Echinocystic
Echinocystic acid is a triterpenoid. Echinocystic acid is a natural product found in Cucurbita foetidissima, Eclipta alba, and other organisms with data available. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.
Sarsasapogenin
(25S)-5beta-spirostan-3beta-ol is a sapogenin. Sarsasapogenin is a natural product found in Yucca gloriosa, Narthecium ossifragum, and other organisms with data available. Constituent of Radix sarsaparilla (sarsaparilla root). Sarsasapogenin is found in asparagus, herbs and spices, and fenugreek. Sarsasapogenin is found in asparagus. Sarsasapogenin is a constituent of Radix sarsaparilla (sarsaparilla root) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities. Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities.
trans-Isoasarone
Alpha-asarone is the trans-isomer of asarone. It has a role as an anticonvulsant and a GABA modulator. alpha-Asarone is a natural product found in Sphallerocarpus gracilis, Asarum hypogynum, and other organisms with data available. trans-Isoasarone is found in carrot. trans-Isoasarone is a constituent of Asarum species and carrot seed (Daucus carota) (CCD) Constituent of Asarum subspecies and carrot seed (Daucus carota) (CCD). trans-Isoasarone is found in wild carrot and carrot. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents The trans-isomer of asarone. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].
Tropoflavin
7,8-dihydroxyflavone is a dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. It has a role as a plant metabolite, a tropomyosin-related kinase B receptor agonist, an antidepressant, an antioxidant and an antineoplastic agent. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
L-Proline
Proline (Pro), also known as L-proline is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Proline is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Proline is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. Proline is derived from the amino acid L-glutamate in which glutamate-5-semialdehyde is first formed by glutamate 5-kinase and glutamate-5-semialdehyde dehydrogenase (which requires NADH or NADPH). This semialdehyde can then either spontaneously cyclize to form 1-pyrroline-5-carboxylic acid, which is reduced to proline by pyrroline-5-carboxylate reductase, or turned into ornithine by ornithine aminotransferase, followed by cyclization by ornithine cyclodeaminase to form proline. L-Proline has been found to act as a weak agonist of the glycine receptor and of both NMDA and non-NMDA ionotropic glutamate receptors. It has been proposed to be a potential endogenous excitotoxin/neurotoxin. Studies in rats have shown that when injected into the brain, proline non-selectively destroys pyramidal and granule cells (PMID: 3409032 ). Therefore, under certain conditions proline can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of proline are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. People with hyperprolinemia type I often do not show any symptoms even though they have proline levels in their blood between 3 and 10 times the normal level. Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems. Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. Hyperprolinemia type II has signs and symptoms that vary in severity and is more likely than type I to involve seizures or intellectual disability. L-proline is pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. It has a role as a micronutrient, a nutraceutical, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a member of compatible osmolytes. It is a glutamine family amino acid, a proteinogenic amino acid, a proline and a L-alpha-amino acid. It is a conjugate base of a L-prolinium. It is a conjugate acid of a L-prolinate. It is an enantiomer of a D-proline. It is a tautomer of a L-proline zwitterion. Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. L-Proline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Proline is a cyclic, nonessential amino acid (actually, an imino acid) in humans (synthesized from glutamic acid and other amino acids), Proline is a constituent of many proteins. Found in high concentrations in collagen, proline constitutes almost a third of the residues. Collagen is the main supportive protein of skin, tendons, bones, and connective tissue and promotes their health and healing. (NCI04) L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. Pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. Flavouring ingredient; dietary supplement L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
Jujuboside A1
Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is found in fruits. Jujuboside A is isolated from seeds of Zizyphus jujuba (Chinese date Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.
Jujuboside B
Jujuboside B is a triterpenoid. Jujuboside B is a natural product found in Ziziphus spina-christi, Ziziphus jujuba, and Hovenia dulcis with data available. Jujuboside B1 is found in fruits. Jujuboside B1 is isolated from seeds of Zizyphus jujuba (Chinese date). Isolated from seeds of Zizyphus jujuba (Chinese date). Jujuboside B1 is found in fruits. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].
Bicuculline
Bicuculline is a benzylisoquinoline alkaloid that is 6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline which is substituted at the 5-pro-S position by a (6R)-8-oxo-6,8-dihydrofuro[3,4-e][1,3]benzodioxol-6-yl group. A light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. It has a role as an agrochemical, a central nervous system stimulant, a GABA-gated chloride channel antagonist, a neurotoxin and a GABAA receptor antagonist. It is an isoquinoline alkaloid, a member of isoquinolines and a benzylisoquinoline alkaloid. Bicuculline is a light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Bicuculline is a natural product found in Fumaria capreolata, Fumaria densiflora, and other organisms with data available. Bicuculline is a light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Since it blocks the inhibitory action of GABA receptors, the action of bicuculline mimics epilepsy. This property is utilized in laboratories across the world in the in vitro study of epilepsy, generally in hippocampal or cortical neurons in prepared brain slices from rodents. This compound is also routinely used to isolate glutamatergic (excitatory amino acid) receptor function. An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. A benzylisoquinoline alkaloid that is 6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline which is substituted at the 5-pro-S position by a (6R)-8-oxo-6,8-dihydrofuro[3,4-e][1,3]benzodioxol-6-yl group. A light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Bicuculline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=485-49-4 (retrieved 2024-07-09) (CAS RN: 485-49-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3]. Bicuculline ((+)-Bicuculline) is A competing neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+ activating potassium (SK) channels and subsequently blocks slow post-hyperpolarization (slow AHP). Bicuculline has anticonvulsant activity. Bicuculline can be used to induce seizures in mice[1][2][3][4]. Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3].
L-Glutamic acid
Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate. L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid. A peptide that is a homopolymer of glutamic acid. L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ... obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C 5H 9NO 4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH 2)−(CH 2)2−COOH, with two carboxyl groups −COOH and one amino group −NH 2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+ 3)−(CH 2)2−COOH. It is encoded by the codons GAA or GAG. The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+ 3)−(CH 2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH 2)−(CH 2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl. The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7] DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
Lotusine
Lotusine is a member of isoquinolines. Lotusine is a natural product found in Nelumbo nucifera, Magnolia officinalis, and Xylopia parviflora with data available. Quaternary alkaloid from the embryo of Nelumbo nucifera (East India lotus). Lotusine is found in coffee and coffee products. Lotusine is found in coffee and coffee products. Quaternary alkaloid from the embryo of Nelumbo nucifera (East India lotus).
Mitragynine
Mitragynine itself acts primarily via -opioid receptors, although its oxidation product mitragynine-pseudoindoxyl, which is likely to be a major component of kratom that has been aged or stored for extended periods, acts as a fairly selective -opioid agonist with little affinity for receptors. Another alkaloid with a major contribution to the opioid activity of the kratom plant is the related compound 7-hydroxymitragynine, which while present in the plant in much smaller quantities than mitragynine, is a much more potent opioid agonist. Mitragynine is a monoterpenoid indole alkaloid. Mitragynine is a natural product found in Mitragyna speciosa with data available.
Quisqualic_acid
Quisqualic acid is a non-proteinogenic alpha-amino acid. Quisqualic acid is an agonist at two subsets of excitatory amino acid receptors, ionotropic receptors that directly control membrane channels and metabotropic receptors that indirectly mediate calcium mobilization from intracellular stores. The compound is obtained from the seeds and fruit of Quisqualis chinensis. An agonist at two subsets of excitatory amino acid receptors, ionotropic receptors that directly control membrane channels and metabotropic receptors that indirectly mediate calcium mobilization from intracellular stores. The compound is obtained from the seeds and fruit of Quisqualis chinensis. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID Q003 Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2]. Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2]. Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2].
p-Anisic acid
p-Anisic acid, also known as 4-anisate or draconic acid, belongs to the class of organic compounds known as p-methoxybenzoic acids and derivatives. These are benzoic acids in which the hydrogen atom at position 4 of the benzene ring is replaced by a methoxy group. p-Anisic acid is a drug. p-Anisic acid exists in all eukaryotes, ranging from yeast to humans. p-Anisic acid is a faint, sweet, and cadaverous tasting compound. Outside of the human body, p-anisic acid has been detected, but not quantified in several different foods, such as anises, cocoa beans, fennels, and german camomiles. This could make p-anisic acid a potential biomarker for the consumption of these foods. It is a white crystalline solid which is insoluble in water, highly soluble in alcohols and soluble in ether, and ethyl acetate. p-Anisic acid has antiseptic properties. It is also used as an intermediate in the preparation of more complex organic compounds. It is generally obtained by the oxidation of anethole or p-methoxyacetophenone. The term "anisic acid" often refers to this form specifically. p-Anisic acid is found naturally in anise. 4-methoxybenzoic acid is a methoxybenzoic acid substituted with a methoxy group at position C-4. It has a role as a plant metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 4-methoxybenzoate. 4-Methoxybenzoic acid is a natural product found in Chaenomeles speciosa, Annona purpurea, and other organisms with data available. Anisic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Stevia rebaudiuna Leaf (part of). Flavouring agent. Food additive listed in the EAFUS Food Additive Database (Jan. 2001) A methoxybenzoic acid substituted with a methoxy group at position C-4. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS KEIO_ID A154 p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1]. p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1].
