Gene Association: IL17F

UniProt Search: IL17F (PROTEIN_CODING)
Function Description: interleukin 17F

found 34 associated metabolites with current gene based on the text mining result from the pubmed database.

Isofraxidin

7-Hydroxy-6,8-dimethoxy-2H-1-benzopyran-2-one

C11H10O5 (222.0528)


Isofraxidin, also known as 6,8-dimethoxy-7-hydroxycoumarin or 7-hydroxy-6,8-dimethoxy-2h-1-benzopyran-2-one, is a member of the class of compounds known as 7-hydroxycoumarins. 7-hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the C7 position the coumarin skeleton. Isofraxidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isofraxidin can be found in muskmelon, tarragon, and watermelon, which makes isofraxidin a potential biomarker for the consumption of these food products. Isofraxidin is a chemical compound found in a variety of plants including Eleutherococcus senticosus . Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Etoposide

(10R,11R,15R,16S)-16-{[(2R,4aR,6R,7R,8R,8aS)-7,8-dihydroxy-2-methyl-hexahydro-2H-pyrano[3,2-d][1,3]dioxin-6-yl]oxy}-10-(4-hydroxy-3,5-dimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0^{3,7}.0^{11,15}]hexadeca-1(9),2,7-trien-12-one

C29H32O13 (588.1843)


Etoposide is a beta-D-glucoside, a furonaphthodioxole and an organic heterotetracyclic compound. It has a role as an antineoplastic agent and a DNA synthesis inhibitor. It is functionally related to a podophyllotoxin and a 4-demethylepipodophyllotoxin. A semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Etoposide is a Topoisomerase Inhibitor. The mechanism of action of etoposide is as a Topoisomerase Inhibitor. Etoposide is a natural product found in Aspergillus porosus, Aspergillus alliaceus, and other organisms with data available. Etoposide is a semisynthetic derivative of podophyllotoxin, a substance extracted from the mandrake root Podophyllum peltatum. Possessing potent antineoplastic properties, etoposide binds to and inhibits topoisomerase II and its function in ligating cleaved DNA molecules, resulting in the accumulation of single- or double-strand DNA breaks, the inhibition of DNA replication and transcription, and apoptotic cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. (NCI04) A semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. See also: Etoposide Phosphate (active moiety of). Etoposide, also known as vepesid or VP-16, belongs to the class of organic compounds known as podophyllotoxins. These are tetralin lignans in which the benzene moiety of the tetralin skeleton is fused to a 1,3-dioxolane and the cyclohexane is fused to a butyrolactone (pyrrolidin-2-one). Etoposide is a drug. Within humans, etoposide participates in a number of enzymatic reactions. In particular, etoposide can be converted into etoposide ortho-quinone; which is mediated by the enzymes prostaglandin g/h synthase 1 and prostaglandin g/h synthase 2. In addition, etoposide and uridine diphosphate glucuronic acid can be converted into etoposide glucuronide and uridine 5-diphosphate; which is mediated by the enzyme UDP-glucuronosyltransferase 1-1. In humans, etoposide is involved in etoposide metabolism pathway. Etoposide is formally rated as a carcinogen (by IARC 1) and is also a potentially toxic compound. Etoposide is used as a form of chemotherapy for cancers such as Kaposis sarcoma, Ewings sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leukemia, and glioblastoma multiforme. It is given intravenously (IV) or orally in capsule or tablet form. It is believed to work by damaging DNA. Etoposide was approved for medical use in the United States in 1983. They can include low blood cell counts, vomiting, loss of appetite, diarrhea, hair loss, and fever. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CB - Podophyllotoxin derivatives C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1331 - Epipodophyllotoxin Compound C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB195_Etoposide_pos_20eV_CB000069.txt [Raw Data] CB195_Etoposide_pos_50eV_CB000069.txt [Raw Data] CB195_Etoposide_pos_10eV_CB000069.txt [Raw Data] CB195_Etoposide_pos_40eV_CB000069.txt [Raw Data] CB195_Etoposide_pos_30eV_CB000069.txt Etoposide (VP-16; VP-16-213) is an anti-cancer chemotherapy agent. Etoposide inhibits topoisomerase II, thus stopping DNA replication. Etoposide induces cell cycle arrest, apoptosis and autophagy[1]. Etoposide (VP-16; VP-16-213) is an anti-cancer chemotherapy agent. Etoposide inhibits topoisomerase II, thus stopping DNA replication. Etoposide induces cell cycle arrest, apoptosis and autophagy[1].

   

Fucitol

Rel-(2R,3S,4R,5S)-hexane-1,2,3,4,5-pentaol

C6H14O5 (166.0841)


L-fucitol is the L-enantiomer of fucitol. It is found in nutmeg. It has a role as a plant metabolite and an antibacterial agent. It is an enantiomer of a D-fucitol. L-Fucitol is a natural product found in Carum carvi with data available. The L-enantiomer of fucitol. It is found in nutmeg. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1]. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1].

   

K-Strophanthidin

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carbaldehyde

C23H32O6 (404.2199)


Strophanthidin is a 3beta-hydroxy steroid, a 14beta-hydroxy steroid, a 5beta-hydroxy steroid, a 19-oxo steroid, a member of cardenolides and a steroid aldehyde. It is functionally related to a 5beta-cardanolide. Strophanthidin is a natural product found in Crossosoma bigelovii, Adonis aestivalis, and other organisms with data available. 3 beta,5,14-Trihydroxy-19-oxo-5 beta-card-20(22)-enolide. The aglycone cardioactive agent isolated from Strophanthus Kombe, S. gratus and other species; it is a very toxic material formerly used as digitalis. Synonyms: Apocymarin; Corchorin; Cynotoxin; Corchorgenin. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

Astilbin

(2S,3S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3-dihydrochromen-4-one

C21H22O11 (450.1162)


Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.

   

Adenosine diphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

N-Acetylserotonin

N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]acetamide

C12H14N2O2 (218.1055)


N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical precursor and intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects. N-Acetylserotonin is an intermediate in the metabolic pathway of melatonin and indoleamine in the pineal gland of mammalians. Serotonin-N-acetyltransferase (SNAT), which regulates the rate of melatonin biosynthesis in the pineal gland, catalyzes the acetylation of 5HT to N-acetylserotonin (NAS). A methyl group from S-adenosylmethionine is transferred to NAS by hydroxyindole-O-methyltransferase (HIOMT), and finally NAS is converted to 5-methoxy-N-acetyltryptamine, or melatonin. In most mammalian species the content of NAS (and melatonin) in the pineal gland shows clear circadian changes with the highest level occurring during the dark period. This elevation of the contents of NAS (and melatonin) in the dark period is due to the increase of SNAT activity and the elevation of SNAT gene expression. Experimental studies show that N-acetylserotonin possess free radical scavenging activity. Acute administration of irreversible and reversible selective MAO-A inhibitors and high doses (or chronic administration of low doses) of relatively selective MAO-B inhibitors (but not of highly selective MAO-B inhibitors) suppressed MAO-A activity and stimulated N-acetylation of pineal serotonin into N-acetylserotonin, the immediate precursor of melatonin. N-acetylserotonin increase after MAO-A inhibitors might mediate their antidepressive and antihypertensive effects. N-Acetylserotonin is the product of the O-demethylation of melatonin mediated by cytochrome P-450 isoforms: Cytochrome p450, subfamily IIc, polypeptide 19 (CYP2C19, a clinically important enzyme that metabolizes a wide variety of drugs), with a minor contribution from Cytochrome p450, subfamily I, polypeptide (2CYP1A2, involved in O-deethylation of phenacetin). (PMID 15616152, 11103901, 10721079, 10591054). N-Acetylserotonin acts as a potent antioxidant, NAS effectiveness as an anti-oxidant has been found to be different depending on the experimental model used, it has been described as being between 5 and 20 times more effect than melatonin at protecting against oxidant damage. NAS has been shown to protect against lipid peroxidation in microsomes and mitochondria. NAS has also been reported to lower resting levels of ROS in peripheral blood lymphocytes and to exhibit anti-oxidant effects against t-butylated hydroperoxide- and diamide-induced ROS. N-acetyl serotonin, also known as N-acetyl-5-hydroxytryptamine or N-(2-(5-hydroxy-1h-indol-3-yl)ethyl)acetamide, is a member of the class of compounds known as hydroxyindoles. Hydroxyindoles are organic compounds containing an indole moiety that carries a hydroxyl group. N-acetyl serotonin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N-acetyl serotonin can be found in a number of food items such as tronchuda cabbage, winter savory, rambutan, and poppy, which makes N-acetyl serotonin a potential biomarker for the consumption of these food products. N-acetyl serotonin can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, N-acetyl serotonin is involved in the tryptophan metabolism. Moreover, N-acetyl serotonin is found to be associated with schizophrenia. N-Acetyl-5-hydroxytryptamine is a Melatonin precursor, and that it can potently activate TrkB receptor.

   

5-Methoxytryptamine

2-(5-methoxy-1H-indol-3-yl)ethan-1-amine

C11H14N2O (190.1106)


5-Methoxytryptamine, also known as mexamine or 5-MT, belongs to the class of organic compounds known as tryptamines and derivatives. Tryptamines and derivatives are compounds containing the tryptamine backbone, which is structurally characterized by an indole ring substituted at the 3-position by an ethanamine. It is biosynthesized via the deacetylation of melatonin in the pineal gland. 5-MT acts as a full agonist at the 5-HT1, 5-HT2, 5-HT4, 5-HT6, and 5-HT7 receptors. 5-Methoxytryptamine exists in all living organisms, ranging from bacteria to humans. Its affinity for the 5-HT5A receptor is unknown. It has no affinity for the 5-HT3 receptor and is affinity for the 5-HT1E receptor is very weak in comparison to the other 5-HT1 receptors. 5-MT has been shown to occur naturally in the body in low levels. Serotonin derivative proposed as potentiator for hypnotics and sedatives. [HMDB] KEIO_ID M040

   

Beclometasone

beclomethasone

C22H29ClO5 (408.1703)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

Morpholine

Morpholine, 4-soya alkyl derivs.

C4H9NO (87.0684)


Morpholine is a permitted (FDA) in edible coatings for fruit and vegetables. Morpholine is a food contaminant arising from its use as a boiler water additive Morpholine is a common additive, in ppm concentrations, for pH adjustment in both fossil fuel and nuclear power plant steam systems. Morpholine is used because its volatility is about the same as water, so once it is added to the water, its concentration becomes distributed rather evenly in both the water and steam phases. Its pH adjusting qualities then become distributed throughout the steam plant to provide corrosion protection. Morpholine is often used in conjunction with low concentrations of hydrazine or ammonia to provide a comprehensive all-volatile treatment chemistry for corrosion protection for the steam systems of such plants. Morpholine decomposes reasonably slowly in the absence of oxygen even at the high temperatures and pressures in these steam systems. Morpholine is an organic chemical compound having the chemical formula O(CH2CH2)2NH. This heterocycle, pictured at right, features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. For example, when morpholine is neutralized by hydrochloric acid, one obtains the salt morpholinium chloride. Morpholine is widely used in organic synthesis. For example, it is a building block in the preparation of the antibiotic linezolid and the anticancer agent gefitinib (Iressa) Permitted (FDA) in edible coatings for fruit and vegetables. Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 8365

   

Lithospermic acid

Lithosperminc acid

C27H22O12 (538.1111)


Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].

   

Fraxin

InChI=1/C16H18O10/c1-23-7-4-6-2-3-9(18)25-14(6)15(11(7)20)26-16-13(22)12(21)10(19)8(5-17)24-16/h2-4,8,10,12-13,16-17,19-22H,5H2,1H3/t8-,10-,12+,13-,16+/m1/s

C16H18O10 (370.09)


Fraxin is a beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. It has a role as a plant metabolite, an anti-inflammatory agent and a hepatoprotective agent. It is a beta-D-glucoside, a hydroxycoumarin and an aromatic ether. It is functionally related to a fraxetin. Fraxin is a natural product found in Acer nikoense, Prunus prostrata, and other organisms with data available. A beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. Origin: Plant, Coumarins Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2]. Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2].

   

Racanisodamine

(6S)-6-Hydroxyhyoscyamine

C17H23NO4 (305.1627)


   

Robustine

Furo(2,3-b)quinolin-8-ol, 4-methoxy-

C12H9NO3 (215.0582)


A quinoline alkaloid that is furo[2,3-b]quinoline substituted by a methoxy and a hydroxy group at positions 4 and 8 respectively. Robustine, a furoquinoline alkaloid, from Dictamnus albus, exhibits inhibitory potency against human phosphodiesterase 5 (hPDE5A) in vitro[1]. Robustine, a furoquinoline alkaloid, from Dictamnus albus, exhibits inhibitory potency against human phosphodiesterase 5 (hPDE5A) in vitro[1].

   

Thiadiazolidinone

5-(4-Bromophenylimino)-3,4-tetramethylene-1,3,4-thiadiazolidin-2-one

C12H12BrN3OS (324.9884)


   

Tazarotene

ethyl 6-[2-(4,4-dimethyl-3,4-dihydro-2H-1-benzothiopyran-6-yl)ethynyl]pyridine-3-carboxylate

C21H21NO2S (351.1293)


Tazarotene is only found in individuals that have used or taken this drug. It is a prescription topical retinoid sold as a cream or gel. This medication is approved for treatment of psoriasis, acne, and sun damaged skin (photodamage). [Wikipedia]Although the exact mechanism of tazarotene action is not known, studies have shown that the active form of the drug (tazarotenic acid) binds to all three members of the retinoic acid receptor (RAR) family: RARa, RARb, and RARg, but shows relative selectivity for RARb, and RARg and may modify gene expression. It also has affinity for RXR receptors. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

Norethindrone enanthate

Norethindrone enanthate; Norethisterone enanthate; 17alpha-Ethynyl-17beta-heptanoyloxy-4-estren-3-one

C27H38O3 (410.2821)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D08285

   

Zederone

(8E)-5,9,14-trimethyl-4,12-dioxatricyclo[9.3.0.0³,⁵]tetradeca-1(11),8,13-trien-2-one

C15H18O3 (246.1256)


Zederone is a constituent of the rhizome of Curcuma zedoaria (zedoary).

   

anisodamine

[(3S,6S)-6-hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-3-yl] (2R)-3-hydroxy-2-phenylpropanoate

C17H23NO4 (305.1627)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Tropane alkaloids Anisodamine (6-Hydroxyhyoscyamine), a belladonna alkaloid, is a non-subtype-selective muscarinic, and also a nicotinic cholinoceptor antagonist. Anisodamine employs in traditional Chinese medicine for many ailments, mainly to improve the microcirculation in states of shock, and also in organophosphate poisoning[1][2]. Anisodamine (6-Hydroxyhyoscyamine), a belladonna alkaloid, is a non-subtype-selective muscarinic, and also a nicotinic cholinoceptor antagonist. Anisodamine employs in traditional Chinese medicine for many ailments, mainly to improve the microcirculation in states of shock, and also in organophosphate poisoning[1][2]. Racanisodamine is one of the racemic isomers of anisodamine, resembles anisodamine in pharmacological effect. Racanisodamine is a non-selective muscarinic antagonist, used as a component of eye drops for myopic control[1]. Racanisodamine is one of the racemic isomers of anisodamine, resembles anisodamine in pharmacological effect. Racanisodamine is a non-selective muscarinic antagonist, used as a component of eye drops for myopic control[1]. Racanisodamine is one of the racemic isomers of anisodamine, resembles anisodamine in pharmacological effect. Racanisodamine is a non-selective muscarinic antagonist, used as a component of eye drops for myopic control[1].

   

Isofraxidin

7-hydroxy-6,8-dimethoxy-chromen-2-one;Isofraxidin

C11H10O5 (222.0528)


Isofraxidin is a hydroxycoumarin. Isofraxidin is a natural product found in Artemisia alba, Artemisia assoana, and other organisms with data available. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

(+)-Lithospermic acid

4-{3-[1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl}-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid

C27H22O12 (538.1111)


   

Neoisoastilbin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.1162)


Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

Anisodamine

7(c)micro-hydroxyhyoscyamine;Raceanisodamine; alpha-(Hydroxymethyl)benzeneacetic acid 6-hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-3-yl ester; Tropic acid 6-hydroxy-3-tropanyl ester

C17H23NO4 (305.1627)


6-Hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-3-yl 3-hydroxy-2-phenylpropanoate is a natural product found in Hyoscyamus niger with data available. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Anisodamine has been investigated for the treatment of Intestinal Diseases. 6-Hydroxyhyoscyamine is a natural product found in Duboisia myoporoides, Anisodus tanguticus, and Hyoscyamus albus with data available. Anisodamine (6-Hydroxyhyoscyamine), a belladonna alkaloid, is a non-subtype-selective muscarinic, and also a nicotinic cholinoceptor antagonist. Anisodamine employs in traditional Chinese medicine for many ailments, mainly to improve the microcirculation in states of shock, and also in organophosphate poisoning[1][2]. Anisodamine (6-Hydroxyhyoscyamine), a belladonna alkaloid, is a non-subtype-selective muscarinic, and also a nicotinic cholinoceptor antagonist. Anisodamine employs in traditional Chinese medicine for many ailments, mainly to improve the microcirculation in states of shock, and also in organophosphate poisoning[1][2]. Racanisodamine is one of the racemic isomers of anisodamine, resembles anisodamine in pharmacological effect. Racanisodamine is a non-selective muscarinic antagonist, used as a component of eye drops for myopic control[1]. Racanisodamine is one of the racemic isomers of anisodamine, resembles anisodamine in pharmacological effect. Racanisodamine is a non-selective muscarinic antagonist, used as a component of eye drops for myopic control[1]. Racanisodamine is one of the racemic isomers of anisodamine, resembles anisodamine in pharmacological effect. Racanisodamine is a non-selective muscarinic antagonist, used as a component of eye drops for myopic control[1].

   

5-Methoxytryptamine

5-Methoxy-3-indoleaceate

C11H14N2O (190.1106)


A member of the class of tryptamines that is the methyl ether derivative of serotonin.

   

Isofraxidin

Isofraxidin

C11H10O5 (222.0528)


Annotation level-1 Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Tazarotene

Tazarotene (Avage)

C21H21NO2S (351.1293)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

N-Acetylserotonin

N-Acetyl-5-hydroxytryptamine

C12H14N2O2 (218.1055)


An N-acylserotonin resulting from the formal condensation of the primary amino group of serotonin with the carboxy group of acetic acid. N-Acetyl-5-hydroxytryptamine is a Melatonin precursor, and that it can potently activate TrkB receptor.

   

Etoposide Impurity B

Etoposide Impurity B

C29H32O13 (588.1843)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D004791 - Enzyme Inhibitors

   

Norethisterone enanthate

Norethisterone enanthate

C27H38O3 (410.2821)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

XS-89

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carboxaldehyde

C23H32O6 (404.2199)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

Phytodolor

2H-1- Benzopyran-2-one, 7-hydroxy-6,8-dimethoxy-

C11H10O5 (222.0528)


Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

CID 5281302

CID 5281302

C27H22O12 (538.1111)


Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].

   

CID 46173863

CID 46173863

C15H18O3 (246.1256)


   

Tetrahydro-1,4-oxazine

Tetrahydro-1,4-oxazine

C4H9NO (87.0684)