Pirinixic acid (BioDeep_00000002328)

   

human metabolite blood metabolite


代谢物信息卡片


2-({4-chloro-6-[(2,3-dimethylphenyl)amino]pyrimidin-2-yl}sulfanyl)acetic acid

化学式: C14H14ClN3O2S (323.0495)
中文名称: [4-氯-6-(2,3-茬胺基)-2-嘧啶硫代]乙酸
谱图信息: 最多检出来源 Mus musculus(plant) 8.94%

分子结构信息

SMILES: CC1=C(C)C(NC2=CC(Cl)=NC(SCC(O)=O)=N2)=CC=C1
InChI: InChI=1S/C14H14ClN3O2S/c1-8-4-3-5-10(9(8)2)16-12-6-11(15)17-14(18-12)21-7-13(19)20/h3-6H,7H2,1-2H3,(H,19,20)(H,16,17,18)

描述信息

2-methylthioribosyl-trans-zeatin, also known as wy-14,643 or cxpta, is a member of the class of compounds known as aryl thioethers. Aryl thioethers are organosulfur compounds containing a thioether group that is substituted by an aryl group. 2-methylthioribosyl-trans-zeatin is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 2-methylthioribosyl-trans-zeatin can be found in common pea and common wheat, which makes 2-methylthioribosyl-trans-zeatin a potential biomarker for the consumption of these food products.
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9387; ORIGINAL_PRECURSOR_SCAN_NO 9382
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9350; ORIGINAL_PRECURSOR_SCAN_NO 9349
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4901; ORIGINAL_PRECURSOR_SCAN_NO 4897
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4896; ORIGINAL_PRECURSOR_SCAN_NO 4894
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9397; ORIGINAL_PRECURSOR_SCAN_NO 9396
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4984; ORIGINAL_PRECURSOR_SCAN_NO 4982
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9362; ORIGINAL_PRECURSOR_SCAN_NO 9360
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9288; ORIGINAL_PRECURSOR_SCAN_NO 9287
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4364; ORIGINAL_PRECURSOR_SCAN_NO 4363
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9321; ORIGINAL_PRECURSOR_SCAN_NO 9318
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4386; ORIGINAL_PRECURSOR_SCAN_NO 4382
CONFIDENCE standard compound; INTERNAL_ID 293; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4906; ORIGINAL_PRECURSOR_SCAN_NO 4904
Pirinixic acid (Wy-14643) is a potent agonist of PPARα, with EC50s of 0.63 μM, 32 μM for murine PPARα and PPARγ, and 5.0 μM, 60 μM, 35 μM for human PPARα, PPARγ and PPARδ, respectively.

同义名列表

18 个代谢物同义名

2-({4-chloro-6-[(2,3-dimethylphenyl)amino]pyrimidin-2-yl}sulfanyl)acetic acid; ((4-Chloro-6-((2,3-dimethylphenyl)amino)-2-pyrimidinyl)thio)acetic acid; ((4-Chloro-6-((2,3-dimethylphenyl)amino)-2-pyrimidinyl)thio)acetate; 4-Chloro-6-(2,3-dimethylphenyl)amino-2-pyrimidinylthioacetic acid; (4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthio)acetic acid; 4-Chloro-6-(2,3-xylidinyl)-2-pyrimidinylthioacetic acid; (4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthio)acetate; 2-Methylthioribosyl-trans-zeatin; Pirinixic acid; Wyeth 14,643; Wyeth-14643; Pirinixate; WY-14,643; CXPTA; [[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]-acetic acid; Wy-14643; Wy 14643; Pirinixic acid



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 AKT1, ALOX5, CAT, MAPK14, MAPK8, NFKB1, PIK3C3, PPARG
Peripheral membrane protein 2 ALOX5, CRAT
Endoplasmic reticulum membrane 1 PTGES
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 8 AKT1, MAPK14, MAPK8, NFKB1, PCNA, PPARA, PPARG, PPARGC1A
autophagosome 1 PIK3C3
cytosol 13 ACOX1, AKT1, ALOX5, CAT, CRAT, GPT, MAPK14, MAPK8, NFKB1, PIK3C3, PPARG, PPARGC1A, PRKCQ
nuclear body 1 PCNA
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
centrosome 1 PCNA
nucleoplasm 9 AKT1, ALOX5, MAPK14, MAPK8, NFKB1, PCNA, PPARA, PPARG, PPARGC1A
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 2 AKT1, TNF
lamellipodium 1 AKT1
Multi-pass membrane protein 2 PTGES, UCP3
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 3 AKT1, MAPK14, PIK3C3
Golgi membrane 1 INS
mitochondrial inner membrane 2 CRAT, UCP3
neuronal cell body 1 TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 ALOX5
endosome 1 PIK3C3
plasma membrane 3 AKT1, PRKCQ, TNF
Membrane 5 ACOX1, AKT1, CAT, PIK3C3, PTGES
axon 1 MAPK8
extracellular exosome 3 CAT, GPT, PCNA
endoplasmic reticulum 1 CRAT
extracellular space 4 ALOX5, IL6, INS, TNF
perinuclear region of cytoplasm 3 ALOX5, PPARG, PTGES
mitochondrion 5 CAT, CRAT, MAPK14, NFKB1, UCP3
protein-containing complex 2 AKT1, CAT
intracellular membrane-bounded organelle 2 CAT, PPARG
Secreted 2 IL6, INS
extracellular region 7 ALOX5, CAT, IL6, INS, MAPK14, NFKB1, TNF
mitochondrial matrix 1 CAT
transcription regulator complex 1 NFKB1
centriolar satellite 1 PRKCQ
Nucleus membrane 1 ALOX5
nuclear membrane 1 ALOX5
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
midbody 1 PIK3C3
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 2 ALOX5, PTGES
Mitochondrion inner membrane 2 CRAT, UCP3
Matrix side 1 CRAT
Membrane raft 1 TNF
focal adhesion 1 CAT
spindle 1 AKT1
GABA-ergic synapse 1 PIK3C3
Peroxisome 4 ACOX1, CAT, CRAT, PIK3C3
Peroxisome matrix 1 CAT
peroxisomal matrix 3 ACOX1, CAT, CRAT
peroxisomal membrane 2 ACOX1, CAT
Nucleus, PML body 1 PPARGC1A
PML body 1 PPARGC1A
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
axoneme 1 PIK3C3
nuclear speck 1 MAPK14
Late endosome 1 PIK3C3
receptor complex 1 PPARG
ciliary basal body 1 AKT1
chromatin 5 NFKB1, PCNA, PPARA, PPARG, PPARGC1A
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
[Isoform 1]: Mitochondrion 1 CRAT
spindle pole 1 MAPK14
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
nuclear envelope 1 ALOX5
Nucleus envelope 1 ALOX5
endosome lumen 1 INS
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
replication fork 1 PCNA
ficolin-1-rich granule lumen 3 ALOX5, CAT, MAPK14
secretory granule lumen 5 ALOX5, CAT, INS, MAPK14, NFKB1
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
nuclear matrix 1 ALOX5
male germ cell nucleus 1 PCNA
specific granule lumen 1 NFKB1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 PRKCQ
presynaptic endosome 1 PIK3C3
aggresome 1 PRKCQ
Nucleus matrix 1 ALOX5
nuclear envelope lumen 2 ALOX5, PTGES
nuclear lamina 1 PCNA
[Isoform 1]: Nucleus 1 PPARGC1A
basal dendrite 1 MAPK8
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
Nucleus intermembrane space 1 ALOX5
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
[Isoform 2]: Peroxisome 1 CRAT
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Isoform B4]: Nucleus 1 PPARGC1A
[Isoform B4-8a]: Cytoplasm 1 PPARGC1A
[Isoform B5]: Nucleus 1 PPARGC1A
[Isoform 9]: Nucleus 1 PPARGC1A


文献列表

  • G De Soricellis, F Rinaldi, S Tengattini, C Temporini, S Negri, D Capelli, R Montanari, H Cena, S Salerno, G Massolini, F Guzzo, E Calleri. Development of an analytical platform for the affinity screening of natural extracts by SEC-MS towards PPARα and PPARγ receptors. Analytica chimica acta. 2024 Jun; 1309(?):342666. doi: 10.1016/j.aca.2024.342666. [PMID: 38772654]
  • Chen Cao, Qingyuan Yang, Xiaoshuang Xia, Zhuangzhuang Chen, Peilin Liu, Xiaowen Wu, Hu Hu, Zhongren Ding, Xin Li. WY-14643, a novel antiplatelet and antithrombotic agent targeting the GPIbα receptor. Thrombosis research. 2024 Jun; 238(?):41-51. doi: 10.1016/j.thromres.2024.04.011. [PMID: 38669962]
  • Donghwan Kim, Sang Keun Ha, Frank J Gonzalez. CBFA2T3 Is PPARA Sensitive and Attenuates Fasting-Induced Lipid Accumulation in Mouse Liver. Cells. 2024 May; 13(10):. doi: 10.3390/cells13100831. [PMID: 38786053]
  • Yong Fan, Jing Lu, Jinghui Fan, Shuang Guan. 1,3-dichloro-2-propanol caused lipid droplets accumulation by suppressing neutral lipases via BMAL1 in hepatocytes. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Feb; 174(?):113670. doi: 10.1016/j.fct.2023.113670. [PMID: 36805544]
  • Jie Yang, Shicheng Fan, Yifei Zhang, Min Huang, Yue Gao, Huichang Bi. Chronic Treatment With WY-14643 Induces Tumorigenesis and Triglyceride Accumulation in Mouse Livers. Drug metabolism and disposition: the biological fate of chemicals. 2022 12; 50(12):1464-1471. doi: 10.1124/dmd.122.000908. [PMID: 36184081]
  • Rui Wang, Jun Zhao, Jiacheng Jin, Yun Tian, Lan Lan, Xuejian Wang, Liang Zhu, Jianbo Wang. WY-14643 attenuates lipid deposition via activation of the PPARα/CPT1A axis by targeting Gly335 to inhibit cell proliferation and migration in ccRCC. Lipids in health and disease. 2022 Nov; 21(1):121. doi: 10.1186/s12944-022-01726-7. [PMID: 36384580]
  • Yunhui Xu, Krista L Denning, Yongke Lu. PPARα agonist WY-14,643 induces the PLA2/COX-2/ACOX1 pathway to enhance peroxisomal lipid metabolism and ameliorate alcoholic fatty liver in mice. Biochemical and biophysical research communications. 2022 07; 613(?):47-52. doi: 10.1016/j.bbrc.2022.04.132. [PMID: 35526488]
  • Sabina Sblano, Carmen Cerchia, Antonio Laghezza, Luca Piemontese, Leonardo Brunetti, Rosalba Leuci, Federica Gilardi, Aurelien Thomas, Massimo Genovese, Alice Santi, Paolo Tortorella, Paolo Paoli, Antonio Lavecchia, Fulvio Loiodice. A chemoinformatics search for peroxisome proliferator-activated receptors ligands revealed a new pan-agonist able to reduce lipid accumulation and improve insulin sensitivity. European journal of medicinal chemistry. 2022 May; 235(?):114240. doi: 10.1016/j.ejmech.2022.114240. [PMID: 35325635]
  • Cigdem Sahin, Lilia Magomedova, Thais A M Ferreira, Jiabao Liu, Jens Tiefenbach, Priscilla S Alves, Fellipe J G Queiroz, Andressa S de Oliveira, Mousumi Bhattacharyya, Julie Grouleff, Patrícia C N Nogueira, Edilberto R Silveira, Daniel C Moreira, José Roberto Souza de Almeida Leite, Guilherme D Brand, David Uehling, Gennady Poda, Henry Krause, Carolyn L Cummins, Luiz A S Romeiro. Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of medicinal chemistry. 2022 02; 65(3):1961-1978. doi: 10.1021/acs.jmedchem.1c01542. [PMID: 35089724]
  • Shicheng Fan, Yue Gao, Aijuan Qu, Yiming Jiang, Hua Li, Guomin Xie, Xinpeng Yao, Xiao Yang, Shuguang Zhu, Tomoki Yagai, Jianing Tian, Ruimin Wang, Frank J Gonzalez, Min Huang, Huichang Bi. YAP-TEAD mediates PPAR α-induced hepatomegaly and liver regeneration in mice. Hepatology (Baltimore, Md.). 2022 01; 75(1):74-88. doi: 10.1002/hep.32105. [PMID: 34387904]
  • Yunhui Xu, Krista L Denning, Yongke Lu. PPARα agonist WY-14,643 induces adipose atrophy and fails to blunt chronic ethanol-induced hepatic fat accumulation in mice lacking adipose FGFR1. Biochemical pharmacology. 2021 10; 192(?):114678. doi: 10.1016/j.bcp.2021.114678. [PMID: 34265279]
  • Xue Chen, Yunhui Xu, Krista L Denning, Audrey Grigore, Yongke Lu. PPARα agonist WY-14,643 enhances ethanol metabolism in mice: Role of catalase. Free radical biology & medicine. 2021 06; 169(?):283-293. doi: 10.1016/j.freeradbiomed.2021.04.018. [PMID: 33892114]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Guozhu Ye, Bi-Cheng Yang, Han Gao, Zeming Wu, Jinsheng Chen, Xiao-Yan Ai, Qiansheng Huang. Metabolomics Insights into Oleate-Induced Disorders of Phospholipid Metabolism in Macrophages. The Journal of nutrition. 2021 03; 151(3):503-512. doi: 10.1093/jn/nxaa411. [PMID: 33571370]
  • Yu Yang, Yu Zhao, Wenzhen Li, Yuyao Wu, Xin Wang, Yijie Wang, Tingmei Liu, Tinghong Ye, Yongmei Xie, Zhiqiang Cheng, Jun He, Peng Bai, Yiwen Zhang, Liang Ouyang. Emerging targets and potential therapeutic agents in non-alcoholic fatty liver disease treatment. European journal of medicinal chemistry. 2020 Jul; 197(?):112311. doi: 10.1016/j.ejmech.2020.112311. [PMID: 32339855]
  • Yanfeng Xue, Changzheng Guo, Fan Hu, Weiyun Zhu, Shengyong Mao. PPARA/RXRA signalling regulates the fate of hepatic non-esterified fatty acids in a sheep model of maternal undernutrition. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2020 02; 1865(2):158548. doi: 10.1016/j.bbalip.2019.158548. [PMID: 31676441]
  • Yumiko Mizukawa, Yoko Amagase, Tetsuro Urushidani. Extraction of peroxisome proliferator-activated receptor α agonist-induced lipid metabolism-related and unrelated genes in rat liver and analysis of their genomic location. The Journal of toxicological sciences. 2020; 45(8):449-473. doi: 10.2131/jts.45.449. [PMID: 32741897]
  • Lujin Wu, Wei Wang, Meiyan Dai, Huihui Li, Chen Chen, Daowen Wang. PPARα ligand, AVE8134, and cyclooxygenase inhibitor therapy synergistically suppress lung cancer growth and metastasis. BMC cancer. 2019 Dec; 19(1):1166. doi: 10.1186/s12885-019-6379-5. [PMID: 31791289]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Henriette Arnesen, Nadia Nabil Haj-Yasein, Jørn E Tungen, Helen Soedling, Jason Matthews, Steinar M Paulsen, Hilde I Nebb, Ingebrigt Sylte, Trond Vidar Hansen, Thomas Sæther. Molecular modelling, synthesis, and biological evaluations of a 3,5-disubstituted isoxazole fatty acid analogue as a PPARα-selective agonist. Bioorganic & medicinal chemistry. 2019 09; 27(18):4059-4068. doi: 10.1016/j.bmc.2019.07.032. [PMID: 31351846]
  • Almudena Bermejo, Aida Collado, Isabel Barrachina, Patrice Marqués, Noureddine El Aouad, Xavier Franck, Francisco Garibotto, Catherine Dacquet, Daniel H Caignard, Fernando D Suvire, Ricardo D Enriz, Laura Piqueras, Bruno Figadère, María-Jesús Sanz, Nuria Cabedo, Diego Cortes. Polycerasoidol, a Natural Prenylated Benzopyran with a Dual PPARα/PPARγ Agonist Activity and Anti-inflammatory Effect. Journal of natural products. 2019 07; 82(7):1802-1812. doi: 10.1021/acs.jnatprod.9b00003. [PMID: 31268307]
  • Sungjin Ahn, Jungmin Kim, Seungchan An, Jeong Joo Pyo, Daram Jung, Joochang Lee, Seok Young Hwang, Junpyo Gong, Iljin Shin, Hong Pyo Kim, Hyoungsu Kim, Minsoo Noh. 2-Phenyl-8-(1-phenylallyl)-chromenone compounds have a pan-PPAR modulator pharmacophore. Bioorganic & medicinal chemistry. 2019 07; 27(13):2948-2958. doi: 10.1016/j.bmc.2019.05.028. [PMID: 31128991]
  • Xiaoting Jin, Bin Xue, Rifat Zubair Ahmed, Guobin Ding, Zhuoyu Li. Fine particles cause the abnormality of cardiac ATP levels via PPARɑ-mediated utilization of fatty acid and glucose using in vivo and in vitro models. Environmental pollution (Barking, Essex : 1987). 2019 Jun; 249(?):286-294. doi: 10.1016/j.envpol.2019.02.083. [PMID: 30897468]
  • Letizia Giampietro, Antonio Laghezza, Carmen Cerchia, Rosalba Florio, Lucia Recinella, Fabio Capone, Alessandra Ammazzalorso, Isabella Bruno, Barbara De Filippis, Marialuigia Fantacuzzi, Claudio Ferrante, Cristina Maccallini, Paolo Tortorella, Fabio Verginelli, Luigi Brunetti, Alessandro Cama, Rosa Amoroso, Fulvio Loiodice, Antonio Lavecchia. Novel Phenyldiazenyl Fibrate Analogues as PPAR α/γ/δ Pan-Agonists for the Amelioration of Metabolic Syndrome. ACS medicinal chemistry letters. 2019 Apr; 10(4):545-551. doi: 10.1021/acsmedchemlett.8b00574. [PMID: 30996794]
  • Guozhu Ye, Han Gao, Yi Lin, Dongxiao Ding, Xu Liao, Han Zhang, Yulang Chi, Sijun Dong. Peroxisome proliferator-activated receptor A/G reprogrammes metabolism associated with lipid accumulation in macrophages. Metabolomics : Official journal of the Metabolomic Society. 2019 03; 15(3):36. doi: 10.1007/s11306-019-1485-6. [PMID: 30830452]
  • Vegard Lysne, Bodil Bjørndal, Mari Lausund Grinna, Øivind Midttun, Per Magne Ueland, Rolf Kristian Berge, Jutta Dierkes, Ottar Nygård, Elin Strand. Short-term treatment with a peroxisome proliferator-activated receptor α agonist influences plasma one-carbon metabolites and B-vitamin status in rats. PloS one. 2019; 14(12):e0226069. doi: 10.1371/journal.pone.0226069. [PMID: 31805132]
  • Sae On Kim, Yujia Han, Sungjin Ahn, Seungchan An, Jeayoung C Shin, Hyunjung Choi, Hyoung-June Kim, Nok Hyun Park, Yong-Jin Kim, Sun Hee Jin, Ho Sik Rho, Minsoo Noh. Kojyl cinnamate esters are peroxisome proliferator-activated receptor α/γ dual agonists. Bioorganic & medicinal chemistry. 2018 11; 26(21):5654-5663. doi: 10.1016/j.bmc.2018.10.010. [PMID: 30352713]
  • Belen Palomares, Francisco Ruiz-Pino, Carmen Navarrete, Inmaculada Velasco, Miguel A Sánchez-Garrido, Carla Jimenez-Jimenez, Carolina Pavicic, Maria J Vazquez, Giovanni Appendino, M Luz Bellido, Marco A Calzado, Manuel Tena-Sempere, Eduardo Muñoz. VCE-004.8, A Multitarget Cannabinoquinone, Attenuates Adipogenesis and Prevents Diet-Induced Obesity. Scientific reports. 2018 10; 8(1):16092. doi: 10.1038/s41598-018-34259-0. [PMID: 30382123]
  • Antonio Laghezza, Luca Piemontese, Carmen Cerchia, Roberta Montanari, Davide Capelli, Marco Giudici, Maurizio Crestani, Paolo Tortorella, Franck Peiretti, Giorgio Pochetti, Antonio Lavecchia, Fulvio Loiodice. Identification of the First PPARα/γ Dual Agonist Able To Bind to Canonical and Alternative Sites of PPARγ and To Inhibit Its Cdk5-Mediated Phosphorylation. Journal of medicinal chemistry. 2018 09; 61(18):8282-8298. doi: 10.1021/acs.jmedchem.8b00835. [PMID: 30199253]
  • Thomas Sæther, Steinar M Paulsen, Jørn E Tungen, Anders Vik, Marius Aursnes, Torgeir Holen, Trond Vidar Hansen, Hilde I Nebb. Synthesis and biological evaluations of marine oxohexadecenoic acids: PPARα/γ dual agonism and anti-diabetic target gene effects. European journal of medicinal chemistry. 2018 Jul; 155(?):736-753. doi: 10.1016/j.ejmech.2018.06.034. [PMID: 29940464]
  • Guolin Li, Chad N Brocker, Cen Xie, Tingting Yan, Audrey Noguchi, Kristopher W Krausz, Rong Xiang, Frank J Gonzalez. Hepatic peroxisome proliferator-activated receptor alpha mediates the major metabolic effects of Wy-14643. Journal of gastroenterology and hepatology. 2018 May; 33(5):1138-1145. doi: 10.1111/jgh.14046. [PMID: 29141109]
  • Ireen Vieweg, Eider Bilbao, James P Meador, Ibon Cancio, Morgan Lizabeth Bender, Miren P Cajaraville, Jasmine Nahrgang. Effects of dietary crude oil exposure on molecular and physiological parameters related to lipid homeostasis in polar cod (Boreogadus saida). Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2018 Apr; 206-207(?):54-64. doi: 10.1016/j.cbpc.2018.03.003. [PMID: 29555404]
  • Hui Chen, Ricky Y K Man, Susan W S Leung. PPAR-α agonists acutely inhibit Ca2+-independent PLA2 to reduce H2O2-induced contractions in aortae of spontaneously hypertensive rats. American journal of physiology. Heart and circulatory physiology. 2018 03; 314(3):H681-H691. doi: 10.1152/ajpheart.00314.2017. [PMID: 29127234]
  • Celine Pirat, Catherine Dacquet, Veronique Leclerc, Nathalie Hennuyer, Monique Beucher-Gaudin, Ghislaine Zanirato, Anne Géant, Bart Staels, Alain Ktorza, Amaury Farce, Daniel-Henri Caignard, Pascal Berthelot, Nicolas Lebegue. Anti-diabetic activity of fused PPARγ-SIRT1 ligands with limited body-weight gain by mimicking calorie restriction and decreasing SGK1 expression. European journal of medicinal chemistry. 2017 Sep; 137(?):310-326. doi: 10.1016/j.ejmech.2017.06.006. [PMID: 28609708]
  • Mallory P Franklin, Aishwarya Sathyanarayan, Douglas G Mashek. Acyl-CoA Thioesterase 1 (ACOT1) Regulates PPARα to Couple Fatty Acid Flux With Oxidative Capacity During Fasting. Diabetes. 2017 08; 66(8):2112-2123. doi: 10.2337/db16-1519. [PMID: 28607105]
  • Kenta Takei, Song-Iee Han, Yuki Murayama, Aoi Satoh, Fusaka Oikawa, Hiroshi Ohno, Yoshinori Osaki, Takashi Matsuzaka, Motohiro Sekiya, Hitoshi Iwasaki, Shigeru Yatoh, Naoya Yahagi, Hiroaki Suzuki, Nobuhiro Yamada, Yoshimi Nakagawa, Hitoshi Shimano. Selective peroxisome proliferator-activated receptor-α modulator K-877 efficiently activates the peroxisome proliferator-activated receptor-α pathway and improves lipid metabolism in mice. Journal of diabetes investigation. 2017 Jul; 8(4):446-452. doi: 10.1111/jdi.12621. [PMID: 28084058]
  • Wei Zhang, Takashi Sakai, Sakuhei Fujiwara, Yutaka Hatano. Wy14643, an agonist for PPARα, downregulates expression of TARC and RANTES in cultured human keratinocytes. Experimental dermatology. 2017 05; 26(5):457-459. doi: 10.1111/exd.13245. [PMID: 27761952]
  • Zhong-Ze Fang, Naoki Tanaka, Dan Lu, Chang-Tao Jiang, Wei-Hua Zhang, Chunze Zhang, Zuo Du, Zhi-Wei Fu, Peng Gao, Yun-Feng Cao, Hong-Zhi Sun, Zhi-Tu Zhu, Yan Cai, Kristopher W Krausz, Zhi Yao, Frank J Gonzalez. Role of the lipid-regulated NF-κB/IL-6/STAT3 axis in alpha-naphthyl isothiocyanate-induced liver injury. Archives of toxicology. 2017 May; 91(5):2235-2244. doi: 10.1007/s00204-016-1877-6. [PMID: 27853831]
  • Yujung Jung, Yongkai Cao, Suresh Paudel, Goo Yoon, Seung Hoon Cheon, Gyu-Un Bae, Li Tai Jin, Yong Kee Kim, Su-Nam Kim. Antidiabetic effect of SN158 through PPARα/γ dual activation in ob/ob mice. Chemico-biological interactions. 2017 Apr; 268(?):24-30. doi: 10.1016/j.cbi.2017.02.014. [PMID: 28242381]
  • Taijyu Satoh, Kimio Satoh, Nobuhiro Yaoita, Nobuhiro Kikuchi, Junichi Omura, Ryo Kurosawa, Kazuhiko Numano, Elias Al-Mamun, Mohammad Abdul Hai Siddique, Shinichiro Sunamura, Masamichi Nogi, Kota Suzuki, Satoshi Miyata, John Morser, Hiroaki Shimokawa. Activated TAFI Promotes the Development of Chronic Thromboembolic Pulmonary Hypertension: A Possible Novel Therapeutic Target. Circulation research. 2017 Apr; 120(8):1246-1262. doi: 10.1161/circresaha.117.310640. [PMID: 28289017]
  • Julius Pollinger, Daniel Merk. Therapeutic applications of the versatile fatty acid mimetic WY14643. Expert opinion on therapeutic patents. 2017 Apr; 27(4):517-525. doi: 10.1080/13543776.2017.1272578. [PMID: 27967266]
  • Chad N Brocker, Jiang Yue, Donghwan Kim, Aijuan Qu, Jessica A Bonzo, Frank J Gonzalez. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells. American journal of physiology. Gastrointestinal and liver physiology. 2017 Mar; 312(3):G283-G299. doi: 10.1152/ajpgi.00205.2016. [PMID: 28082284]
  • Kaberi P Das, Carmen R Wood, Mimi T Lin, Anatoly A Starkov, Christopher Lau, Kendall B Wallace, J Christopher Corton, Barbara D Abbott. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology. 2017 Mar; 378(?):37-52. doi: 10.1016/j.tox.2016.12.007. [PMID: 28049043]
  • Shuai Zhao, Yuichiro Kanno, Wei Li, Tatsunori Sasaki, Xiangyu Zhang, Jian Wang, Maosheng Cheng, Kazuo Koike, Kiyomitsu Nemoto, Huicheng Li. Identification of Picrasidine C as a Subtype-Selective PPARα Agonist. Journal of natural products. 2016 Dec; 79(12):3127-3133. doi: 10.1021/acs.jnatprod.6b00883. [PMID: 27958735]
  • Sadeesh K Ramakrishnan, Lucia Russo, Simona S Ghanem, Payal R Patel, Ana Maria Oyarce, Garrett Heinrich, Sonia M Najjar. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity. The Journal of biological chemistry. 2016 Nov; 291(46):23915-23924. doi: 10.1074/jbc.m116.745778. [PMID: 27662905]
  • Eric Murillo-Rodríguez, Khalil Guzmán, Gloria Arankowsky-Sandoval, Mireille Salas-Crisóstomo, Ramsés Jiménez-Moreno, Oscar Arias-Carrión. Evidence that activation of nuclear peroxisome proliferator-activated receptor alpha (PPARα) modulates sleep homeostasis in rats. Brain research bulletin. 2016 10; 127(?):156-163. doi: 10.1016/j.brainresbull.2016.09.007. [PMID: 27646482]
  • Benjamin A Kandel, Maria Thomas, Stefan Winter, Georg Damm, Daniel Seehofer, Oliver Burk, Matthias Schwab, Ulrich M Zanger. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes. Biochimica et biophysica acta. 2016 09; 1859(9):1218-1227. doi: 10.1016/j.bbagrm.2016.03.007. [PMID: 26994748]
  • Degang Huang, Quanlai Zhao, Hongfei Liu, Yongjie Guo, Hongguang Xu. PPAR-α Agonist WY-14643 Inhibits LPS-Induced Inflammation in Synovial Fibroblasts via NF-kB Pathway. Journal of molecular neuroscience : MN. 2016 Aug; 59(4):544-53. doi: 10.1007/s12031-016-0775-y. [PMID: 27339772]
  • Shumin Qin, Jinjin Yin, Keer Huang. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells. Lipids. 2016 07; 51(7):797-805. doi: 10.1007/s11745-016-4160-y. [PMID: 27270405]
  • Hui Liu, Hongxia Zhang, Ruina Cui, Xuejiang Guo, Dazhi Wang, Jiayin Dai. Activation of peroxisome proliferator-activated receptor α ameliorates perfluorododecanoic acid-induced production of reactive oxygen species in rat liver. Archives of toxicology. 2016 Jun; 90(6):1383-97. doi: 10.1007/s00204-015-1559-9. [PMID: 26168851]
  • Paul N Black, Constance Ahowesso, David Montefusco, Nipun Saini, Concetta C DiRusso. Fatty Acid Transport Proteins: Targeting FATP2 as a Gatekeeper Involved in the Transport of Exogenous Fatty Acids. MedChemComm. 2016 Apr; 7(4):612-622. doi: 10.1039/c6md00043f. [PMID: 27446528]
  • Kazuhisa Honda, Takaoki Saneyasu, Haruka Sugimoto, Kiyotaka Kurachi, Shoko Takagi, Hiroshi Kamisoyama. Role of peroxisome proliferator-activated receptor alpha in the expression of hepatic fatty acid oxidation-related genes in chickens. Animal science journal = Nihon chikusan Gakkaiho. 2016 Jan; 87(1):61-6. doi: 10.1111/asj.12392. [PMID: 26031853]
  • Shireesha Sankella, Abhimanyu Garg, Anil K Agarwal. Characterization of the Mouse and Human Monoacylglycerol O-Acyltransferase 1 (Mogat1) Promoter in Human Kidney Proximal Tubule and Rat Liver Cells. PloS one. 2016; 11(9):e0162504. doi: 10.1371/journal.pone.0162504. [PMID: 27611931]
  • Alexis M Temkin, Robert R Bowers, Margaret E Magaletta, Steven Holshouser, Adriana Maggi, Paolo Ciana, Louis J Guillette, John A Bowden, John R Kucklick, John E Baatz, Demetri D Spyropoulos. Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo: Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen. Environmental health perspectives. 2016 Jan; 124(1):112-9. doi: 10.1289/ehp.1409672. [PMID: 26135921]
  • Quanqing Gao, Jacky Hanh, Linda Váradi, Rose Cairns, Helena Sjöström, Vivian W Y Liao, Peta Wood, Seher Balaban, Jennifer Ai Ong, Hsuan-Yu Jennifer Lin, Felcia Lai, Andrew J Hoy, Thomas Grewal, Paul W Groundwater, David E Hibbs. Identification of dual PPARα/γ agonists and their effects on lipid metabolism. Bioorganic & medicinal chemistry. 2015 Dec; 23(24):7676-84. doi: 10.1016/j.bmc.2015.11.013. [PMID: 26616289]
  • Leonie Wallmeyer, Dominika Lehnen, Natascha Eger, Michaela Sochorová, Lukáš Opálka, Andrej Kováčik, Kateřina Vávrová, Sarah Hedtrich. Stimulation of PPARα normalizes the skin lipid ratio and improves the skin barrier of normal and filaggrin deficient reconstructed skin. Journal of dermatological science. 2015 Nov; 80(2):102-10. doi: 10.1016/j.jdermsci.2015.09.012. [PMID: 26472199]
  • Shengmin Yan, Jianshe Wang, Jiayin Dai. Activation of sterol regulatory element-binding proteins in mice exposed to perfluorooctanoic acid for 28 days. Archives of toxicology. 2015 Sep; 89(9):1569-78. doi: 10.1007/s00204-014-1322-7. [PMID: 25092180]
  • Daniel Merk, Martina Zettl, Dieter Steinhilber, Oliver Werz, Manfred Schubert-Zsilavecz. Pirinixic acids: flexible fatty acid mimetics with various biological activities. Future medicinal chemistry. 2015 Aug; 7(12):1597-616. doi: 10.4155/fmc.15.87. [PMID: 26313377]
  • R Urbatzka, S Galante-Oliveira, E Rocha, A Lobo-da-Cunha, L F C Castro, I Cunha. Effects of the PPARα agonist WY-14,643 on plasma lipids, enzymatic activities and mRNA expression of lipid metabolism genes in a marine flatfish, Scophthalmus maximus. Aquatic toxicology (Amsterdam, Netherlands). 2015 Jul; 164(?):155-62. doi: 10.1016/j.aquatox.2015.05.004. [PMID: 25974001]
  • Ellen Poon, Wendy Keung, Yimin Liang, Rajkumar Ramalingam, Bin Yan, Shaohong Zhang, Anant Chopra, Jennifer Moore, Anthony Herren, Deborah K Lieu, Hau San Wong, Zhihui Weng, On Tik Wong, Yun Wah Lam, Gordon F Tomaselli, Christopher Chen, Kenneth R Boheler, Ronald A Li. Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation. Circulation. Cardiovascular genetics. 2015 Jun; 8(3):427-36. doi: 10.1161/circgenetics.114.000918. [PMID: 25759434]
  • Federico Penas, Gerardo A Mirkin, Marcela Vera, Ágata Cevey, Cintia D González, Marisa I Gómez, María Elena Sales, Nora B Goren. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice. Biochimica et biophysica acta. 2015 May; 1852(5):893-904. doi: 10.1016/j.bbadis.2014.12.019. [PMID: 25557389]
  • Taha Haffar, Félix-Antoine Bérubé-Simard, Nicolas Bousette. Cardiomyocyte lipotoxicity is mediated by Il-6 and causes down-regulation of PPARs. Biochemical and biophysical research communications. 2015 Mar; 459(1):54-9. doi: 10.1016/j.bbrc.2015.02.062. [PMID: 25712520]
  • Janne Lebeck, Muhammad Umar Cheema, Mariusz T Skowronski, Søren Nielsen, Jeppe Praetorius. Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment. American journal of physiology. Gastrointestinal and liver physiology. 2015 Feb; 308(3):G198-205. doi: 10.1152/ajpgi.00407.2013. [PMID: 25477377]
  • Andrew M Watkins, Carmen R Wood, Mimi T Lin, Barbara D Abbott. The effects of perfluorinated chemicals on adipocyte differentiation in vitro. Molecular and cellular endocrinology. 2015 Jan; 400(?):90-101. doi: 10.1016/j.mce.2014.10.020. [PMID: 25448844]
  • Barbara De Filippis, Pasquale Linciano, Alessandra Ammazzalorso, Carmen Di Giovanni, Marialuigia Fantacuzzi, Letizia Giampietro, Antonio Laghezza, Cristina Maccallini, Paolo Tortorella, Antonio Lavecchia, Fulvio Loiodice, Rosa Amoroso. Structural development studies of PPARs ligands based on tyrosine scaffold. European journal of medicinal chemistry. 2015 Jan; 89(?):817-25. doi: 10.1016/j.ejmech.2014.10.083. [PMID: 25462281]
  • Keiyu Oshida, Naresh Vasani, Russell S Thomas, Dawn Applegate, Mitch Rosen, Barbara Abbott, Christopher Lau, Grace Guo, Lauren M Aleksunes, Curtis Klaassen, J Christopher Corton. Identification of modulators of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) in a mouse liver gene expression compendium. PloS one. 2015; 10(2):e0112655. doi: 10.1371/journal.pone.0112655. [PMID: 25689681]
  • Ewa Szalowska, Haftu A Tesfay, Sacha A F T van Hijum, Sander Kersten. Transcriptomic signatures of peroxisome proliferator-activated receptor α (PPARα) in different mouse liver models identify novel aspects of its biology. BMC genomics. 2014 Dec; 15(?):1106. doi: 10.1186/1471-2164-15-1106. [PMID: 25511156]
  • Xavier Palomer, Eva Capdevila-Busquets, Gerard Garreta, Mercy M Davidson, Manuel Vázquez-Carrera. [PPARα attenuates palmitate-induced endoplasmic reticulum stress in human cardiac cells by enhancing AMPK activity]. Clinica e investigacion en arteriosclerosis : publicacion oficial de la Sociedad Espanola de Arteriosclerosis. 2014 Nov; 26(6):255-67. doi: 10.1016/j.arteri.2014.02.003. [PMID: 24709376]
  • Jibiao Li, Lipeng Bi, Michelle Hulke, Tiangang Li. Fish oil and fenofibrate prevented phosphorylation-dependent hepatic sortilin 1 degradation in Western diet-fed mice. The Journal of biological chemistry. 2014 Aug; 289(32):22437-49. doi: 10.1074/jbc.m114.548933. [PMID: 24986865]
  • Frits Mattijssen, Anastasia Georgiadi, Tresty Andasarie, Ewa Szalowska, Annika Zota, Anja Krones-Herzig, Christoph Heier, Dariusz Ratman, Karolien De Bosscher, Ling Qi, Rudolf Zechner, Stephan Herzig, Sander Kersten. Hypoxia-inducible lipid droplet-associated (HILPDA) is a novel peroxisome proliferator-activated receptor (PPAR) target involved in hepatic triglyceride secretion. The Journal of biological chemistry. 2014 Jul; 289(28):19279-93. doi: 10.1074/jbc.m114.570044. [PMID: 24876382]
  • Aijuan Qu, Changtao Jiang, Yan Cai, Jung-Hwan Kim, Naoki Tanaka, Jerrold M Ward, Yatrik M Shah, Frank J Gonzalez. Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. Journal of hepatology. 2014 Feb; 60(2):331-8. doi: 10.1016/j.jhep.2013.09.024. [PMID: 24096051]
  • Anette Ericsson, Nigel Turner, Göran I Hansson, Kristina Wallenius, Nicholas D Oakes. Pharmacological PPARα activation markedly alters plasma turnover of the amino acids glycine, serine and arginine in the rat. PloS one. 2014; 9(12):e113328. doi: 10.1371/journal.pone.0113328. [PMID: 25486018]
  • Young-Sool Hah, Hyun-Ho Joo, Young-Hoon Kang, Bong-Wook Park, Sun-Chul Hwang, Jong-Woo Kim, Iel-Yong Sung, Gyu-Jin Rho, Dong Kyun Woo, June-Ho Byun. Cultured human periosteal-derived cells have inducible adipogenic activity and can also differentiate into osteoblasts in a perioxisome proliferator-activated receptor-mediated fashion. International journal of medical sciences. 2014; 11(11):1116-28. doi: 10.7150/ijms.9611. [PMID: 25170294]
  • X Zhou, G Wen, R Ringseis, K Eder. Short communication: the pharmacological peroxisome proliferator-activated receptor α agonist WY-14,643 increases expression of novel organic cation transporter 2 and carnitine uptake in bovine kidney cells. Journal of dairy science. 2014; 97(1):345-9. doi: 10.3168/jds.2013-7161. [PMID: 24210485]
  • S Kim, N Kiyosawa, L D Burgoon, C C Chang, T R Zacharewski. PPARα-mediated responses in human adult liver stem cells: In vivo/in vitro and cross-species comparisons. The Journal of steroid biochemistry and molecular biology. 2013 Nov; 138(?):236-47. doi: 10.1016/j.jsbmb.2013.06.004. [PMID: 23811191]
  • J Trottier, M Perreault, I Rudkowska, C Levy, A Dallaire-Theroux, M Verreault, P Caron, B Staels, M-C Vohl, R J Straka, O Barbier. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants, and response to fenofibrate. Clinical pharmacology and therapeutics. 2013 Oct; 94(4):533-43. doi: 10.1038/clpt.2013.122. [PMID: 23756370]
  • Amanda Bernardes, Paulo C T Souza, João R C Muniz, Clarisse G Ricci, Stephen D Ayers, Nili M Parekh, André S Godoy, Daniela B B Trivella, Peter Reinach, Paul Webb, Munir S Skaf, Igor Polikarpov. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. Journal of molecular biology. 2013 Aug; 425(16):2878-93. doi: 10.1016/j.jmb.2013.05.010. [PMID: 23707408]
  • R Urbatzka, S Galante-Oliveira, E Rocha, L F C Castro, I Cunha. Tissue expression of PPAR-α isoforms in Scophthalmus maximus and transcriptional response of target genes in the heart after exposure to WY-14643. Fish physiology and biochemistry. 2013 Aug; 39(4):1043-55. doi: 10.1007/s10695-012-9761-7. [PMID: 23266856]
  • Eleftheria Barlaka, Veronika Ledvényiová, Eleftheria Galatou, Miroslav Ferko, Slávka Čarnická, Táňa Ravingerová, Antigone Lazou. Delayed cardioprotective effects of WY-14643 are associated with inhibition of MMP-2 and modulation of Bcl-2 family proteins through PPAR-α activation in rat hearts subjected to global ischaemia-reperfusion. Canadian journal of physiology and pharmacology. 2013 Aug; 91(8):608-16. doi: 10.1139/cjpp-2012-0412. [PMID: 23889688]
  • Seong Ho Yoo, Mohamed A Abdelmegeed, Byoung-Joon Song. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury. Biochemical and biophysical research communications. 2013 Jul; 436(3):366-71. doi: 10.1016/j.bbrc.2013.05.073. [PMID: 23727576]
  • Sheng-Chieh Lien, Shu-Yi Wei, Shun-Fu Chang, Margaret Dah-Tsyr Chang, Jang-Yang Chang, Jeng-Jiann Chiu. Activation of PPAR-α induces cell cycle arrest and inhibits transforming growth factor-β1 induction of smooth muscle cell phenotype in 10T1/2 mesenchymal cells. Cellular signalling. 2013 May; 25(5):1252-63. doi: 10.1016/j.cellsig.2013.01.021. [PMID: 23385087]
  • Simon M Plummer, Dhritiman Dan, Joanne Quinney, Nina Hallmark, Richard D Phillips, Michael Millar, Sheila Macpherson, Clifford R Elcombe. Identification of transcription factors and coactivators affected by dibutylphthalate interactions in fetal rat testes. Toxicological sciences : an official journal of the Society of Toxicology. 2013 Apr; 132(2):443-57. doi: 10.1093/toxsci/kft016. [PMID: 23358192]
  • Katsuhiko Funai, Haowei Song, Li Yin, Irfan J Lodhi, Xiaochao Wei, Jun Yoshino, Trey Coleman, Clay F Semenkovich. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. The Journal of clinical investigation. 2013 Mar; 123(3):1229-40. doi: 10.1172/jci65726. [PMID: 23376793]
  • Nicole Wege, Alexandra Schutkowski, Bettina König, Corinna Brandsch, Matthias Weiwad, Gabriele I Stangl. PPARα modulates the TSH β-subunit mRNA expression in thyrotrope TαT1 cells and in a mouse model. Molecular nutrition & food research. 2013 Mar; 57(3):376-89. doi: 10.1002/mnfr.201200409. [PMID: 23255496]
  • Monica Puligheddu, Giuliano Pillolla, Miriam Melis, Salvatore Lecca, Francesco Marrosu, Maria Graziella De Montis, Simona Scheggi, Gianfranca Carta, Elisabetta Murru, Sonia Aroni, Anna Lisa Muntoni, Marco Pistis. PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings. PloS one. 2013; 8(5):e64541. doi: 10.1371/journal.pone.0064541. [PMID: 23724059]
  • Yen-Chung Chen, Ling-Yun Chu, Shu-Fan Yang, Hua-Ling Chen, Shaw-Fang Yet, Kenneth K Wu. Prostacyclin and PPARα agonists control vascular smooth muscle cell apoptosis and phenotypic switch through distinct 14-3-3 isoforms. PloS one. 2013; 8(7):e69702. doi: 10.1371/journal.pone.0069702. [PMID: 23844263]
  • Elnaz Karimian Azari, Claudia Leitner, Thomas Jaggi, Wolfgang Langhans, Abdelhak Mansouri. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PloS one. 2013; 8(9):e74869. doi: 10.1371/journal.pone.0074869. [PMID: 24069361]
  • Katsumi Iizuka, Wudelehu Wu, Yukio Horikawa, Masayuki Saito, Jun Takeda. Feedback looping between ChREBP and PPARα in the regulation of lipid metabolism in brown adipose tissues. Endocrine journal. 2013; 60(10):1145-53. doi: 10.1507/endocrj.ej13-0079. [PMID: 23831548]
  • Jun-Li Ding, Zong-Guang Zhou, Xiang-Yu Zhou, Bin Zhou, Ling Wang, Rong Wang, Lan Zhan, Xiao-Feng Sun, Yuan Li. Attenuation of acute pancreatitis by peroxisome proliferator-activated receptor-α in rats: the effect on Toll-like receptor signaling pathways. Pancreas. 2013 Jan; 42(1):114-22. doi: 10.1097/mpa.0b013e3182550cc4. [PMID: 22722259]
  • M Nemčeková, S Čarnická, M Ferko, M Muráriková, V Ledvényiová, T Ravingerová. Treatment of rats with hypolipidemic compound pirinixic acid protects their hearts against ischemic injury: are mitochondrial K(ATP) channels and reactive oxygen species involved?. Physiological research. 2013; 62(5):577-84. doi: 10.33549/physiolres.932591. [PMID: 24020817]
  • Táňa Ravingerová, Slávka Carnická, Martina Nemčeková, Veronika Ledvényiová, Adriana Adameová, Tara Kelly, Eleftheria Barlaka, Eleftheria Galatou, Vinoth Kumar Megraj Khandelwal, Antigone Lazou. PPAR-alpha activation as a preconditioning-like intervention in rats in vivo confers myocardial protection against acute ischaemia-reperfusion injury: involvement of PI3K-Akt. Canadian journal of physiology and pharmacology. 2012 Aug; 90(8):1135-44. doi: 10.1139/y2012-052. [PMID: 22809038]
  • Yutaka Masuda, Dan Saotome, Kimihiko Takada, Katsuyoshi Sugimoto, Tomoyuki Sasaki, Hidemi Ishii. Peroxisome proliferator-activated receptor-alpha agonists repress expression of thrombin-activatable fibrinolysis inhibitor by decreasing transcript stability. Thrombosis and haemostasis. 2012 Jul; 108(1):74-85. doi: 10.1160/th12-02-0101. [PMID: 22535242]
  • Taejung Kim, Woojung Lee, Kyu Hyuk Jeong, Jung Ho Song, Soon-Hye Park, Pilju Choi, Su-Nam Kim, Seokjoon Lee, Jungyeob Ham. Total synthesis and dual PPARα/γ agonist effects of amorphastilbol and its synthetic derivatives. Bioorganic & medicinal chemistry letters. 2012 Jun; 22(12):4122-6. doi: 10.1016/j.bmcl.2012.04.062. [PMID: 22579420]
  • Stefan Clockaerts, Yvonne M Bastiaansen-Jenniskens, Carola Feijt, Luc De Clerck, J A N Verhaar, Anne-Marie Zuurmond, Vedrana Stojanovic-Susulic, Johan Somville, Margreet Kloppenburg, Gerjo J V M van Osch. Cytokine production by infrapatellar fat pad can be stimulated by interleukin 1β and inhibited by peroxisome proliferator activated receptor α agonist. Annals of the rheumatic diseases. 2012 Jun; 71(6):1012-8. doi: 10.1136/annrheumdis-2011-200688. [PMID: 22307941]
  • Giuseppe Fracchiolla, Antonio Laghezza, Luca Piemontese, Mariagiovanna Parente, Antonio Lavecchia, Giorgio Pochetti, Roberta Montanari, Carmen Di Giovanni, Giuseppe Carbonara, Paolo Tortorella, Ettore Novellino, Fulvio Loiodice. Synthesis, biological evaluation and molecular investigation of fluorinated peroxisome proliferator-activated receptors α/γ dual agonists. Bioorganic & medicinal chemistry. 2012 Mar; 20(6):2141-51. doi: 10.1016/j.bmc.2012.01.025. [PMID: 22341573]
  • Clifford R Elcombe, Barbara M Elcombe, John R Foster, Shu-Ching Chang, David J Ehresman, John L Butenhoff. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR. Toxicology. 2012 Mar; 293(1-3):16-29. doi: 10.1016/j.tox.2011.12.014. [PMID: 22245121]
  • Claire Z Larter, Matthew M Yeh, Derrick M Van Rooyen, John Brooling, Kamaljit Ghatora, Geoffrey C Farrell. Peroxisome proliferator-activated receptor-α agonist, Wy 14,643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. Journal of gastroenterology and hepatology. 2012 Feb; 27(2):341-50. doi: 10.1111/j.1440-1746.2011.06939.x. [PMID: 21929649]
  • Nithi Asavapanumas, Suticha Kittayaruksakul, Paranee Meetam, Chatchai Muanprasat, Varanuj Chatsudthipong, Sunhapas Soodvilai. Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARα-independent pathways. Drug metabolism and pharmacokinetics. 2012; 27(5):513-9. doi: 10.2133/dmpk.dmpk-11-rg-123. [PMID: 22473497]
  • Massimo Bionaz, Betsy J Thering, Juan J Loor. Fine metabolic regulation in ruminants via nutrient-gene interactions: saturated long-chain fatty acids increase expression of genes involved in lipid metabolism and immune response partly through PPAR-α activation. The British journal of nutrition. 2012 Jan; 107(2):179-91. doi: 10.1017/s0007114511002777. [PMID: 21729373]