D-Erythrose 4-phosphate (BioDeep_00000003566)

 

Secondary id: BioDeep_00001868771

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


[(2R,3R)-2,3-dihydroxy-4-oxobutoxy]phosphonic acid

化学式: C4H9O7P (200.0086)
中文名称: D-赤藓糖-4-磷酸
谱图信息: 最多检出来源 Homo sapiens(blood) 6.68%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

D-Erythrose 4-phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/d-erythrose_4-phosphate (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000003566). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=O)[C@@H]([C@@H](COP(=O)(O)O)O)O
InChI: InChI=1S/C4H9O7P/c5-1-3(6)4(7)2-11-12(8,9)10/h1,3-4,6-7H,2H2,(H2,8,9,10)

描述信息

D-Erythrose 4-phosphate is a phosphorylated derivative of erythrose that serves as an important intermediate in the pentose phosphate pathway. It is also used in phenylalanine, tyrosine and tryptophan biosynthesis, and it plays a role in vitamin B6 metabolism (KEGG); Erythrose 4-phosphate is an intermediate in the pentose phosphate pathway and the Calvin cycle. In addition, it serves as a precursor in the biosynthesis of the aromatic amino acids tyrosine, phenylalanine, and tryptophan. D-Erythrose 4-phosphate is found in many foods, some of which are shea tree, bog bilberry, arrowhead, and dock.
D-Erythrose 4-phosphate is a phosphorylated derivative of erythrose that serves as an important intermediate in the pentose phosphate pathway. It is also used in phenylalanine, tyrosine and tryptophan biosynthesis, and it plays a role in vitamin B6 metabolism (KEGG).
Acquisition and generation of the data is financially supported in part by CREST/JST.

同义名列表

21 个代谢物同义名

[(2R,3R)-2,3-dihydroxy-4-oxobutoxy]phosphonic acid; (2R,3R)-2,3-Dihydroxy-4-(phosphonooxy)butanal; Erythrose 4-phosphate, ((r*,r*)-(+-))-isomer; Erythrose 4-phosphate, (r*,r*)-isomer; D-Erythrose 4-phosphoric acid; Erythose-4-phosphoric acid; 4-O-Phosphono-D-erythrose; D-Erythrose 4-phosphate; D-Erythrose-4-phosphate; Erythrose 4-phosphate; 4-Phospho-D-erythrose; Erythrose-4-phosphate; Erythose-4-phosphate; Threose 4-phosphate; D-Erythrose 4-PO4; D-Erythrose-4-P; Erythrose 4-PO4; Erythrose-4-P; Erythrose-4P; CHEMBL75612; D-Erythrose 4-phosphate



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(4)

PlantCyc(0)

代谢反应

540 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(19)

WikiPathways(1)

Plant Reactome(484)

INOH(3)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(33)

PharmGKB(0)

20 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ACP1, G6PD, GAPDH, PKM, PTPRF, RPIA, TALDO1
Peripheral membrane protein 1 G6PD
Endoplasmic reticulum membrane 2 PTGIS, TKT
Nucleus 4 GAPDH, PKM, PTGIS, TALDO1
cytosol 11 ACP1, DEPDC5, FN3K, FN3KRP, G6PD, GAPDH, PKM, RPE, RPIA, TALDO1, TKT
nuclear body 1 TKT
nucleoplasm 2 CD2, TKT
Cell membrane 2 CD2, TKT
cell surface 1 CD2
Golgi apparatus 1 CD2
lysosomal membrane 1 DEPDC5
neuronal cell body 1 PTPRF
sarcolemma 1 ACP1
Cytoplasm, cytosol 3 DEPDC5, G6PD, GAPDH
Lysosome 1 DEPDC5
plasma membrane 4 CD2, GAPDH, PTPRF, TKT
Membrane 5 DEPDC5, G6PD, GAPDH, PTPRF, RPIA
apical plasma membrane 1 TKT
caveola 1 PTGIS
extracellular exosome 8 ACP1, G6PD, GAPDH, PKM, PTPRF, RPE, TALDO1, TKT
Lysosome membrane 1 DEPDC5
endoplasmic reticulum 1 PTGIS
extracellular space 1 PTGIS
perinuclear region of cytoplasm 2 DEPDC5, GAPDH
mitochondrion 3 OPA3, PKM, RPIA
protein-containing complex 1 CD2
intracellular membrane-bounded organelle 2 G6PD, GAPDH
Single-pass type I membrane protein 2 CD2, TKT
extracellular region 2 CD2, PKM
cytoplasmic side of plasma membrane 3 ACP1, CD2, G6PD
Single-pass membrane protein 2 PTGIS, PTPRF
centriolar satellite 1 G6PD
nuclear membrane 1 GAPDH
external side of plasma membrane 1 CD2
Extracellular vesicle 1 PKM
actin cytoskeleton 1 TKT
microtubule cytoskeleton 1 GAPDH
cell-cell junction 1 CD2
vesicle 3 GAPDH, PKM, TKT
Cytoplasm, perinuclear region 2 DEPDC5, GAPDH
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 1 TKT
Peroxisome 1 TKT
collagen-containing extracellular matrix 1 PKM
receptor complex 1 TKT
neuron projection 1 PTPRF
cilium 1 PKM
cytoskeleton 1 GAPDH
Lipid droplet 1 GAPDH
ficolin-1-rich granule lumen 1 PKM
secretory granule lumen 1 PKM
[Isoform 2]: Cytoplasm 1 TALDO1
ribonucleoprotein complex 1 GAPDH
[Isoform 1]: Nucleus 1 TALDO1
Rough endoplasmic reticulum 1 PKM
GAIT complex 1 GAPDH
GATOR1 complex 1 DEPDC5
[Isoform M2]: Cytoplasm 1 PKM
[Isoform M1]: Cytoplasm 1 PKM


文献列表

  • Quanli Liu, Tao Yu, Xiaowei Li, Yu Chen, Kate Campbell, Jens Nielsen, Yun Chen. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature communications. 2019 10; 10(1):4976. doi: 10.1038/s41467-019-12961-5. [PMID: 31672987]
  • Vasilios M E Andriotis, Alison M Smith. The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2019 07; 116(30):15297-15306. doi: 10.1073/pnas.1908556116. [PMID: 31296566]
  • Alexander Klaus, Tim Baldensperger, Roman Fiedler, Matthias Girndt, Marcus A Glomb. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions. Journal of agricultural and food chemistry. 2018 Feb; 66(6):1498-1508. doi: 10.1021/acs.jafc.7b05472. [PMID: 29400466]
  • Rafia Mir, Shais Jallu, T P Singh. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes. Critical reviews in microbiology. 2015 Jun; 41(2):172-89. doi: 10.3109/1040841x.2013.813901. [PMID: 23919299]
  • Thibault Barbier, François Collard, Amaia Zúñiga-Ripa, Ignacio Moriyón, Thibault Godard, Judith Becker, Christoph Wittmann, Emile Van Schaftingen, Jean-Jacques Letesson. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella. Proceedings of the National Academy of Sciences of the United States of America. 2014 Dec; 111(50):17815-20. doi: 10.1073/pnas.1414622111. [PMID: 25453104]
  • Rui Zhou, Lailiang Cheng. Competitive inhibition of phosphoglucose isomerase of apple leaves by sorbitol 6-phosphate. Journal of plant physiology. 2008 Jun; 165(9):903-10. doi: 10.1016/j.jplph.2007.12.002. [PMID: 18242768]
  • Jorg Schwender, John B Ohlrogge, Yair Shachar-Hill. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. The Journal of biological chemistry. 2003 Aug; 278(32):29442-53. doi: 10.1074/jbc.m303432200. [PMID: 12759349]
  • F N Melo, V R Navarro, M S Silva, E V Da-Cunha, J M Barbosa-Filho, R Braz-Filho. Bowdenol, a new 2,3-dihydrobenzofuran constituent from Bowdichia virgilioides. Natural product letters. 2001; 15(4):261-6. doi: 10.1080/10575630108041290. [PMID: 11833621]
  • R H Dunstan, F R Whatley, W Greenaway. Stable isotope evidence for the localisation of phenylalanine biosynthesis in the bacterium Paracoccus denitrificans. Biochemistry international. 1988 Apr; 16(4):773-83. doi: ". [PMID: 3390200]
  • A J Zera. Inhibition of phosphoglucose isomerase allozymes from the wing polymorphic waterstrider, Limnoporus canaliculatus, by pentose shunt metabolites. Biochemical genetics. 1987 Apr; 25(3-4):205-23. doi: 10.1007/bf00499314. [PMID: 3606558]
  • . . . . doi: . [PMID: 12846828]