Gene Association: CTF1

UniProt Search: CTF1 (PROTEIN_CODING)
Function Description: cardiotrophin 1

found 40 associated metabolites with current gene based on the text mining result from the pubmed database.

Vincamine

Methyl (41S,12S,13aS)-13a-ethyl-12-hydroxy-2,3,41,5,6,12,13,13a-octahydro-1H-indolo[3,2,1-de]pyrido[3,2,1-ij][1,5]naphthyridine-12-carboxylate

C21H26N2O3 (354.1943)


Vincamine is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester and a hemiaminal. It has a role as an antihypertensive agent, a vasodilator agent and a metabolite. It is functionally related to an eburnamenine. Vincamine is a monoterpenoid indole alkaloid obtained from the leaves of *Vinca minor* with a vasodilatory property. Studies indicate that vincamine increases the regional cerebral blood flow. Vincamine is a natural product found in Vinca difformis, Vinca major, and other organisms with data available. A major alkaloid of Vinca minor L., Apocynaceae. It has been used therapeutically as a vasodilator and antihypertensive agent, particularly in cerebrovascular disorders. Vincamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1617-90-9 (retrieved 2024-07-01) (CAS RN: 1617-90-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].

   

Parthenolide

(1aR,4E,7aS,10aS,10bS)-1a,5-Dimethyl-8-methylene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one

C15H20O3 (248.1412)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (1Ar,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a germacranolide. Parthenolide has been used in trials studying the diagnostic of Allergic Contact Dermatitis. (1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a natural product found in Cyathocline purpurea, Tanacetum parthenium, and other organisms with data available. Parthenolide belongs to germacranolides and derivatives class of compounds. Those are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. Thus, parthenolide is considered to be an isoprenoid lipid molecule. Parthenolide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Parthenolide is a bitter tasting compound found in sweet bay, which makes parthenolide a potential biomarker for the consumption of this food product. Parthenolide is a sesquiterpene lactone of the germacranolide class which occurs naturally in the plant feverfew (Tanacetum parthenium), after which it is named. It is found in highest concentration in the flowers and fruit . relative retention time with respect to 9-anthracene Carboxylic Acid is 1.002 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.000 Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs. Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs.

   

Carnitine

(3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate

C7H15NO3 (161.1052)


(R)-carnitine is the (R)-enantiomer of carnitine. It has a role as an antilipemic drug, a water-soluble vitamin (role), a nutraceutical, a nootropic agent and a Saccharomyces cerevisiae metabolite. It is a conjugate base of a (R)-carnitinium. It is an enantiomer of a (S)-carnitine. Constituent of striated muscle and liver. It is used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias. L-Carnitine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levocarnitine is a Carnitine Analog. Levocarnitine is a natural product found in Mucidula mucida, Pseudo-nitzschia multistriata, and other organisms with data available. Levocarnitine is an amino acid derivative. Levocarnitine facilitates long-chain fatty acid entry into mitochondria, delivering substrate for oxidation and subsequent energy production. Fatty acids are utilized as an energy substrate in all tissues except the brain. (NCI04) Carnitine is not an essential amino acid; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a metabimin or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\% of carnitine is synthesized in the liver, kidney and brain from the amino acids lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism can lead to brain deterioration like that of Reyes syndrome, gradually worsening muscle weakness, Duchenne-like muscular dystrophy and extreme muscle weakness with fat accumulation in muscles. Borurn et al. (1979) describe carnitine as an essential nutrient for pre-term babies, certain types (non-ketotic) of hypoglycemics, kidney dialysis patients, cirrhosis, and in kwashiorkor, type IV hyperlipidemia, heart muscle disease (cardiomyopathy), and propionic or organic aciduria (acid urine resulting from genetic or other anomalies). In all these conditions and the inborn errors of carnitine metabolism, carnitine is essential to life and carnitine supplements are valuable. carnitine therapy may also be useful in a wide variety of clinical conditions. carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. It may be worth a trial in any form of hyperlipidemia or muscle weakness. carnitine supplements may... (-)-Carnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=541-15-1 (retrieved 2024-06-29) (CAS RN: 541-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].