25d20E
Ponasterone A is a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 22-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Ponasterone A is a natural product found in Zoanthus, Lomaridium contiguum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ponasterone A (25-Deoxyecdysterone), an ecdysteroid, has strong affinity for the ecdysone receptor. Ponasterone A is a potent regulator of gene expression in cells and transgenic animals, enabling reporter genes to be turned on and off rapidly[1][2].
(E)-methyl ester 3-phenyl-2-propenoic acid
Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Dopamine
Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061) Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard. Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5] In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9] Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13] Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are: Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20] Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21] Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24] The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26] L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25] Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25] Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25] Degradation Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28] Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30] Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]
(RS)-3,5-DHPG
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].
Adenosine monophosphate
Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.
(4-Aminobutyl)guanidine
Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. -- Wikipedia; Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is discussed as a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to ?2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Agmatine is found in many foods, some of which are fruits, kohlrabi, carob, and burdock. Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. Agmatine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=306-60-5 (retrieved 2024-07-01) (CAS RN: 306-60-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Serine
Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373). [Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot. L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
N-Methyl-D-aspartic acid
N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. NMDA is a water-soluble endogenous metabolite that plays an important role in the neuroendocrine system of species across Animalia (PMID:18096065). It was first synthesized in the 1960s (PMID:14056452). NMDA is an excitotoxin; this trait has applications in behavioural neuroscience research. The body of work utilizing this technique falls under the term "lesion studies." Researchers apply NMDA to specific regions of an (animal) subjects brain or spinal cord and subsequently test for the behaviour of interest, such as operant behaviour. If the behaviour is compromised, it suggests that the destroyed tissue was part of a brain region that made an important contribution to the normal expression of that behaviour. Examples of antagonists of the NMDA receptor are ketamine, amantadine, dextromethorphan (DXM), riluzole, and memantine. They are commonly referred to as NMDA receptor antagonists (PMID:28877137). N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Salsolinol
(r)-salsolinol, also known as salsolinol, (+-)-isomer or 1-methyl-6,7-dihydroxytetrahydroisoquinoline, is a member of the class of compounds known as tetrahydroisoquinolines. Tetrahydroisoquinolines are tetrahydrogenated isoquinoline derivatives (r)-salsolinol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (r)-salsolinol can be found in cocoa and cocoa products and fruits, which makes (r)-salsolinol a potential biomarker for the consumption of these food products (r)-salsolinol can be found primarily in blood, cerebrospinal fluid (CSF), and feces. Moreover, (r)-salsolinol is found to be associated with hypertension, multiple system atrophy, and parkinsons disease. Salsolinol belongs to the family of Isoquinolines. These are aromatic polycyclic compounds containing an isoquinoline moiety, which consists of a benzene ring fused to a pyridine ring and forming benzo[c]pyridine. Salsolinol is a biomarker for the consumption of bananas.
(R)-Amphetamine
==(R)==-Amphetamine is an enantiomer of amphetamine that is urinary metabolite from selegeline (drug used for the treatment of early-stage Parkinsons disease, depression and senile dementia). ==(R)==-Amphetamine as stereoisomer is not considered psychoactive and has little abuse potential. The stimulatory effect on locomotor activity and dopamine synthesis may be contributed to by the action of R-methamphetamine. If anyone is prescribed and takes selegiline, they can and will test positive for amphetamine/methamphetamine on most drug tests. [HMDB] (R)-amphetamine is an enantiomer of amphetamine that is urinary metabolite from selegeline (drug used for the treatment of early-stage Parkinsons disease, depression and senile dementia). (R)-amphetamine as stereoisomer is not considered psychoactive and has little abuse potential. The stimulatory effect on locomotor activity and dopamine synthesis may be contributed to by the action of R-methamphetamine. If anyone is prescribed and takes selegiline, they can and will test positive for amphetamine/methamphetamine on most drug tests. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Gabapentin
Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201) [HMDB] Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics
Heroin
A morphinane alkaloid that is morphine bearing two acetyl substituents on the O-3 and O-6 positions. As with other opioids, heroin is used as both an analgesic and a recreational drug. Frequent and regular administration is associated with tolerance and physical dependence, which may develop into addiction. Its use includes treatment for acute pain, such as in severe physical trauma, myocardial infarction, post-surgical pain, and chronic pain, including end-stage cancer and other terminal illnesses. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1533
Angiotensin IV
Angiotensin IV is one of the N-terminal angiotensin degradation products of angiotensin II. Angiotensin IV (AngIV) mediates important physiologic functions in the central nervous system, including blood flow regulation, processes underlying to learning and memory, and presents anticonvulsant activity. The presence of AngIV-specific binding sites has been identified in various mammalian tissues, including blood vessels, heart, kidney, and brain. Besides the presence of AngIV binding sites in the cardiovascular system, the major AngIV synthesizing enzymes aminopeptidase N (APN) and aminopeptidase B (APB) are also expressed in different cell types of this system. AngIV activates several protein kinases, including phosphatidylinositol 3 kinase, PI-dependent kinase-1, extracellular signal-related kinases (ERK), protein kinase B-α/Akt, and p70 ribosomal S6 kinase. AngIV could contribute to vascular damage, increasing the production of monocyte chemoattractant protein-1, the main chemokine involved in monocyte recruitment, and up-regulates the expression of the adhesion molecule intercellular adhesion molecule-1 that is involved in the attachment and transmigration of circulating cells into the damaged tissue. (PMID: 17210474) [HMDB] Angiotensin IV is one of the N-terminal angiotensin degradation products of angiotensin II. Angiotensin IV (AngIV) mediates important physiologic functions in the central nervous system, including blood flow regulation, processes underlying to learning and memory, and presents anticonvulsant activity. The presence of AngIV-specific binding sites has been identified in various mammalian tissues, including blood vessels, heart, kidney, and brain. Besides the presence of AngIV binding sites in the cardiovascular system, the major AngIV synthesizing enzymes aminopeptidase N (APN) and aminopeptidase B (APB) are also expressed in different cell types of this system. AngIV activates several protein kinases, including phosphatidylinositol 3 kinase, PI-dependent kinase-1, extracellular signal-related kinases (ERK), protein kinase B-α/Akt, and p70 ribosomal S6 kinase. AngIV could contribute to vascular damage, increasing the production of monocyte chemoattractant protein-1, the main chemokine involved in monocyte recruitment, and up-regulates the expression of the adhesion molecule intercellular adhesion molecule-1 that is involved in the attachment and transmigration of circulating cells into the damaged tissue. (PMID: 17210474). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Selegiline
A selective, irreversible inhibitor of Type B monoamine oxidase. It is used in newly diagnosed patients with Parkinsons disease. It may slow progression of the clinical disease and delay the requirement for levodopa therapy. It also may be given with levodopa upon onset of disability. (From AMA Drug Evaluations Annual, 1994, p385) The compound without isomeric designation is Deprenyl. [PubChem] INTERNAL_ID 948; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5917; ORIGINAL_PRECURSOR_SCAN_NO 5916 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5948; ORIGINAL_PRECURSOR_SCAN_NO 5946 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5965; ORIGINAL_PRECURSOR_SCAN_NO 5963 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5911; ORIGINAL_PRECURSOR_SCAN_NO 5909 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5941; ORIGINAL_PRECURSOR_SCAN_NO 5940 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5953; ORIGINAL_PRECURSOR_SCAN_NO 5952 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5917; ORIGINAL_PRECURSOR_SCAN_NO 5916 N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BD - Monoamine oxidase b inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3275 CONFIDENCE standard compound; INTERNAL_ID 2119 D020011 - Protective Agents
Topiramate
Topiramate is an anticonvulsant drug used to treat epilepsy in both children and adults. In children it is also indicated for treatment of Lennox-Gastaut syndrome (a disorder that causes seizures and developmental delays). It is also Food and Drug Administration (FDA) approved, and now most frequently prescribed for, the prevention of migraines. It has been used by psychiatrists to treat bipolar disorder, although it is not FDA approved for this purpose and such use is somewhat controversial. This drug has been investigated for use in treatment of obesity, especially to aid in the reduction of binge eating, and also as a possible treatment for alcoholism. However, these uses are not actively promoted by the manufacturer, and like its use for bipolar disorder, are off-label uses. The drug is also used in clinical trials to treat Post Traumatic Stress Disorder. A pilot study suggests that Topiramate is possibly effective against infantile spasm; Chemically, topiramate is a sulfamate-substituted monosaccharide, related to fructose, a rather unusual chemical structure for an anticonvulsant. Topiramate is quickly absorbed after oral use. Most of the drug (70\\\%) is excreted in the urine as unchanged drug. The remainder is extensively metabolized by hydroxylation, hydrolysis, and glucuronidation. Six metabolites have been identified in humans, none of which constitutes more than 5\\\% of an administered dose. Topiramate enhances GABA-activated chloride channels. In addition, topiramate inhibits excitatory neurotransmission, through actions on kainate and AMPA receptors. There is evidence that topiramate has a specific effect on GluR5 kainate receptors. It is also an inhibitor of carbonic anhydrase, particularly subtypes II and IV, but this action is weak and unlikely to be related to its anticonvulsant actions, but may account for the bad taste and the development of renal stones seen during treatment. Its possible effect as a mood stabilizer seems to occur before anticonvulsant qualities at lower dosages. Topiramate inhibits maximal electroshock and pentylenetetrazol-induced seizures as well as partial and secondarily generalized tonic-clonic seizures in the kindling model, findings predictive of a broad spectrum of antiseizure activities clinically; Johnson. It is used to treat epilepsy in both children and adults. In children it is also indicated for treatment of Lennox-Gastaut syndrome (a disorder that causes seizures and developmental delays). It is also Food and Drug Administration (FDA) approved for, and now most frequently prescribed for, the prevention of migraines. It has been used by psychiatrists to treat bipolar disorder, although it is not FDA approved for this purpose and such use is somewhat controversial. This drug has been investigated for use in treatment of obesity, especially to aid in the reduction of binge eating, and also as a possible treatment for alcoholism. However, these uses are not actively promoted by the manufacturer, and like its use for bipolar disorder, are off-label uses. The drug is also used in clinical trials to treat Post Traumatic Stress Disorder. A pilot study suggests that Topiramate is possibly effective against infantile spasm. In May 2006 the U.S. National Institutes of Health web site clinicaltrials.gov listed several studies sponsored by Ortho-McNeil which propose to examine the use of topiramate on migraine, cluster, and severe headaches within various demographics; Topiramate (brand name: Topamax) is an anticonvulsant drug produced by Ortho-McNeil, a division of Johnson & Topiramate (brand name: Topamax) is an anticonvulsant drug produced by Ortho-McNeil, a division of Johnson & Johnson. It is used to treat epilepsy in both children and adults. In children it is also indicated for treatment of Lennox-Gastaut syndrome (a disorder that causes seizures and developmental delays). It is also Food and Drug Administration (FDA) approved for, and now most frequently prescribed for, the preventio... CONFIDENCE standard compound; INTERNAL_ID 395; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3585; ORIGINAL_PRECURSOR_SCAN_NO 3584 CONFIDENCE standard compound; INTERNAL_ID 395; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3597; ORIGINAL_PRECURSOR_SCAN_NO 3596 CONFIDENCE standard compound; INTERNAL_ID 395; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3586; ORIGINAL_PRECURSOR_SCAN_NO 3584 CONFIDENCE standard compound; INTERNAL_ID 395; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3591; ORIGINAL_PRECURSOR_SCAN_NO 3588 CONFIDENCE standard compound; INTERNAL_ID 395; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3659; ORIGINAL_PRECURSOR_SCAN_NO 3657 CONFIDENCE standard compound; INTERNAL_ID 395; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3594; ORIGINAL_PRECURSOR_SCAN_NO 3593 C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D007004 - Hypoglycemic Agents Topiramate (McN 4853) is a broad-spectrum antiepileptic agent. Topiramate is a GluR5 receptor antagonist. Topiramate produces its antiepileptic effects through enhancement of GABAergic activity, inhibition of kainate/AMPA receptors, inhibition of voltage-sensitive sodium and calcium channels, increases in potassium conductance, and inhibition of carbonic anhydrase[1][2][3].
Ketamine
Ketamine is only found in individuals that have used or taken this drug. It is a cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (receptors, N-methyl-D-aspartate) and may interact with sigma receptors. [PubChem]Ketamine has several clinically useful properties, including analgesia and less cardiorespiratory depressant effects than other anaesthetic agents, it also causes some stimulation of the cardiocascular system. Ketamine has been reported to produce general as well as local anaesthesia. It interacts with N-methyl-D-aspartate (NMDA) receptors, opioid receptors, monoaminergic receptors, muscarinic receptors and voltage sensitive Ca ion channels. Unlike other general anaesthetic agents, ketamine does not interact with GABA receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2826 KEIO_ID K005; [MS2] KO009114 KEIO_ID K005 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Morphine
Morphine, also known as (-)-morphine or morphine sulfate, is a member of the class of compounds known as morphinans. Morphinans are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Morphine is soluble (in water) and a very weakly acidic compound (based on its pKa). Morphine can be synthesized from morphinan. Morphine is also a parent compound for other transformation products, including but not limited to, myrophine, heroin, and codeine. Morphine can be found in a number of food items such as nanking cherry, eggplant, millet, and common hazelnut, which makes morphine a potential biomarker for the consumption of these food products. Morphine can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, morphine is involved in several metabolic pathways, some of which include heroin action pathway, morphine metabolism pathway, heroin metabolism pathway, and codeine metabolism pathway. Morphine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Morphine is a drug which is used for the relief and treatment of severe pain. The primary source of morphine is isolation from poppy straw of the opium poppy. In 2013, an estimated 523 000 kg of morphine were produced. About 45 000 kg were used directly for pain, a four-time increase over the last twenty years. Most use for this purpose was in the developed world. About 70\\% of morphine is used to make other opioids such as hydromorphone, oxymorphone, and heroin. It is a Schedule II drug in the United States, Class A in the United Kingdom, and Schedule I in Canada. It is on the World Health Organizations List of Essential Medicines, the most effective and safe medicines needed in a health system. Morphine is sold under many trade names . Primarily hepatic (90\\%), converted to dihydromorphinone and normorphineand is) also converted to morphine-3-glucuronide (M3G) and morphine-6-glucuronide. Virtually all morphine is converted to glucuronide metabolites; only a small fraction (less than 5\\%) of absorbed morphine is demethylated (DrugBank). In the treatment of morphine overdosage, primary attention should be given to the re- establishment of a patent airway and institution of assisted or controlled ventilation. Supportive measures (including oxygen, vasopressors) should be employed in the management of circulatory shock and pulmonary edema accompanying overdose as indicated. Cardiac arrest or arrhythmias may require cardiac massage or defibrillation. The pure opioid antagonists, such as naloxone, are specific antidotes against respiratory depression which results from opioid overdose. Naloxone should be administered intravenously; however, because its duration of action is relatively short, the patient must be carefully monitored until spontaneous respiration is reliably re-established. If the response to naloxone is suboptimal or not sustained, additional naloxone may be administered, as needed, or given by continuous infusion to maintain alertness and respiratory function; however, there is no information available about the cumulative dose of naloxone that may be safely administered (L1712) (T3DB). Morphine is the principal alkaloid in opium and the prototype opiate analgesic and narcotic. In 2017, morphine was the 155th most commonly prescribed medication in the United States, with more than four million prescriptions. Morphine is used primarily to treat both acute and chronic severe pain. Its duration of analgesia is about three to seven hours. A large overdose of morphine can cause asphyxia and death by respiratory depression if the person does not receive medical attention immediately. Morphine is naturally produced by several plants (such as the opium poppy) and animals (PMID: 22578954). Morphine was first isolated between 1803 and 1805 by Friedrich Sertürner. Sertürner originally named the substance morphium after the Greek god of dreams, Morpheus, as it has a tendency to cause sleep. The primary source of morphine is isolation from poppy straw of the opium poppy. Morphine is also endogenously produced by humans. In the mid 2000s it was found morphine can be synthesized by white blood cells (PMID 22578954). CYP2D6, a cytochrome P450 isoenzyme, catalyzes the biosynthesis of morphine from codeine and dopamine from tyramine. The morphine biosynthetic pathway in humans occurs as follows: L-tyrosine -> para-tyramine or L-DOPA -> dopamine -> (S)-norlaudanosoline -> (S)-reticuline -> 1,2-dehydroretinulinium -> (R)-reticuline -> salutaridine -> salutaridinol -> thebaine -> neopinone -> codeinone -> codeine -> morphine. (S)-Norlaudanosoline (also known as tetrahydropapaveroline) which is an important intermediate in the WBC biosynthesis of morphine can also be synthesized from 3,4-dihydroxyphenylacetaldehyde (DOPAL), a metabolite of L-DOPA and dopamine. Morphine has widespread effects in the central nervous system and on smooth muscle (PMID: 4582903). The precise mechanism of the analgesic action of morphine is not fully known. However, specific CNS opiate receptors have been identified and likely play a role in the induction of analgesic effects. Morphine first acts on the mu-opioid receptors. The mechanism of respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to increases in carbon dioxide tension and electrical stimulation. It has been shown that morphine binds to and inhibits GABA inhibitory interneurons. These interneurons normally inhibit the descending pain inhibition pathway. So, without the inhibitory signals, pain modulation can proceed downstream. When the dose of morphine is reduced after long-term use, opioid withdrawal symptoms such as drowsiness, vomiting, and constipation may also occur (PMID: 23244430). Morphine is only found in easily detectable quantities in individuals that have used or taken this drug. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2744 CONFIDENCE standard compound; INTERNAL_ID 1580
Glycerol 3-phosphate
Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072
Methamphetamine
Methamphetamine is a psychostimulant and sympathomimetic drug. It is a member of the amphetamine group of sympathomimetic amines. Methamphetamine can induce effects such as euphoria, increased alertness and energy, and enhanced self-esteem. It is a scheduled drug in most countries due to its high potential for addiction and abuse. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2829 D049990 - Membrane Transport Modulators
Cannabidiol
An cannabinoid that is cyclohexene which is substituted by a methyl group at position 1, a 2,6-dihydroxy-4-pentylphenyl group at position 3, and a prop-1-en-2-yl group at position 4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Chlorpromazine
The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class, chlorpromazines antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking dopamine receptors. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2886; ORIGINAL_PRECURSOR_SCAN_NO 2881 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8394; ORIGINAL_PRECURSOR_SCAN_NO 8393 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8389; ORIGINAL_PRECURSOR_SCAN_NO 8387 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2875; ORIGINAL_PRECURSOR_SCAN_NO 2871 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8406; ORIGINAL_PRECURSOR_SCAN_NO 8404 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2956; ORIGINAL_PRECURSOR_SCAN_NO 2953 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2893; ORIGINAL_PRECURSOR_SCAN_NO 2890 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2891; ORIGINAL_PRECURSOR_SCAN_NO 2889 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8400; ORIGINAL_PRECURSOR_SCAN_NO 8399 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8476; ORIGINAL_PRECURSOR_SCAN_NO 8474 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2886; ORIGINAL_PRECURSOR_SCAN_NO 2882 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8410; ORIGINAL_PRECURSOR_SCAN_NO 8408 N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; INTERNAL_ID 1121 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Felbamate
Felbamate is an anticonvulsant drug used in the treatment of epilepsy. It is used to treat partial seizures (with and without generalization) in adults and partial and generalized seizures associated with Lennox-Gastaut syndrome in children. It has a weak inhibitory effect on GABA receptor binding sites. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
Flupentixol
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist
Remifentanil
Remifentanil (marketed by Abbott as Ultiva) is a potent ultra short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. Remifentanil is a specific mu-type-opioid receptor agonist. Hence, it causes a reduction in sympathetic nervous system tone, respiratory depression and analgesia. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Methylphenidate
Methylphenidate is only found in individuals that have used or taken this drug. It is a central nervous system stimulant used most commonly in the treatment of attention-deficit disorders in children and for narcolepsy. Its mechanisms appear to be similar to those of dextroamphetamine. [PubChem]Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system. Alteration of serotonergic pathways via changes in dopamine transport may result. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Pilocarpine
Pilocarpine is only found in individuals that have used or taken this drug. It is a slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. [PubChem]Pilocarpine is a cholinergic parasympathomimetic agent. It increase secretion by the exocrine glands, and produces contraction of the iris sphincter muscle and ciliary muscle (when given topically to the eyes) by mainly stimulating muscarinic receptors. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2265 Pilocarpine is a selective M3-type muscarinic acetylcholine receptor (M3 muscarinic receptor) agonist.
Paroxetine
Paroxetine hydrochloride and paroxetine mesylate belong to a class of antidepressant agents known as selective serotonin-reuptake inhibitors (SSRIs). Despite distinct structural differences between compounds in this class, SSRIs possess similar pharmacological activity. As with other antidepressant agents, several weeks of therapy may be required before a clinical effect is seen. SSRIs are potent inhibitors of neuronal serotonin reuptake. They have little to no effect on norepinephrine or dopamine reuptake and do not antagonize α- or β-adrenergic, dopamine D2 or histamine H1 receptors. During acute use, SSRIs block serotonin reuptake and increase serotonin stimulation of somatodendritic 5-HT1A and terminal autoreceptors. Chronic use leads to desensitization of somatodendritic 5-HT1A and terminal autoreceptors. The overall clinical effect of increased mood and decreased anxiety is thought to be due to adaptive changes in neuronal function that leads to enhanced serotonergic neurotransmission. Side effects include dry mouth, nausea, dizziness, drowsiness, sexual dysfunction and headache (see Toxicity section below for a complete listing of side effects). Side effects generally occur during the first two weeks of therapy and are usually less severe and frequent than those observed with tricyclic antidepressants. Paroxetine hydrochloride and mesylate are considered therapeutic alternatives rather than generic equivalents by the US Food and Drug Administration (FDA); both agents contain the same active moiety (i.e. paroxetine), but are formulated as different salt forms. Clinical studies establishing the efficacy of paroxetine in various conditions were performed using paroxetine hydrochloride. Since both agents contain the same active moiety, the clinical efficacy of both agents is thought to be similar. Paroxetine may be used to treat major depressive disorder (MDD), panic disorder with or without agoraphobia, obsessive-compulsive disorder (OCD), social anxiety disorder (social phobia), generalized anxiety disorder (GAD), post-traumatic stress disorder (PTSD) and premenstrual dysphoric disorder (PMDD). Paroxetine has the most evidence supporting its use for anxiety-related disorders of the SSRIs. It has the greatest anticholinergic activity of the agents in this class and compared to other SSRIs, paroxetine may cause greater weight gain, sexual dysfunction, sedation and constipation. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent CONFIDENCE standard compound; INTERNAL_ID 8555 CONFIDENCE standard compound; INTERNAL_ID 1526 D049990 - Membrane Transport Modulators Paroxetine, a phenylpiperidine derivative, is a potent and selective serotonin reuptake inhibitor (SSRI). Paroxetine is a very weak inhibitor of norepinephrine (NE) uptake but it is still more potent at this site than the other SSRIs[1].
Oxycodone
Oxycodone is only found in individuals that have used or taken this drug. It is a semisynthetic derivative of codeine that acts as a narcotic analgesic more potent and addicting than codeine. [PubChem]Oxycodone acts as a weak agonist at mu, kappa, and delta opioid receptors within the central nervous system (CNS). Oxycodone primarily affects mu-type opioid receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as oxycodone also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (kappa-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (mu and delta receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Trichlormethiazide
Trichlormethiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with properties similar to those of hydrochlorothiazide. (From Martindale, The Extra Pharmacopoeia, 30th ed, p830)Trichlormethiazide appears to block the active reabsorption of chloride and possibly sodium in the ascending loop of Henle, altering electrolyte transfer in the proximal tubule. This results in excretion of sodium, chloride, and water and, hence, diuresis. As a diuretic, Trichloromethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like Trichloromethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of Trichloromethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators
Cocaine
Cocaine, also known as coke, is an alkaloid ester obtained from the leaves of the coca plant (PMID: 20857618). It is a weakly alkaline compound and can therefore combine with acidic compounds to form white salts or powders (which is how it is typically sold and consumed). Cocaine is a strong stimulant that is most frequently used as a recreational drug. It is the second most frequently used illegal drug globally, after cannabis. The stimulant and hunger suppression properties of cocaine and coca leaf extracts have been known for thousands of years by indigenous groups in central and South America. The coca leaf was, and still is, chewed almost universally by some indigenous communities. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This inhibition leads to a number of mental and physical effects that may include loss of contact with reality, an intense feeling of happiness, periods of agitation, along with a rapid heart rate, sweating, and dialated pupils. Cocaine is highly addictive due to its effect on the reward pathway in the brain (PMID: 22856655). Cocaine addiction occurs through overexpression of the FosB protein in the nucleus accumbens of the brain, which results in altered transcriptional regulation in neurons within the nucleus accumbens. Cocaine is harmful. Its use increases the risk of stroke, myocardial infarction, lung problems (in those who smoke it), blood infections, and sudden cardiac death. Medically, cocaine is infrequently used as a local anesthetic and vasoconstrictor to cause loss of feeling or numbness before certain medical procedures (e.g., biopsy, stitches, wound cleaning) (PMID: 28956316). Topical cocaine is occasionally used as a local numbing agent to help with painful procedures in the mouth or nose. Cocaine is now predominantly used for nasal and lacrimal duct surgery. It works quickly to numb certain areas of the body (e.g., nose, ear, or throat) about 1-2 minutes after application. Cocaine functions as an anesthesia by reversibly binding to and inactivating sodium channels, thereby inhibiting excitation of nerve endings or by blocking conduction in peripheral nerves. Cocaine and its major metabolites are only found in individuals that have used or taken this drug. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BC - Esters of benzoic acid S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2817 EAWAG_UCHEM_ID 2817; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 1619 D049990 - Membrane Transport Modulators
Haloperidol
A phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. (From AMA Drug Evaluations Annual, 1994, p279) CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7649; ORIGINAL_PRECURSOR_SCAN_NO 7647 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7684; ORIGINAL_PRECURSOR_SCAN_NO 7682 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7681; ORIGINAL_PRECURSOR_SCAN_NO 7680 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7678; ORIGINAL_PRECURSOR_SCAN_NO 7677 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7604; ORIGINAL_PRECURSOR_SCAN_NO 7602 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7639; ORIGINAL_PRECURSOR_SCAN_NO 7638 D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3566 CONFIDENCE standard compound; INTERNAL_ID 1122 Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.
Enoxacin
Enoxacin is only found in individuals that have used or taken this drug. It is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid. [PubChem]Enoxacin exerts its bactericidal action via the inhibition of the essential bacterial enzyme DNA gyrase (DNA Topoisomerase II). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3078
Memantine
Memantine is an amantadine derivative with low to moderate-affinity for NMDA receptors. It is a noncompetitive NMDA receptor antagonist that binds preferentially to NMDA receptor-operated cation channels. It blocks the effects of excessive levels of glutamate that may lead to neuronal dysfunction. It is under investigation for the treatment of Alzheimers disease, but there has been no clinical support for the prevention or slowing of disease progression. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3351 CONFIDENCE standard compound; INTERNAL_ID 2679 CONFIDENCE standard compound; INTERNAL_ID 8601
nystatin
A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptomyces species. It is an antifungal antibiotic used for the treatment of topical fungal infections caused by a broad spectrum of fungal pathogens comprising yeast-like and filamentous species. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D049990 - Membrane Transport Modulators D007476 - Ionophores A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptococcus species. The keto-form of nystatin A1. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3140
Rimantadine
Rimantadine is only found in individuals that have used or taken this drug. It is an RNA synthesis inhibitor that is used as an antiviral agent in the prophylaxis and treatment of influenza. [PubChem]The mechanism of action of rimantadine is not fully understood. Rimantadine appears to exert its inhibitory effect early in the viral replicative cycle, possibly inhibiting the uncoating of the virus. Genetic studies suggest that a virus protein specified by the virion M2 gene plays an important role in the susceptibility of influenza A virus to inhibition by rimantadine. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3149
Rivastigmine
Rivastigmine is only found in individuals that have used or taken this drug. It is a parasympathomimetic or cholinergic agent for the treatment of mild to moderate dementia of the Alzheimers type. Rivastigmine is a cholinesterase inhibitor that inhibits both butyrylcholinesterase and acetylcholinesterase.Rivastigmine is a carbamate derivative that is structurally related to physostigmine, but not to donepezil and tacrine. The precise mechanism of rivastigmine has not been fully determined, but it is suggested that rivastigmine binds reversibly with and inactivates chlolinesterase (eg. acetylcholinesterase, butyrylcholinesterase), preventing the hydrolysis of acetycholine, and thus leading to an increased concentration of acetylcholine at cholinergic synapses. The anticholinesterase activity of rivastigmine is relatively specific for brain acetylcholinesterase and butyrylcholinesterase compared with those in peripheral tissues. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2844 EAWAG_UCHEM_ID 2844; CONFIDENCE standard compound D020011 - Protective Agents D004791 - Enzyme Inhibitors
Vigabatrin
Vigabatrin is only found in individuals that have used or taken this drug. It is an analogue of gamma-aminobutyric acid. It is an irreversible inhibitor of 4-aminobutyrate transaminase, the enzyme responsible for the catabolism of gamma-aminobutyric acid. (From Martindale The Extra Pharmacopoeia, 31st ed)It is believed that vigabatrin increases brain concentrations of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in the CNS, by irreversibly inhibiting enzymes that catabolize GABA (gamma-aminobutyric acid transaminase GABA-T) or block the reuptake of GABA into glia and nerve endings. Vigabatrin may also work by suppressing repetitive neuronal firing through inhibition of voltage-sensitive sodium channels. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3626 D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
aniracetam
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].
Diflunisal
Diflunisal, a salicylate derivative, is a nonsteroidal anti-inflammatory agent (NSAIA) with pharmacologic actions similar to other prototypical NSAIAs. Diflunisal possesses anti-inflammatory, analgesic and antipyretic activity. Though its mechanism of action has not been clearly established, most of its actions appear to be associated with inhibition of prostaglandin synthesis via the arachidonic acid pathway. Diflunisal is used to relieve pain accompanied with inflammation and in the symptomatic treatment of rheumatoid arthritis and osteoarthritis. N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D004791 - Enzyme Inhibitors KEIO_ID D058
Phencyclidine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D004791 - Enzyme Inhibitors
Pentetrazol
R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AB - Respiratory stimulants D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D07409
Ginkgolide C
Ginkgolide C is found in fats and oils. Ginkgolide C is a bitter principle from Ginkgo biloba (ginkgo). Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide C is found in ginkgo nuts and fats and oils. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.
γ-Aminobutyric acid
gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter found in the nervous systems of widely divergent species, including humans. It is the chief inhibitory neurotransmitter in the vertebrate central nervous system. In vertebrates, GABA acts at inhibitory synapses in the brain. It acts by binding to specific transmembrane receptors in the plasma membrane of both pre- and postsynaptic neurons. This binding causes the opening of ion channels to allow either the flow of negatively-charged chloride ions into the cell or positively-charged potassium ions out of the cell. This will typically result in a negative change in the transmembrane potential, usually causing hyperpolarization. Three general classes of GABA receptor are known (PMID: 10561820). These include GABA-A and GABA-C ionotropic receptors, which are ion channels themselves, and GABA-B metabotropic receptors, which are G protein-coupled receptors that open ion channels via intermediaries known as G proteins (PMID: 10561820). Activation of the GABA-B receptor by GABA causes neuronal membrane hyperpolarization and a resultant inhibition of neurotransmitter release. In addition to binding sites for GABA, the GABA-A receptor has binding sites for benzodiazepines, barbiturates, and neurosteroids. GABA-A receptors are coupled to chloride ion channels. Therefore, activation of the GABA-A receptor induces increased inward chloride ion flux, resulting in membrane hyperpolarization and neuronal inhibition (PMID: 10561820). After release into the synapse, free GABA that does not bind to either the GABA-A or GABA-B receptor complexes can be taken up by neurons and glial cells. Four different GABA membrane transporter proteins (GAT-1, GAT-2, GAT-3, and BGT-1), which differ in their distribution in the CNS, are believed to mediate the uptake of synaptic GABA into neurons and glial cells. The GABA-A receptor subtype regulates neuronal excitability and rapid changes in fear arousal, such as anxiety, panic, and the acute stress response (PMID: 10561820). Drugs that stimulate GABA-A receptors, such as the benzodiazepines and barbiturates, have anxiolytic and anti-seizure effects via GABA-A-mediated reduction of neuronal excitability, which effectively raises the seizure threshold. GABA-A antagonists produce convulsions in animals and there is decreased GABA-A receptor binding in a positron emission tomography (PET) study of patients with panic disorder. Neurons that produce GABA as their output are called GABAergic neurons and have chiefly inhibitory action at receptors in the vertebrate. Medium spiny neurons (MSNs) are a typical example of inhibitory CNS GABAergic cells. GABA has been shown to have excitatory roles in the vertebrate, most notably in the developing cortex. Organisms synthesize GABA from glutamate using the enzyme L-glutamic acid decarboxylase and pyridoxal phosphate as a cofactor (PMID: 12467378). It is worth noting that this involves converting the principal excitatory neurotransmitter (glutamate) into the principal inhibitory one (GABA). Drugs that act as agonists of GABA receptors (known as GABA analogs or GABAergic drugs), or increase the available amount of GABA typically have relaxing, anti-anxiety, and anti-convulsive effects. GABA is found to be deficient in cerebrospinal fluid and the brain in many studies of experimental and human epilepsy. Benzodiazepines (such as Valium) are useful in status epilepticus because they act on GABA receptors. GABA increases in the brain after administration of many seizure medications. Hence, GABA is clearly an antiepileptic nutrient. Inhibitors of GAM metabolism can also produce convulsions. Spasticity and involuntary movement syndromes, such as Parkinsons, Friedreichs ataxia, tardive dyskinesia, and Huntingtons chorea, are all marked by low GABA when amino acid levels are studied. Trials of 2 to 3 g of GABA given orally have been effective in various epilepsy and spasticity syndromes. Agents that elevate GABA are als... Gamma-aminobutyric acid, also known as gaba or 4-aminobutanoic acid, belongs to gamma amino acids and derivatives class of compounds. Those are amino acids having a (-NH2) group attached to the gamma carbon atom. Thus, gamma-aminobutyric acid is considered to be a fatty acid lipid molecule. Gamma-aminobutyric acid is soluble (in water) and a weakly acidic compound (based on its pKa). Gamma-aminobutyric acid can be synthesized from butyric acid. Gamma-aminobutyric acid is also a parent compound for other transformation products, including but not limited to, (1S,2S,5S)-2-(4-glutaridylbenzyl)-5-phenylcyclohexan-1-ol, 4-(methylamino)butyric acid, and pregabalin. Gamma-aminobutyric acid can be found in a number of food items such as watercress, sour cherry, peach, and cardoon, which makes gamma-aminobutyric acid a potential biomarker for the consumption of these food products. Gamma-aminobutyric acid can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), blood, and feces, as well as throughout most human tissues. Gamma-aminobutyric acid exists in all living species, ranging from bacteria to humans. In humans, gamma-aminobutyric acid is involved in a couple of metabolic pathways, which include glutamate metabolism and homocarnosinosis. Gamma-aminobutyric acid is also involved in few metabolic disorders, which include 2-hydroxyglutric aciduria (D and L form), 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency, hyperinsulinism-hyperammonemia syndrome, and succinic semialdehyde dehydrogenase deficiency. Moreover, gamma-aminobutyric acid is found to be associated with alzheimers disease, hyper beta-alaninemia, tuberculous meningitis, and hepatic encephalopathy. Gamma-aminobutyric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. gamma-Aminobutyric acid (γ-Aminobutyric acid) (GABA ) is the chief inhibitory neurotransmitter in the mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. In humans, GABA is also directly responsible for the regulation of muscle tone . Chronically high levels of GABA are associated with at least 5 inborn errors of metabolism including: D-2-Hydroxyglutaric Aciduria, 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency, GABA-Transaminase Deficiency, Homocarnosinosis and Succinic semialdehyde dehydrogenase deficiency (T3DB). [Spectral] 4-Aminobutanoate (exact mass = 103.06333) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D018682 - GABA Agents KEIO_ID A002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2].
Tetrahydrocannabinol
Tetrahydrocannabinol, abbreviated THC, is a cannabinoid identified in cannabis and is its principal psychoactive constituent. First isolated in 1964, in its pure form, it is a glassy solid when cold, and becomes viscous and sticky if warmed. Synthetically prepared THC, officially referred to by its INN, dronabinol, is available by prescription in the U.S. and Canada under the brand name Marinol. The mechanism of action of THC is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of cannabinoids. Animal studies suggest that Marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata. A literature review on the subject concluded that "Cannabis use appears to be neither a sufficient nor a necessary cause for psychosis. It is a component cause, part of a complex constellation of factors leading to psychosis." Likewise, a French review from 2009 came to a conclusion that cannabis use, particularly that before age 15, was a factor in the development of schizophrenic disorders. An aromatic terpenoid, THC has a very low solubility in water, but good solubility in most organic solvents, specifically lipids and alcohols. The presence of these specialized cannabinoid receptors in the brain led researchers to the discovery of endocannabinoids, such as anandamide and 2-arachidonoyl glyceride (2-AG). THC targets receptors in a manner far less selective than endocannabinoid molecules released during retrograde signalling, as the drug has a relatively low cannabinoid receptor efficacy and affinity. In populations of low cannabinoid receptor density, THC may act to antagonize endogenous agonists that possess greater receptor efficacy. THC is a lipophilic molecule and may bind non-specifically to a variety of receptors in the brain and body, such as adipose tissue. Dronabinol is only found in individuals that have used or taken this drug. It is extracted from the resin of Cannabis sativa (marijuana, hashish). The isomer delta-9-tetrahydrocannabinol is considered the most active form, producing the characteristic mood and perceptual changes associated with this compound. In the United States, Marinol has been rescheduled from Schedule II to Schedule III of the Controlled Substances Act in 1999, reflecting a finding that THC had a potential for abuse less than that of cocaine and heroin. As a Schedule III drug, it is available by prescription and is considered to be non-narcotic and to have a low risk of physical or mental dependence. Marinol has been approved by the U.S. Food and Drug Administration (FDA) in the treatment of anorexia in AIDS patients, as well as for refractory nausea and vomiting of patients undergoing chemotherapy, which has raised much controversy as to why natural THC is still a Schedule I drug. Efforts to get cannabis rescheduled as analogous to Marinol have not succeeded thus far. In April 2005, Canadian authorities approved the marketing of Sativex, a mouth spray for multiple sclerosis patients, who can use it to alleviate neuropathic pain and spasticity. Sativex contains tetrahydrocannabinol together with cannabidiol and is a preparation of whole cannabis rather than individual cannabinoids. It is marketed in Canada by GW Pharmaceuticals, being the first cannabis-based prescription drug in the world (in modern times). In addition, Sativex received European regulatory approval in 2010. An analog of dronabinol, nabilone, is available commercially in Canada under the trade name Cesamet, manufactured by Valeant Pharmaceuticals. Cesamet has also received FDA approval and began marketing in the U.S. in 2006. It is a Schedule II drug. Δ9tetrahydrocannabinol, also known as delta(9)-thc or marinol, is a member of the class of compounds known as 2,2-dimethyl-1-benzopyrans. 2,2-dimethyl-1-benzopyrans are organic compounds containing a 1-benzopyran moiety that carries two methyl groups at the 2-position. Δ9tetrahydrocannabinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Δ9tetrahydrocannabinol can be found in a number of food items such as wakame, cloves, burbot, and black cabbage, which makes Δ9tetrahydrocannabinol a potential biomarker for the consumption of these food products. Δ9tetrahydrocannabinol can be found primarily in blood and urine. Δ9tetrahydrocannabinol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Δ9tetrahydrocannabinol is a drug which is used for the treatment of anorexia associated with weight loss in patients with aids, and nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatment. The mechanism of action of marinol is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of dronabinol and other cannabinoids. Animal studies with other cannabinoids suggest that marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata (DrugBank). A potentially serious oral ingestion, if recent, should be managed with gut decontamination. In unconscious patients with a secure airway, instill activated charcoal (30 to 100 g in adults, 1 to 2 g/kg in infants) via a nasogastric tube. A saline cathartic or sorbitol may be added to the first dose of activated charcoal. Patients experiencing depressive, hallucinatory or psychotic reactions should be placed in a quiet area and offered reassurance. Benzodiazepines (5 to 10 mg diazepam po) may be used for treatment of extreme agitation. Hypotension usually responds to Trendelenburg position and IV fluids. Pressors are rarely required (L1712) (T3DB). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
Anisomycin
An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.392 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.387 Anisomycin is a potent protein synthesis inhibitor which interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system[1]. Anisomycin is a JNK activator, which increases phospho-JNK[2][3]. Anisomycin is a bacterial antibiotic[4].
Digenin
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].
1-Nonanol
1-Nonanol is found in citrus. 1-Nonanol is widespread in nature. 1-Nonanol occurs in oils of orange, citronella and lemon. Also found in cheese, prickly pears and bread. 1-Nonanol is a straight chain fatty alcohol with nine carbon atoms and the molecular formula CH3(CH2)8OH. It is a colorless to slightly yellow liquid with a citrus odor similar to citronella oil Widespread in nature. Occurs in oils of orange, citronella and lemonand is also found in cheese, prickly pears and bread. Flavouring agent
amsacrine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D000970 - Antineoplastic Agents
Decyl alcohol
1-Decanol, or decyl alcohol, is a straight chain fatty alcohol with ten carbon atoms and the molecular formula CH3(CH2)9OH. It is a colorless viscous liquid that is insoluble in water. 1-Decanol has a strong odour. Decanol is used in the manufacture of plasticizers, lubricants, surfactants and solvents. Decanol causes a high irritability to skin and eyes, when splashed into the eyes it can cause permanent damage. Also inhalation and ingestion can be harmful, it can also function as a narcotic. It is also harmful to the environment. Isolated from plant sources, e.g. citrus oils, apple, coriander, babaco fruit (Carica pentagonia), wines, scallop and other foods
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate
Indole-3-glycerol phosphate, also known as c1-(3-indolyl)-glycerol 3-phosphate, is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycerol phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Indole-3-glycerol phosphate can be found in a number of food items such as german camomile, lambsquarters, other soy product, and hazelnut, which makes indole-3-glycerol phosphate a potential biomarker for the consumption of these food products. Indole-3-glycerol phosphate may be a unique E.coli metabolite. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
D-myo-Inositol 1,3-bisphosphate
D-myo-Inositol 1,3-bisphosphate, also known as inositol 1,3-diphosphate, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,3-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,3-bisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate through the action of the enzyme type II inositol 3,4-bisphosphate 4-phosphatase. The enzyme phosphatidylinositol 3-kinase (EC 2.7.1.137) catalyzes the production of this metabolite from 1-phosphatidyl-D-myo-inositol. D-myo-Inositol 1,3-bisphosphate is an intermediate in inositol phosphate metabolism. 1D-Myo-inositol 1,3-bisphosphate is an intermediate in inositol phosphate metabolism. The enzyme phosphatidylinositol 3-kinase [EC:2.7.1.137] catalyzes the production of this metabolite from 1-Phosphatidyl-D-myo-inositol. [HMDB]
Prostaglandin E3
Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.
Nedocromil
Nedocromil is only found in individuals that have used or taken this drug. It is a pyranoquinolone derivative that inhibits activation of inflammatory cells which are associated with asthma, including eosinophils, neutrophils, macrophages, mast cells, monocytes, and platelets. [PubChem]Nedocromil has been shown to inhibit the in vitro activation of, and mediator release from, a variety of inflammatory cell types associated with asthma, including eosinophils, neutrophils, macrophages, mast cells, monocytes, and platelets. Nedocromil inhibits activation and release of inflammatory mediators such as histamine, prostaglandin D2 and leukotrienes c4 from different types of cells in the lumen and mucosa of the bronchial tree. These mediators are derived from arachidonic acid metabolism through the lipoxygenase and cyclo-oxygenase pathways. The mechanism of action of nedocromil may be due partly to inhibition of axon reflexes and release of sensory neuropeptides, such as substance P, neurokinin A, and calcitonin-geneñrelated peptides. The result is inhibition of bradykinin-induced bronchoconstriction. Nedocromil does not posess any bronchodilator, antihistamine, or corticosteroid activity. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors Nedocromil suppresses the action or formation of multiple mediators, including histamine, leukotriene C4 (LTC4), and prostaglandin D2 (PGD2).
Diacetylmonoxime
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents
Benzthiazide
Benzthiazide is used to treat hypertension and edema. Like other thiazides, benzthiazide promotes water loss from the body (diuretics). They inhibit Na+/Cl- reabsorption from the distal convoluted tubules in the kidneys. Thiazides also cause loss of potassium and an increase in serum uric acid. Thiazides are often used to treat hypertension, but their hypotensive effects are not necessarily due to their diuretic activity. Thiazides have been shown to prevent hypertension-related morbidity and mortality although the mechanism is not fully understood. Thiazides cause vasodilation by activating calcium-activated potassium channels (large conductance) in vascular smooth muscles and inhibiting various carbonic anhydrases in vascular tissue. C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic
Lithium carbonate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D004791 - Enzyme Inhibitors
calpeptin
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors
Telomestatin
Telomestatin is a naturally occurring organic compound classified as a cyclic phenolphthioceramide derivative. It is isolated from the fermentation broth of microorganisms and is known for its antitumor properties. The name "telomestatin" reflects its primary mode of action, which is the inhibition of telomerase, an enzyme crucial for the maintenance of chromosome stability and cell proliferation, particularly in cancer cells where telomerase activity is often elevated. Telomerase is responsible for adding repetitive DNA sequences called telomeres to the ends of chromosomes, which prevents the loss of genetic material during DNA replication and cell division. By inhibiting telomerase, telomestatin interferes with the ability of cancer cells to divide and proliferate, making it a potential candidate for antitumor therapy. The compound's unique chemical structure allows it to bind specifically to the telomerase RNA component, thereby blocking the enzyme's activity. The discovery and study of telomestatin have contributed to the understanding of telomerase biology and the development of potential therapeutic strategies for cancer treatment.
Cyclothiazide
As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Cyclothiazide is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. It is also indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].
2,3-Dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants NBQX (FG9202) is a highly selective and competitive AMPA receptor antagonist. NBQX has neuroprotective and anticonvulsant activity[1].
6-Cyano-7-nitroquinoxaline-2,3-dione
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].
Talampanel
C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D02696 Talampanel (LY300164) is an orally and selective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonis with anti-seizure activity[1]. Talampanel (IVAX) has neuroprotective effects in rodent stroke models[2]. Talampanel attenuates caspase-3 dependent apoptosis in mouse brain[2].
5-Fluorowillardiine
An alanine derivative that is L-alanine bearing a 5-fluorouracil-1-yl substituent at position 3. A more potent and selective AMPA receptor agonist (at hGluR1 and hGluR2) than AMPA itself (Ki = 14.7, 25.1, and 1820 nM for hGluR1, hGluR2 and hGluR5 respectively).
alpha-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLEPROPIONIC ACID
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].
Gaboxadol
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].
Nocodazole
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197
Domoic acid
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents Isodomoic acid F is found in mollusks. Isodomoic acid F is isolated from mussels. Isolated from mussels. Isodomoic acid F is found in mollusks.
(S)-ATPA
A non-proteinogenic L-alpha-amino acid that is L-alanine in which one of the methyl hydrogens is replaced by a 5-tert-butyl-3-hydroxy-isooxazol-4-yl group.
2-Amino-5-phosphonopentanoic acid
DL-AP5 (2-APV) is a competitive NMDA (N-methyl-D-aspartate) receptor antagonist. DL-AP5 shows significantly antinociceptive activity. DL-AP5 specifically blocks on channels in the rabbit retina[1][2][3].
Retigabine
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569
Argiopin
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids
4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
Lithium
Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). Lithium is found in many foods, some of which are endive, yellow zucchini, romaine lettuce, and common bean. Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium Same as: D08133
2-[(4-{2-[(4-Cyclohexylbutyl)(cyclohexylcarbamoyl)amino]ethyl}phenyl)sulfanyl]-2-methylpropanoic acid
GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.
N-Desmethyltamoxifen
N-Desmethyltamoxifen is only found in individuals that have used or taken Tamoxifen. N-Desmethyltamoxifen is a metabolite of Tamoxifen. N-desmethyltamoxifen belongs to the family of Stilbenes. These are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent
Latrunculin A
A bicyclic macrolide natural product consisting of a 16-membered bicyclic lactone attached to the rare 2-thiazolidinone moiety. It is obtained from the Red Sea sponge Latrunculia magnifica and from the Fiji Islands sponge Cacospongia mycofijiensis. Latrunculin A inhibits actin polymerisation, microfilament organsation and microfilament-mediated processes.
Schidigerasaponin D5
Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.
DL-Glutamate
DL-Glutamate, also known as E or DL-glutamic acid, belongs to the class of organic compounds known as glutamic acid and derivatives. Glutamic acid and derivatives are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). DL-Glutamate exists in all living organisms, ranging from bacteria to humans. DL-Glutamate is found, on average, in the highest concentration within a few different foods, such as red bell peppers, milk (cow), and wheats and in a lower concentration in eggplants, romaine lettuces, and nanking cherries. DL-Glutamate has also been detected, but not quantified, in a few different foods, such as apples, broccoli, and lettuces. Glutamic acid (abbreviated as Glu or E) is one of the 20 proteinogenic amino acids. It is a non-essential amino acid. Glutamic acid is found in many foods, some of which are garden onion, orange bell pepper, oat, and cucumber. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
flurazepam
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 1631
UNII:EU52DFC4WJ
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Methyl_cinnamate
Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
(R)-Salsolinol
Salsolinol is an endogenous catechol isoquinoline detected in humans. Salsolinol was detected in urine of parkinsonian patients administered with L-DOPA. This finding stimulated the studies on Salsolinol derivatives in the brain, and gave new aspects of the endogenous alkaloids, which had been considered to occur only in plants. In normal non-alcoholic subjects and alcoholics, Salsolinol and O-methylated Salsolinol were found in urine, cerebrospinal fluid and brains. Salsolinol has an asymmetric center at first position and exists as (R)- and (S)enantiomer. The (R)enantiomer of Salsolinol is predominant in urine from healthy volunteers. Only the (R)enantiomers of Salsolinol and N-methylated Salsolinol occur in the human brain, cerebrospinal fluid (CSF) and intraventricular fluid (IVF), and the (S)enantiomers were not detected. (R)salsolinol synthase catalyzes the enantio-selective synthesis of (R)Salsolinol and 1-carboxyl(R)Salsolinol from dopamine with acetaldehyde or pyruvic acid. The N-methylation of (R)salsolinol into N-methylsalsolinol (NMSal) is catalyzed by two N-methyltransferases with different optimum pH, at pH 7.0 and 8.4. NM(R)Salsolinol is enzymatically oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) by an oxidase sensitive to semicarbaside and also non-enzymatically by autoxidation. NM(R)Salsolinol and its precursor, dopamine, were found to occur selectively in the nigro-striatum, whereas (R)Salsolinol distributes uniformly among the brain regions. (PMID 14697894). Alkaloid from Annona reticulata (custard apple), Musa paradisiaca (banana) and Theobroma cacao (cocoa). xi-Salsolinol is found in cocoa and cocoa products and fruits.
Flurazepam
Flurazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine derivative used mainly as a hypnotic. [PubChem]Flurazepam binds to an allosteric site on GABA-A receptors. Binding potentiates the action of GABA on GABA-A receptors by opening the chloride channel within the receptor, causing chloride influx and hyperpolarization. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent
Methyl cinnamate
Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Amsacrine
Aminoacridine derivative that is a potent intercalating antineoplastic agent. It is effective in the treatment of acute leukemias and malignant lymphomas, but has poor activity in the treatment of solid tumors. It is frequently used in combination with other antineoplastic agents in chemotherapy protocols. It produces consistent but acceptable myelosuppression and cardiotoxic effects. [PubChem] C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D000970 - Antineoplastic Agents
Amphetamine
Amphetamine is a chiral compound. The racemic mixture can be divided into its optical antipodes: levo- and dextro-amphetamine. Amphetamine is the parent compound of its own structural class, comprising a broad range of psychoactive derivatives, e.g., MDMA (Ecstasy) and the N-methylated form, methamphetamine. Amphetamine is a homologue of phenethylamine. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Nystatin A1
3,5-Dihydroxyphenylglycine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].
Neurogard
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents
N-Methyl-DL-aspartic acid
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
gabapentin
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2561
7,8-Dihydroxyflavone
7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
Kainic acid
Kainic acid is a dicarboxylic acid, a pyrrolidinecarboxylic acid, a L-proline derivative and a non-proteinogenic L-alpha-amino acid. It has a role as an antinematodal drug and an excitatory amino acid agonist. It is a conjugate acid of a kainate(1-). (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].
Benzeneethanamine, a-methyl-
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1540 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2822
Methamphetamine
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1560
ketamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1586
oxycodone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1602 IPB_RECORD: 1423; CONFIDENCE confident structure
gabapentin
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1678 CONFIDENCE standard compound; INTERNAL_ID 4114 CONFIDENCE Reference Standard (Level 1)
Paroxetine
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1526 CONFIDENCE standard compound; INTERNAL_ID 4079 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3611 Paroxetine, a phenylpiperidine derivative, is a potent and selective serotonin reuptake inhibitor (SSRI). Paroxetine is a very weak inhibitor of norepinephrine (NE) uptake but it is still more potent at this site than the other SSRIs[1].
Topiramate
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D007004 - Hypoglycemic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3635 Topiramate (McN 4853) is a broad-spectrum antiepileptic agent. Topiramate is a GluR5 receptor antagonist. Topiramate produces its antiepileptic effects through enhancement of GABAergic activity, inhibition of kainate/AMPA receptors, inhibition of voltage-sensitive sodium and calcium channels, increases in potassium conductance, and inhibition of carbonic anhydrase[1][2][3].
Salsolinol
Salsolinol is an endogenous catechol isoquinoline detected in humans. Salsolinol was detected in urine of parkinsonian patients administered with L-DOPA. This finding stimulated the studies on Salsolinol derivatives in the brain, and gave new aspects of the endogenous alkaloids, which had been considered to occur only in plants. In normal non-alcoholic subjects and alcoholics, Salsolinol and O-methylated Salsolinol were found in urine, cerebrospinal fluid and brains. Salsolinol has an asymmetric center at first position and exists as (R)- and (S)enantiomer. The (R)enantiomer of Salsolinol is predominant in urine from healthy volunteers. Only the (R)enantiomers of Salsolinol and N-methylated Salsolinol occur in the human brain, cerebrospinal fluid (CSF) and intraventricular fluid (IVF), and the (S)enantiomers were not detected. (R)salsolinol synthase catalyzes the enantio-selective synthesis of (R)Salsolinol and 1-carboxyl(R)Salsolinol from dopamine with acetaldehyde or pyruvic acid. The N-methylation of (R)salsolinol into N-methylsalsolinol (NMSal) is catalyzed by two N-methyltransferases with different optimum pH, at pH 7.0 and 8.4. NM(R)Salsolinol is enzymatically oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) by an oxidase sensitive to semicarbaside and also non-enzymatically by autoxidation. NM(R)Salsolinol and its precursor, dopamine, were found to occur selectively in the nigro-striatum, whereas (R)Salsolinol distributes uniformly among the brain regions. (PMID 14697894) [HMDB]. Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1521; CONFIDENCE confident structure
SERINE
An alpha-amino acid that is alanine substituted at position 3 by a hydroxy group. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
REMIFENTANIL
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Pilocarpine
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Pilocarpine is a selective M3-type muscarinic acetylcholine receptor (M3 muscarinic receptor) agonist.
aniracetam
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].
felbamate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
haloperidol
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.
rimantadine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
Dopamine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Catechol in which the hydrogen at position 4 is substituted by a 2-aminoethyl group. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VYFYYTLLBUKUHU_STSL_0097_Dopamine_2000fmol_180430_S2_LC02_MS02_90; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
N-Methyl-D-aspartic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists
Deprenyl
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D020011 - Protective Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 500
4-Aminobutyric acid
A gamma-amino acid that is butanoic acid with the amino substituent located at C-4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D018682 - GABA Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; BTCSSZJGUNDROE_STSL_0138_4-Aminobutyric acid_8000fmol_180506_S2_LC02_MS02_259; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2].
cocaine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BC - Esters of benzoic acid S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics A tropane alkaloid obtained from leaves of the South American shrub Erythroxylon coca. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
memantine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent
PHENCYCLIDINE
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D004791 - Enzyme Inhibitors
vigabatrin
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
cyclothiazide
C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].
Ritalin
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
diflunisal
N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D004791 - Enzyme Inhibitors
Ginkgolide C
Annotation level-1 Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.
chlorpromazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Falcarinol
Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available. A natural product found in Panax ginseng and Angelica japonica.
RIVASTIGMINE
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06D - Anti-dementia drugs > N06DA - Anticholinesterases D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D020011 - Protective Agents D004791 - Enzyme Inhibitors
Angiotensin IV
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Argiotoxin 636
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids
(S)-(-)-5-Fluorowillardiine
Retigabine
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators
Pentetrazol
R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AB - Respiratory stimulants D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D07409
nocodazole
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197
gaboxadol
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].
AI3-00579
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Bicculine
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3]. Bicuculline ((+)-Bicuculline) is A competing neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+ activating potassium (SK) channels and subsequently blocks slow post-hyperpolarization (slow AHP). Bicuculline has anticonvulsant activity. Bicuculline can be used to induce seizures in mice[1][2][3][4]. Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3].
Echinocystic acid
Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.
Marinol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
ANISIC ACID
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1]. p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1].
Dopamin
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents
Unkie
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Lotusine
Lotusine is a member of isoquinolines. Lotusine is a natural product found in Nelumbo nucifera, Magnolia officinalis, and Xylopia parviflora with data available.
Timosaponin A-III
A natural product found in Anemarrhena asphodeloides. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.
Diacetyl monoxime
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents
Jujuboside
Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.
Jujuboside
Jujuboside B is a triterpenoid. Jujuboside B is a natural product found in Ziziphus spina-christi, Ziziphus jujuba, and Hovenia dulcis with data available. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].
muscimol
A member of the class of isoxazoles that is 1,2-oxazol-3(2H)-one substituted by an aminomethyl group at position 5. It has been isolated from mushrooms of the genus Amanita. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Morphine
A morphinane alkaloid that is a highly potent opiate analgesic psychoactive drug. Morphine acts directly on the central nervous system (CNS) to relieve pain but has a high potential for addiction, with tolerance and both physical and psychological dependence developing rapidly. Morphine is the most abundant opiate found in Papaver somniferum (the opium poppy). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Dronabinol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
benzthiazide
C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic
trichlormethiazide
C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators
DL-Glutamic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
enoxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
NEDOCROMIL
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors Nedocromil suppresses the action or formation of multiple mediators, including histamine, leukotriene C4 (LTC4), and prostaglandin D2 (PGD2).
D-23129
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569
N-Methyl-D-aspartate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists An aspartic acid derivative having an N-methyl substituent and D-configuration.
DL-AP5
The 5-phosphono derivative of 2-aminopentanoic acid; acts as an N-methyl-D-aspartate receptor antagonist. DL-AP5 (2-APV) is a competitive NMDA (N-methyl-D-aspartate) receptor antagonist. DL-AP5 shows significantly antinociceptive activity. DL-AP5 specifically blocks on channels in the rabbit retina[1][2][3].
(RS)-AMPA
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].
nbqx
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants NBQX (FG9202) is a highly selective and competitive AMPA receptor antagonist. NBQX has neuroprotective and anticonvulsant activity[1].
CNQX
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].
GYKI 52466
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
N-Desmethyltamoxifen
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent
GW 7647
GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.
1-Naphthylacetylspermine
Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.
1-C-(Indol-3-yl)glycerol 3-phosphate
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents