædɪnɪn/) (symbol A or Ade) is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA.[2] The shape of adenine is complementary to either thymine in DNA or uracil in RNA. The adjacent image shows pure adenine, as an independent molecule. When connected into DNA, a covalent bond is formed between deoxyribose sugar and the bottom left nitrogen (thereby removing the existing hydrogen atom). The remaining structure is called an adenine residue, as part of a larger molecule. Adenosine is adenine reacted with ribose, as used in RNA and ATP; Deoxyadenosine is adenine attached to deoxyribose, as used to form DNA. Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4] Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

Capsiate

6-nonenoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester, (6E)-

C18H26O4 (306.1831)


Capsiate is a carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. It has a role as a plant metabolite, a hypoglycemic agent, an anti-allergic agent, an antioxidant, an angiogenesis inhibitor, an anti-inflammatory agent and a capsaicin receptor agonist. It is a carboxylic ester, a monomethoxybenzene and a member of phenols. It is functionally related to a vanillyl alcohol. Capsiate is a natural product found in Apis cerana with data available. A carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. Constituent of fruits of Capsicum annuum. Capsiate is found in many foods, some of which are orange bell pepper, herbs and spices, yellow bell pepper, and italian sweet red pepper. Capsiate is found in fruits. Capsiate is a constituent of fruits of Capsicum annuum Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].

   

Homocysteine

(2S)-2-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0354)


A high level of blood serum homocysteine is a powerful risk factor for cardiovascular disease. Unfortunately, one study which attempted to decrease the risk by lowering homocysteine was not fruitful. This study was conducted on nearly 5000 Norwegian heart attack survivors who already had severe, late-stage heart disease. No study has yet been conducted in a preventive capacity on subjects who are in a relatively good state of health.; Elevated levels of homocysteine have been linked to increased fractures in elderly persons. The high level of homocysteine will auto-oxidize and react with reactive oxygen intermediates and damage endothelial cells and has a higher risk to form a thrombus. Homocysteine does not affect bone density. Instead, it appears that homocysteine affects collagen by interfering with the cross-linking between the collagen fibers and the tissues they reinforce. Whereas the HOPE-2 trial showed a reduction in stroke incidence, in those with stroke there is a high rate of hip fractures in the affected side. A trial with 2 homocysteine-lowering vitamins (folate and B12) in people with prior stroke, there was an 80\\\\\\% reduction in fractures, mainly hip, after 2 years. Interestingly, also here, bone density (and the number of falls) were identical in the vitamin and the placebo groups.; Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD. (PMID 17136938, 15630149); Homocysteine is an amino acid with the formula HSCH2CH2CH(NH2)CO2H. It is a homologue of the amino acid cysteine, differing by an additional methylene (-CH2-) group. It is biosynthesized from methionine by the removal of its terminal C? methyl group. Homocysteine can be recycled into methionine or converted into cysteine with the aid of B-vitamins.; Studies reported in 2006 have shown that giving vitamins [folic acid, B6 and B12] to reduce homocysteine levels may not quickly offer benefit, however a significant 25\\\\\\% reduction in stroke was found in the HOPE-2 study even in patients mostly with existing serious arterial decline although the overall death rate was not significantly changed by the intervention in the trial. Clearly, reducing homocysteine does not quickly repair existing... Homocysteine (CAS: 454-29-5) is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with an increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Pyridoxal, folic acid, riboflavin, and vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocystinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID: 17136938 , 15630149). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism. [Spectral] L-Homocysteine (exact mass = 135.0354) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Homocysteine is biosynthesized naturally via a multi-step process.[9] First, methionine receives an adenosine group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-adenosyl methionine (SAM-e). SAM-e then transfers the methyl group to an acceptor molecule, (e.g., norepinephrine as an acceptor during epinephrine synthesis, DNA methyltransferase as an intermediate acceptor in the process of DNA methylation). The adenosine is then hydrolyzed to yield L-homocysteine. L-Homocysteine has two primary fates: conversion via tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine.[10] Biosynthesis of cysteine Mammals biosynthesize the amino acid cysteine via homocysteine. Cystathionine β-synthase catalyses the condensation of homocysteine and serine to give cystathionine. This reaction uses pyridoxine (vitamin B6) as a cofactor. Cystathionine γ-lyase then converts this double amino acid to cysteine, ammonia, and α-ketobutyrate. Bacteria and plants rely on a different pathway to produce cysteine, relying on O-acetylserine.[11] Methionine salvage Homocysteine can be recycled into methionine. This process uses N5-methyl tetrahydrofolate as the methyl donor and cobalamin (vitamin B12)-related enzymes. More detail on these enzymes can be found in the article for methionine synthase. Other reactions of biochemical significance Homocysteine can cyclize to give homocysteine thiolactone, a five-membered heterocycle. Because of this "self-looping" reaction, homocysteine-containing peptides tend to cleave themselves by reactions generating oxidative stress.[12] Homocysteine also acts as an allosteric antagonist at Dopamine D2 receptors.[13] It has been proposed that both homocysteine and its thiolactone may have played a significant role in the appearance of life on the early Earth.[14] L-Homocysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=454-28-4 (retrieved 2024-06-29) (CAS RN: 6027-13-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

Hippurate

2-BENZAMIDOACETIC ACID

C9H9NO3 (179.0582)


C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent CONFIDENCE standard compound; INTERNAL_ID 130 KEIO_ID H065 Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.