   

Chalconaringenin

2-Propen-1-one, 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-, (2E)-

C15H12O5 (272.0685)


2,4,4,6-tetrahydroxychalcone is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively. It has a role as a metabolite, an anti-allergic agent and an anti-inflammatory agent. It is a polyphenol and a member of chalcones. It is functionally related to a trans-chalcone. Naringenin chalcone is a natural product found in Populus koreana, Populus tremula, and other organisms with data available. Isolated from tomato fruit cuticles. Chalconaringenin is found in many foods, some of which are cherry tomato, lettuce, greenthread tea, and lemon. A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively. Chalconaringenin is found in garden tomato. Chalconaringenin is isolated from tomato fruit cuticle Naringenin chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5071-40-9 (retrieved 2024-07-12) (CAS RN: 25515-46-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

L-2-Amino-3-(oxalylamino)propanoic acid

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


L-2-Amino-3-(oxalylamino)propanoic acid is found in grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is isolated from Panax notoginseng (sanchi Isolated from Panax notoginseng (sanchi). L-2-Amino-3-(oxalylamino)propanoic acid is found in tea and grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is an alpha-amino acid. N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

L-Leucine

(2S)-2-amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Isonicotinic acid

Pyridine-4-carboxylic Acid; Nicotinic Acid Imp. E (EP); Isonicotinic Acid; Isoniazid Impurity A; Nicotinic Acid Impurity E

C6H5NO2 (123.032)


Isonicotinic acid is a pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. It has a role as a human metabolite and an algal metabolite. It is a conjugate acid of an isonicotinate. Isonicotinic acid is a natural product found in Aloe africana, Chlamydomonas reinhardtii, and other organisms with data available. Heterocyclic acids that are derivatives of 4-pyridinecarboxylic acid (isonicotinic acid). Isonicotinic acid is a metabolite of isoniazid. Isonicotinic acid is an organic compound with a carboxyl group on a pyridine ring. It is an isomer of nicotinic acid. The carboxyl group for isonicotinic acid is on the 4-position instead of the 3-position for nicotinic acid (Wikipedia). A pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I017 Isonicotinic acid is a metabolite of Isoniazid. Isoniazid is converted to Isonicotinic acid by hydrazinolysis, with the Isoniazid to Isonicotinic acid biotransformation also to be catalyzed by cytochrome P450 (CYP) enzymes, e.g., CYP2C[1].

   

Kinetin

Kinetin, BioReagent, plant cell culture tested, amorphous powder

C10H9N5O (215.0807)


Kinetin is a member of the class of 6-aminopurines that is adenine carrying a (furan-2-ylmethyl) substituent at the exocyclic amino group. It has a role as a geroprotector and a cytokinin. It is a member of furans and a member of 6-aminopurines. Kinetin is a cytokinin which are plant hormones promotes cell division and plant growth. It was shown to naturally exist in DNA of organisms including humans and various plants. While kinetin is used in tissue cultures to produce new plants, it is also found in cosmetic products as an anti-aging agents. Kinetin is a natural product found in Cocos nucifera, Beta vulgaris, and other organisms with data available. A furanyl adenine found in PLANTS and FUNGI. It has plant growth regulation effects. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. Kinetin is a hormone derived from plants. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2712; ORIGINAL_PRECURSOR_SCAN_NO 2710 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2714; ORIGINAL_PRECURSOR_SCAN_NO 2711 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2699; ORIGINAL_PRECURSOR_SCAN_NO 2696 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5865; ORIGINAL_PRECURSOR_SCAN_NO 5864 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5900; ORIGINAL_PRECURSOR_SCAN_NO 5896 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2691; ORIGINAL_PRECURSOR_SCAN_NO 2689 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5890; ORIGINAL_PRECURSOR_SCAN_NO 5889 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2693; ORIGINAL_PRECURSOR_SCAN_NO 2691 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5911; ORIGINAL_PRECURSOR_SCAN_NO 5908 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5893; ORIGINAL_PRECURSOR_SCAN_NO 5891 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2689; ORIGINAL_PRECURSOR_SCAN_NO 2687 IPB_RECORD: 305; CONFIDENCE confident structure KEIO_ID F014; [MS2] KO008961 KEIO_ID F014 Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1].

   

Castanospermine

1,6,7,8-Indolizinetetrol, octahydro-, (1S-(1alpha,6beta,7alpha,8beta,8abeta))-

C8H15NO4 (189.1001)


Castanospermine is a tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). It has a role as a metabolite, an anti-HIV-1 agent, an anti-inflammatory agent and an EC 3.2.1.* (glycosidase) inhibitor. Castanospermine is a natural product found in Alexa grandiflora, Alexa wachenheimii, and other organisms with data available. A tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors KEIO_ID C043 Castanospermine inhibits all forms of α- and β-glucosidases, especially glucosidase L.

   

Baclofen

beta-(Aminomethyl)-4-chlorobenzenepropanoic acid

C10H12ClNO2 (213.0557)


Baclofen is a gamma-amino-butyric acid (GABA) derivative used as a skeletal muscle relaxant. Baclofen stimulates GABA-B receptors leading to decreased frequency and amplitude of muscle spasms. It is especially useful in treating muscle spasticity associated with spinal cord injury. It appears to act primarily at the spinal cord level by inhibiting spinal polysynaptic afferent pathways and, to a lesser extent, monosynaptic afferent pathways. M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1]. Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].

