Subcellular Location: apical cortex

Found 232 associated metabolites.

8 associated genes. FABP1, FABP2, INSC, MYO5B, PRKCZ, SAPCD2, SPTBN5, TCHP

Echinocystic

(4aR,5R,6aS,6bR,8aR,10S,12aR,12bR,14bS)-5,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


Echinocystic acid is a triterpenoid. Echinocystic acid is a natural product found in Cucurbita foetidissima, Eclipta alba, and other organisms with data available. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin, also known as 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone, is a member of the class of compounds known as 3-hydroxy,4-methoxyisoflavonoids. 3-hydroxy,4-methoxyisoflavonoids are isoflavonoids carrying a methoxy group attached to the C4 atom, as well as a hydroxyl group at the C3-position of the isoflavonoid backbone. Thus, irigenin is considered to be a flavonoid lipid molecule. Irigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Irigenin can be synthesized from isoflavone. Irigenin can also be synthesized into iridin. Irigenin can be found in lima bean, which makes irigenin a potential biomarker for the consumption of this food product. Irigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from the rhizomes of the leopard lily (Belamcanda chinensis), and Iris kemaonensis . Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Genipin

Methyl (1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate

C23H34O15 (550.1898)


Genipin 1-beta-gentiobioside is a terpene glycoside. Genipin 1-gentiobioside is a natural product found in Gardenia jasminoides and Genipa americana with data available. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities.

   

Fenofibrate

propan-2-yl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate

C20H21ClO4 (360.1128)


Fenofibrate is a chlorobenzophenone that is (4-chlorophenyl)(phenyl)methanone substituted by a [2-methyl-1-oxo-1-(propan-2-yloxy)propan-2-yl]oxy group at position 1 on the phenyl ring. It has a role as an antilipemic drug, an environmental contaminant, a xenobiotic and a geroprotector. It is a chlorobenzophenone, a member of monochlorobenzenes, an aromatic ether and an isopropyl ester. It is functionally related to a benzophenone. Fenofibrate is a fibric acid derivative like [clofibrate] and [gemfibrozil]. Fenofibrate is used to treat primary hypercholesterolemia, mixed dyslipidemia, severe hypertriglyceridemia. Fenofibrate was granted FDA approval on 31 December 1993. Fenofibrate is a Peroxisome Proliferator Receptor alpha Agonist. The mechanism of action of fenofibrate is as a Peroxisome Proliferator-activated Receptor alpha Agonist. Fenofibrate is a fibric acid derivative used in the therapy of hypertriglyceridemia and dyslipidemia. Fenofibrate therapy is associated with mild and transient serum aminotransferase elevations and with rare instances of acute liver injury, which can be severe and prolonged and lead to significant hepatic fibrosis. Fenofibrate is a synthetic phenoxy-isobutyric acid derivate and prodrug with antihyperlipidemic activity. Fenofibrate is hydrolyzed in vivo to its active metabolite fenofibric acid that binds to and activates peroxisome proliferator activated receptor alpha (PPARalpha), resulting in the activation of lipoprotein lipase and reduction of the production of apoprotein C-III, an inhibitor of lipoprotein lipase activity. Increased lipolysis and a fall in plasma triglycerides, in turn, leads to the modification of the small, dense low density lipoporotein (LDL) particles into larger particles that are catabolized more rapidly due to a greater affinity for cholesterol receptors. In addition, activation of PPARalpha also increases the synthesis of apoproteins A-I, A-II, and high density lipoprotein (HDL)-cholesterol. Overall, fenofibrate reduces total cholesterol, LDL cholesterol, apolipoprotein B, total triglycerides and triglyceride rich lipoprotein (VLDL) while increasing HDL cholesterol. An antilipemic agent which reduces both cholesterol and triglycerides in the blood. An antilipemic agent which reduces both CHOLESTEROL and TRIGLYCERIDES in the blood. See also: Fenofibric Acid (has active moiety). Fenofibrate is only found in individuals that have used or taken this drug. It is an antilipemic agent which reduces both cholesterol and triglycerides in the blood. [PubChem]Fenofibrate exerts its therapeutic effects through activation of peroxisome proliferator activated receptor a (PPARa). This increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of apoprotein C-III. The resulting fall in triglycerides produces an alteration in the size and composition of LDL from small, dense particles, to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly. Fenofibrate is mainly used for primary hypercholesterolemia or mixed dyslipidemia. Fenofibrate may slow the progression of diabetic retinopathy and the need for invasive treatment such as laser therapy in patients with type 2 diabetes with pre-existing retinopathy.[11][12][13] It was initially indicated for diabetic retinopathy in patients with type 2 diabetes and diabetic retinopathy in Australia.[14] The large scale, international FIELD and ACCORD-Eye trials found that fenofibrate therapy reduced required laser treatment for diabetic retinopathy by 1.5\\% over 5 years, as well as reducing progression by 3.7\\% over 4 years. [11][12][13][15] Further studies looking at the role of fenofibrate in the progression of diabetic retinopathy as the primary outcome is warranted to understand its role in this condition. Although no statistically significant cardiovascular risk benefits were identified in these trials, benefits may accrue to add on therapy to patients with high triglyceride dyslipidaemia currently taking statin medications.[16][17] Fenofibrate appears to reduce the risk of below ankle amputations in patients with Type 2 diabetes without microvascular disease.[18] The FIELD study reported that fenofibrate at doses of 200 mg daily, reduced the risk for any amputation by 37\\% independent of glycaemic control, presence or absence of dyslipidaemia and its lipid-lowering mechanism of action.[18][19] However, the cohort of participants who underwent amputations were more likely to have had previous cardiovascular disease (e.g. angina, myocardial infarction), longer duration of diabetes and had baseline neuropathy.[18][19] Fenofibrate has an off-label use as an added therapy of high blood uric acid levels in people who have gout.[20] It is used in addition to diet to reduce elevated low-density lipoprotein cholesterol (LDL), total cholesterol, triglycerides (TG), and apolipoprotein B (apo B), and to increase high-density lipoprotein cholesterol (HDL) in adults with primary hypercholesterolemia or mixed dyslipidemia. Fenofibrate is a selective PPARα agonist with an EC50 of 30 μM. Fenofibrate also inhibits human cytochrome P450 isoforms, with IC50s of 0.2, 0.7, 9.7, 4.8 and 142.1 μM for CYP2C19, CYP2B6, CYP2C9, CYP2C8, and CYP3A4, respectively.

   

indicine

BUTANOIC ACID, 2,3-DIHYDROXY-2-(1-METHYLETHYL)-, (2,3,5,7A-TETRAHYDRO-1-HYDROXY-1H-PYRROLIZIN-7-YL)METHYL ESTER, (1S-(1.ALPHA.,7(2R*,3S*),7A.ALPHA.))-

C15H25NO5 (299.1733)


Rinderine is a member of pyrrolizines. Rinderine is a natural product found in Chromolaena odorata, Eupatorium japonicum, and other organisms with data available.

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Secoisolariciresinol

1,4-Butanediol, 2,3-bis((4-hydroxy-3-methoxyphenyl)methyl)-, (R-(R*,R*))-

C20H26O6 (362.1729)


Secoisolariciresinol, also known as knotolan or secoisolariciresinol, (r*,s*)-isomer, is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as grape, saskatoon berry, asparagus, and sweet potato, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol can be found primarily in urine. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\\\% . (-)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (-)-(2R,3R)-configuration. It has a role as an antidepressant, a plant metabolite and a phytoestrogen. It is an enantiomer of a (+)-secoisolariciresinol. Secoisolariciresinol has been used in trials studying the prevention of Breast Cancer. Secoisolariciresinol is a natural product found in Fitzroya cupressoides, Crossosoma bigelovii, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Quercetin 3-lathyroside

3-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one

C26H28O16 (596.1377)


Quercetin 3-O-[beta-D-xylosyl-(1->2)-beta-D-glucoside] is a quercetin O-glucoside that is quercetin attached to a beta-D-sambubiosyl residue at position 3 via a glycosidc linkage. It has a role as an antioxidant and a plant metabolite. It is a quercetin O-glucoside, a disaccharide derivative and a tetrahydroxyflavone. Quercetin 3-sambubioside is a natural product found in Lathyrus chloranthus, Euphorbia prostrata, and other organisms with data available. Isolated from horseradish (Armoracia rusticana) leaves. Quercetin 3-lathyroside is found in horseradish and brassicas. Quercetin 3-sambubioside is found in fruits. Quercetin 3-sambubioside is isolated from Actinidia arguta (tara vine).

   

beta-D-Galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C18H32O16 (504.169)


beta-D-Galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose, also known as b-D-galactopyranosyl-(1->4)-b-D-galactopyranosyl-(1->4)-D-galactose belongs to the class of organic compounds known as oligosaccharides or glycans. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. beta-D-galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose has been detected, but not quantified, in root vegetables. Beta-D-Galactopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-D-galactose is an oligosaccharide. Maltotriose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Maltotriose is a natural product found in Lycium barbarum, Polygonum aviculare, and other organisms with data available. Maltotriose is a metabolite found in or produced by Saccharomyces cerevisiae. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].

   

Creatinine

2-imino-1-methylimidazolidin-4-one

C4H7N3O (113.0589)


Creatinine or creatine anhydride, is a breakdown product of creatine phosphate in muscle. The loss of water molecule from creatine results in the formation of creatinine. Creatinine is transferred to the kidneys by blood plasma, whereupon it is eliminated from the body by glomerular filtration and partial tubular excretion. Creatinine is usually produced at a fairly constant rate by the body. Measuring serum creatinine is a simple test and it is the most commonly used indicator of renal function. A rise in blood creatinine levels is observed only with marked damage to functioning nephrons; therefore this test is not suitable for detecting early kidney disease. The typical reference range for women is considered about 45-90 umol/l, for men 60-110 umol/l. Creatine and creatinine are metabolized in the kidneys, muscle, liver and pancreas. [HMDB]. Creatinine is a biomarker for the consumption of meat. Creatinine is found in many foods, some of which are canada blueberry, other bread, french plantain, and grape. Creatinine, or creatine anhydride, is a breakdown product of creatine phosphate in muscle. The loss of a water molecule from creatine results in the formation of creatinine. Creatinine is transferred to the kidneys by blood plasma, whereupon it is eliminated from the body by glomerular filtration and partial tubular excretion. Creatinine is usually produced at a fairly constant rate by the body. Measuring serum creatinine is a simple test and it is the most commonly used indicator of renal function. A rise in blood creatinine levels is observed only with marked damage to functioning nephrons. Therefore, this test is not suitable for detecting early kidney disease. The typical reference range for women is considered about 45-90 µmol/L; for men 60-110 µmol/L. Creatine and creatinine are metabolized in the kidneys, muscle, liver, and pancreas. Creatinine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-27-5 (retrieved 2024-07-01) (CAS RN: 60-27-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

Dimethenamid

2-chloro-N-(2,4-dimethylthiophen-3-yl)-N-(1-methoxypropan-2-yl)acetamide

C12H18ClNO2S (275.0747)


CONFIDENCE standard compound; INTERNAL_ID 586; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9010; ORIGINAL_PRECURSOR_SCAN_NO 9009 CONFIDENCE standard compound; INTERNAL_ID 586; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9035; ORIGINAL_PRECURSOR_SCAN_NO 9034 CONFIDENCE standard compound; INTERNAL_ID 586; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9091; ORIGINAL_PRECURSOR_SCAN_NO 9090 CONFIDENCE standard compound; INTERNAL_ID 586; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9115; ORIGINAL_PRECURSOR_SCAN_NO 9111 CONFIDENCE standard compound; INTERNAL_ID 586; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9100; ORIGINAL_PRECURSOR_SCAN_NO 9097 CONFIDENCE standard compound; INTERNAL_ID 586; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9054; ORIGINAL_PRECURSOR_SCAN_NO 9052 CONFIDENCE standard compound; INTERNAL_ID 3391 CONFIDENCE standard compound; INTERNAL_ID 8390 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Prometryn

N-[4-(methylsulfanyl)-6-[(propan-2-yl)imino]-1,2,5,6-tetrahydro-1,3,5-triazin-2-ylidene]propan-2-amine

C10H19N5S (241.1361)


CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8564; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8550; ORIGINAL_PRECURSOR_SCAN_NO 8549 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8580; ORIGINAL_PRECURSOR_SCAN_NO 8577 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8542 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8538 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8686; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 4037 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Terbutryn

N-(1,1-Dimethylethyl)-n-ethyl-6-(methylthio)-1,3,5-triazine-2,4-diamine

C10H19N5S (241.1361)


CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8639; ORIGINAL_PRECURSOR_SCAN_NO 8638 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8575; ORIGINAL_PRECURSOR_SCAN_NO 8573 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8603; ORIGINAL_PRECURSOR_SCAN_NO 8600 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8657; ORIGINAL_PRECURSOR_SCAN_NO 8652 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8686; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 47; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8611; ORIGINAL_PRECURSOR_SCAN_NO 8609 CONFIDENCE standard compound; INTERNAL_ID 2863 CONFIDENCE standard compound; INTERNAL_ID 8794 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

L-Threoneopterin

2-amino-6-[(1S,2S)-1,2,3-trihydroxypropyl]-4,8-dihydropteridin-4-one

C9H11N5O4 (253.0811)


L-Threoneopterin is a catabolic product of GTP. It is synthesized by macrophages upon stimulation by interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins. Neopterin is a pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections (From Stedman, 26th ed). Neopterin also serves as a precursor in the biosynthesis of biopterin. Neopterin is a catabolic product of GTP. It is synthesised by macrophages upon stimulation with interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins.A pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections. (From Stedman, 26th ed) Neopterin also serves as a precursor in the biosynthesis of biopterin. [HMDB] Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.

   

L-Arginine

(S)-2-Amino-5-[(aminoiminomethyl)amino]-pentanoic acid

C6H14N4O2 (174.1117)


Arginine (Arg), also known as L-argninine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Arginine is found in all organisms ranging from bacteria to plants to animals. Arginine is an essential amino acid that is physiologically active in the L-form. It is classified as a charged, basic, aliphatic amino acid. Arginine is considered to be a basic amino acid as it has a strongly basic guanidinium group. With a pKa of 12.48, the guanidinium group is positively charged in neutral, acidic, and even most basic environments. Because of the conjugation between the double bond and the nitrogen lone pairs, the positive charge is delocalized. This group is able to form multiple H-bonds. In mammals, arginine is formally classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. Infants are unable to effectively synthesize arginine, making it nutritionally essential for infants. Adults, however, are able to synthesize arginine in the urea cycle. L-Arginine is an amino acid that has numerous functions in the body. It helps dispose of ammonia, is used to make compounds such as nitric oxide, creatine, L-glutamate, and L-proline, and it can be converted into glucose and glycogen if needed. Arginine also plays an important role in cell division, immunity and wound healing. Arginine is the immediate precursor of nitric oxide (NO), an important signaling molecule which can act as a second messenger, as well as an intercellular messenger which regulates vasodilation, and also has functions in the immune systems reaction to infection. Nitric oxide is made via the enzyme nitric oxide synthase (PMID 10690324). Arginine is also a precursor for several important nitrogen-containing compounds including urea, ornithine, and agmatine. Arginine is necessary for the synthesis of creatine and can be used for the synthesis of polyamines (mainly through ornithine and to a lesser degree through agmatine, citrulline, and glutamate.) The presence of asymmetric dimethylarginine (ADMA) in serum or plasma, a close relative of argninine, inhibits the nitric oxide synthase reaction. ADMA is considered a marker for vascular disease, just as L-arginine is considered a sign of a healthy endothelium. In large doses, L-arginine also stimulates the release of the hormones growth hormone and prolactin. Arginine is a known inducer of mTOR (mammalian target of rapamycin) and is responsible for inducing protein synthesis through the mTOR pathway. mTOR inhibition by rapamycin partially reduces arginine-induced protein synthesis (PMID: 20841502). Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which can exceed normal body production, leading to arginine depletion. Arginine also activates AMP kinase (AMPK) which then stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, thereby increasing insulin secretion by pancreatic beta-cells (PMID: 21311355). Arginine is found in plant and animal proteins, such as dairy products, meat, poultry, fish, and nuts. The ratio of L-arginine to lysine is also important: soy and other plant proteins have more L-arginine than animal sources of protein. [Spectral] L-Arginine (exact mass = 174.11168) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Arginine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=74-79-3 (retrieved 2024-06-29) (CAS RN: 74-79-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].

   

Indole-3-lactic acid

(AlphaS)-alpha-hydroxy-1H-indole-3-propanoic acid

C11H11NO3 (205.0739)


Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].

   

L-Kynurenine

(AlphaS)-alpha,2-diamino-3-hydroxy-gamma-oxo-benzenebutanoic acid

C10H12N2O3 (208.0848)


Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. L-Kynurenine is a central compound of the tryptophan metabolism pathway since it can change into the neuroprotective agent kynurenic acid or to the neurotoxic agent quinolinic acid. The break-up of these endogenous compounds balance can be observable in many disorders such as stroke, epilepsy, multiple sclerosis, and amyotrophic lateral sclerosis. It can also occur in neurodegenerative disorders such as Parkinsons disease, Huntingtons, and Alzheimers disease; and in mental disorders such as schizophrenia and depression. Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. [Raw Data] CBA10_Kynurenine_pos_10eV_1-2_01_666.txt [Raw Data] CBA10_Kynurenine_pos_30eV_1-2_01_668.txt [Raw Data] CBA10_Kynurenine_pos_40eV_1-2_01_669.txt [Raw Data] CBA10_Kynurenine_pos_20eV_1-2_01_667.txt [Raw Data] CBA10_Kynurenine_pos_50eV_1-2_01_670.txt L-Kynurenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2922-83-0 (retrieved 2024-07-01) (CAS RN: 2922-83-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.

   

Prostaglandin B1

7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoic acid

C20H32O4 (336.23)


Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).

   

Pyridoxamine

4-(AMINOMETHYL)-5-(hydroxymethyl)-2-methylpyridin-3-ol

C8H12N2O2 (168.0899)


Pyridoxamine is one form of vitamin B6. Chemically it is based on a pyridine ring structure, with hydroxyl, methyl, aminomethyl, and hydroxymethyl substituents. It differs from pyridoxine by the substituent at the 4-position. The hydroxyl at position 3 and aminomethyl group at position 4 of its ring endow pyridoxamine with a variety of chemical properties, including the scavenging of free radical species and carbonyl species formed in sugar and lipid degradation and chelation of metal ions that catalyze Amadori reactions. Pyridoxamine, also known as PM, belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Within humans, pyridoxamine participates in a number of enzymatic reactions. In particular, pyridoxamine can be converted into pyridoxal; which is mediated by the enzyme pyridoxine-5-phosphate oxidase. In addition, pyridoxamine can be converted into pyridoxamine 5-phosphate; which is catalyzed by the enzyme pyridoxal kinase. Pyridoxamine also inhibits the formation of advanced lipoxidation endproducts during lipid peroxidation reactions by reaction with dicarbonyl intermediates. In humans, pyridoxamine is involved in vitamin B6 metabolism. Outside of the human body, pyridoxamine has been detected, but not quantified in several different foods, such as nutmegs, sparkleberries, fennels, turmerics, and swiss chards. Pyridoxamine inhibits the Maillard reaction and can block the formation of advanced glycation endproducts, which are associated with medical complications of diabetes. Pyridoxamine is hypothesized to trap intermediates in the formation of Amadori products released from glycated proteins, possibly preventing the breakdown of glycated proteins by disrupting the catalysis of this process through disruptive interactions with the metal ions crucial to the redox reaction. One research study found that pyridoxamine specifically reacts with the carbonyl group in Amadori products, but inhibition of post-Amadori reactions (that can lead to advanced glycation endproducts) is due in much greater part to the metal chelation effects of pyridoxamine. The 4-aminomethyl form of vitamin B6. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate. -- Pubchem; Pyridoxamine is one of the compounds that can be called vitamin B6, along with Pyridoxal and Pyridoxine. -- Wikipedia [HMDB]. Pyridoxamine is found in many foods, some of which are cucumber, fox grape, millet, and teff. Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P116 Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

Amlodipine

3-Ethyl-5-methyl (+-)-2-(2-aminoethoxymethyl)-4-(O-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid

C20H25ClN2O5 (408.1452)


Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium.; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. [HMDB] Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium. Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nitrazepam

1, 3-Dihydro-7-nitro-5-phenyl-2H-1,4-benzodiazepin-2-one

C15H11N3O3 (281.08)


Nitrazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine derivative used as an anticonvulsant and hypnotic.Nitrazepam belongs to a group of medicines called benzodiazepines. It acts on benzodiazepine receptors in the brain which are associated with the GABA receptors causing an enhanced binding of GABA (gamma amino butyric acid) to GABAA receptors. GABA is a major inhibitory neurotransmitter in the brain, involved in inducing sleepiness, muscular relaxation and control of anxiety and fits, and slows down the central nervous system. The anticonvulsant properties of nitrazepam and other benzodiazepines may be in part or entirely due to binding to voltage-dependent sodium channels rather than benzodiazepine receptors. Sustained repetitive firing seems to be limited by benzodiazepines effect of slowing recovery of sodium channels from inactivation. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3683

   

Thiacloprid

(E)-Thiacloprid

C10H9ClN4S (252.0236)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7159; ORIGINAL_PRECURSOR_SCAN_NO 7155 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7152; ORIGINAL_PRECURSOR_SCAN_NO 7150 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7161; ORIGINAL_PRECURSOR_SCAN_NO 7158 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7190; ORIGINAL_PRECURSOR_SCAN_NO 7188 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7200; ORIGINAL_PRECURSOR_SCAN_NO 7197 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 INTERNAL_ID 52; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 CONFIDENCE standard compound; INTERNAL_ID 3024 CONFIDENCE standard compound; INTERNAL_ID 8424 CONFIDENCE standard compound; INTERNAL_ID 4044 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2954 EAWAG_UCHEM_ID 2954; CONFIDENCE standard compound

   

Griseofulvin

(2S,6R)-7-chloro-2,4,6-trimethoxy-6-methyl-3H-spiro[1-benzofuran-2,1-cyclohexan]-2-ene-3,4-dione

C17H17ClO6 (352.0714)


Griseofulvin is only found in individuals that have used or taken this drug. It is an antifungal antibiotic. Griseofulvin may be given by mouth in the treatment of tinea infections. [PubChem]Griseofulvin is fungistatic, however the exact mechanism by which it inhibits the growth of dermatophytes is not clear. It is thought to inhibit fungal cell mitosis and nuclear acid synthesis. It also binds to and interferes with the function of spindle and cytoplasmic microtubules by binding to alpha and beta tubulin. It binds to keratin in human cells, then once it reaches the fungal site of action, it binds to fungal microtubes thus altering the fungal process of mitosis. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.

   

8-Anilino-1-naphthalene sulfonate

1-Anilino-8-naphthalenesulfonate, monoammonium salt, hemihydrate

C16H13NO3S (299.0616)


8-Anilino-1-naphthalene sulfonate belongs to the class of organic compounds known as 1-naphthalene sulfonic acids and derivatives. These are organic aromatic compounds that contain a naphthalene moiety that carries a sulfonic acid group (or a derivative thereof) at the 1-position. Naphthalene is a bicyclic compound that is made up of two fused benzene ring. KEIO_ID A177

   

Maltotriose

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C18H32O16 (504.169)


Maltotriose is a trisaccharide (three-part sugar) consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase (a common enzyme in human saliva) on amylose in starch. The creation of both maltotriose and maltose during this process is due to the random manner in which alpha amylase hydrolyses α-1,4 glycosidic bonds. It is the shortest chain oligosaccharide that can be classified as maltodextrin. Maltotriose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotriose is a common oligosaccharide metabolite found in human urine after maltose ingestion or infusion (PMID:6645121). Maltotriose is increased in glycogen storage disease II (OMIM: 232300) due to a mutation of the enzyme alpha-1,4-glucosidase (EC 3.2.1.20) (PMID:4286143). Constituent of corn syrup. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].

   

Pyridazine-3,6-diol

1,2,3,6-tetrahydropyridazine-3,6-dione

C4H4N2O2 (112.0273)


D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

BENSULIDE

O,O-bis(propan-2-yl) [(2-benzenesulfonamidoethyl)sulfanyl]phosphonothioate

C14H24NO4PS3 (397.0605)


CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4596; ORIGINAL_PRECURSOR_SCAN_NO 4592 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9469; ORIGINAL_PRECURSOR_SCAN_NO 9465 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9501; ORIGINAL_PRECURSOR_SCAN_NO 9497 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9475; ORIGINAL_PRECURSOR_SCAN_NO 9473 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4616; ORIGINAL_PRECURSOR_SCAN_NO 4612 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9463; ORIGINAL_PRECURSOR_SCAN_NO 9460 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4614; ORIGINAL_PRECURSOR_SCAN_NO 4610 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9468; ORIGINAL_PRECURSOR_SCAN_NO 9465 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9473; ORIGINAL_PRECURSOR_SCAN_NO 9472 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4602; ORIGINAL_PRECURSOR_SCAN_NO 4600 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4602; ORIGINAL_PRECURSOR_SCAN_NO 4597 CONFIDENCE standard compound; INTERNAL_ID 1379; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4592; ORIGINAL_PRECURSOR_SCAN_NO 4587

   

Clofibrate

2-(4-chlorophenoxy)-2-methyl-propanoic acid, ethyl ester

C12H15ClO3 (242.071)


Clofibrate is only found in individuals that have used or taken this drug. It is a fibric acid derivative used in the treatment of hyperlipoproteinemia type III and severe hypertriglyceridemia (from Martindale, The Extra Pharmacopoeia, 30th ed, p986). Clofibrate increases the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis. Chylomicrons are degraded, VLDLs are converted to LDLs, and LDLs are converted to HDL. This is accompanied by a slight increase in secretion of lipids into the bile and ultimately the intestine. Clofibrate also inhibits the synthesis and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. Also, as a fibrate, clofibrate is an agonist of the PPAR-α receptor[4] in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, increased lipoprotein lipase activity. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AB - Fibrates D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D009676 - Noxae > D000963 - Antimetabolites Clofibrate is an agonist of PPAR, with EC50s of 50 μM, ~500 μM for murine PPARα and PPARγ, and 55 μM, ~500 μM for human PPARα and PPARγ, respectively.

   

spirodiclofen

Pesticide7_Spirodiclofen_C21H24Cl2O4_Butanoic acid, 2,2-dimethyl-, 3-(2,4-dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl ester

C21H24Cl2O4 (410.1052)


   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2559)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

L-Lactic acid

1-Hydroxyethane 1-carboxylic acid

C3H6O3 (90.0317)


Lactic acid is an organic acid. It is a chiral molecule, consisting of two optical isomers, L-lactic acid and D-lactic acid, with the L-isomer being the most common in living organisms. Lactic acid plays a role in several biochemical processes and is produced in the muscles during intense activity. In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal. This is governed by a number of factors, including monocarboxylate transporters, lactate concentration, the isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1-2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion. There are some indications that lactate, and not glucose, is preferentially metabolized by neurons in the brain of several mammalian species, including mice, rats, and humans. Glial cells, using the lactate shuttle, are responsible for transforming glucose into lactate, and for providing lactate to the neurons. Lactate measurement in critically ill patients has been traditionally used to stratify patients with poor outcomes. However, plasma lactate levels are the result of a finely tuned interplay of factors that affect the balance between its production and its clearance. When the oxygen supply does not match its consumption, organisms adapt in many different ways, up to the point when energy failure occurs. Lactate, being part of the adaptive response, may then be used to assess the severity of the supply/demand imbalance. In such a scenario, the time to intervention becomes relevant: early and effective treatment may allow tissues and cells to revert to a normal state, as long as the oxygen machinery (i.e. mitochondria) is intact. Conversely, once the mitochondria are deranged, energy failure occurs even in the presence of normoxia. The lactate increase in critically ill patients may, therefore, be viewed as an early marker of a potentially reversible state (PMID: 16356243). When present in sufficiently high levels, lactic acid can act as an oncometabolite, an immunosuppressant, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumor growth and survival. An immunosuppressant reduces or arrests the activity of the immune system. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of lactic acid are associated with at least a dozen inborn errors of metabolism, including 2-methyl-3-hydroxybutyryl CoA dehydrogenase deficiency, biotinidase deficiency, fructose-1,6-diphosphatase deficiency, glycogen storage disease type 1A (GSD1A) or Von Gierke disease, glycogenosis type IB, glycogenosis type IC, glycogenosis type VI, Hers disease, lactic acidemia, Leigh syndrome, methylmalonate semialdehyde dehydrogenase deficiency, pyruvate decarboxylase E1 component deficiency, pyruvate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency, and short chain acyl CoA dehydrogenase deficiency (SCAD deficiency). Locally high concentrations of lactic acid or lactate are found near many tumors due to the upregulation of lactate dehydrogenase (PMID: 15279558). Lactic acid produced by tumors through aerobic glycolysis acts as an immunosuppressant and tumor promoter (PMID: 23729358). Indeed, lactic acid has been found to be a key player or regulator in the development and malignant progression of a variety of cancers (PMID: 22084445). A number of studies have demonstrated that malignant transformation is associated with an increase in aerobic cellular lactate excretion. Lactate concentrations in various carcinomas (e.g. uterine cervix, head and neck, colorectal regi... Occurs in the juice of muscular tissue, bile etc. Flavour ingredient, food antioxidant. Various esters are also used in flavourings L-Lactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-33-4 (retrieved 2024-07-01) (CAS RN: 79-33-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.

   

Clothianidin

((e)-1-(2-chloro-1,3-Thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine)

C6H8ClN5O2S (249.0087)


CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3164; ORIGINAL_PRECURSOR_SCAN_NO 3162 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3102; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6570; ORIGINAL_PRECURSOR_SCAN_NO 6567 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3103; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3100; ORIGINAL_PRECURSOR_SCAN_NO 3098 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6580; ORIGINAL_PRECURSOR_SCAN_NO 6577 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6605; ORIGINAL_PRECURSOR_SCAN_NO 6603 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6531; ORIGINAL_PRECURSOR_SCAN_NO 6529 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3091; ORIGINAL_PRECURSOR_SCAN_NO 3089 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6599; ORIGINAL_PRECURSOR_SCAN_NO 6595 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids CONFIDENCE standard compound; INTERNAL_ID 8455 CONFIDENCE standard compound; INTERNAL_ID 2328 D016573 - Agrochemicals

   

Ethambutol

(2S)-2-[(2-{[(2S)-1-hydroxybutan-2-yl]amino}ethyl)amino]butan-1-ol

C10H24N2O2 (204.1838)


An antitubercular agent that inhibits the transfer of mycolic acids into the cell wall of the tubercle bacillus. It may also inhibit the synthesis of spermidine in mycobacteria. The action is usually bactericidal, and the drug can penetrate human cell membranes to exert its lethal effect. (From Smith and Reynard, Textbook of Pharmacology, 1992, p863) J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 2782

   

N-PHENYL-1-NAPHTHYLAMINE

N-phenylnaphthalen-1-amine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens

   

4-Tert-Amylphenol

P-Tert-amylphenol, monopotassium salt

C11H16O (164.1201)


   
   

Propanil

N-(3,4-dichlorophenyl)propanimidic acid

C9H9Cl2NO (217.0061)


CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4459; ORIGINAL_PRECURSOR_SCAN_NO 4456 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4491; ORIGINAL_PRECURSOR_SCAN_NO 4488 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4496; ORIGINAL_PRECURSOR_SCAN_NO 4493 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4487; ORIGINAL_PRECURSOR_SCAN_NO 4485 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4491; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4473; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3051 CONFIDENCE standard compound; INTERNAL_ID 2331 CONFIDENCE standard compound; INTERNAL_ID 8484 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Esmolol

methyl 3-(4-{2-hydroxy-3-[(propan-2-yl)amino]propoxy}phenyl)propanoate

C16H25NO4 (295.1783)


Esmolol (trade name Brevibloc) is a cardioselective beta1 receptor blocker with rapid onset, a very short duration of action, and no significant intrinsic sympathomimetic or membrane stabilising activity at therapeutic dosages. Esmolol decreases the force and rate of heart contractions by blocking beta-adrenergic receptors of the sympathetic nervous system, which are found in the heart and other organs of the body. Esmolol prevents the action of two naturally occurring substances: epinephrine and norepinephrine. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists

   

Pirinixic acid

2-({4-chloro-6-[(2,3-dimethylphenyl)amino]pyrimidin-2-yl}sulfanyl)acetic acid

C14H14ClN3O2S (323.0495)


2-methylthioribosyl-trans-zeatin, also known as wy-14,643 or cxpta, is a member of the class of compounds known as aryl thioethers. Aryl thioethers are organosulfur compounds containing a thioether group that is substituted by an aryl group. 2-methylthioribosyl-trans-zeatin is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 2-methylthioribosyl-trans-zeatin can be found in common pea and common wheat, which makes 2-methylthioribosyl-trans-zeatin a potential biomarker for the consumption of these food products. CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9387; ORIGINAL_PRECURSOR_SCAN_NO 9382 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9350; ORIGINAL_PRECURSOR_SCAN_NO 9349 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4901; ORIGINAL_PRECURSOR_SCAN_NO 4897 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4896; ORIGINAL_PRECURSOR_SCAN_NO 4894 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9397; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4984; ORIGINAL_PRECURSOR_SCAN_NO 4982 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9362; ORIGINAL_PRECURSOR_SCAN_NO 9360 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9288; ORIGINAL_PRECURSOR_SCAN_NO 9287 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4364; ORIGINAL_PRECURSOR_SCAN_NO 4363 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9321; ORIGINAL_PRECURSOR_SCAN_NO 9318 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4386; ORIGINAL_PRECURSOR_SCAN_NO 4382 CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4906; ORIGINAL_PRECURSOR_SCAN_NO 4904 Pirinixic acid (Wy-14643) is a potent agonist of PPARα, with EC50s of 0.63 μM, 32 μM for murine PPARα and PPARγ, and 5.0 μM, 60 μM, 35 μM for human PPARα, PPARγ and PPARδ, respectively.

   

Ethalfluralin

N-Ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)benzenamine

C13H14F3N3O4 (333.0936)


   

Nateglinide

(2R)-3-phenyl-2-[(4-propan-2-ylcyclohexanecarbonyl)amino]propanoic acid

C19H27NO3 (317.1991)


Nateglinide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It belongs to the meglitinide class of short-acting insulin secretagogues, which act by binding to cells of the pancreas to stimulate insulin release. Nateglinide is an amino acid derivative that induces an early insulin response to meals decreasing postprandial blood glucose levels. It should only be taken with meals and meal-time doses should be skipped with any skipped meal. Approximately one month of therapy is required before a decrease in fasting blood glucose is seen. Meglitnides may have a neutral effect on weight or cause a slight increase in weight. The average weight gain caused by meglitinides appears to be lower than that caused by sulfonylureas and insulin and appears to occur only in those naive to oral antidiabetic agents. Due to their mechanism of action, meglitinides may cause hypoglycemia although the risk is thought to be lower than that of sulfonylureas since their action is dependent on the presence of glucose. In addition to reducing postprandial and fasting blood glucose, meglitnides have been shown to decrease glycosylated hemoglobin (HbA1c) levels, which are reflective of the last 8-10 weeks of glucose control. Meglitinides appear to be more effective at lowering postprandial blood glucose than metformin, sulfonylureas and thiazolidinediones. Nateglinide is extensively metabolized in the liver and excreted in urine (83\\%) and feces (10\\%). The major metabolites possess less activity than the parent compound. One minor metabolite, the isoprene, has the same potency as its parent compound. C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents

   

MG(0:0/20:4(5Z,8Z,11Z,14Z)/0:0)

(5Z,8Z,11Z,14Z)-2-Hydroxy-1-(hydroxymethyl)ethyl ester 5,8,11,14-eicosatetraenoic acid

C23H38O4 (378.277)


MG(0:0/20:4(5Z,8Z,11Z,14Z)/0:0), also known as 2-arachidonoylglycerol (2-AG), is a unique molecular species of monoacylglycerol isolated in 1995 from rat brain and canine gut as an endogenous ligand for the cannabinoid receptors. 2-AG is rapidly formed from arachidonic acid-containing phospholipids through increased phospholipid metabolism, such as enhanced inositol phospholipid turnover, in various tissues and cells upon stimulation. 2-AG binds to the cannabinoid receptors CB1 and CB2 and exhibits a variety of cannabimimetic activities in vitro and in vivo. 2-AG is an endogenous cannabinoid (endocannabinoid). Endocannabinoids are a class of fatty acid derivatives defined by their ability to interact with the specific cannabinoid receptors that were originally identified as the targets of delta9-tetrahydocannabinol (delta9-THC), the psychoactive component of cannabis. Endocannabinoids have been implicated in a growing number of important physiological and behavioral events. Endocannabinoids are amides, esters, and ethers of long-chain polyunsaturated fatty acids, which act as new lipidic mediators. 2-AG is one of the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of delta9-THC, the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA and 2-AG at their receptors is limited by cellular uptake through an anandamide membrane transporter (AMT), followed by intracellular degradation. A fatty acid amide hydrolase (FAAH) is the main AEA hydrolase, whereas a monoacylglycerol lipase (MAGL) is critical in degrading 2-AG (PMID: 16515464, 16278487, 16678907). 2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated in 1995 from rat brain and canine gut as an endogenous ligand for the cannabinoid receptors. 2-AG is rapidly formed from arachidonic acid-containing phospholipids through increased phospholipid metabolism, such as enhanced inositol phospholipid turnover, in various tissues and cells upon stimulation. 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. 2-Arachidonylglycerol is an endogenous cannabinoid (endocannabinoid). Endocannabinoids are a class of fatty acid derivatives defined by their ability to interact with the specific cannabinoid receptors that were originally identified as the targets of Delta9-tetrahydocannabinol (Delta9-THC), the psychoactive component of cannabis. Endocannabinoids have been implicated in a growing number of important physiological and behavioral events. Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which act as new lipidic mediators. 2-AG is one of the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of (-)-Delta9-tetrahydrocannabinol (THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA and 2-AG at their receptors is limited by cellular uptake through an anandamide membrane transporter (AMT), followed by intracellular degradation. A fatty acid amide hydrolase (FAAH) is the main AEA hydrolase, whereas a monoacylglycerol lipase (MAGL) is critical in degrading 2-AG. (PMID: 16515464, 16278487, 16678907) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists

   

Docetaxel

Benzenepropanoic acid, beta-(((1,1-dimethylethoxy)carbonyl)amino)-alpha-hydroxy-, (2aR,4S,4aR,6R,9S,11S,12S,12aS,12bS)-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,4a,6,11-tetrahydroxy-8,12a,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (alphaR)-, hydrate (1:3)

C43H53NO14 (807.3466)


Docetaxel (sold under the brand name Taxotere) is a clinically well-established anti-mitotic chemotherapy medication (that is, it interferes with cell division). It is used mainly for the treatment of breast, ovarian, prostate, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of 1 mole docetaxel per mole tubulin in microtubules. Docetaxel has been FDA-approved to treat patients who have locally advanced, or metastatic breast, or non-small-cell lung cancer who have undergone anthracycline-based chemotherapy and failed to stop cancer progression or relapsed. Docetaxel has a European approval for use in hormone-refractory prostate cancer. Docetaxel is a chemotherapeutic agent and is a cytotoxic compound. It is effectively a biologically damaging drug. As with all chemotherapy, adverse effects are common and many varying side-effects have been documented. Because docetaxel is a cell-cycle specific agent, it is cytotoxic to all dividing cells in the body. This includes tumour cells as well as hair follicles, bone marrow, and other germ cells. For this reason, common chemotherapy side effects such as alopecia occur (this can sometimes be permanent). The drug company Sanofi Aventis claims that they do not routinely keep this data. A survey being conducted in northwest France aims to establish exactly how many patients are being disfigured in this way. Independent studies show it could be as high as 6.3\\\% which puts this ASE in the common and frequent classification. Docetaxel is mainly metabolized in the liver by the cytochrome P450 CYP3A4 and CYP3A5 subfamilies of isoenzymes. Metabolism is principally oxidative and at the tert-butylpropionate side chain, resulting first in an alcohol docetaxel (M2), which is then cyclized to three further metabolites (M1, M3, and M4). M1 and M3 are two diastereomeric hydroxyoxazolidinones and M4 is an oxazolidinedione. Phase II trials of 577 patients showed that docetaxel clearance is related to body surface area and plasma levels of hepatic enzyme alpha-1-acid glycoprotein. Docetaxel is of the chemotherapy drug class taxane and is a semi-synthetic analogue of paclitaxel (Taxol), an extract from the bark of the rare Pacific yew tree Taxus brevifolia. Due to the scarcity of paclitaxel, extensive research was carried out which lead to the formulation of docetaxel, an esterified product of 10-deacetylbaccatin III. It was extracted from the renewable and readily available European yew tree. Drug interactions may be the result of altered pharmacokinetics or pharmacodynamics due to one of the drugs involved. Cisplatin, dexamethasone, doxorubicin, etoposide, and vinblastine are all potentially co-administered with docetaxel and did not modify docetaxel plasma binding in phase II studies. Cisplatin is known to have a complex interaction with some CYPs and has, in some events, been shown to reduce docetaxel clearance by up to 25\\\%. Anticonvulsants induce some metabolic pathways relevant to docetaxel. CYP450 and CYP3A show increased expression in response to the use of anticonvulsants and the metabolism of docetaxel metabolite M4 is processed by these CYPs. A corresponding increase in clearance of M4 by 25\\\% is observed in patients taking phenytoin and phenobarbital, common anticonvulsants. STAMPEDE is a UK-based six-arm, five-stage, open-label randomized controlled trial involving more than 3000 men. Arms C and E of this trial involve administering docetaxel to men starting long-term hormone therapy for the first time. This could be newly diagnosed metastatic, non-metastatic, or high-risk, previously-treated prostate cancer. The trial tests the value of the drug earlier in the treatment pathway instead of waiting until it has become androgen-independent. Docetaxel anhydrous is a tetracyclic diterpenoid that is paclitaxel with the N-benzyloxycarbonyl group replaced by N-tert-butoxycarbonyl, and the acetoxy group at position 10 replaced by a hydroxy group. It has a role as an antineoplastic agent, a photosensitizing agent and an antimalarial. It is a tetracyclic diterpenoid and a secondary alpha-hydroxy ketone. It derives from a hydride of a taxane. Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel reversibly binds to tubulin with high affinity in a 1:1 stoichiometric ratio Docetaxel anhydrous is a Microtubule Inhibitor. The physiologic effect of docetaxel anhydrous is by means of Microtubule Inhibition. Docetaxel is an antineoplastic agent that has a unique mechanism of action as an inhibitor of cellular mitosis and that currently plays a central role in the therapy of many solid tumors including breast and lung cancer. Docetaxel therapy is frequently associated with serum enzyme elevations which are usually transient and mild, but more importantly has been linked to rapid onset, severe hypersensitivity reactions that can be associated with acute hepatic necrosis, liver failure and death. Docetaxel is a natural product found in Penicillium ubiquetum with data available. Docetaxel is a semi-synthetic, second-generation taxane derived from a compound found in the European yew tree, Taxus baccata. Docetaxel displays potent and broad antineoplastic properties; it binds to and stabilizes tubulin, thereby inhibiting microtubule disassembly which results in cell- cycle arrest at the G2/M phase and cell death. This agent also inhibits pro-angiogenic factors such as vascular endothelial growth factor (VEGF) and displays immunomodulatory and pro-inflammatory properties by inducing various mediators of the inflammatory response. Docetaxel has been studied for use as a radiation-sensitizing agent. (NCI04) Docetaxel Anhydrous is the anhydrous form of docetaxel, a semisynthetic side-chain analogue of paclitaxel with antineoplastic property. Docetaxel binds specifically to the beta-tubulin subunit of microtubules and thereby antagonizes the disassembly of the microtubule proteins. This results in the persistence of aberrant microtubule structures and results in cell-cycle arrest and subsequent cell death. Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of one mole docetaxel per mole tubulin in microtubules. A semisynthetic analog of PACLITAXEL used in the treatment of locally advanced or metastatic BREAST NEOPLASMS and NON-SMALL CELL LUNG CANCER. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D07866 Docetaxel (RP-56976) is a microtubule?depolymerization inhibitor, with an IC50 of 0.2 μM. Docetaxel attenuates the effects of?bcl-2 and bcl-xL gene expression. Docetaxel arrests the cell cycle at G2/M and leads to cell apoptosis. Docetaxel has anti-cancer activity[1][3].

   

Anandamide

(5Z,8Z,11Z,14Z)-N-(2-Hydroxyethyl)-5,8,11,14-eicosatetraenamide

C22H37NO2 (347.2824)


Anandamide, also known as arachidonoylethanolamide (AEA), is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumour cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (> 48-degree centigrade), and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID: 15047233). Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (such as anandamide). Recent evidence suggests that these new types of prostaglandins are likely novel signalling mediators involved in synaptic transmission and plasticity (PMID: 16957004). Anandamide is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of Tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumor cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (>48 degree centigrade) and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID 15047233) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 41 D049990 - Membrane Transport Modulators

   

oxybenzone

2-Hydroxy-4-methoxybenzophenone

C14H12O3 (228.0786)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents C1892 - Chemopreventive Agent > C851 - Sunscreen D003879 - Dermatologic Agents D003358 - Cosmetics Same as: D05309 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9643; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 754; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 2758 CONFIDENCE standard compound; INTERNAL_ID 8629 CONFIDENCE standard compound; INTERNAL_ID 8143 CONFIDENCE standard compound; EAWAG_UCHEM_ID 230

   

2-Hydroxymyristic acid

alpha-Hydroxy-N-tetradecylic acid

C14H28O3 (244.2038)


2-Hydroxymyristic acid is an analog of myristic acid that becomes metabolically activated in cells to form 2-hydroxymyristoyl-CoA, a potent inhibitor of myristoyl-CoA:protein N-myristoyltransferase, the enzyme that catalyzes protein N-myristoylation. Treatment of T cells with 2-hydroxymyristic acid inhibits the myristoylation and alters the stability of p56lck. (PMID 8103677) [HMDB] 2-Hydroxymyristic acid is an analog of myristic acid that becomes metabolically activated in cells to form 2-hydroxymyristoyl-CoA, a potent inhibitor of myristoyl-CoA:protein N-myristoyltransferase, the enzyme that catalyzes protein N-myristoylation. Treatment of T cells with 2-hydroxymyristic acid inhibits the myristoylation and alters the stability of p56lck. (PMID 8103677).

   

(+)-Sesamin

1,3-BENZODIOXOLE, 5,5-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS-, (1S-(1.ALPHA.,3A .ALPHA.,4.ALPHA.,6A .ALPHA.))-

C20H18O6 (354.1103)


(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Methylphenobarbital

5-Ethyl-1-methyl-5-phenyl-2,4,6(1H,3H,5H)-pyrimidinetrione

C13H14N2O3 (246.1004)


Methylphenobarbital is only found in individuals that have used or taken this drug. It is a barbiturate that is metabolized to phenobarbital. It has been used for similar purposes, especially in epilepsy, but there is no evidence mephobarbital offers any advantage over phenobarbital. [PubChem]Methylphenobarbital binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Olmesartan

4-(2-hydroxypropan-2-yl)-2-propyl-1-({4-[2-(1H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1H-imidazole-5-carboxylic acid

C24H26N6O3 (446.2066)


Olmesartan is an antihypertensive agent which belongs to the class of medicines called angiotensin II receptor antagonists. It acts rapidly to lower high blood pressure. It is marketed worldwide by Daiichi Sankyo, Ltd. and in the United States by Daiichi Sankyo, Inc. and Forest Laboratories. C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Olmesartan (RNH-6270) is an angiotensin II receptor (AT1R) antagonist used to treat high blood pressure[1][2].

   

Dihomo-alpha-linolenic acid

11,14,17-Eicosatrienoic acid, (Z,Z,Z)-isomer

C20H34O2 (306.2559)


Dihomolinolenic acid, also known as 11,14,17-eicosatrienoic acid or (11z,14z,17z)-eicosa-11,14,17-trienoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, dihomolinolenic acid is considered to be a fatty acid lipid molecule. Dihomolinolenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Dihomolinolenic acid can be found in evening primrose, which makes dihomolinolenic acid a potential biomarker for the consumption of this food product. Dihomolinolenic acid can be found primarily in blood and feces. Dihomo-alpha-linolenic acid, also known as 11,14,17-eicosatrienoic acid, is a rare polyunsaturated fatty acid of the omega-3 series. In normal humans, it represents less than 0.25\\% of serum phospholipid fatty acids. However, it is one of the most active essential fatty acids when assayed for the inhibition of fatty acid elongation/desaturation reactions which convert dietary C-18 fatty acids to C-20 eicosanoid precursors. (http://www.caymanchem.com)

   

Dihomolinoleate (20:2n6)

(11Z,14Z)-icosa-11,14-dienoic acid

C20H36O2 (308.2715)


Eicosadienoic acid is an omega-6 fatty acid found in human milk (PMID: 15256803). Omega-6 fatty acids are a family of unsaturated fatty acids which have in common a carbon-carbon double bond in the n−6 position; that is, the sixth bond from the end of the fatty acid. The biological effects of the omega−6 fatty acids are largely mediated by their conversion to n-6 eicosanoids that bind to diverse receptors found in every tissue of the body. Eicosadienoic acid has been identified in the human placenta (PMID: 32033212). Isolated from lipids of Ginkgo biloba (ginkgo) Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2]. Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2].

   

Valerate

N-Pentanoic acid, 11C-labeled sodium salt

C5H10O2 (102.0681)


Valeric acid, or pentanoic acid, is a straight chain alkyl carboxylic acid with the chemical formula CH3(CH2)3COOH. Like other low molecular weight carboxylic acids, it has a very unpleasant odor. Valeric acid is commonly found in human feces, with an average concentration of 2.4 umol/g feces (range of 0.6-3.8 umol/g) (PMID:6740214). Valeric acid is produced by the gut microbiota, typically Clostridia species and other gut bacterial species such as Megasphaera massiliensis MRx0029 (PMID:30052654) via the condensation of ethanol with propionic acid (PMID:18116989). Valeric acid is largely considered as a gut microbial metabolite. Recently, valeric acid has been found to exert strong gut protective effects. Studies involving mice that received high doses of radiation showed that valeric acid replenishment (via oral gavage) elevated the survival rate of irradiated mice, protected hematogenic organs (such as the thymus and spleen), improved gastrointestinal (GI) tract function and enhanced intestinal epithelial integrity (PMID:31931652 ). Valeric acid was also found to restore the enteric bacteria taxonomic proportions and reprogram the small intestinal protein profile to normal levels. Valeric acid, like butyric acid, also appears to be a potent histone deacetylase (HDAC) inhibitor. High levels of HDAC proteins have been implicated in a variety of disease pathologies, from cancer and colitis to cardiovascular disease and neurodegeneration (PMID:30052654). Valeric acid is also found in certain plants, specifically in the perennial flowering plant valerian (Valeriana officinalis), from which it gets its name. Industrially valeric acid is primarily used is in the synthesis of its esters. Volatile esters of valeric acid tend to have pleasant odors and are used in perfumes and cosmetics. Ethyl valerate and pentyl valerate are used as food additives because of their fruity flavours. Hydrolysis of these valerate-containing food additives in the gut can also lead to the appearance of valerate in blood, urine and stool samples. Minor constituent of biological systems e.g. yeast fat, some plant oilsand is also present in blue cheeses, wines, apple, banana, morello cherry, cooked shrimp, scallop, roasted peanut, roasted filberts and other foodstuffs. Flavouring agent. Pentanoic acid is found in many foods, some of which are red raspberry, pepper (c. frutescens), tea, and fats and oils. KEIO_ID V002

   

4-Fluoro-L-phenylalanine

2-amino-3-(4-fluorophenyl)propanoic acid

C9H10FNO2 (183.0696)


   

Citrulline

(S)-2-Amino-5-(aminocarbonyl)aminopentanoic acid

C6H13N3O3 (175.0957)


Citrulline, also known as Cit or δ-ureidonorvaline, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Citrulline has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. Citrulline exists in all living species, ranging from bacteria to humans. Within humans, citrulline participates in a number of enzymatic reactions. In particular, citrulline can be biosynthesized from carbamoyl phosphate and ornithine which is catalyzed by the enzyme ornithine carbamoyltransferase. In addition, citrulline and L-aspartic acid can be converted into argininosuccinic acid through the action of the enzyme argininosuccinate synthase. In humans, citrulline is involved in the metabolic disorder called argininemia. Citrulline has also been found to be associated with several diseases such as ulcerative colitis, rheumatoid arthritis, and citrullinemia type II. Citrulline has also been linked to several inborn metabolic disorders including argininosuccinic aciduria and fumarase deficiency. Outside of the human body, citrulline is found, on average, in the highest concentration in a few different foods such as wheats, oats, and cucumbers and in a lower concentration in swiss chards, yellow wax beans, and potato. Citrulline has also been detected, but not quantified in several different foods, such as epazotes, lotus, common buckwheats, strawberry guava, and italian sweet red peppers. Citrulline is a potentially toxic compound. Proteins that normally contain citrulline residues include myelin basic protein (MBP), filaggrin, and several histone proteins, whereas other proteins, such as fibrin and vimentin are susceptible to citrullination during cell death and tissue inflammation. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase. It is also produced from arginine as a byproduct of the reaction catalyzed by NOS family (NOS; EC1.14.13.39). [Spectral] L-Citrulline (exact mass = 175.09569) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Occurs in the juice of watermelon (Citrullus vulgaris) IPB_RECORD: 257; CONFIDENCE confident structure KEIO_ID C013 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Amino-5-ureidopentanoic acid is an endogenous metabolite. 2-Amino-5-ureidopentanoic acid is an endogenous metabolite. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway.

   

Asymmetric dimethylarginine

(2S)-2-amino-5-[(E)-[amino(dimethylamino)methylidene]amino]pentanoic acid

C8H18N4O2 (202.143)


Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally-essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide, a key chemical to endothelial and hence cardiovascular health. Asymmetric dimethylarginine is created in protein methylation, a common mechanism of post-translational protein modification. This reaction is catalyzed by an enzyme set called S-adenosylmethionine protein N-methyltransferases (protein methylases I and II). The methyl groups transferred to create ADMA are derived from the methyl group donor S-adenosylmethionine, an intermediate in the metabolism of homocysteine. (Homocysteine is an important blood chemical, because it is also a marker of cardiovascular disease). After synthesis, ADMA migrates into the extracellular space and thence into blood plasma. Asymmetric dimethylarginine is measured using high performance liquid chromatography. ADMA has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Isolated from broad bean seeds (Vicia faba). NG,NG-Dimethyl-L-arginine is found in many foods, some of which are yellow wax bean, spinach, green zucchini, and white cabbage. D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

1-Methylhistamine

2-(1-methyl-1H-imidazol-4-yl)ethan-1-amine

C6H11N3 (125.0953)


1-Methylhistamine, also known as H137, belongs to the class of organic compounds known as 2-arylethylamines. These are primary amines that have the general formula RCCNH2, where R is an organic group. 1-Methylhistamine exists in all living organisms, ranging from bacteria to humans. Within humans, 1-methylhistamine participates in a number of enzymatic reactions. In particular, S-adenosylhomocysteine and 1-methylhistamine can be biosynthesized from S-adenosylmethionine and histamine; which is mediated by the enzyme histamine N-methyltransferase. In addition, 1-methylhistamine can be converted into methylimidazole acetaldehyde through its interaction with the enzyme amine oxidase [flavin-containing] a. In humans, 1-methylhistamine is involved in histidine metabolism. 1-Methylhistamine is a potentially toxic compound. 1-Methylhistamine is a histamine metabolite. It is a product of histamine 1-methyltransferase [EC 2.1.1.8] in the pathway histidine metabolism (KEGG). [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D004791 - Enzyme Inhibitors

   

2-Aminoanthracene

beta-Aminoanthracene

C14H11N (193.0891)


CONFIDENCE standard compound; INTERNAL_ID 8008 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

N-Phenyl-2-naphthylamine

N-beta -Naphthyl-N-phenylamine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10025; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10038; ORIGINAL_PRECURSOR_SCAN_NO 10033 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10043; ORIGINAL_PRECURSOR_SCAN_NO 10042 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9976; ORIGINAL_PRECURSOR_SCAN_NO 9974 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9984; ORIGINAL_PRECURSOR_SCAN_NO 9980 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9994; ORIGINAL_PRECURSOR_SCAN_NO 9992 N-Phenyl-2-naphthylamine is found in root vegetables. N-Phenyl-2-naphthylamine is a constituent of Daucus carota (carrot). Constituent of Daucus carota (carrot). N-Phenyl-2-naphthylamine is found in root vegetables. CONFIDENCE standard compound; INTERNAL_ID 8366 CONFIDENCE standard compound; INTERNAL_ID 28

   

Azelastine

4-((4-Chlorophenyl)methyl)-2- (hexahydro-1-methyl-1H-azepin-4-yl)-1(2H)- phthalazinone HCL

C22H24ClN3O (381.1608)


Azelastine is only found in individuals that have used or taken this drug. It is a phthalazine derivative, and is an antihistamine and mast cell stabilizer available as a nasal spray for hay fever and as eye drops for allergic conjunctivitis.Azelastine competes with histamine for the H1-receptor sites on effector cells and acts as an antagonist by inhibiting the release of histamine and other mediators involved in the allergic response. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors CONFIDENCE standard compound; INTERNAL_ID 8508 CONFIDENCE standard compound; INTERNAL_ID 2734 D018926 - Anti-Allergic Agents

   

Hydrocortisoni acetas

11beta,17,21-trihydroxypregn-4-ene-3,20-dione, 21-acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

3-Methylamino-L-alanine

(S)-2-AMINO-3-(METHYLAMINO)PROPANOIC ACID

C4H10N2O2 (118.0742)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists

   

Butyric acid

Butyric acid magnesium salt

C4H8O2 (88.0524)


Butyric acid is a short-chain fatty acid (SCFA) formed in the mammalian colon by bacterial fermentation of carbohydrates (including dietary fibre). It is a straight-chain alkyl carboxylic acid that appears as an oily, colorless liquid with an unpleasant (rancid butter) odor. The name butyric acid comes from the Greek word for "butter", the substance in which it was first found. Triglycerides of butyric acid constitute 3‚Äì4\\% of butter. When butter goes rancid, butyric acid is liberated from the short-chain triglycerides via hydrolysis. Butyric acid is a widely distributed SCFA and is found in all organisms ranging from bacteria to plants to animals. It is present in animal fat and plant oils, bovine milk, breast milk, butter, parmesan cheese, body odor and vomit. While butyric acid has an unpleasant odor, it does have a pleasant buttery taste. As a result, butyric acid is used as a flavoring agent in food manufacturing. Low-molecular-weight esters of butyric acid, such as methyl butyrate, also have very pleasant aromas or tastes. As a result, several butyrate esters are used as food and perfume additives. Butyrate is naturally produced by fermentation processes performed by obligate anaerobic bacteria found in the mammalian gut. It is a metabolite of several bacterial genera including Anaerostipes, Coprococcus, Eubacterium, Faecalibacterium and Roseburia (PMID: 12324374; PMID: 27446020). Highly-fermentable fiber residues, such as those from resistant starch, oat bran, pectin, and guar can be transformed by colonic bacteria into butyrate. One study found that resistant starch consistently produces more butyrate than other types of dietary fibre (PMID: 14747692). The production of butyrate from fibres in ruminant animals such as cattle is responsible for the butyrate content of milk and butter. Butyrate has a number of important biological functions and binds to several specific receptors. In humans, butyric acid is one of two primary endogenous agonists of human hydroxycarboxylic acid receptor 2 (HCA2), a G protein-coupled receptor. Like other SCFAs, butyrate is also an agonist at the free fatty acid receptors FFAR2 and FFAR3, which function as nutrient sensors that facilitate the homeostatic control of energy balance. Butyrate is essential to host immune homeostasis (PMID: 25875123). Butyrates effects on the immune system are mediated through the inhibition of class I histone deacetylases (specifically, HDAC1, HDAC2, HDAC3, and HDAC8) and activation of its G-protein coupled receptor targets including HCA2, FFAR2 and FFAR3. Among the short-chain fatty acids, butyrate is the most potent promoter of intestinal regulatory T cells in vitro and the only SCFA that is an HCA2 ligand (PMID: 25741338). Butyrate has been shown to be a critical mediator of the colonic inflammatory response. It possesses both preventive and therapeutic potential to counteract inflammation-mediated ulcerative colitis and colorectal cancer. As a short-chain fatty acid, butyrate is metabolized by mitochondria as an energy source through fatty acid metabolism. In particular, it is an important energy source for cells lining the mammalian colon (colonocytes). Without butyrate, colon cells undergo autophagy (i.e., self-digestion) and die. Butyric acid, also known as butyrate or butanoic acid, is a member of the class of compounds known as straight chain fatty acids. Straight chain fatty acids are fatty acids with a straight aliphatic chain. Thus, butyric acid is considered to be a fatty acid lipid molecule. Butyric acid is soluble (in water) and a weakly acidic compound (based on its pKa). Butyric acid can be found in a number of food items such as cinnamon, pepper (c. baccatum), burdock, and mandarin orange (clementine, tangerine), which makes butyric acid a potential biomarker for the consumption of these food products. Butyric acid can be found primarily in most biofluids, including saliva, breast milk, feces, and cerebrospinal fluid (CSF), as well as throughout most human tissues. Butyric acid exists in all eukaryotes, ranging from yeast to humans. In humans, butyric acid is involved in a couple of metabolic pathways, which include butyrate metabolism and fatty acid biosynthesis. Moreover, butyric acid is found to be associated with aIDS. Butyric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Butyric acid was first observed in impure form in 1814 by the French chemist Michel Eugène Chevreul. By 1818, he had purified it sufficiently to characterize it. However, Chevreul did not publish his early research on butyric acid; instead, he deposited his findings in manuscript form with the secretary of the Academy of Sciences in Paris, France. Henri Braconnot, a French chemist, was also researching the composition of butter and was publishing his findings, and this led to disputes about priority. As early as 1815, Chevreul claimed that he had found the substance responsible for the smell of butter. By 1817, he published some of his findings regarding the properties of butyric acid and named it. However, it was not until 1823 that he presented the properties of butyric acid in detail. The name of butyric acid comes from the Latin word for butter, butyrum (or buturum), the substance in which butyric acid was first found . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists KEIO_ID B006

   

Lactulose

(2S,3R,4S,5R,6R)-2-{[(2R,3S,4S,5R)-4,5-dihydroxy-2,5-bis(hydroxymethyl)oxolan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C12H22O11 (342.1162)


Lactulose is a synthetic disaccharide used in the treatment of constipation and hepatic encephalopathy. It has also been used in the diagnosis of gastrointestinal disorders (From Martindale, The Extra Pharmacopoeia, 30th ed, p887). Moreover, lactulose is found to be associated with celiac disease, which is an inborn error of metabolism. A synthetic disaccharide used in the treatment of constipation and hepatic encephalopathy. It has also been used in the diagnosis of gastrointestinal disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p887) [HMDB] A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents

   

2,2',5,5'-Tetrachlorobiphenyl

1,4-dichloro-2-(2,5-dichlorophenyl)benzene

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Tetrahydrocannabinol

(6aR,10aR)-6,6,9-trimethyl-3-pentyl-6H,6aH,7H,8H,10aH-benzo[c]isochromen-1-ol

C21H30O2 (314.2246)


Tetrahydrocannabinol, abbreviated THC, is a cannabinoid identified in cannabis and is its principal psychoactive constituent. First isolated in 1964, in its pure form, it is a glassy solid when cold, and becomes viscous and sticky if warmed. Synthetically prepared THC, officially referred to by its INN, dronabinol, is available by prescription in the U.S. and Canada under the brand name Marinol. The mechanism of action of THC is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of cannabinoids. Animal studies suggest that Marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata. A literature review on the subject concluded that "Cannabis use appears to be neither a sufficient nor a necessary cause for psychosis. It is a component cause, part of a complex constellation of factors leading to psychosis." Likewise, a French review from 2009 came to a conclusion that cannabis use, particularly that before age 15, was a factor in the development of schizophrenic disorders. An aromatic terpenoid, THC has a very low solubility in water, but good solubility in most organic solvents, specifically lipids and alcohols. The presence of these specialized cannabinoid receptors in the brain led researchers to the discovery of endocannabinoids, such as anandamide and 2-arachidonoyl glyceride (2-AG). THC targets receptors in a manner far less selective than endocannabinoid molecules released during retrograde signalling, as the drug has a relatively low cannabinoid receptor efficacy and affinity. In populations of low cannabinoid receptor density, THC may act to antagonize endogenous agonists that possess greater receptor efficacy. THC is a lipophilic molecule and may bind non-specifically to a variety of receptors in the brain and body, such as adipose tissue. Dronabinol is only found in individuals that have used or taken this drug. It is extracted from the resin of Cannabis sativa (marijuana, hashish). The isomer delta-9-tetrahydrocannabinol is considered the most active form, producing the characteristic mood and perceptual changes associated with this compound. In the United States, Marinol has been rescheduled from Schedule II to Schedule III of the Controlled Substances Act in 1999, reflecting a finding that THC had a potential for abuse less than that of cocaine and heroin. As a Schedule III drug, it is available by prescription and is considered to be non-narcotic and to have a low risk of physical or mental dependence. Marinol has been approved by the U.S. Food and Drug Administration (FDA) in the treatment of anorexia in AIDS patients, as well as for refractory nausea and vomiting of patients undergoing chemotherapy, which has raised much controversy as to why natural THC is still a Schedule I drug. Efforts to get cannabis rescheduled as analogous to Marinol have not succeeded thus far. In April 2005, Canadian authorities approved the marketing of Sativex, a mouth spray for multiple sclerosis patients, who can use it to alleviate neuropathic pain and spasticity. Sativex contains tetrahydrocannabinol together with cannabidiol and is a preparation of whole cannabis rather than individual cannabinoids. It is marketed in Canada by GW Pharmaceuticals, being the first cannabis-based prescription drug in the world (in modern times). In addition, Sativex received European regulatory approval in 2010. An analog of dronabinol, nabilone, is available commercially in Canada under the trade name Cesamet, manufactured by Valeant Pharmaceuticals. Cesamet has also received FDA approval and began marketing in the U.S. in 2006. It is a Schedule II drug. Δ9tetrahydrocannabinol, also known as delta(9)-thc or marinol, is a member of the class of compounds known as 2,2-dimethyl-1-benzopyrans. 2,2-dimethyl-1-benzopyrans are organic compounds containing a 1-benzopyran moiety that carries two methyl groups at the 2-position. Δ9tetrahydrocannabinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Δ9tetrahydrocannabinol can be found in a number of food items such as wakame, cloves, burbot, and black cabbage, which makes Δ9tetrahydrocannabinol a potential biomarker for the consumption of these food products. Δ9tetrahydrocannabinol can be found primarily in blood and urine. Δ9tetrahydrocannabinol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Δ9tetrahydrocannabinol is a drug which is used for the treatment of anorexia associated with weight loss in patients with aids, and nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatment. The mechanism of action of marinol is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of dronabinol and other cannabinoids. Animal studies with other cannabinoids suggest that marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata (DrugBank). A potentially serious oral ingestion, if recent, should be managed with gut decontamination. In unconscious patients with a secure airway, instill activated charcoal (30 to 100 g in adults, 1 to 2 g/kg in infants) via a nasogastric tube. A saline cathartic or sorbitol may be added to the first dose of activated charcoal. Patients experiencing depressive, hallucinatory or psychotic reactions should be placed in a quiet area and offered reassurance. Benzodiazepines (5 to 10 mg diazepam po) may be used for treatment of extreme agitation. Hypotension usually responds to Trendelenburg position and IV fluids. Pressors are rarely required (L1712) (T3DB). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

alpha-Dimorphecolic acid

9-Hydroxy-10,12-octadecadienoic acid, (e,Z)-(+-)-isomer

C18H32O3 (296.2351)


alpha-Dimorphecolic acid or 9(S)-HODE is an endogenous fatty acid (PPAR)gamma agonist synthesized in the body from linoleic acid. alpha-Dimorphecolic acid activates peroxisomal proliferator-activated receptor-gamma (PPAR)gamma in human endothelial cells increasing plasminogen activator inhibitor type-1 expression. Plasminogen activator inhibitor type-1 (PAI-1) is a major physiological inhibitor of fibrinolysis, with its plasma levels correlating with the risk for myocardial infarction and venous thrombosis. The regulation of PAI-1 transcription by endothelial cells (ECs), a major source of PAI-1, remains incompletely understood. Adipocytes also produce PAI-1, suggesting possible common regulatory pathways between adipocytes and ECs. Peroxisomal proliferator-activated receptor-gamma (PPAR)gamma is a ligand-activated transcription factor that regulates gene expression in response to various mediators such as 15-deoxy-delta12, 14-prostaglandin J2 (15d-PGJ2) and oxidized linoleic acid (9- and 13-HODE). alpha-Dimorphecolic acid is a ligand of the G protein-coupled receptor G2A (PMID: 10073956, 16647253, 16236715). alpha-Dimorphecolic acid inhibits the proliferation of NHEK cells by suppressing DNA synthesis and arresting the cell cycle in the G0/1-phase. alpha-Dimorphecolic acid-G2A signalling plays proinflammatory roles in the skin under oxidative conditions (PMID: 18034171). Present in plant and animal lipids as autoxidn. or lipoxygenase oxidn. production of linoleic acid.

   

Rhamnose

L-(+)-Rhamnose hydrate = 6-deoxy-L-mannose monohydrate

C6H12O5 (164.0685)


Rhamnose (Rham) is a naturally occurring deoxy sugar. It can be classified as either a methyl-pentose or a 6-deoxy-hexose. Rhamnose occurs in nature in its L-form as L-rhamnose (6-deoxy-L-mannose). This is unusual, since most of the naturally occurring sugars are in D-form. Rhamnose is commonly bound to other sugars in nature. It is a common glycone component of glycosides from many plants. Rhamnose is also a component of the outer cell membrane of certain bacteria. L-rhamnose is metabolized to L-Lactaldehyde, which is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. It exists in two anomeric forms, alpha-L-rhamnose and beta-L-rhamnose. Rhamnose has been found in Klebsiella, Pseudomonas (https://link.springer.com/article/10.1007/BF00369505) (https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.200300816). Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

Malvidin 3-glucoside

5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C23H25O12]+ (493.1346)


Malvidin 3-glucoside is found in alcoholic beverages. Malvidin 3-glucoside is a pigment of skins of black grapes, also in other plants. Malvidin 3-glucoside is found in red wine Pigment of skins of black grapes, also in other plants. Found in red wine. Malvidin glycoside is a biomarker for the consumption of blueberries. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

3-Hydroxybenzo(a)pyrene

pentacyclo[10.6.2.0²,⁷.0⁹,¹⁹.0¹⁶,²⁰]icosa-1(18),2,4,6,8,10,12,14,16,19-decaen-13-ol

C20H12O (268.0888)


CONFIDENCE standard compound; INTERNAL_ID 45

   

all-trans-Phytofluene

(6E,10E,12E,14E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

C40H62 (542.4851)


all-trans-Phytofluene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids 7,7,8,8,11,12-Hexahydro-Carotene is a carotenoid found in human fluids.

   

Dictamnine

4-methoxyfuro(2,3-b)quinoline

C12H9NO2 (199.0633)


Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.

   

Tectorigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Tectorigenin is a methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 5, 7 and 4 respectively. It has a role as an anti-inflammatory agent and a plant metabolite. It is a member of 7-hydroxyisoflavones and a methoxyisoflavone. It is functionally related to an isoflavone. Tectorigenin is a natural product found in Iris milesii, Dalbergia sissoo, and other organisms with data available. Tectorigenin is an isoflavone from Pueraria thunbergiana, which induces differentiation and apoptosis in cancer cells. (NCI) Tectorigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from leopard lily (Belamcanda chinensis) or Pueraria thunbergiana. A methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 5, 7 and 4 respectively. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor A polyphenol metabolite detected in biological fluids [PhenolExplorer] C471 - Enzyme Inhibitor > C1017 - Glucuronidase Inhibitor Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth. Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth.

   

Gardenoside

Methyl (1S,4aS,7S,7aS)-7-hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate

C17H24O11 (404.1319)


A cyclopentapyran that is 7-deoxyloganin with a methyl and hydrogen replaced by hydroxy and hydroxymethyl groups at position 7. Gardenoside is a natural product found in Gardenia jasminoides, Catunaregam obovata, and other organisms with data available. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2].

   

alpha-Zearalenol

(3R,7R,11E)-7,14,16-Trihydroxy-3-methyl-3,4,5,6,7,8,9,10-octahydro-1H-2-benzoxacyclotetradecin-1-one

C18H24O5 (320.1624)


Alpha-zearlenol is a nonsteroidal estrogen or mycoestrogen found in fungi belonging to the Fusarium genus including F. graminearum, F. culmorum, F. crookwellense, etc (PMID: 22095651), As a mycotoxin, alpha-zearalenol is a widely distributed compound that contaminates many crops, grains, and other commodities (PMID: 30830360). Alpha-zearalenol, is also a major hepatic metabolite of zearalenone (another mycotoxin). Zearalenone has two metabolites, alpha and beta zearalenol which are produced in the liver by 3α-hydroxisteroid dehydrogenase and 3β-hydroxisteroid dehydrogenase (PMID: 30830360). Like Alpha-zearlenol, zearalenone or F-2 mycotoxin is produced by certain Fusarium species. It causes infertility, abortion and other breeding problems in swine. Alpha-zearlenol is also produced synthetically and sold as Zeranol, which is used as an anabolic agent for cattle. Alpha-zearlenol exhibits strong growth-promoting properties, but its sale is restricted in Europe (PMID: 22095651). Alpha-zearalenol has three to four times the biological activity of zearalenone. Alpha-zearlenol contains a lactone ring in its structure and is structurally analogous to estrogen, thus it can bind to estrogen receptors, and causes hepatotoxic, hematotoxic, immunotoxic, genotoxic, teratogenic and carcinogenic effects on different animal species (PMID: 17045381).

   

1-Hydroxyisoquinoline

1,2-dihydroisoquinolin-1-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 70 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Palmityl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(hexadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C37H66N7O17P3S (1005.3449)


Palmityl-CoA is a fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. [HMDB] COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Oleoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9Z)-octadec-9-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H68N7O17P3S (1031.3605)


Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A. [HMDB]. Oleoyl-CoA is found in many foods, some of which are cardoon, fruits, hyssop, and rice. Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A.

   

CDP-ethanolamine

(2-aminoethoxy)[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C11H20N4O11P2 (446.0604)


CDP-ethanolamine, also known as cytidine 5’-diphosphoethanolamine, belongs to the class of organic compounds known as CDP-ethanolamines. These are phosphoethanolamines that consist of an ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen. CDP-ethanolamine is a very strong basic compound (based on its pKa). In humans, CDP-ethanolamine is involved in phosphatidylethanolamine biosynthesis. Outside of the human body, CDP-ethanolamine has been detected, but not quantified in, several different foods, such as Chinese water chestnuts, buffalo currants, red huckleberries, eggplants, and brazil nuts. This could make CDP-ethanolamine a potential biomarker for the consumption of these foods. Cytidine is a molecule (known as a nucleoside) that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a beta-N1-glycosidic bond. [HMDB]. CDP-Ethanolamine is found in many foods, some of which are allspice, hedge mustard, wasabi, and green vegetables.

   

3-Mercaptopyruvic acid

beta-3-Mercapto-2-oxo-propanoic acid

C3H4O3S (119.9881)


3-Mercaptopyruvic acid, also known as 3-mercapto-2-oxopropanoate or beta-thiopyruvate, belongs to the class of organic compounds known as alpha-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. 3-Mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3-mercaptopyruvic acid participates in a number of enzymatic reactions. In particular, 3-mercaptopyruvic acid and cyanide can be converted into pyruvic acid and thiocyanate; which is mediated by the enzyme 3-mercaptopyruvate sulfurtransferase. In addition, 3-mercaptopyruvic acid can be biosynthesized from 3-mercaptolactic acid; which is mediated by the enzyme L-lactate dehydrogenase. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. In humans, 3-mercaptopyruvic acid is involved in cystinosis, ocular nonnephropathic. Outside of the human body, 3-mercaptopyruvic acid has been detected, but not quantified in several different foods, such as lima beans, spinachs, shallots, mexican groundcherries, and white lupines. This could make 3-mercaptopyruvic acid a potential biomarker for the consumption of these foods. 3-mercaptopyruvic acid, also known as beta-mercaptopyruvate or beta-thiopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-mercaptopyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-mercaptopyruvic acid can be found in a number of food items such as garland chrysanthemum, rubus (blackberry, raspberry), tarragon, and arrowhead, which makes 3-mercaptopyruvic acid a potential biomarker for the consumption of these food products. 3-mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-mercaptopyruvic acid is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. 3-mercaptopyruvic acid is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. Instead, prodrugs, such as sulfanegen, are being evaluated to compensate for the short half-life of 3-mercaptopyruvic acid .

   

Dihydroxyfumaric acid

2-Butenedioic acid,2,3-dihydroxy-, (2E)-

C4H4O6 (148.0008)


Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate. [HMDB] Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate.

   

7-Dehydrocholesterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H44O (384.3392)


7-Dehydrocholesterol (7-DHC), also known as provitamin D3 or 5,7-cholestadien-3-b-ol, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrocholesterol is also classified as a sterol. 7-Dehydrocholesterol is known as a zoosterol, meaning that it is a sterol isolated from animals (to distinguish those sterols isolated from plants which are called phytosterols). 7-DHC functions in the serum as a cholesterol precursor and is photochemically converted to vitamin D3 in the skin. Therefore 7-DHC functions as provitamin-D3. The presence of 7-DHC in human skin enables humans and other mammals to manufacture vitamin D3 (cholecalciferol) from ultraviolet rays in the sun light, via an intermediate isomer pre-vitamin D3. 7-DHC absorbs UV light most effectively at wavelengths between 290 and 320 nm and, thus, the production of vitamin D3 will occur primarily at those wavelengths (PMID: 9625080). The two most important factors that govern the generation of pre-vitamin D3 are the quantity (intensity) and quality (appropriate wavelength) of the UVB irradiation reaching the 7-dehydrocholesterol deep in the stratum basale and stratum spinosum (PMID: 9625080). 7-DHC is also found in the milk of several mammalian species, including cows (PMID: 10999630; PMID: 225459). It was discovered by Nobel-laureate organic chemist Adolf Windaus. 7-DHC can be produced by animals and plants via different pathways (PMID: 23717318). It is not produced by fungi in significant amounts. 7-DHC is made by some algae and can also be produced by some bacteria. 7-Dehydrocholesterol is a zoosterol (a sterol produced by animals rather than plants). It is a provitamin-D. The presence of this compound in skin enables humans to manufacture vitamin D3 from ultra-violet rays in the sun light, via an intermediate isomer provitamin D3. It is also found in breast milk. [HMDB] D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Lathosterol

(1R,2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C27H46O (386.3548)


Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID: 8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O [HMDB] Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID:8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.

   

Phytanate

3,7,11,15-Tetramethylhexadecoanoic acid

C20H40O2 (312.3028)


Phytanic acid (or 3,7,11,15-tetramethylhexadecanoic acid) is a 20-carbon branched-chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. It is primarily formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. Unlike most fatty acids, phytanic acid cannot be metabolized by beta-oxidation (because of a methyl group in the beta position). Instead, it undergoes alpha-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon. Pristanic acid can undergo several rounds of beta-oxidation in the peroxisome to form medium-chain fatty acids that can be converted into carbon dioxide and water in mitochondria. Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, is characterized by having impaired alpha-oxidation activity. Individuals with Refsum disease accumulate large stores of phytanic acid in their blood and tissues. This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss. Therefore, chronically high levels of phytanic acid can be neurotoxic. Phytanic acids neurotoxicity appears to lie in its ability to initiate astrocyte/neural cell death by activating the mitochondrial route of apoptosis. In particular, phytanic acid can induce the substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. It also induces the release of cytochrome c from mitochondria. A 20-carbon branched chain fatty acid, Phytanic acid is present in animal (primarily herbivores or omnivores) tissues where it may be derived from the chlorophyll in consumed plant material. Phytanic acid derives from the corresponding alcohol, phytol, and is ultimately oxidized into pristanic acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids in plasma. These high levels in Refsum disease (a neurological disorder) are due to a phytanic acid alpha-hydroxylase deficiency.; A 20-carbon branched chain fatty acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids of the plasma. This is due to a phytanic acid alpha-hydroxylase deficiency. [HMDB]

   

streptonigrin

5-amino-6-(7-amino-6-methoxy-5,8-dioxo-5,8-dihydroquinolin-2-yl)-4-(2-hydroxy-3,4-dimethoxyphenyl)-3-methylpyridine-2-carboxylic acid

C25H22N4O8 (506.1438)


Nigrin b, also known as rufocromomycin or nigrin, is a member of the class of compounds known as bipyridines and oligopyridines. Bipyridines and oligopyridines are organic compounds containing two pyridine rings linked to each other. Nigrin b is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Nigrin b can be found in black elderberry, which makes nigrin b a potential biomarker for the consumption of this food product. rRNA N-glycosylase (EC 3.2.2.22, ribosomal ribonucleate N-glycosidase, nigrin b, RNA N-glycosidase, rRNA N-glycosidase, ricin, momorcochin-S, Mirabilis antiviral protein, gelonin, saporins) is an enzyme with systematic name rRNA N-glycohydrolase. This enzyme catalyses the following chemical reaction Hydrolysis of the N-glycosylic bond at A-4324 in 28S rRNA from eukaryotic ribosomes . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents

   
   

Arachidonyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H66N7O17P3S (1053.3449)


Arachidonyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. Arachidonyl-CoA is produced from 8,11,14-Eicosatrienoyl-CoA via the enzyme fatty acid desaturase 1 (EC 1.14.19.-). It is then converted to Arachidonic acid via the enzymepalmitoyl-CoA hydrolase (EC 3.1.2.2).

   

Bryostatins

[(1S,3S,5Z,7R,8E,11S,12S,13E,15S,21R,23R,25S)-25-acetyloxy-1,11,21-trihydroxy-17-[(1R)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.13,7.111,15]nonacos-8-en-12-yl] (2E,4E)-octa-2,4-dienoate

C47H68O17 (904.4456)


Bryostatin 1 is a macrocyclic lactone isolated from the bryozoan Bugula neritina with antineoplastic activity. Bryostatin 1 binds to and inhibits the cell-signaling enzyme protein kinase C, resulting in the inhibition of tumor cell proliferation, the promotion of tumor cell differentiation, and the induction of tumor cell apoptosis. This agent may act synergistically with other chemotherapeutic agents. (NCI04) Bryostatin 1. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83314-01-6 (retrieved 2024-12-16) (CAS RN: 83314-01-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

7a-Hydroxy-cholestene-3-one

(1S,2R,9R,10S,11S,14R,15R)-9-hydroxy-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C27H44O2 (400.3341)


7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217) [HMDB] 7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217).

   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

Perchloroethylene

1,1,2,2-Tetrachloroethylene (acd/name 4.0)

C2Cl4 (163.8754)


Animal studies and a study of 99 twins by Dr. Samuel Goldman and researchers at the Parkinsons Institute in Sunnyvale, California determined there is a lot of circumstantial evidence that exposure to tetrachloroethene increases the risk of developing Parkinsons disease ninefold. Larger population studies are planned. Tetrachloroethene is a common soil contaminant. With a specific gravity greater than 1, tetrachloroethylene will be present as a dense nonaqueous phase liquid if sufficient quantities of liquid are spilled in the environment. Because of its mobility in groundwater, its toxicity at low levels, and its density (which causes it to sink below the water table), cleanup activities are more difficult than for oil spills. Recent research has focused on the in place remediation of soil and ground water pollution by tetrachloroethylene. Instead of excavation or extraction for above-ground treatment or disposal, tetrachloroethylene contamination has been successfully remediated by chemical treatment or bioremediation. Bioremediation has been successful under anaerobic conditions by reductive dechlorination by Dehalococcoides sp. and under aerobic conditions by cometabolism by Pseudomonas sp. Partial degradation daughter products include trichloroethylene, cis-1,2-dichloroethene and vinyl chloride; full degradation converts tetrachloroethylene to ethene and hydrogen chloride dissolved in water. Tetrachloroethylene is an excellent solvent for organic materials. Otherwise it is volatile, highly stable, and nonflammable. For these reasons, it is widely used in dry cleaning. Usually as a mixture with other chlorocarbons, it is also used to degrease metal parts in the automotive and other metalworking industries. It appears in a few consumer products including paint strippers and spot removers. Tetrachloroethylene, also known under the systematic name tetrachloroethene, or perchloroethylene (perc), and many other names, is a chlorocarbon with the formula Cl2C=CCl2. It is a colorless liquid widely used for dry cleaning of fabrics, hence it is sometimes called dry-cleaning fluid. It has a sweet odor detectable by most people at a concentration of 1 part per million (1 ppm). Worldwide production was about one million metric tons in 1985. The International Agency for Research on Cancer has classified tetrachloroethene as a Group 2A carcinogen, which means that it is probably carcinogenic to humans. Like many chlorinated hydrocarbons, tetrachloroethene is a central nervous system depressant and can enter the body through respiratory or dermal exposure. Tetrachloroethene dissolves fats from the skin, potentially resulting in skin irritation. This reaction can be catalyzed by a mixture of potassium chloride and aluminium chloride or by activated carbon. Trichloroethylene is a major byproduct, which is separated by distillation. D009676 - Noxae > D002273 - Carcinogens D004785 - Environmental Pollutants D012997 - Solvents

   

Sulfinpyrazone

4-[2-(benzenesulfinyl)ethyl]-1,2-diphenylpyrazolidine-3,5-dione

C23H20N2O3S (404.1195)


Sulfinpyrazone is only found in individuals that have used or taken this drug. It is a uricosuric drug that is used to reduce the serum urate levels in gout therapy. It lacks anti-inflammatory, analgesic, and diuretic properties. [PubChem]Sulfinpyrazone is an oral uricosuric agent (pyrazolone derivative) used to treat chronic or intermittent gouty arthritis. Sulfinpyrazone competitively inhibits the reabsorption of uric acid at the proximal convoluted tubule, thereby facilitating urinary excretion of uric acid and decreasing plasma urate concentrations. This is likely done through inhibition of the urate anion transporter (hURAT1) as well as the human organic anion transporter 4 (hOAT4). Sulfinpyrazone is not intended for the treatment of acute attacks because it lacks therapeutically useful analgesic and anti-inflammatory effects. Sulfinpyrazone and its sulfide metabolite possess COX inhibitory effects. Sulfinpyrazone has also been shown to be a UDP-glucuronsyltransferase inhibitor and a very potent CYP2C9 inhibitor. Sulfinpyrazone is also known to be a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor as well as an inhibitor of several multridrug resistance proteins (MRPs). M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent

   

Tirofiban

(2S)-2-(butane-1-sulfonamido)-3-{4-[4-(piperidin-4-yl)butoxy]phenyl}propanoic acid

C22H36N2O5S (440.2345)


Tirofiban prevents the blood from clotting during episodes of chest pain or a heart attack, or while the patient is undergoing a procedure to treat a blocked coronary artery. It is a non-peptide reversible antagonist of the platelet glycoprotein (GP) IIb/IIIa receptor, and inhibits platelet aggregation. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Indican

(2S,3R,4S,5S,6R)-2-((1H-Indol-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C14H17NO6 (295.1056)


Indican is a colourless, water-soluble organic compound consisting of an indole ring conjugated to glucose. It is an indole glycoside. Its hydrolysis yields β-D-glucose and indoxyl. Indoles are compounds which consist of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. The oxidation of indican by a mild oxidizing agent, e.g. atmospheric oxygen or CYP450 enzymes, yields indigo dye which is blue in colour. Indican is a substance occurring naturally in the urine of humans and mammals and also in blood plasma as a normal metabolite of tryptophan. Tryptophan is first converted to indole by gut bacteria. Following absorption from the gut, indole is converted to 3-hydroxyindole (indoxyl or indican) in the liver, where it is again then conjugated with sulfuric acid or glucoronic acid through normal xenobiotic metabolism pathways. It is then transported to the kidneys for excretion. In individuals affected by the blue diaper syndrome (a rare, autosomal recessive metabolic disorder characterized in infants by bluish urine-stained diapers), the patients exhibit a defect in tryptophan metabolism, leading to an increase in indican synthesis. Indican is then excreted into the urine and from there into the diaper where, upon exposure to air, it is converted to indigo blue dye due to oxidation by atmospheric oxygen. An increased urinary excretion of indican is seen in Hartnup disease from the bacterial degradation of unabsorbed tryptophan (PMID: 19967017). Hartnup disease is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids (particularly tryptophan), which leads to excessive bacterial fermentation of tryptophan (to indole) in the gut. Indican has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Its excretion is decreased by the presence of Lactobacillus bacteria in the gut (PMID: 6785555 ). Indican is an indolyl carbohydrate, a beta-D-glucoside and an exopolysaccharide. Indican is a natural product found in Indigofera suffruticosa, Isatis tinctoria, and other organisms with data available. Indican is a toxic metabolite derived from dietary proteins and tryptophan. In the intestine, proteins and tryptophan are converted to indole by tryptophanase-expressing organisms. In the liver, indole is hydroxylated to form indoxyl and indoxyl is sufated to produce indican. Overproduction of indican is associated with glomerular sclerosis, interstitial fibrosis and renal failure. Indican is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It is a colourless organic compound, soluble in water, naturally occurring in Indigofera plants. It is a precursor of indigo dye. Indican interferes with many commercial procedures for measuring total bilirubin[6] which can be a problem for renal failure patients where blood indican levels are raised. It can cause gastrointestinal symptoms in patients where protein absorption is reduced - like Hartnups disease, allowing for greater bacterial decomposition of the Tryptophan to indole and its conversion to indican.

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

Ethanone, 1-(9-azabicyclo(4.2.1)non-2-en-2-yl)-, (1R)-

Ethanone, 1-(9-azabicyclo(4.2.1)non-2-en-2-yl)-, (1R)-

C10H15NO (165.1154)


   

Cefpirome

1-{[(6R,7R)-2-carboxylato-7-{[(2Z)-1-hydroxy-2-(2-imino-2,3-dihydro-1,3-thiazol-4-yl)-2-(methoxyimino)ethylidene]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl]methyl}-5H,6H,7H-cyclopenta[b]pyridin-1-ium

C22H22N6O5S2 (514.1093)


Cefpirome is a fourth-generation cephalosporin. Trade names include Cefrom, Keiten, Broact, Cefir. Cefpirome is considered highly active against Gram-negative bacteria, including Pseudomonas aeruginosa, and Gram-positive bacteria. It is marketed under the brand name of CEFROM by sanofi aventis group india. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DE - Fourth-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D07649

   

S-Octyl GSH

S-Octyl glutathione

C18H33N3O6S (419.209)


   

Sulfobromophthalein

Sulfobromophthalein

C20H10Br4O10S2 (789.6449)


V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins D004396 - Coloring Agents Same as: D08548

   

Nafenopin

2-methyl-2-[4-(1,2,3,4-tetrahydronaphthalen-1-yl)phenoxy]propanoic acid

C20H22O3 (310.1569)


C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C154291 - Peroxisome Proliferator-Activated Receptor Agonist C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent D009676 - Noxae > D002273 - Carcinogens > D020025 - Peroxisome Proliferators D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D05102

   

Everninomycin

b-D-Mannopyranoside,O-(1R)-4-O-(2,4-dihydroxy-6-methylbenzoyl)-2,3-O-methylene-D-xylopyranosylidene-(1?3-4)-a-L-lyxopyranosyl O-2,3,6-trideoxy-3-C-methyl-4-O-methyl-3-nitro-a-L-arabino-hexopyranosyl-(1?3)-O-2,6-dideoxy-4-O-(3,5-dichloro-4-hydroxy-

C70H97Cl2NO38 (1629.5065)


   

Nosiheptide

N-(3-amino-3-oxoprop-1-en-2-yl)-2-[(1S,18S,21Z,28R)-21-ethylidene-9,30-dihydroxy-18-[(1R)-1-hydroxyethyl]-40-methyl-16,19,26,31,42,46-hexaoxo-32-oxa-3,13,23,43,49-pentathia-7,17,20,27,45,51,52,53,54,55-decazanonacyclo[26.16.6.12,5.112,15.122,25.138,41.147,50.06,11.034,39]pentapentaconta-2(55),4,6,8,10,12(54),14,22(53),24,34(39),35,37,40,47,50-pentadecaen-8-yl]-1,3-thiazole-4-carboxamide

C51H43N13O12S6 (1221.1478)


Nosiheptide (Multhiomycin), a thiopeptide antibiotic produced by Streptomyces actuosus, inhibits bacterial protein synthesis and bears a unique indole side ring system and regiospecific hydroxyl groups on the characteristic macrocyclic core. Nosiheptide has been widely used as a feed additive for animal growth[1][2].

   

ST 24:5;O4

(22E)-12alpha-Hydroxy-3-oxochola-1,4,22-trien-24-oic Acid

C24H32O4 (384.23)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Same as: D01617 D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D01294

   

Aurin

4-[bis(4-hydroxyphenyl)methylidene]cyclohexa-2,5-dien-1-one

C19H14O3 (290.0943)


   

Benzo[a]pyrene-7,8-diol

pentacyclo[10.6.2.0²,⁷.0⁹,¹⁹.0¹⁶,²⁰]icosa-1,3,7,9(19),10,12(20),13,15,17-nonaene-5,6-diol

C20H14O2 (286.0994)


This compound belongs to the family of Pyrenes. These are compounds containing a pyrene moiety, which consists four fused benzene rings, resulting in a flat aromatic system.

   

2-[(4-{2-[(4-Cyclohexylbutyl)(cyclohexylcarbamoyl)amino]ethyl}phenyl)sulfanyl]-2-methylpropanoic acid

2-methyl-2-[[4-[2-[[(cyclohexylamino)carbonyl](4-cyclohexylbutyl)amino]ethyl]phenyl]thio]-propanoic acid

C29H46N2O3S (502.3229)


GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.

   

ST 27:2;O2

(22,23-dinor)-24-vinyl-cholest-5-en-3beta,24-diol

C27H44O2 (400.3341)


   

Pregnenolone carbonitrile

Pregnenolone carbonitrile; 3beta-Hydroxy-20-oxo-5-pregnene-16alpha-carbonitrile; Pregnenolone-16alpha-carbonitrile; PCN

C22H31NO2 (341.2355)


   

Aplysin

[3S-(3alpha,3abeta,8bbeta)]-7-Bromo-2,3,3a,8b-tetrahydro-3,3a,6,8b-tetramethyl-1H-cyclopenta[b]benzofuran

C15H19BrO (294.0619)


   

Filiformin

[2S-(2alpha,5alpha,10S*)]-7-Bromo-2,3,4,5-tetrahydro-2,5,8,10-tetramethyl-2,5-methano-1-benzoxepin

C15H19BrO (294.0619)


   

D-Kynurenine

(2R)-6-methoxy-2-phenyl-2,3-dihydrochromen-4-one

C10H12N2O3 (208.0848)


Kynurenine, also known as 3-anthraniloylalanine, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Kynurenine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Kynurenine can be found in a number of food items such as yellow zucchini, carrot, spinach, and broccoli, which makes kynurenine a potential biomarker for the consumption of these food products. Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase, which is made in many tissues in response to immune activation. Kynurenine and its further breakdown products carry out diverse biological functions, including dilating blood vessels during inflammation and regulating the immune response. Some cancers increase kynurenine production, which increases tumor growth . 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite.

   

DL-Arginine

2-amino-5-[(diaminomethylidene)amino]pentanoic acid

C6H14N4O2 (174.1117)


DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations. DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations.

   

Wy-14643

Pirinixic acid

C14H14ClN3O2S (323.0495)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D009676 - Noxae > D002273 - Carcinogens > D020025 - Peroxisome Proliferators D009676 - Noxae > D000963 - Antimetabolites D009676 - Noxae > D009153 - Mutagens Pirinixic acid (Wy-14643) is a potent agonist of PPARα, with EC50s of 0.63 μM, 32 μM for murine PPARα and PPARγ, and 5.0 μM, 60 μM, 35 μM for human PPARα, PPARγ and PPARδ, respectively.

   

L-Rhamnose

(2R,3R,4S,5S)-2,3,4,5-Tetrahydroxyhexanal

C6H12O5 (164.0685)


Any rhamnose having L-configuration. L-rhamnose occurs naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides. Acquisition and generation of the data is financially supported by the Max-Planck-Society CONFIDENCE standard compound; INTERNAL_ID 234 Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

dictamine

4-27-00-02030 (Beilstein Handbook Reference)

C12H9NO2 (199.0633)


Dictamnine is an oxacycle, an organonitrogen heterocyclic compound, an organic heterotricyclic compound and an alkaloid antibiotic. Dictamnine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. A furoquinoline alkaloid, dictamnine, is very common within the family Rutaceae. It is the main alkaloid in the roots of Dictamnus albus and responsible for the mutagenicity of the drug derived from crude extracts. Dictamnine was also reported to be a phototoxic and photomutagenic compound. It participates in the severe skin phototoxicity of the plant. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.

   

Oxybenzone

4-Methoxy-2-hydroxybenzophenone butyric acid

C14H12O3 (228.0786)


Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. It forms colorless crystals that are readily soluble in most organic solvents. It is used as an ingredient in sunscreen and other cosmetics because it absorbs UV-A ultraviolet rays. D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents C1892 - Chemopreventive Agent > C851 - Sunscreen D003879 - Dermatologic Agents D003358 - Cosmetics Same as: D05309

   

3D,7D,11D-Phytanic acid

3,7,11,15-Tetramethyl-[3R-(3R*,7R*,11R*)]-hexadecanoic acid

C20H40O2 (312.3028)


3D,7D,11D-Phytanic acid is an isomer of Phytanic acid, an unusual 20-carbon branched-chain fatty acid; Phytanic acid accumulates in blood and tissues of patients with Refsum disease (RD, an inborn error of lipid metabolism inherited as an autosomal recessive trait (OMIM 266500)), and is a reliable identifier of RD from a large number of other neurological disorders. Phytanic acid also accumulates in a number of other disorders with a very different clinical course: disorders of peroxisome biogenesis (Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), infantile Refsum disease (OMIM 266510)) and rhizomelic chondrodysplasia punctata, type 1 (OMIM 215100). Phytanic acid is a 3-methyl fatty acid that cannot be beta-oxidized directly, and first undergoes an alpha-oxidation a reaction catalyzed by the enzyme phytanoyl-CoA hydroxylase, which is deficient in RD, the only true disorder of phytanic acid alpha-oxidation. (The Metabolic and Molecular Bases of Inherited Disease).

   

(1R,3As,4S,6aS)-1,4-di(benzo[d][1,3]dioxol-5-yl)hexahydrofuro[3,4-c]furan

5-[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C20H18O6 (354.1103)


Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

11,14-Eicosadienoic acid

Eicosa-11,14-dienoic acid, (Z,Z)-isomer

C20H36O2 (308.2715)


   

y,y-Carotene, 7,7',8,8',11,12-hexahydro-, cis-(9CI)

2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

C40H62 (542.4851)


   

Bryo 1

25-(Acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl octa-2,4-dienoic acid

C47H68O17 (904.4456)


   

Thiacloprid

({3-[(6-chloropyridin-3-yl)methyl]-1,3-thiazolidin-2-ylidene}amino)formonitrile

C10H9ClN4S (252.0236)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals

   

Indolelactic acid

DL-Indole-3-lactic acid

C11H11NO3 (205.0739)


Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].

   

Creatinine

Creatinine

C4H7N3O (113.0589)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

Citrulline

L(+)-Citrulline

C6H13N3O3 (175.0957)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway.

   

Oleate

cis-9-octadecenoic acid

C18H34O2 (282.2559)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

FA 5:0

Valerianic acid

C5H10O2 (102.0681)


   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0689)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Rhamnose

alpha-L-Rhamnose

C6H12O5 (164.0685)


Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

phytofluene

(12E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

C40H62 (542.4851)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. It is formed from phytoene in a desaturation reaction leading to the formation of five conjugated double bonds. In the following step, addition of carbon-carbon conjugated double bonds leads to the formation of z-carotene and appearance of visible color.; Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. Phytofluene is found in many foods, some of which are bitter gourd, yellow bell pepper, caraway, and pepper (c. annuum).

   

nitrazepam

nitrazepam

C15H11N3O3 (281.08)


A 1,4-benzodiazepinone that is 1,3-dihydro-2H-1,4-benzodiazepin-2-one which is substituted at positions 5 and 7 by phenyl and nitro groups, respectively. It is used as a hypnotic for the short-term management of insomnia and for the treatment of epileptic spasms in infants (Wests syndrome). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 1535

   

amlodipine

Amlodipine (Norvasc)

C20H25ClN2O5 (408.1452)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1544

   

prometryn

Pesticide5_Prometryne_C10H19N5S_1,3,5-Triazine-2,4-diamine, N,N-bis(1-methylethyl)-6-(methylthio)-

C10H19N5S (241.1361)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 133

   

Dimethenamid

dimethenamid-P

C12H18ClNO2S (275.0747)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 254

   

Terbutryn

Terbutryn

C10H19N5S (241.1361)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 306

   

Clothianidin

Pesticide5_Clothianidin_C6H8ClN5O2S_[C(E)]-N-[(2-Chloro-5-thiazolyl)methyl]-N?-methyl-N?-nitroguanidine

C6H8ClN5O2S (249.0087)


An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3. D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933

   

Nateglinide

Nateglinide (Starlix)

C19H27NO3 (317.1991)


C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3289

   

Citrulline

L(+)-Citrulline

C6H13N3O3 (175.0957)


The parent compound of the citrulline class consisting of ornithine having a carbamoyl group at the N(5)-position. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.050 CONFIDENCE standard compound; ML_ID 29 L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway.

   

Griseofulvin

Griseofulvin

C17H17ClO6 (352.0714)


An oxaspiro compound produced by Penicillium griseofulvum. It is used by mouth as an antifungal drug for infections involving the scalp, hair, nails and skin that do not respond to topical treatment. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.075 Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.

   

1-Methylhistamine

N(tele)-methylhistamine

C6H11N3 (125.0953)


A primary amino compound that is the N(tele)-methyl derivative of histamine. D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041

   

Kynurenine

(2R)-6-methoxy-2-phenyl-2,3-dihydrochromen-4-one

C10H12N2O3 (208.0848)


A ketone that is alanine in which one of the methyl hydrogens is substituted by a 2-aminobenzoyl group. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.060 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.

   

lactulose

4-O-hexopyranosylhex-2-ulofuranose

C12H22O11 (342.1162)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051

   

Secoisolariciresinol

(-)-Secoisolariciresinol

C20H26O6 (362.1729)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 0.816 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.813 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.806 Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Fenofibrate (Tricor, Trilipix)

propan-2-yl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate

C20H21ClO4 (360.1128)


Fenofibrate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=49562-28-9 (retrieved 2024-07-12) (CAS RN: 49562-28-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fenofibrate is a selective PPARα agonist with an EC50 of 30 μM. Fenofibrate also inhibits human cytochrome P450 isoforms, with IC50s of 0.2, 0.7, 9.7, 4.8 and 142.1 μM for CYP2C19, CYP2B6, CYP2C9, CYP2C8, and CYP3A4, respectively.

   

Creatinine

Creatinine,anhydrous

C4H7N3O (113.0589)


A lactam obtained by formal cyclocondensation of creatine. It is a metabolite of creatine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DDRJAANPRJIHGJ-UHFFFAOYSA-N_STSL_0026_Creatinine_2000fmol_180410_S2_LC02_MS02_34; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

pyridoxamine

Pyridoxylamine

C8H12N2O2 (168.0899)


A monohydroxypyridine that is pyridine substituted by a hydroxy group at position 3, an aminomethyl group at position 4, a hydroxymethyl group at position 5 and a methyl group at position 2. The 4-aminomethyl form of vitamin B6, it is used (in the form of the hydrochloride salt) for treatment of diabetic nephropathy. D018977 - Micronutrients > D014815 - Vitamins Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2559)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Hydrocortisonacetate

Hydrocortisone acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2828 D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 8748 Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

7-Dehydrocholesterol

(3β)-7-Dehydro Cholesterol

C27H44O (384.3392)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

butyric acid

Fatty Acid, Vegetable

C4H8O2 (88.0524)


A straight-chain saturated fatty acid that is butane in which one of the terminal methyl groups has been oxidised to a carboxy group. D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

PHYTANIC ACID

Hexadecanoic acid, 3,7,11,15-tetramethyl-

C20H40O2 (312.3028)


A branched-chain saturated fatty acid consisting of hexadecanoic acid carrying methyl substituents at positions 3, 7, 11 and 15.

   

Valeric acid

pentanoic acid

C5H10O2 (102.0681)


A straight-chain saturated fatty acid containing five carbon atoms.

   

3-mercaptopyruvic acid

3-mercaptopyruvic acid

C3H4O3S (119.9881)


A 2-oxo monocarboxylic acid that is pyruvic acid substituted by a sulfanyl group at position 3.

   

Docetaxel

Docetaxel

C43H53NO14 (807.3466)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Docetaxel (RP-56976) is a microtubule?depolymerization inhibitor, with an IC50 of 0.2 μM. Docetaxel attenuates the effects of?bcl-2 and bcl-xL gene expression. Docetaxel arrests the cell cycle at G2/M and leads to cell apoptosis. Docetaxel has anti-cancer activity[1][3].

   

ESMOLOL

ESMOLOL

C16H25NO4 (295.1783)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists

   

N,N-Dimethylarginine

L-Arg(Me, Me)-OH (asymmetrical)

C8H18N4O2 (202.143)


D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

Olmesartan

Olmesartan

C24H26N6O3 (446.2066)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Olmesartan (RNH-6270) is an angiotensin II receptor (AT1R) antagonist used to treat high blood pressure[1][2].

   

propanil

propanil

C9H9Cl2NO (217.0061)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

azelastine

azelastine

C22H24ClN3O (381.1608)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D018926 - Anti-Allergic Agents

   

clofibrate

clofibrate

C12H15ClO3 (242.071)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AB - Fibrates D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D009676 - Noxae > D000963 - Antimetabolites CONFIDENCE standard compound; INTERNAL_ID 2719 Clofibrate is an agonist of PPAR, with EC50s of 50 μM, ~500 μM for murine PPARα and PPARγ, and 55 μM, ~500 μM for human PPARα and PPARγ, respectively.

   

Hydrocortisone acetate

Hydrocortisone acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Origin: Animal, Pregnanes Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

L-Lactic acid

Lactic Acid, L-

C3H6O3 (90.0317)


L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.

   

CDP-ethanolamine

CDP-ethanolamine

C11H20N4O11P2 (446.0604)


A phosphoethanolamine consisting of ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen.

   

α-Zearalenol

alpha-Zearalenol

C18H24O5 (320.1624)


   

7α-Hydroxy-4-cholesten-3-one

7-alpha-Hydroxy-4-cholesten-3-one

C27H44O2 (400.3341)


   

oleoyl-CoA

9Z-octadecenoyl-CoA

C39H68N7O17P3S (1031.3605)


An octadecenoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of oleic acid.

   

2-Hydroxymyristic acid

2-HYDROXYTETRADECANOIC ACID

C14H28O3 (244.2038)


A derivative of myristic acid having a hydroxy substituent at C-2.

   

FA 4:0

2-methyl-propanoic acid

C4H8O2 (88.0524)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

FA 14:0;O

Tetradecanoic acid, 3-hydroxy-, D-(-)-

C14H28O3 (244.2038)


   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Prostaglandin B1

9-oxo-15S-hydroxy-8(12),13E-prostadienoic acid

C20H32O4 (336.23)


A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).

   

CoA 18:1

(9Z)-octadec-9-enoyl-CoA;(9Z)-octadec-9-enoyl-coenzyme A;Oleoyl-coenzyme A;S-Oleoylcoenzyme A;S-[(9Z)-octadec-9-enoyl]-CoA;S-[(9Z)-octadec-9-enoyl]-coenzyme A;S-oleoyl-CoA;cis-9-octadecenoyl-CoA;cis-9-octadecenoyl-coenzyme A;cis-Delta(9)-octadecenoyl-CoA;cis-Delta(9)-octadecenoyl-coenzyme A

C39H68N7O17P3S (1031.3605)


   

CoA 20:4

(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-CoA;(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-coenzyme A;(5Z,8Z,11Z,14Z)-5,8,11,14-icosatetraenoyl-coenzyme A;C20:4-CoA;all-cis-5,8,11,14-eicosatetraenoyl-CoA;all-cis-5,8,11,14-eicosatetraenoyl-coenzyme A;arachidonoyl-coenzyme A;arachidonyl-coenzyme A;cis-Delta(5,8,11,14)-eicosatetraenoyl-CoA;cis-Delta(5,8,11,14)-eicosatetraenoyl-coenzyme A

C41H66N7O17P3S (1053.3449)


   

CoA 16:0

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-{[3-oxo-3-({2-[(4,8,12-trimethyltridecanoyl)sulfanyl]ethyl}amino)propyl]amino}butyl] dihydrogen diphosphate}

C37H66N7O17P3S (1005.3449)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

MG 20:4

2-(5Z,11Z,14Z,17Z-eicosatetraenoyl)-sn-glycerol

C23H38O4 (378.277)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists

   

7-DHC

cholesta-5,7-dien-3beta-ol

C27H44O (384.3392)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Lathosterol

(3S,5S,9R,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548)


Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.

   

6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol

6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol

C21H30O2 (314.2246)


   

8-Anilino-1-naphthalenesulfonic acid

8-Anilino-1-naphthalenesulfonic acid

C16H13NO3S (299.0616)


   

Nafenopin

Nafenopin

C20H22O3 (310.1569)


C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C154291 - Peroxisome Proliferator-Activated Receptor Agonist C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent D009676 - Noxae > D002273 - Carcinogens > D020025 - Peroxisome Proliferators D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D05102

   

Estradiol dipropionate

Estradiol dipropionate

C24H32O4 (384.23)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Aurin

2,5-Cyclohexadien-1-one, 4-(bis(p-hydroxyphenyl)methylene)- (8CI)

C19H14O3 (290.0943)


   

HR 810

CEFPIROME

C22H22N6O5S2 (514.1093)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DE - Fourth-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D07649

   

Nonox D

InChI=1\C16H13N\c1-2-8-15(9-3-1)17-16-11-10-13-6-4-5-7-14(13)12-16\h1-12,17

C16H13N (219.1048)


   

Red oil

4-02-00-01641 (Beilstein Handbook Reference)

C18H34O2 (282.2559)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Arbo 8

(R-(R*,R*))-2,3-Bis((4-hydroxy-3-methoxyphenyl)methyl)butane-1,4-diol

C20H26O6 (362.1729)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

dictamine

4-27-00-02030 (Beilstein Handbook Reference)

C12H9NO2 (199.0633)


Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.

   

valerate

InChI=1\C5H10O2\c1-2-3-4-5(6)7\h2-4H2,1H3,(H,6,7

C5H10O2 (102.0681)


   

Echinocystic acid

aster saponin F_qt

C30H48O4 (472.3552)


Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

K 251T

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C471 - Enzyme Inhibitor > C1017 - Glucuronidase Inhibitor Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth. Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth.

   

Nonox A

InChI=1\C16H13N\c1-2-9-14(10-3-1)17-16-12-6-8-13-7-4-5-11-15(13)16\h1-12,17

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

Krebiozen

InChI=1\C4H7N3O\c1-7-2-3(8)6-4(7)5\h2H2,1H3,(H2,5,6,8

C4H7N3O (113.0589)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

Bio1_001201

7-[2-[(E,3S)-3-hydroxyoct-1-enyl]-5-keto-1-cyclopentenyl]enanthic acid

C20H32O4 (336.23)


   

LS-443

InChI=1\C4H8O2\c1-2-3-4(5)6\h2-3H2,1H3,(H,5,6

C4H8O2 (88.0524)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

29307-60-6

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C23H34O15 (550.1898)


Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities.

   

83048-35-5

3-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4S,5R)-3,4,5-trihydroxy-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone

C26H28O16 (596.1377)


   

11-Dehydro-thromboxane B2

(E)-7-[4-Hydroxy-2-[(E)-3-hydroxyoct-1-enyl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


A thromboxane obtained by formal oxidation of the hemiacetal hydroxy function of thromboxane B2.

   

Quercetin 3-sambubioside

3-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one

C26H28O16 (596.1377)


Quercetin 3-O-[beta-D-xylosyl-(1->2)-beta-D-glucoside] is a quercetin O-glucoside that is quercetin attached to a beta-D-sambubiosyl residue at position 3 via a glycosidc linkage. It has a role as an antioxidant and a plant metabolite. It is a quercetin O-glucoside, a disaccharide derivative and a tetrahydroxyflavone. Quercetin 3-sambubioside is a natural product found in Lathyrus chloranthus, Euphorbia prostrata, and other organisms with data available. A quercetin O-glucoside that is quercetin attached to a beta-D-sambubiosyl residue at position 3 via a glycosidc linkage.

   

TETRACHLOROETHYLENE

TETRACHLOROETHYLENE

C2Cl4 (163.8754)


D009676 - Noxae > D002273 - Carcinogens D004785 - Environmental Pollutants D012997 - Solvents

   

sulfinpyrazone

(+/-)-Sulfinpyrazone

C23H20N2O3S (404.1195)


M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent

   
   

MALEIC HYDRAZIDE

MALEIC HYDRAZIDE

C4H4N2O2 (112.0273)


D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Mephobarbital

Mephobarbital

C13H14N2O3 (246.1004)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   
   

Tirofiban

Tirofiban

C22H36N2O5S (440.2345)


B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

bruneomycin

streptonigrin

C25H22N4O8 (506.1438)


Complex cytotoxic antibiotic obtained from Streptomyces flocculus or S. rufochronmogenus. It is used in advanced carcinoma and causes leukopenia. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents

   
   

Indole-3-lactic Acid

DL-Indole-3-lactic acid

C11H11NO3 (205.0739)


Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].

   

DL-Arginine

DL-Arginine

C6H14N4O2 (174.1117)


DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations. DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations.

   

palmitoyl-CoA

palmitoyl-CoA

C37H66N7O17P3S (1005.3449)


A long-chain fatty acyl-CoA resulting from the formal condensation of the carboxy group of hexadecanoic acid with the thiol group of coenzyme A. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1-Hydroxyisoquinoline

ISOQUINOLIN-1(2H)-ONE

C9H7NO (145.0528)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

Dihydroxyfumaric acid

2-Butenedioic acid,2,3-dihydroxy-, (2E)-

C4H4O6 (148.0008)


   

9(S)-HODE

(10E,12Z)-(9S)-9-Hydroxyoctadeca-10,12-dienoic acid

C18H32O3 (296.2351)


A 9-HODE in which the 9-hydroxy group has S-stereochemistry.

   

Anandamide

N-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-ethanolamine

C22H37NO2 (347.2824)


An N-acylethanolamine 20:4 resulting from the formal condensation of carboxy group of arachidonic acid with the amino group of ethanolamine. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

2-arachidonoylglycerol

2-arachidonoylglycerol

C23H38O4 (378.277)


An endocannabinoid and an endogenous agonist of the cannabinoid receptors (CB1 and CB2). It is an ester formed from omega-6-arachidonic acid and glycerol. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists

   

Icosadienoic acid

(11Z,14Z)-Eicosa-11,14-dienoic acid

C20H36O2 (308.2715)


   

p-Fluorophenylalanine

4-Fluoro-L-phenylalanine

C9H10FNO2 (183.0696)


   

Icosatrienoic acid

(11Z,14Z,17Z)-Eicosa-11,14,17-trienoic acid

C20H34O2 (306.2559)


   

4-tert-Amylphenol

4-tert-Amylphenol

C11H16O (164.1201)


   

N-PHENYL-1-NAPHTHYLAMINE

N-Phenyl-1-naphthalenamine

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

Neozone

2-Phenylaminonaphthalene

C16H13N (219.1048)


   

2-Anthramine

2-Aminoanthracene

C14H11N (193.0891)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

PCB 52

2,2,5,5-TETRACHLOROBIPHENYL

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Oenin

Malvidin 3-O-beta-D-glucopyranoside

C23H25O12+ (493.1346)


   

3-Hydroxybenzo[a]pyrene

3-Hydroxybenzo[a]pyrene

C20H12O (268.0888)


   

Benzo(a)pyrene-7,8-dihydrodiol

Benzo(a)pyrene-7,8-dihydrodiol

C20H14O2 (286.0994)


   

GW 7647

2-[(4-{2-[(4-Cyclohexylbutyl)(cyclohexylcarbamoyl)amino]ethyl}phenyl)sulfanyl]-2-methylpropanoic acid

C29H46N2O3S (502.3229)


GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.

   
   

2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

C40H62 (542.4851)