   

DL-Homocystine

2-amino-4-[(3-amino-3-carboxypropyl)disulfanyl]butanoic acid

C8H16N2O4S2 (268.0551)


Homocystine is the oxidized form of homocysteine. Homocystine is a dipeptide consisting of two homocysteine molecules joined by a disulfide bond. Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Homocystine occurs only transiently before being reduced to homocysteine and converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Homocystine and homocysteine-cysteine mixed disulfides account for >98\\\\\% of total homocysteine in plasma from healthy individuals (PMID 11592966). Homocystine has been shown to stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells, thereby inducing a vascular cell type-specific oxidative stress. This vascular stress is associated with atherothrombotic cardiovascular disease (PMID: 14980706). High levels of homocysteine (and homocysteine) can be found in individuals suffering from homocystinura due to cystathionine synthase deficiency (PMID: 4685596) Homocystine is the double-bonded form of homocysteine, but it occurs only transiently before being converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H041 4,4'-Disulfanediylbis(2-aminobutanoic acid) is an endogenous metabolite. DL-Homocystine is the double-bonded form of homocysteine and homocysteine is recognized as an important substance in the pathogenesis and pathophysiology of schizophrenia. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.

   

L-Lysine

(2S)-2,6-diaminohexanoic acid

C6H14N2O2 (146.1055)


Lysine (Lys), also known as L-lysine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Lysine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Lysine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. In humans, lysine is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. Lysine is high in foods such as wheat germ, cottage cheese and chicken. Of meat products, wild game and pork have the highest concentration of lysine. Fruits and vegetables contain little lysine, except avocados. Normal requirements for lysine have been found to be about 8 g per day or 12 mg/kg in adults. Children and infants need more, 44 mg/kg per day for an eleven to-twelve-year old, and 97 mg/kg per day for three-to six-month old. In organisms that synthesise lysine, it has two main biosynthetic pathways, the diaminopimelate and α-aminoadipate pathways, which employ distinct enzymes and substrates and are found in diverse organisms. Lysine catabolism occurs through one of several pathways, the most common of which is the saccharopine pathway. Lysine plays several roles in humans, most importantly proteinogenesis, but also in the crosslinking of collagen polypeptides, uptake of essential mineral nutrients, and in the production of carnitine, which is key in fatty acid metabolism. Lysine is also often involved in histone modifications, and thus, impacts the epigenome. Lysine is highly concentrated in muscle compared to most other amino acids. Normal lysine metabolism is dependent upon many nutrients including niacin, vitamin B6, riboflavin, vitamin C, glutamic acid and iron. Excess arginine antagonizes lysine. Several inborn errors of lysine metabolism are known, such as cystinuria, hyperdibasic aminoaciduria I, lysinuric protein intolerance, propionic acidemia, and tyrosinemia I. Most are marked by mental retardation with occasional diverse symptoms such as absence of secondary sex characteristics, undescended testes, abnormal facial structure, anemia, obesity, enlarged liver and spleen, and eye muscle imbalance. Lysine also may be a useful adjunct in the treatment of osteoporosis. Although high protein diets result in loss of large amounts of calcium in urine, so does lysine deficiency. Lysine may be an adjunct therapy because it reduces calcium losses in urine. Lysine deficiency also may result in immunodeficiency. Requirements for lysine are probably increased by stress. Lysine toxicity has not occurred with oral doses in humans. Lysine dosages are presently too small and may fail to reach the concentrations necessary to prove potential therapeutic applications. Lysine metabolites, amino caproic acid and carnitine have already shown their therapeutic potential. Thirty grams daily of amino caproic acid has been used as an initial daily dose in treating blood clotting disorders, indicating that the proper doses of lysine, its precursor, have yet to be used in medicine. Low lysine levels have been found in patients with Parkinsons, hypothyroidism, kidney disease, asthma and depression. The exact significance of these levels is unclear, yet lysine therapy can normalize the level and has been associated with improvement of some patients with these conditions. Abnormally elevated hydroxylysines have been found in virtually all chronic degenerative diseases and those treated with coumadin therapy. The levels of this stress marker may be improved by high doses of vitamin C. Lysine is particularly useful in therapy for marasmus (wasting) (http://www.dcnutrition.com). Lysine has also been sh... [Spectral] L-Lysine (exact mass = 146.10553) and Carnosine (exact mass = 226.10659) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, nutrient. Found widely in protein hydrolysates, e.g. casein, egg albumen, fibrin, gelatin, beet molasses. Flavouring agent for a variety of foods L-Lysine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-87-1 (retrieved 2024-07-01) (CAS RN: 56-87-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].

   

Heroin

Diacetylmorphine (Heroin)

C21H23NO5 (369.1576)


A morphinane alkaloid that is morphine bearing two acetyl substituents on the O-3 and O-6 positions. As with other opioids, heroin is used as both an analgesic and a recreational drug. Frequent and regular administration is associated with tolerance and physical dependence, which may develop into addiction. Its use includes treatment for acute pain, such as in severe physical trauma, myocardial infarction, post-surgical pain, and chronic pain, including end-stage cancer and other terminal illnesses. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1533

   

Warfarin

4-hydroxy-3-[(1R)-3-oxo-1-phenylbutyl]-2H-1-benzopyran-2-one

C19H16O4 (308.1049)


Warfarin is an anticoagulant that acts by inhibiting the synthesis of vitamin K-dependent coagulation factors. Warfarin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, pulmonary embolism, and atrial fibrillation with embolization. It is also used as an adjunct in the prophylaxis of systemic embolism after myocardial infarction. Warfarin is also used as a rodenticide. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent > C173064 - Vitamin K Antagonist D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals

   

Eprosartan

4-({2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl}methyl)benzoic acid

C23H24N2O4S (424.1457)


Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2776 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

3-Hydroxyl kyneurenine

2-Amino-4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid

C10H12N2O4 (224.0797)


Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). [HMDB] Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA12_3-OH-kynurenine_pos_20eV_1-4_01_802.txt [Raw Data] CBA12_3-OH-kynurenine_pos_10eV_1-4_01_801.txt [Raw Data] CBA12_3-OH-kynurenine_pos_50eV_1-4_01_805.txt [Raw Data] CBA12_3-OH-kynurenine_pos_40eV_1-4_01_804.txt [Raw Data] CBA12_3-OH-kynurenine_pos_30eV_1-4_01_803.txt C26170 - Protective Agent > C275 - Antioxidant KEIO_ID H050; [MS3] KO009001 KEIO_ID H050; [MS2] KO009000 KEIO_ID H050

   

Betaxolol

1-(4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)-3-((1-methylethyl)amino)-2-propanol

C18H29NO3 (307.2147)


Betaxolol is only found in individuals that have used or taken this drug. It is a cardioselective beta-1-adrenergic antagonist with no partial agonist activity. [PubChem]Betaxolol selectively blocks catecholamine stimulation of beta(1)-adrenergic receptors in the heart and vascular smooth muscle. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Betaxolol can also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles, causing bronchospasm. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Tranexamic Acid

(1r,4r)-4-(aminomethyl)cyclohexane-1-carboxylic acid

C8H15NO2 (157.1103)


Tranexamic Acid is only found in individuals that have used or taken this drug. It is an antifibrinolytic hemostatic used in severe hemorrhage. [PubChem]Tranexamic acid competitively inhibits activation of plasminogen (via binding to the kringle domain), thereby reducing conversion of plasminogen to plasmin (fibrinolysin), an enzyme that degrades fibrin clots, fibrinogen, and other plasma proteins, including the procoagulant factors V and VIII. Tranexamic acid also directly inhibits plasmin activity, but higher doses are required than are needed to reduce plasmin formation. B - Blood and blood forming organs > B02 - Antihemorrhagics > B02A - Antifibrinolytics > B02AA - Amino acids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics C78275 - Agent Affecting Blood or Body Fluid > C78311 - Hemostatic Agent D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tranexamic acid (cyclocapron), a cyclic analog of lysine, is an orally active antifibrinolytic agent. Tranexamic acid attenuates the effects of severe trauma, inhibits urokinase plasminogen activator and ameliorates dry wrinkles. Tranexamic acid can used for the research of hemostasis [1][2][3][4][5].

   

Ticlopidine

5-[(2-chlorophenyl)methyl]-4H,5H,6H,7H-thieno[3,2-c]pyridine

C14H14ClNS (263.0535)


Ticlopidine is an effective inhibitor of platelet aggregation. The drug has been found to significantly reduce infarction size in acute myocardial infarcts and is an effective antithrombotic agent in arteriovenous fistulas, aorto-coronary bypass grafts, ischemic heart disease, venous thrombosis, and arteriosclerosis. [PubChem] B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent > C190801 - P2Y12 Inhibitor D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3029 D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents

   

Perindopril

(2S,3aS,7aS)-1-[(2S)-2-{[(2S)-1-ethoxy-1-oxopentan-2-yl]amino}propanoyl]-octahydro-1H-indole-2-carboxylic acid

C19H32N2O5 (368.2311)


Perindopril is a nonsulfhydryl prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly metabolized in the liver to perindoprilat, its active metabolite, following oral administration. Perindoprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Perindopril may be used to treat mild to moderate essential hypertension, mild to moderate congestive heart failure, and to reduce the cardiovascular risk of individuals with hypertension or post-myocardial infarction and stable coronary disease. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

Thromboxane B2

(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoic acid

C20H34O6 (370.2355)


Thromboxanes. A stable, physiologically active compound formed in vivo from the prostaglandin endoperoxides. It is important in the platelet-release reaction (release of ADP and serotonin). -- Pubchem. Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Thromboxanes

   

(+)-Sesamin

1,3-BENZODIOXOLE, 5,5-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS-, (1S-(1.ALPHA.,3A .ALPHA.,4.ALPHA.,6A .ALPHA.))-

C20H18O6 (354.1103)


(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Asymmetric dimethylarginine

(2S)-2-amino-5-[(E)-[amino(dimethylamino)methylidene]amino]pentanoic acid

C8H18N4O2 (202.143)


Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally-essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide, a key chemical to endothelial and hence cardiovascular health. Asymmetric dimethylarginine is created in protein methylation, a common mechanism of post-translational protein modification. This reaction is catalyzed by an enzyme set called S-adenosylmethionine protein N-methyltransferases (protein methylases I and II). The methyl groups transferred to create ADMA are derived from the methyl group donor S-adenosylmethionine, an intermediate in the metabolism of homocysteine. (Homocysteine is an important blood chemical, because it is also a marker of cardiovascular disease). After synthesis, ADMA migrates into the extracellular space and thence into blood plasma. Asymmetric dimethylarginine is measured using high performance liquid chromatography. ADMA has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Isolated from broad bean seeds (Vicia faba). NG,NG-Dimethyl-L-arginine is found in many foods, some of which are yellow wax bean, spinach, green zucchini, and white cabbage. D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

3-Hydroxyaspartic acid

D-Aspartic acid,3-hydroxy-, (3S)-rel-

C4H7NO5 (149.0324)


A hydroxy-amino acid that is aspartic acid in which one of the methylene hydrogens has been replaced by a hydroxy group. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID H086

   

Benzamidine

Benzamidine hydrochloride hydrate

C7H8N2 (120.0687)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 2169 KEIO_ID B004

   

gamma-Tocotrienol

(2R)-3,4-Dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. Acquisition and generation of the data is financially supported in part by CREST/JST. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

Prostaglandin I2

5-[(3aR,4R,5R,6aS)-5-hydroxy-4-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-hexahydro-2H-cyclopenta[b]furan-2-ylidene]pentanoic acid

C20H32O5 (352.225)


Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78568 - Prostaglandin Analogue Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

12-HHTrE

12(S)-Hydroxy-(5Z,8Z,10E)-heptadeca-5,8,10-trienoic acid anion

C17H28O3 (280.2038)


12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.

   

Vitamin K

2-methyl-3-[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]naphthalene-1,4-dione

C31H46O2 (450.3498)


D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents D018977 - Micronutrients > D014815 - Vitamins Widely distributed in green leaves and vegetables, especies cabbage and spinach. Infant formula fortifier. Phytomenadione is found in many foods, some of which are swiss chard, fruit salad, milk (cow), and common buckwheat. Vitamin K1 a naturally occurring vitamin required for blood coagulation and bone and vascular metabolism. Vitamin K1 a naturally occurring vitamin required for blood coagulation and bone and vascular metabolism.

   

Isoflurophate

Diisopropylfluorophosphoric acid ester

C6H14FO3P (184.0665)


An irreversible cholinesterase inhibitor with actions similar to those of echothiophate. It is a powerful miotic used mainly in the treatment of glaucoma. Its vapor is highly toxic and it is recommended that only solutions in arachis oil be used therapeutically. (From Martindale, The Extra Pharmacopoeia, 29th ed, p1330) S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Allophanic acid

Urea-1-carboxylic acid

C2H4N2O3 (104.0222)


   

PPACK

D-Phe-Pro-Arg-CH2Cl

C21H31ClN6O3 (450.2146)


   

Diisopropylphosphate

Phosphoric acid, bis(1-methylethyl) ester

C6H15O4P (182.0708)


   

N-D-Ribosylpyrimidine

Pyrimidine nucleoside; N-D-Ribosylpyrimidine

C9H13N2O4+ (213.0875)


   

4-Deoxy-beta-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine 4-sulfate

2-[3-acetamido-2-hydroxy-6-(hydroxymethyl)-5-sulfooxyoxan-4-yl]oxy-3,4-dihydroxy-3,4-dihydro-2H-pyran-6-carboxylic acid

C14H21NO14S (459.0683)


   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

Lipoxin B4

(5S,14R,6E,8Z,10E,12E,15S)-5,14,15-Trihydroxy-6,8,10,12-eicosatetraenoic acid

C20H32O5 (352.225)


Lipoxins (LXs) and aspirin-triggered lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. In addition to the well-appreciated ability of aspirin to inhibit PGs, aspirin also acetylates cyclooxygenase (COX)-2, triggering the formation of a 15-epimeric form of lipoxins, termed aspirin-triggered LXA4 (ATL). These eicosanoids (i.e. LXA4 and ATL) with a unique trihydroxytetraene structure function as stop signals in inflammation and actively participate in dampening host responses to bring the inflammation to a close, namely, resolution. LXA4 and ATL elicit the multicellular responses via a specific G protein-coupled receptor (GPCR) termed ALX that has been identified in human (PMID: 16968948, 11478982). Lipoxins (LXs) and aspirin-triggered Lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

Desmopressin

(2S)-2-({[(2S)-1-[(4R,7S,10S,13S,16S)-13-benzyl-6,9,12,15,18-pentahydroxy-10-[2-(C-hydroxycarbonimidoyl)ethyl]-7-[(C-hydroxycarbonimidoyl)methyl]-16-[(4-hydroxyphenyl)methyl]-1,2-dithia-5,8,11,14,17-pentaazacycloicosa-5,8,11,14,17-pentaene-4-carbonyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-5-carbamimidamido-N-[(C-hydroxycarbonimidoyl)methyl]pentanimidate

C46H64N14O12S2 (1068.4269)


Desmopressin is a chemical that is similar to Antidiuretic Hormone (ADH) which is found naturally in the body. It increases urine concentration and decreases urine production. Desmopressin is used to prevent and control excessive thirst, urination, and dehydration caused by injury, surgery, and certain medical conditions, allowing you to sleep through the night without awakening to urinate. It is also used to treat specific types of diabetes insipidus and conditions after head injury or pituitary surgery. H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents

   

Sulfinpyrazone

4-[2-(benzenesulfinyl)ethyl]-1,2-diphenylpyrazolidine-3,5-dione

C23H20N2O3S (404.1195)


Sulfinpyrazone is only found in individuals that have used or taken this drug. It is a uricosuric drug that is used to reduce the serum urate levels in gout therapy. It lacks anti-inflammatory, analgesic, and diuretic properties. [PubChem]Sulfinpyrazone is an oral uricosuric agent (pyrazolone derivative) used to treat chronic or intermittent gouty arthritis. Sulfinpyrazone competitively inhibits the reabsorption of uric acid at the proximal convoluted tubule, thereby facilitating urinary excretion of uric acid and decreasing plasma urate concentrations. This is likely done through inhibition of the urate anion transporter (hURAT1) as well as the human organic anion transporter 4 (hOAT4). Sulfinpyrazone is not intended for the treatment of acute attacks because it lacks therapeutically useful analgesic and anti-inflammatory effects. Sulfinpyrazone and its sulfide metabolite possess COX inhibitory effects. Sulfinpyrazone has also been shown to be a UDP-glucuronsyltransferase inhibitor and a very potent CYP2C9 inhibitor. Sulfinpyrazone is also known to be a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor as well as an inhibitor of several multridrug resistance proteins (MRPs). M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent

   

Paricalcitol

(1R,3R)-5-{2-[(1R,3aS,4E,7aR)-1-[(2R,3E,5S)-6-hydroxy-5,6-dimethylhept-3-en-2-yl]-7a-methyl-octahydro-1H-inden-4-ylidene]ethylidene}cyclohexane-1,3-diol

C27H44O3 (416.329)


Paricalcitol is only found in individuals that have used or taken this drug. It is a synthetic vitamin D analog. Paricalcitol has been used to reduce parathyroid hormone levels. Paricalcitol is indicated for the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure.Paricalcitol is biologically active vitamin D analog of calcitriol with modifications to the side chain (D2) and the A (19-nor) ring. Preclinical andin vitro studies have demonstrated that paricalcitols biological actions are mediated through binding of the VDR, which results in the selective activation of vitamin D responsive pathways. Vitamin D and paricalcitol have been shown to reduce parathyroid hormone levels by inhibiting PTH synthesis and secretion. H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols

   

Norethindrone acetate

Norethindrone acetate; Norethisterone acetate

C22H28O3 (340.2038)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

Mycolactone

Mycolactone

C44H70O9 (742.502)


   

Tamibarotene

4-((5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl)benzoic acid

C22H25NO3 (351.1834)


Tamibarotene is only found in individuals that have used or taken this drug. It is a novel synthetic retinoid for acute promyelocytic leukaemia (APL). Tamibarotene is currently approved in Japan for treatment of recurrent APL, and is undergoing clinical trials in the United States.Tamibarotene is a specific agonist for retinoic acid receptor alpha/beta with possible binding to retinoid X receptors (RXR). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent Same as: D01418

   

alfaxalone

3-Hydroxypregnane-11,20-dione

C21H32O3 (332.2351)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids

   

Squalamine

3beta-N-1-(N-[3-(4-aminobutyl)]- 1,3-diaminopropane)-7alpha,24R-dihydroxy-5alpha-cholestane 24-sulfate

C34H65N3O5S (627.4645)


C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C2143 - Endothelial Cell Inhibitor D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Aplidine

Dehydrodidemnin B

C57H87N7O15 (1109.626)


A didemnin that is didemin B in which the hydroxy group of the 1-(2-hydroxypropanoyl)-L-prolinamide moiety has been oxidised to the corresponding ketone. It was originally isolated from the Mediterranean tunicate Aplidium albicans. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents C784 - Protein Synthesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Plitidepsin (Aplidine) is a potent anti-cancer agent by targeting eEF1A2 (?KD=80?nM)[1]. Plitidepsin possesses antiviral activity and is against SARS-CoV-2 with an IC90 of 0.88 nM. Plitidepsin is usually used for multiple myeloma and advanced cancer research, and has the potential for COVID-19 research[1][2].

   

warfarin

(S)-Warfarin

C19H16O4 (308.1049)


A hydroxycoumarin that is 4-hydroxycoumarin which is substituted at position 3 by a 1-phenyl-3-oxo-1-butyl group. C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent > C173064 - Vitamin K Antagonist D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals Warfarin is a rodenticide used in the home, outdoors, in food service establishments, near fruit trees, in storage buildings, sewers and other places where rodents may be a problem. This white, odorless, tasteless compound, an anti-coagulant, causes bleeding and blood-thinning. [HMDB] CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4694; ORIGINAL_PRECURSOR_SCAN_NO 4690 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4720; ORIGINAL_PRECURSOR_SCAN_NO 4717 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4676; ORIGINAL_PRECURSOR_SCAN_NO 4675 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4690; ORIGINAL_PRECURSOR_SCAN_NO 4686 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4734; ORIGINAL_PRECURSOR_SCAN_NO 4730 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4724; ORIGINAL_PRECURSOR_SCAN_NO 4721 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9135; ORIGINAL_PRECURSOR_SCAN_NO 9131 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9068; ORIGINAL_PRECURSOR_SCAN_NO 9067 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9082; ORIGINAL_PRECURSOR_SCAN_NO 9080 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9187; ORIGINAL_PRECURSOR_SCAN_NO 9186 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9209; ORIGINAL_PRECURSOR_SCAN_NO 9207 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9110; ORIGINAL_PRECURSOR_SCAN_NO 9108 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4721; ORIGINAL_PRECURSOR_SCAN_NO 4716 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4720; ORIGINAL_PRECURSOR_SCAN_NO 4719 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4745; ORIGINAL_PRECURSOR_SCAN_NO 4744 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4738; ORIGINAL_PRECURSOR_SCAN_NO 4733 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4832; ORIGINAL_PRECURSOR_SCAN_NO 4831 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4726; ORIGINAL_PRECURSOR_SCAN_NO 4723 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9106; ORIGINAL_PRECURSOR_SCAN_NO 9104 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9133; ORIGINAL_PRECURSOR_SCAN_NO 9130 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9163; ORIGINAL_PRECURSOR_SCAN_NO 9159 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9170; ORIGINAL_PRECURSOR_SCAN_NO 9166 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9145; ORIGINAL_PRECURSOR_SCAN_NO 9142 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9185; ORIGINAL_PRECURSOR_SCAN_NO 9180 CONFIDENCE standard compound; INTERNAL_ID 2415 CONFIDENCE standard compound; INTERNAL_ID 4042 CONFIDENCE standard compound; INTERNAL_ID 8347 INTERNAL_ID 4042; CONFIDENCE standard compound

   

Hippuric acid

Phenylcarbonylaminoacetic acid

C9H9NO3 (179.0582)


Hippuric acid (Gr. hippos, horse, ouron, urine) is a carboxylic acid found in the urine of horses and other herbivores. Hippuric acid crystallizes in rhombic prisms which are readily soluble in hot water, melt at 187 °C and decompose at about 240 °C. High concentrations of hippuric acid can also indicate a toluene intoxication. When many aromatic compounds such as benzoic acid and toluene are taken internally, they are converted to hippuric acid by reaction with the amino acid, glycine.; Hippuric acid is an acyl glycine formed by the conjugation of benzoic aicd with glycine. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. Hippuric acid is a normal component of urine and is typically increased with increased consumption of phenolic compounds (tea, wine, fruit juices). These phenols are converted to benzoic acid which is then converted to hippuric acid and excreted in the urine. Hippuric acid is the most frequently used biomarker in the biological monitoring of occupational exposure to toluene. This product of solvent biotransformation may be also found in the urine of individuals who have not been exposed to the solvent. A smaller fraction of the absorbed toluene is oxidized to aromatic compounds including ortho-cresol, which is not found significantly in the urine of nonexposed individuals. The concentration of hippuric acid in the urine of individuals exposed to a low toluene concentration does not differ from that of individuals not exposed to the solvent. This has led to the conclusion that hippuric acid should not be utilized in the biological monitoring of occupational exposure to low levels of toluene in the air.; Protein-bound organic acids such as hippuric acid are markedly accumulated in uremic plasma and produce defective protein binding of drugs. (PMID: 9120876, 8734460). Hippuric acid is an acyl glycine formed from the conjugation of benzoic acid with glycine. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. Hippuric acid is a normal component of urine and is typically increased with increased consumption of phenolic compounds (tea, wine, fruit juices). These phenols are converted into benzoic acid which is then converted into hippuric acid and excreted in the urine. Hippuric acid is the most frequently used biomarker in the biological monitoring of occupational exposure to toluene. This product of solvent biotransformation may be also found in the urine of individuals who have not been exposed to the solvent. A smaller fraction of the absorbed toluene is oxidized into aromatic compounds including ortho-cresol, which is not found in the urine of nonexposed individuals in a significant amount. The concentration of hippuric acid in the urine of individuals exposed to a low toluene concentration does not differ from that of individuals not exposed to the solvent. This has led to the conclusion that hippuric acid should not be utilized in the biological monitoring of occupational exposure to low levels of toluene in the air. Protein-bound organic acids such as hippuric acid are markedly accumulated in uremic plasma and produce defective protein binding of drugs (PMID: 9120876 , 8734460). Hippuric acid has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Hippuric acid is also found to be associated with phenylketonuria, propionic acidemia, and tyrosinemia I, which are inborn errors of metabolism. Hippuric acid is an endogenous phenolic acid metabolite detected after the consumption of whole grain. C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.

   

L-Homocystine

2-Amino-4-{[(3S)-3-amino-3-carboxypropyl]disulphanyl}butanoic acid

C8H16N2O4S2 (268.0551)


Homocystine is the oxidized form of homocysteine. Homocystine is a dipeptide consisting of two homocysteine molecules joined by a disulfide bond. Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Homocystine occurs only transiently before being reduced to homocysteine and converted to the harmless cystathionine via a vitamin B6-dependent enzyme. Homocystine and homocysteine-cysteine mixed disulfides account for >98\\\% of total homocysteine in plasma from healthy individuals (PMID 11592966). Homocystine has been shown to stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells, thereby inducing a vascular cell type-specific oxidative stress. This vascular stress is associated with atherothrombotic cardiovascular disease (PMID: 14980706). High levels of homocysteine (and homocysteine) can be found in individuals suffering from homocystinura due to cystathionine synthase deficiency (PMID: 4685596) Homocystine is the double-bonded form of homocysteine, but it occurs only transiently before being converted to the harmless cystathionine via a vitamin B6-dependent enzyme. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.

   

(1R,3As,4S,6aS)-1,4-di(benzo[d][1,3]dioxol-5-yl)hexahydrofuro[3,4-c]furan

5-[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C20H18O6 (354.1103)


Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Ppack

N-[1-Chloro-2-oxo-6-[(aminoiminomethyl)amino]hexane-3-yl]-1-(1-oxo-2-amino-3-phenylpropyl)pyrrolidine-2-carboxamide

C21H31ClN6O3 (450.2146)


   

Gabexate

ethyl 4-[(6-carbamimidamidohexanoyl)oxy]benzoate

C16H23N3O4 (321.1688)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D006401 - Hematologic Agents > D000925 - Anticoagulants C471 - Enzyme Inhibitor > C783 - Protease Inhibitor

   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

gabexate

gabexate

C16H23N3O4 (321.1688)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D006401 - Hematologic Agents > D000925 - Anticoagulants C471 - Enzyme Inhibitor > C783 - Protease Inhibitor

   

gamma-Tocotrienol

2,7,8-TRIMETHYL-2-[(3E,7E,11E,15E,19E,23E,27E)-4,8,12,16,20,24,28,32-O CTAMETHYL-3,7,11,15,19,23,27,31-TRITRIACONTAOCTAENYL]-6-CHROMANOL

C28H42O2 (410.3185)


gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Gamma-tocotrienol is a tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a radiation protective agent, an apoptosis inducer and a hepatoprotective agent. It is a tocotrienol and a vitamin E. gamma-Tocotrienol is a natural product found in Amaranthus cruentus, Triadica sebifera, and other organisms with data available. A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

Perindopril

Perindopril

C19H32N2O5 (368.2311)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3026 Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

betaxolol

betaxolol

C18H29NO3 (307.2147)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Hippuric acid

2-BENZAMIDOACETIC ACID

C9H9NO3 (179.0582)


C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent An N-acylglycine in which the acyl group is specified as benzoyl. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QIAFMBKCNZACKA-UHFFFAOYSA-N_STSL_0191_Hippuric acid_2000fmol_180831_S2_L02M02_62; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.317 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.318 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.315 Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food. Hippuric Acid (2-Benzamidoacetic acid), an acyl glycine produced by the conjugation of benzoic acid and glycine, is a normal component in urine as a metabolite of aromatic compounds from food.

   

3-Hydroxykynurenine

3-hydroxy-dl-kynurenine

C10H12N2O4 (224.0797)


A hydroxykynurenine that is kynurenine substituted by a hydroxy group at position 3. C26170 - Protective Agent > C275 - Antioxidant MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VCKPUUFAIGNJHC-UHFFFAOYSA-N_STSL_0007_3-Hydroxy-DL-Kynurenine_8000fmol_180416_S2_LC02_MS02_13; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Benzamidine

Benzamidine hydrochloride hydrate

C7H8N2 (120.0687)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors CONFIDENCE standard compound; INTERNAL_ID 2169

   

L-Homocystine

4,4-Dithiobis[2-aminobutyric Acid]

C8H16N2O4S2 (268.0551)


A homocystine in which both chiral centres have L configuration. 4,4'-Disulfanediylbis(2-aminobutanoic acid) is an endogenous metabolite. L-Homocystine is the oxidized member of the L-homocysteine. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer used to study cardiovascular disease mechanisms.