   

Prostaglandin A1

7-[(1R,2S)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-3-en-1-yl]heptanoic acid

C20H32O4 (336.23)


Prostaglandin A1 (PGA1, a prostaglandin characterized by a cyclopentenone structure) has a fundamental structure common to punaglandin and clavulone, the antitumor eicosanoids discovered in marine organisms such as corals. It is well established that PGA1, which exert potent antiviral activity in several DNA and RNA virus models, induce heat shock protein (hsp)70 syntheses through cycloheximide sensitive activation of heat shock transcription factor. Antitumor prostaglandins are actively incorporated through cell membrane and control gene expression. P53 (protein 53, is a transcription factor that regulates the cell cycle and functions as a tumor suppressor) independent expression of p21 (also known as cyclin-dependent kinase inhibitor 1A or CDKN1A, is a human gene on chromosome 6 (location 6p21.2), that encodes a cyclin-dependent kinase) and gadd 45 (growth arrest and DNA-damage-inducible, alpha 45, a major breast cancer (BRCA1) target is the DNA damage-responsive gene GADD45) activation of peroxisome proliferative activated receptor gamma (PPARgamma) are involved in antitumor mechanism of these prostaglandins. At the low concentration, these prostaglandins exhibit physiological or pathological activity such as osteoblast calcification, promotion of colon cancer cell proliferation. One of the mechanisms of anti-cancer activity of prostaglandins, has been believed to be that these prostaglandins might have p53 like effect in cells lacking p53. (PMID: 7988663, 11104898)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin A1 (PGA1, a prostaglandin characterized by a cyclopentenone structure) has a fundamental structure common to punaglandin and clavulone, the antitumor eicosanoids discovered in marine organisms such as corals. It is well established that PGA1, which exert potent antiviral activity in several DNA and RNA virus models, induce heat shock protein (hsp)70 syntheses through cycloheximide sensitive activation of heat shock transcription factor. Antitumor prostaglandins are actively incorporated through cell membrane and control gene expression. P53 (protein 53, is a transcription factor that regulates the cell cycle and functions as a tumor suppressor) independent expression of p21 (also known as cyclin-dependent kinase inhibitor 1A or CDKN1A, is a human gene on chromosome 6 (location 6p21.2), that encodes a cyclin-dependent kinase) and gadd 45 (growth arrest and DNA-damage-inducible, alpha 45, a major breast cancer (BRCA1) target is the DNA damage-responsive gene GADD45) activation of peroxisome proliferative activated receptor gamma (PPARgamma) are involved in antitumor mechanism of these prostaglandins. At the low concentration, these prostaglandins exhibit physiological or pathological activity such as osteoblast calcification, promotion of colon cancer cell proliferation. One of the mechanisms of anti-cancer activity of prostaglandins, has been believed to be that these prostaglandins might have p53 like effect in cells lacking p53. (PMID: 7988663, 11104898) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   

N-Glycolylneuraminic acid

(2S,4S,5R,6R)-2,4-dihydroxy-5-(2-hydroxyacetamido)-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C11H19NO10 (325.1009)


N-Glycolylneuraminic acid (Neu5Gc) is a widely expressed sialic acid found in most mammalian cells. Although humans are genetically deficient in producing Neu5Gc, small amounts are present in human cells and biofluids. Humans cannot synthesize Neu5Gc because the human gene CMAH is irreversibly mutated, though it is found in apes. This loss of the CMAH gene was estimated to have occurred two to three million years ago, just before the emergence of the genus Homo. A dietary origin of Neu5Gc was suggested by human volunteer studies. These trace amounts of Neu5Gc were determined to come from the consumption of animals in the human diet (i.e. red meats such as lamb, pork, and beef). Neu5Gc can also be found in dairy products, but to a lesser extent. Neu5Gc is not found in poultry and is found in only trace amounts in fish (Wikipedia). Isolated from beef serum KEIO_ID G062

   

N-PHENYL-1-NAPHTHYLAMINE

N-phenylnaphthalen-1-amine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens

   

L-Prolinamide

(S)-Pyrrolidine-2-carboxamide

C5H10N2O (114.0793)


   

12,13-DiHOME

(9Z,12S,13S)-12,13-dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]

   

m-Phenylenediamine

Meta-phenylenediamine

C6H8N2 (108.0687)


KEIO_ID P035

   

Octanoylcarnitine

O-octanoyl-R-carnitine

C15H29NO4 (287.2096)


CONFIDENCE standard compound; INTERNAL_ID 253 L-Octanoylcarnitine is a plasma metabolite and a physiologically active form of octanoylcarnitine. L-Octanoylcarnitine can be used for the research of breast cancer[1][2][3].

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Quinestrol

(1S,10R,11S,14R,15S)-5-(cyclopentyloxy)-14-ethynyl-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-14-ol

C25H32O2 (364.2402)


Quinestrol is only found in individuals that have used or taken this drug. It is a 3-cyclopentyl ether of ethinyl estradiol.Estrogens diffuse into their target cells and interact with a protein receptor (the estrogen receptor). Estrogen interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. The combination of an estrogen with a progestin suppresses the hypothalamic-pituitary system, decreasing the secretion of gonadotropin-releasing hormone (GnRH). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

ibogaine

Ibogamine, 12-methoxy-

C20H26N2O (310.2045)


An organic heteropentacyclic compound that is ibogamine in which the indole hydrogen para to the indole nitrogen has been replaced by a methoxy group. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

2-C-methyl-D-erythritol-4-phosphate

[(2R,3S)-2,3,4-trihydroxy-3-methylbutoxy]phosphonic acid

C5H13O7P (216.0399)


2-c-methyl-d-erythritol-4-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 2-c-methyl-d-erythritol-4-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-c-methyl-d-erythritol-4-phosphate can be found in a number of food items such as tea, narrowleaf cattail, chickpea, and rocket salad (sspecies), which makes 2-c-methyl-d-erythritol-4-phosphate a potential biomarker for the consumption of these food products.

   

2,6-Naphthalenedisulfonic acid

Naphthalene-2,6-disulfonic acid

C10H8O6S2 (287.9762)


   

D-Carnitine

D-Carnitine hydrochloride salt

C7H15NO3 (161.1052)


The (S)-enantiomer of carnitine. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

4-Methylpentanal

Isocaproaldehyde: 4-methyl-pentanal

C6H12O (100.0888)


4-Methylpentanal is an intermediate in the metabolism of C21-Steroid hormone. It is a substrate for Cytochrome P450 11A1 (mitochondrial). [HMDB] 4-Methylpentanal is an intermediate in the metabolism of C21-Steroid hormone. It is a substrate for Cytochrome P450 11A1 (mitochondrial).

   

Melissic acid A

Melissic acid,synthetic

C30H60O2 (452.4593)


Melissic acid A is found in fats and oils. Melissic acid A is found in some plant waxes, e.g. cotto Found in some plant waxes, e.g. cotton

   

(-)-Parthenolide

4,8-dimethyl-12-methylidene-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

C15H20O3 (248.1412)


   

DL-Leucine

2-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055

   

Prostaglandin A1

9-oxo-15S-hydroxy-10Z,13E-prostadienoic acid

C20H32O4 (336.23)


Prostaglandin A1 is a prostaglandins A. It is a conjugate acid of a prostaglandin A1(1-).

   

L-Octanoylcarnitine

(3R)-3-(octanoyloxy)-4-(trimethylazaniumyl)butanoate

C15H29NO4 (287.2096)


L-Octanoylcarnitine is a plasma metabolite and a physiologically active form of octanoylcarnitine. L-Octanoylcarnitine can be used for the research of breast cancer[1][2][3].

   

Vincamin

Vincamine

C21H26N2O3 (354.1943)


C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2327 Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].

   

Melissic acid

Melissic acid,synthetic

C30H60O2 (452.4593)


A C30, very long straight-chain, saturated fatty acid.

   

C30:0

TRIACONTANOIC ACID

C30H60O2 (452.4593)


   

Quinestrol

3-o-cyclopentyl-17alpha-ethinyl-estra-1,3,5(10)-triene-3,17beta-diol

C25H32O2 (364.2402)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

Nonox A

InChI=1\C16H13N\c1-2-9-14(10-3-1)17-16-12-6-8-13-7-4-5-11-15(13)16\h1-12,17

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

L-BOAA

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

m-Phenylenediamine

m-Phenylenediamine

C6H8N2 (108.0687)


   

4-methylpentanal

4-methylpentanal

C6H12O (100.0888)


   

Arbaclofen

(R)-Baclofen

C10H12ClNO2 (213.0557)


C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1].

   

12,13-DHOA

(9Z)-12,13-Dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


A DiHOME obtained by formal dihydroxylation of the 12,13-double bond of octadeca-9,12-dienoic acid (the 9Z-geoisomer).

   

N-PHENYL-1-NAPHTHYLAMINE

N-Phenyl-1-naphthalenamine

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens