β-D-Fructose 6-phosphate (BioDeep_00000003379)

 

Secondary id: BioDeep_00000276198, BioDeep_00000405204, BioDeep_00001871416

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


[(2R,3R,4S)-2,3,4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate

化学式: C6H13O9P (260.0297)
中文名称: 果糖-6-磷酸, D-果糖-6-磷酸, D-果糖-6-磷酸 二钠盐 水合物
谱图信息: 最多检出来源 Homo sapiens(blood) 31.34%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

β-D-Fructose 6-phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/β-d-fructose_6-phosphate (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000003379). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(C(C(C(=O)CO)O)O)O)OP(=O)(O)O
InChI: InChI=1S/C6H13O9P/c7-1-3(8)5(10)6(11)4(9)2-15-16(12,13)14/h4-7,9-11H,1-2H2,(H2,12,13,14)

描述信息

Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase.
An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB]
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID F001

同义名列表

34 个代谢物同义名

{[(2R,3R,4S)-2,3,4,6-tetrahydroxy-5-oxohexyl]oxy}phosphonic acid; Fructose-6-phosphate, magnesium (1:1) salt, (D)-isomer; Fructose-6-phosphate, barium (1:1) salt, (D)-isomer; Fructose-6-phosphate, 1-(14)C-labeled, (D)-isomer; Fructose-6-phosphate, 2-(14)C-labeled, (D)-isomer; Fructose-6-phosphate, disodium salt, (D)-isomer; Fructose-6-phosphate, calcium salt, (D)-isomer; Fructose-6-phosphate, barium salt, (D)-isomer; Fructose-6-phosphate, sodium salt, (D)-isomer; Fructose-6-phosphate, (alpha-D)-isomer; Fructose-6-phosphate, (beta-D)-isomer; Fructose-6-phosphate, sodium salt; Fructose-6-phosphate, (D)-isomer; D-fructofuranose 6-phosphate; D-Fructose 6-phosphoric acid; Fructose-6-phosphoric acid; Fructose 6-phosphoric acid; D-Fructose 6-phosphorate; dl-fructose-6-phosphate; D-Fructose 6-phosphate; D-Fructose-6-phosphate; Fructose-6-phosphate; Fructose 6-phosphate; D-Fructose-6-p; Neuberg ester; Fructose-6-p; Fructose-6P; Fru-6-p; FPC; [(2R,3R,4S)-2,3,4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate; D-Fructose-6-phosphate disodium salt hydrate; Fructose 6-phosphic acid; Fructose 6-phosphate; D-Fructose 6-phosphate



数据库引用编号

35 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(10)

PlantCyc(0)

代谢反应

1501 个相关的代谢反应过程信息。

Reactome(61)

BioCyc(61)

WikiPathways(10)

Plant Reactome(1227)

INOH(10)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(132)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 FBP1, G6PD, GAPDH, GCK, GNPDA1, KHK, OGT, PFKM, PKM, PRKX
Peripheral membrane protein 2 G6PD, GCK
Endoplasmic reticulum membrane 1 TKT
Mitochondrion membrane 1 OGT
Nucleus 7 FBP1, GAPDH, GCK, OGT, PFKM, PKM, PRKX
cytosol 16 FBP1, G6PD, GAPDH, GCK, GFPT1, GFPT2, GLS, GNPDA1, KHK, OGT, PFKFB3, PFKM, PKM, PRF1, SLC2A4, TKT
mitochondrial membrane 1 OGT
nuclear body 1 TKT
trans-Golgi network 1 SLC2A4
nucleoplasm 6 ATP2B1, GCK, OGT, PFKFB3, PRKX, TKT
Cell membrane 5 ATP2B1, OGT, PRF1, SLC2A4, TKT
Multi-pass membrane protein 3 ATP2B1, PRF1, SLC2A4
Golgi apparatus membrane 1 GCK
Synapse 2 ATP2B1, GLS
glutamatergic synapse 2 ATP2B1, OGT
Golgi membrane 2 GCK, INS
presynaptic membrane 1 ATP2B1
sarcolemma 1 SLC2A4
Cytoplasm, cytosol 3 G6PD, GAPDH, GLS
Presynapse 1 SLC2A4
plasma membrane 7 ATP2B1, GAPDH, GCG, OGT, PRF1, SLC2A4, TKT
synaptic vesicle membrane 1 ATP2B1
Membrane 7 ATP2B1, G6PD, GAPDH, OGT, PFKM, PRF1, SLC2A4
apical plasma membrane 2 PFKM, TKT
basolateral plasma membrane 2 ATP2B1, GCK
extracellular exosome 10 ATP2B1, FBP1, G6PD, GAPDH, GFPT1, GNPDA1, KHK, PKM, SLC2A4, TKT
extracellular space 2 GCG, INS
perinuclear region of cytoplasm 2 GAPDH, SLC2A4
mitochondrion 3 GCK, GLS, PKM
protein-containing complex 1 OGT
intracellular membrane-bounded organelle 3 ATP2B1, G6PD, GAPDH
Single-pass type I membrane protein 1 TKT
Secreted 3 GCG, INS, PRF1
extracellular region 4 GCG, INS, PKM, PRF1
cytoplasmic side of plasma membrane 1 G6PD
mitochondrial matrix 1 GLS
centriolar satellite 1 G6PD
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 1 GAPDH
external side of plasma membrane 1 SLC2A4
Extracellular vesicle 1 PKM
multivesicular body 1 SLC2A4
actin cytoskeleton 1 TKT
T-tubule 1 SLC2A4
microtubule cytoskeleton 1 GAPDH
clathrin-coated pit 1 SLC2A4
vesicle 3 GAPDH, PKM, TKT
Cytoplasm, perinuclear region 2 GAPDH, SLC2A4
Membrane raft 1 SLC2A4
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 1 TKT
Peroxisome 1 TKT
sarcoplasmic reticulum 1 SLC2A4
collagen-containing extracellular matrix 1 PKM
lateral plasma membrane 1 ATP2B1
receptor complex 1 TKT
cilium 1 PKM
cell projection 2 ATP2B1, OGT
cytoskeleton 1 GAPDH
[Isoform 1]: Mitochondrion 1 GLS
[Isoform 2]: Mitochondrion 1 OGT
Basolateral cell membrane 2 ATP2B1, GCK
Endomembrane system 1 SLC2A4
endosome lumen 2 INS, PRF1
Lipid droplet 1 GAPDH
NSL complex 1 OGT
Cytoplasmic vesicle membrane 1 SLC2A4
Presynaptic cell membrane 1 ATP2B1
[Isoform 3]: Cytoplasm 1 OGT
[Isoform 4]: Cytoplasm 1 OGT
clathrin-coated vesicle 1 SLC2A4
trans-Golgi network transport vesicle 1 SLC2A4
ficolin-1-rich granule lumen 1 PKM
secretory granule lumen 3 GCG, INS, PKM
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 GCG, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 2 ATP2B1, PRF1
vesicle membrane 1 SLC2A4
ribonucleoprotein complex 1 GAPDH
histone acetyltransferase complex 1 OGT
protein N-acetylglucosaminyltransferase complex 1 OGT
Sin3-type complex 1 OGT
Rough endoplasmic reticulum 1 PKM
[Isoform 3]: Mitochondrion 1 GLS
GAIT complex 1 GAPDH
sperm principal piece 1 PFKM
[Glutaminase kidney isoform, mitochondrial 68 kDa chain]: Mitochondrion matrix 1 GLS
[Glutaminase kidney isoform, mitochondrial 65 kDa chain]: Mitochondrion matrix 1 GLS
[Glucagon-like peptide 1]: Secreted 1 GCG
6-phosphofructokinase complex 1 PFKM
Cytolytic granule 1 PRF1
cytolytic granule lumen 1 PRF1
photoreceptor ribbon synapse 1 ATP2B1
[Isoform M2]: Cytoplasm 1 PKM
[Isoform M1]: Cytoplasm 1 PKM
insulin-responsive compartment 1 SLC2A4


文献列表

  • Xiaoli Chen, Yi Ji, Weiying Zhao, Huanying Niu, Xue Yang, Xiaokang Jiang, Yipeng Zhang, Jie Lei, Hang Yang, Rongbo Chen, Chuanwei Gu, Hongyi Xu, Hui Dong, Erchao Duan, Xuan Teng, Yunlong Wang, Yuanyan Zhang, Wenwei Zhang, Yihua Wang, Jianmin Wan. Fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase regulates energy metabolism and synthesis of storage products in developing rice endosperm. Plant science : an international journal of experimental plant biology. 2023 Jan; 326(?):111503. doi: 10.1016/j.plantsci.2022.111503. [PMID: 36270512]
  • Robertino J Muchut, Claudia V Piattoni, Ezequiel Margarit, Karina E J Tripodi, Florencio E Podestá, Alberto A Iglesias. Heterologous expression and kinetic characterization of the α, β and αβ blend of the PPi-dependent phosphofructokinase from Citrus sinensis. Plant science : an international journal of experimental plant biology. 2019 Mar; 280(?):348-354. doi: 10.1016/j.plantsci.2018.12.012. [PMID: 30824014]
  • Carine Lindquist, Bodil Bjørndal, Hege G Bakke, Grete Slettom, Marie Karoliussen, Arild C Rustan, G Hege Thoresen, Jon Skorve, Ottar K Nygård, Rolf Kristian Berge. A mitochondria-targeted fatty acid analogue influences hepatic glucose metabolism and reduces the plasma insulin/glucose ratio in male Wistar rats. PloS one. 2019; 14(9):e0222558. doi: 10.1371/journal.pone.0222558. [PMID: 31550253]
  • B K Puri, M C Kingston, J A Monro. Inverse relationship between human erythrocyte fructose-6-phosphate and short-chain fatty acid levels. Medical hypotheses. 2018 Dec; 121(?):164-166. doi: 10.1016/j.mehy.2018.10.001. [PMID: 30396473]
  • Corin O Miller, Xiaodong Yang, Ku Lu, Jin Cao, Kithsiri Herath, Thomas W Rosahl, Roger Askew, Guillaume Pavlovic, Gaochao Zhou, Cai Li, Taro E Akiyama. Ketohexokinase knockout mice, a model for essential fructosuria, exhibit altered fructose metabolism and are protected from diet-induced metabolic defects. American journal of physiology. Endocrinology and metabolism. 2018 09; 315(3):E386-E393. doi: 10.1152/ajpendo.00027.2018. [PMID: 29870677]
  • Vijay Rayamajhi, Dipesh Dhakal, Amit Kumar Chaudhary, Jae Kyung Sohng. Improved production of 1-deoxynojirymicin in Escherichia coli through metabolic engineering. World journal of microbiology & biotechnology. 2018 May; 34(6):77. doi: 10.1007/s11274-018-2462-3. [PMID: 29796897]
  • Alexander Klaus, Tim Baldensperger, Roman Fiedler, Matthias Girndt, Marcus A Glomb. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions. Journal of agricultural and food chemistry. 2018 Feb; 66(6):1498-1508. doi: 10.1021/acs.jafc.7b05472. [PMID: 29400466]
  • Marion Devillers, Lama Ahmad, Hafsa Korri-Youssoufi, Laurent Salmon. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosensors & bioelectronics. 2017 Oct; 96(?):178-185. doi: 10.1016/j.bios.2017.04.031. [PMID: 28500945]
  • Matías D Hartman, Carlos M Figueroa, Diego G Arias, Alberto A Iglesias. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants. Plant & cell physiology. 2017 01; 58(1):145-155. doi: 10.1093/pcp/pcw180. [PMID: 28011870]
  • Abirami Natarajan, Shobana Sugumar, Sivakumar Bitragunta, Natarajan Balasubramanyan. Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from Grewia hirsuta with some targets related to type 2 diabetes. BMC complementary and alternative medicine. 2015 Mar; 15(?):73. doi: 10.1186/s12906-015-0588-5. [PMID: 25885803]
  • Naveen Sharma, Donel A Sequea, Carlos M Castorena, Edward B Arias, Nathan R Qi, Gregory D Cartee. Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles. PloS one. 2014; 8(6):e65118. doi: 10.1371/journal.pone.0065118. [PMID: 23755179]
  • Maria Yakovleva, Sunil Bhand, Bengt Danielsson. The enzyme thermistor--a realistic biosensor concept. A critical review. Analytica chimica acta. 2013 Mar; 766(?):1-12. doi: 10.1016/j.aca.2012.12.004. [PMID: 23427796]
  • Misty L Kuhn, Carlos M Figueroa, Alberto A Iglesias, Miguel A Ballicora. The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms. BMC evolutionary biology. 2013 Feb; 13(?):51. doi: 10.1186/1471-2148-13-51. [PMID: 23433303]
  • Jaco Franken, Bianca A Brandt, Siew L Tai, Florian F Bauer. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PloS one. 2013; 8(10):e77499. doi: 10.1371/journal.pone.0077499. [PMID: 24147008]
  • J Musembi Mutuku, Akihiro Nose. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway. Plant & cell physiology. 2012 Jun; 53(6):1017-32. doi: 10.1093/pcp/pcs047. [PMID: 22492233]
  • Teresa C Delgado, Cristina Barosa, Patrícia M Nunes, Sebastián Cerdán, Carlos F G C Geraldes, John G Jones. Resolving the sources of plasma glucose excursions following a glucose tolerance test in the rat with deuterated water and [U-13C]glucose. PloS one. 2012; 7(3):e34042. doi: 10.1371/journal.pone.0034042. [PMID: 22479514]
  • Zhiting Jiang, Qionglin Liang, Yong Wang, Xiaoying Zheng, Lijun Pei, Ting Zhang, Yiming Wang, Guoan Luo. Metabonomic study on women of reproductive age treated with nutritional intervention: screening potential biomarkers related to neural tube defects occurrence. Biomedical chromatography : BMC. 2011 Jul; 25(7):767-74. doi: 10.1002/bmc.1512. [PMID: 20812204]
  • Nicola L Beer, Nicholas D Tribble, Laura J McCulloch, Charlotta Roos, Paul R V Johnson, Marju Orho-Melander, Anna L Gloyn. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Human molecular genetics. 2009 Nov; 18(21):4081-8. doi: 10.1093/hmg/ddp357. [PMID: 19643913]
  • Taishi Yoshida, Akira Okuno, Masanori Izumi, Kanako Takahashi, Yuka Hagisawa, Jun Ohsumi, Toshihiko Fujiwara. CS-917, a fructose 1,6-bisphosphatase inhibitor, improves postprandial hyperglycemia after meal loading in non-obese type 2 diabetic Goto-Kakizaki rats. European journal of pharmacology. 2008 Dec; 601(1-3):192-7. doi: 10.1016/j.ejphar.2008.10.050. [PMID: 19014931]
  • J Bogdanović, M Mojović, N Milosavić, A Mitrović, Z Vucinić, I Spasojević. Role of fructose in the adaptation of plants to cold-induced oxidative stress. European biophysics journal : EBJ. 2008 Sep; 37(7):1241-6. doi: 10.1007/s00249-008-0260-9. [PMID: 18214465]
  • Rui Zhou, Lailiang Cheng. Competitive inhibition of phosphoglucose isomerase of apple leaves by sorbitol 6-phosphate. Journal of plant physiology. 2008 Jun; 165(9):903-10. doi: 10.1016/j.jplph.2007.12.002. [PMID: 18242768]
  • Francesca Mancini, Jessica Fiori, Vanni Cavrini, Vincenza Andrisano. Separation and quantitation of fructose-6-phosphate and fructose-1 ,6-diphosphate by LC-ESI-MS for the evaluation of fructose-1,6-biphosphatase activity. Journal of separation science. 2006 Oct; 29(15):2395-400. doi: 10.1002/jssc.200600077. [PMID: 17120825]
  • John G Jones, Ana Fagulha, Cristina Barosa, Margarida Bastos, Luisa Barros, Carla Baptista, M Madalena Caldeira, Manuela Carvalheiro. Noninvasive analysis of hepatic glycogen kinetics before and after breakfast with deuterated water and acetaminophen. Diabetes. 2006 Aug; 55(8):2294-300. doi: 10.2337/db06-0304. [PMID: 16873693]
  • Marcin Filipecki, Zhimin Yin, Anita Wiśniewska, Mieczysław Smiech, Robert Malinowski, Stefan Malepszy. Tissue-culture-responsive and autotetraploidy-responsive changes in metabolic profiles of cucumber (Cucumis sativus L.). Journal of applied genetics. 2006; 47(1):17-21. doi: 10.1007/bf03194594. [PMID: 16424604]
  • Takashi Fushimi, Yuzo Sato. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. The British journal of nutrition. 2005 Nov; 94(5):714-9. doi: 10.1079/bjn20051545. [PMID: 16277773]
  • Rui Zhou, Lailiang Cheng. Biochemical characterization of cytosolic fructose-1,6-bisphosphatase from apple (Malus domestica) leaves. Plant & cell physiology. 2004 Jul; 45(7):879-86. doi: 10.1093/pcp/pch096. [PMID: 15295071]
  • Dale S Edgerton, Sylvain Cardin, Doss Neal, Ben Farmer, Margaret Lautz, Catherine Pan, Alan D Cherrington. Effects of hyperglycemia on hepatic gluconeogenic flux during glycogen phosphorylase inhibition in the conscious dog. American journal of physiology. Endocrinology and metabolism. 2004 Apr; 286(4):E510-22. doi: 10.1152/ajpendo.00211.2003. [PMID: 14644767]
  • E A Koceir, Y Dahmani, X Leverve. Low rate of glucose 6-phosphate hydrolysis in liver cells is a physiological feature of non-diabetic wild sand rats (Psammomys obesus). Diabetes & metabolism. 2003 Sep; 29(4 Pt 1):363-74. doi: 10.1016/s1262-3636(07)70047-2. [PMID: 14526264]
  • S J Trevanion. Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate. Planta. 2002 Aug; 215(4):653-65. doi: 10.1007/s00425-002-0792-7. [PMID: 12172849]
  • J E DeHaven, K A Robinson, B A Nelson, M G Buse. A novel variant of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle. Diabetes. 2001 Nov; 50(11):2419-24. doi: 10.2337/diabetes.50.11.2419. [PMID: 11679416]
  • T H Nielsen, M Stitt. Tobacco transformants with strongly decreased expression of pyrophosphate:fructose-6-phosphate expression in the base of their young growing leaves contain much higher levels of fructose-2,6-bisphosphate but no major changes in fluxes. Planta. 2001 Nov; 214(1):106-16. doi: 10.1007/s004250100591. [PMID: 11762159]
  • J E Lunn, A R Ashton, M D Hatch, H W Heldt. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proceedings of the National Academy of Sciences of the United States of America. 2000 Nov; 97(23):12914-9. doi: 10.1073/pnas.230430197. [PMID: 11050182]
  • E D Crook, S T Simmons, M Daniels, L P Singh. Regulation of glutamine:fructose-6-phosphate amidotransferase activity by high glucose and transforming growth factor beta in rat mesangial cells. Journal of investigative medicine : the official publication of the American Federation for Clinical Research. 2000 Nov; 48(6):427-34. doi: NULL. [PMID: 11094865]
  • A H Hasty, H Shimano, N Yahagi, M Amemiya-Kudo, S Perrey, T Yoshikawa, J Osuga, H Okazaki, Y Tamura, Y Iizuka, F Shionoiri, K Ohashi, K Harada, T Gotoda, R Nagai, S Ishibashi, N Yamada. Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level. The Journal of biological chemistry. 2000 Oct; 275(40):31069-77. doi: 10.1074/jbc.m003335200. [PMID: 10913129]
  • E D Schleicher, C Weigert. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney international. Supplement. 2000 Sep; 77(?):S13-8. doi: 10.1046/j.1523-1755.2000.07703.x. [PMID: 10997685]
  • F Hatzack, S K Rasmussen. High-performance thin-layer chromatography method for inositol phosphate analysis. Journal of chromatography. B, Biomedical sciences and applications. 1999 Dec; 736(1-2):221-9. doi: 10.1016/s0378-4347(99)00465-x. [PMID: 10677002]
  • T Ozeki, Y Mitsui, H Sugiya, S Furuyama. Ribose 1,5-bisphosphate regulates rat kidney cortex phosphofructokinase. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 1999 Nov; 124(3):327-32. doi: 10.1016/s0305-0491(99)00127-3. [PMID: 10631808]
  • E J Kurth-Kraczek, M F Hirshman, L J Goodyear, W W Winder. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999 Aug; 48(8):1667-71. doi: 10.2337/diabetes.48.8.1667. [PMID: 10426389]
  • A K Sinha, U V Pathre, P V Sane. Essential histidyl residues at the active site(s) of sucrose-phosphate synthase from Prosopis juliflora. Biochimica et biophysica acta. 1998 Nov; 1388(2):397-404. doi: 10.1016/s0167-4838(98)00199-x. [PMID: 9858774]
  • M Hawkins, N Barzilai, R Liu, M Hu, W Chen, L Rossetti. Role of the glucosamine pathway in fat-induced insulin resistance. The Journal of clinical investigation. 1997 May; 99(9):2173-82. doi: 10.1172/jci119390. [PMID: 9151789]
  • R M Ferreira, E Franco, A R Teixeira. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation. The Biochemical journal. 1996 Aug; 318 ( Pt 1)(?):227-34. doi: 10.1042/bj3180227. [PMID: 8761476]
  • P Grimalt, M A Barbieri, M A Sosa, F Bertini. Organ-specific binding system for beta-galactosidase in the male reproductive tract. International journal of andrology. 1995 Oct; 18(5):243-7. doi: 10.1111/ijan.1995.18.5.243. [PMID: 8567094]
  • M M Sola, F J Oliver, R Salto, M Gutiérrez, A Vargas. Citrate inhibition of rat-kidney cortex phosphofructokinase. Molecular and cellular biochemistry. 1994 Jun; 135(2):123-8. doi: 10.1007/bf00926514. [PMID: 7838139]
  • B L Bertagnolli, P F Cook. Lanthanide pyrophosphates as substrates for the pyrophosphate-dependent phosphofructokinases from Propionibacterium freudenreichii and Phaseolus aureus: evidence for a second metal ion required for reaction. Biochemistry. 1994 Feb; 33(7):1663-7. doi: 10.1021/bi00173a007. [PMID: 8110768]
  • M M Sola, R Salto, F J Oliver, M Gutiérrez, A M Vargas. Regulation of rat-renal cortex phosphofructokinase activity by pH. Enzyme & protein. 1993; 47(2):99-104. doi: 10.1159/000468663. [PMID: 8193676]
  • M Kubota, A Virkamäki, H Yki-Järvinen. Ethanol stimulates glycogenolysis in livers from fed rats. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1992 Oct; 201(1):114-8. doi: 10.3181/00379727-201-43488. [PMID: 1528905]
  • N B Roberts, J Dutton, T Helliwell, P J Rothwell, J P Kavanagh. Pyrophosphate in synovial fluid and urine and its relationship to urinary risk factors for stone disease. Annals of clinical biochemistry. 1992 Sep; 29 ( Pt 5)(?):529-34. doi: 10.1177/000456329202900507. [PMID: 1332571]
  • D R Hite, M J Bodson, W H Outlaw. Enzymic potential for fructose 6-phosphate phosphorylation by guard cells and by palisade cells in leaves of the broad bean Vicia faba L. The Histochemical journal. 1992 Jun; 24(6):368-74. doi: 10.1007/bf01046169. [PMID: 1321800]
  • H Vuorinen-Markkola, V A Koivisto, H Yki-Jarvinen. Mechanisms of hyperglycemia-induced insulin resistance in whole body and skeletal muscle of type I diabetic patients. Diabetes. 1992 May; 41(5):571-80. doi: 10.2337/diab.41.5.571. [PMID: 1568526]
  • H M Ke, Y P Zhang, J Y Liang, W N Lipscomb. Crystal structure of the neutral form of fructose-1,6-bisphosphatase complexed with the product fructose 6-phosphate at 2.1-A resolution. Proceedings of the National Academy of Sciences of the United States of America. 1991 Apr; 88(8):2989-93. doi: 10.1073/pnas.88.8.2989. [PMID: 1849642]
  • V D Slepushkin, Y Grässler, D W Scheuch. [The negative effect of enkephalins on kidney energetics in rats with hemorrhages]. Voprosy meditsinskoi khimii. 1991 Mar; 37(2):51-3. doi: NULL. [PMID: 1654673]
  • M M Sola, R Salto, J Oliver, A M Vargas. Kinetic characterization of phosphofructokinase isolated from rat kidney cortex. Comparative biochemistry and physiology. B, Comparative biochemistry. 1991; 98(4):495-500. doi: 10.1016/0305-0491(91)90243-7. [PMID: 1831095]
  • G Entwistle, T A ap Rees. Lack of fructose-1,6-bisphosphatase in a range of higher plants that store starch. The Biochemical journal. 1990 Oct; 271(2):467-72. doi: 10.1042/bj2710467. [PMID: 2173563]
  • A M Vargas, M M Sola, M Bounias. Inhibition by substrate of fructose 1,6-bisphosphatase purified from rat kidney cortex. Calculation of the kinetic constants of the enzyme. The Journal of biological chemistry. 1990 Sep; 265(26):15368-70. doi: 10.1016/s0021-9258(18)55403-x. [PMID: 2168409]
  • S Shimba, K Unno, S Okada. Study on the biodistribution of deuterated biomolecules in mice aiming at new diagnostic radio-imaging agents. Chemical & pharmaceutical bulletin. 1990 Sep; 38(9):2610-3. doi: 10.1248/cpb.38.2610. [PMID: 2285994]
  • Y Yamada, T Shimizu, N Hara, I Mineo, M Kawachi, H Kiyokawa, K Yamada, S Fujioka, Y Matsuzawa, N Kono. Increases in hepatic fructose-2,6-bisphosphate level and fructose-6-phosphate,2-kinase activity in rats with ventromedial lesions of the hypothalamus. Journal of biochemistry. 1988 Oct; 104(4):576-9. doi: 10.1093/oxfordjournals.jbchem.a122513. [PMID: 2853707]
  • J H Wong, B C Yee, B B Buchanan. A novel type of phosphofructokinase from plants. The Journal of biological chemistry. 1987 Mar; 262(7):3185-91. doi: 10.1016/s0021-9258(18)61488-7. [PMID: 2434498]
  • F D Macdonald, Q Chou, B B Buchanan. Ion-exchange chromatography separates activities synthesizing and degrading fructose 2,6-bisphosphate from C3 and C4 leaves but not from rat liver. Plant physiology. 1987; 85(?):13-6. doi: 10.1104/pp.85.1.13. [PMID: 11539704]
  • F Marcus, J Rittenhouse, B Gontero, P B Harrsch. Function, structure and evolution of fructose-1,6-bisphosphatase. Archivos de biologia y medicina experimentales. 1987; 20(3-4):371-8. doi: ". [PMID: 8816077]
  • K Muniyappa, J Mendicino. Binding and regulatory properties of phosphofructokinase from swine kidney. Molecular and cellular biochemistry. 1984 Aug; 63(1):21-32. doi: 10.1007/bf00230158. [PMID: 6092905]
  • S Ashkar, K Muniyappa, F Leibach, J Mendicino. Evidence for a specific phosphoryl binding site in swine kidney phosphofructokinase. Molecular and cellular biochemistry. 1984 Apr; 62(1):77-92. doi: 10.1007/bf00230080. [PMID: 6234453]
  • B Lederer, H G Hers. On the mechanism by which noradrenaline increases the activity of phosphofructokinase in isolated rat adipocytes. The Biochemical journal. 1984 Feb; 217(3):709-14. doi: 10.1042/bj2170709. [PMID: 6231918]
  • N J Kruger, E Kombrink, H Beevers. Fructose 2,6-bisphosphate as a contaminant of commercially obtained fructose 6-phosphate: effect on PPi:fructose 6-phosphate phosphotransferase. Biochemical and biophysical research communications. 1983 Nov; 117(1):37-42. doi: 10.1016/0006-291x(83)91537-1. [PMID: 6318751]
  • S R Sooranna, E D Saggerson. Rapid modulation of adipocyte phosphofructokinase activity by noradrenaline and insulin. The Biochemical journal. 1982 Mar; 202(3):753-8. doi: 10.1042/bj2020753. [PMID: 6212052]
  • M AKAGI, T MISAWA, H KANESHIMA. STUDIES ON THE METABOLISM OF BORATE. III. VARIATIONS OF FRUCTOSE 6-PHOSPHATE LEVELS AND FRUCTOSE 1,6-DIPHOSPHATE LEVELS IN SOME ORGANS AND BLOOD AFTER ADMINISTRATION OF BORATE, AND EFFECTS OF BORON ON ANAEROBIC GLYCOLYSIS. Chemical & pharmaceutical bulletin. 1963 Nov; 11(?):1461-4. doi: 10.1248/cpb.11.1461. [PMID: 14090598]