   

L-Homocysteine

DL-Homocysteine

C4H9NO2S (135.0354)


A homocysteine that has L configuration. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

N,N-Dimethylarginine

L-Arg(Me, Me)-OH (asymmetrical)

C8H18N4O2 (202.143)


D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

ticlopidine

ticlopidine

C14H14ClNS (263.0535)


B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent > C190801 - P2Y12 Inhibitor D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents

   

tranexamic acid

cis-4-aminomethyl-1-cyclohexanecarboxylic acid

C8H15NO2 (157.1103)


B - Blood and blood forming organs > B02 - Antihemorrhagics > B02A - Antifibrinolytics > B02AA - Amino acids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics C78275 - Agent Affecting Blood or Body Fluid > C78311 - Hemostatic Agent D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tranexamic acid (cyclocapron), a cyclic analog of lysine, is an orally active antifibrinolytic agent. Tranexamic acid attenuates the effects of severe trauma, inhibits urokinase plasminogen activator and ameliorates dry wrinkles. Tranexamic acid can used for the research of hemostasis [1][2][3][4][5].

   

capsiate

(4-hydroxy-3-methoxyphenyl)methyl (6E)-8-methylnon-6-enoate

C18H26O4 (306.1831)


Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].

   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Thromboxane B2

9S,11,15S-trihydroxy-thromboxa-5Z,13E-dien-1-oic acid

C20H34O6 (370.2355)


A member of the class of thromboxanes B that is (5Z,13E)-thromboxa-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9, 11 and 15.

   

lipoxin B4

5S,14R,15S-trihydroxy-6E,8Z,10E,12E-eicosatetraenoic acid

C20H32O5 (352.225)


A C20 hydroxy fatty acid having (5S)-, (14R)- and (15S)-hydroxy groups as well as (6E)- (8Z)-, (10E)- and (12E)-double bonds. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

Paricalcitol

(1R,3R,7E)-17beta-[(2R,3E,5S)-6-hydroxy-5,6-dimethylhept-3-en-2-yl]-9,10-secoestra-5,7-diene-1,3-diol

C27H44O3 (416.329)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols

   

DL-Lysine

Lysine, DL-

C6H14N2O2 (146.1055)


DL-Lysine is a racemic mixture of the D-Lysine and L-Lysine. Lysine is an α-amino acid that is used in the biosynthesis of proteins[1].

   

Plitidepsin

Plitidepsin

C57H87N7O15 (1109.626)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents C784 - Protein Synthesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Plitidepsin (Aplidine) is a potent anti-cancer agent by targeting eEF1A2 (?KD=80?nM)[1]. Plitidepsin possesses antiviral activity and is against SARS-CoV-2 with an IC90 of 0.88 nM. Plitidepsin is usually used for multiple myeloma and advanced cancer research, and has the potential for COVID-19 research[1][2].

   

Tamibarotene

Tamibarotene

C22H25NO3 (351.1834)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent

   

CHEBI:33277

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-, (2R)- (9CI)

C28H42O2 (410.3185)


γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].

   

11-Dehydro-thromboxane B2

(E)-7-[4-Hydroxy-2-[(E)-3-hydroxyoct-1-enyl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


A thromboxane obtained by formal oxidation of the hemiacetal hydroxy function of thromboxane B2.

   

sulfinpyrazone

(+/-)-Sulfinpyrazone

C23H20N2O3S (404.1195)


M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent

   

Isoflurophate

diisopropyl fluorophosphate

C6H14FO3P (184.0665)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Eprosartan

Eprosartan

C23H24N2O4S (424.1457)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

12S-HHTrE

12-Hydroxyheptadecatrienoic acid

C17H28O3 (280.2038)


A trienoic fatty acid that consists of (5Z,8E,10E)-heptadeca-5,8,10-trienoic acid bearing an additional 12S-hydroxy substituent.

   

Allophanic acid

Allophanic acid

C2H4N2O3 (104.0222)


   

(3R)-3-hydroxy-L-aspartic acid

D-Aspartic acid,3-hydroxy-, (3S)-rel-

C4H7NO5 (149.0324)


D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids

   

Diisopropylphosphate

Diisopropylphosphate

C6H15O4P (182.0708)


   

D-Phe-Pro-Arg-CH2Cl

D-Phe-Pro-Arg-CH2Cl

C21H31ClN6O3 (450.2146)


   

DESMOPRESSIN

(Deamino-Cys1,D-Arg8)-Vasopressin acetate salt

C46H64N14O12S2 (1068.4269)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents

   

Am 80

Tamibarotene

C22H25NO3 (351.1834)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent Same as: D01418