Glycolic acid (BioDeep_00000002845)

 

Secondary id: BioDeep_00000405201

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


Glycolic acid, monopotassium salt

化学式: C2H4O3 (76.0160434)
中文名称: 乙醇酸, 乙醇酸, 乙醇酸, 羟基乙酸
谱图信息: 最多检出来源 Homo sapiens(blood) 0.73%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

Glycolic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/glycolic_acid (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000002845). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(=O)O)O
InChI: InChI=1S/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5)

描述信息

Glycolic acid (or hydroxyacetic acid) is the smallest alpha-hydroxy acid (AHA). This colourless, odourless, and hygroscopic crystalline solid is highly soluble in water. Due to its excellent capability to penetrate skin, glycolic acid is often used in skin care products, most often as a chemical peel. It may reduce wrinkles, acne scarring, and hyperpigmentation and improve many other skin conditions, including actinic keratosis, hyperkeratosis, and seborrheic keratosis. Once applied, glycolic acid reacts with the upper layer of the epidermis, weakening the binding properties of the lipids that hold the dead skin cells together. This allows the outer skin to dissolve, revealing the underlying skin. It is thought that this is due to the reduction of calcium ion concentrations in the epidermis and the removal of calcium ions from cell adhesions, leading to desquamation. Glycolic acid is a known inhibitor of tyrosinase. This can suppress melanin formation and lead to a lightening of skin colour. Acute doses of glycolic acid on skin or eyes leads to local effects that are typical of a strong acid (e.g. dermal and eye irritation). Glycolate is a nephrotoxin if consumed orally. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. Glycolic acids renal toxicity is due to its metabolism to oxalic acid. Glycolic and oxalic acid, along with excess lactic acid, are responsible for the anion gap metabolic acidosis. Oxalic acid readily precipitates with calcium to form insoluble calcium oxalate crystals. Renal tissue injury is caused by widespread deposition of oxalate crystals and the toxic effects of glycolic acid. Glycolic acid does exhibit some inhalation toxicity and can cause respiratory, thymus, and liver damage if present in very high levels over long periods of time. Elevated glycolic acid without elevated oxalic acid is most likely a result of GI yeast overgrowth (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). (http://drweyrich.weyrich.com/labs/oat.html). Glycolic acid has also been found to be a metabolite in Acetobacter, Acidithiobacillus, Alcaligenes, Corynebacterium, Cryptococcus, Escherichia, Gluconobacter, Kluyveromyces, Leptospirillum, Pichia, Rhodococcus, Rhodotorula and Saccharomyces (PMID: 11758919; PMID: 26360870; PMID: 14390024).
D003879 - Dermatologic Agents > D007641 - Keratolytic Agents
Found in sugar cane (Saccharum officinarum)
KEIO_ID G012
Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.
Glycolic acid is an inhibitor of tyrosinase, suppressing melanin formation and lead to a lightening of skin colour.

同义名列表

36 个代谢物同义名

Glycolic acid, monopotassium salt; Glycolic acid, monoammonium salt; Glycolic acid, monolithium salt; Glycolic acid, 2-(14)C-labeled; Glycolic acid, monosodium salt; Glycolic acid, 1-(14)C-labeled; Glycolic acid, potassium salt; Glycolic acid, calcium salt; α-Hydroxyacetic acid; alpha-Hydroxyacetic acid; 2-Hydroxyethanoic acid; α-Hydroxyacetate; Hydroxyethanoic acid; 2-Hydroxyacetic acid; Α-hydroxyacetic acid; alpha-Hydroxyacetate; a-Hydroxyacetic acid; Hydroxy-acetic acid; Potassium glycolate; Hydroxyacetic acid; 2-Hydroxyethanoate; Hydroxyethanoate; 2-Hydroxyacetate; Α-hydroxyacetate; Sodium glycolate; a-Hydroxyacetate; Glycollic acid; Hydroxyacetate; glycolic acid; Glycollate; GlyPure 70; HOCH2COOH; Glycocide; Glycolate; GlyPure; Glycolic acid



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

145 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(144)

  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Ajay S Kumar, D Prema, R Gagana Rao, J Prakash, P Balashanmugam, T Devasena, G Devanand Venkatasubbu. Fabrication of poly (lactic-co-glycolic acid)/gelatin electro spun nanofiber patch containing CaCO3/SiO2 nanocomposite and quercetin for accelerated diabetic wound healing. International journal of biological macromolecules. 2024 Jan; 254(Pt 3):128060. doi: 10.1016/j.ijbiomac.2023.128060. [PMID: 37963500]
  • Yuanyuan Li, Chaojie Wang, Xile Deng, Runze Cai, Lidong Cao, Chong Cao, Li Zheng, Pengyue Zhao, Qiliang Huang. Preparation of Thifluzamide Polylactic Acid Glycolic Acid Copolymer Microspheres and Its Effect on the Growth of Cucumber Seedlings. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210121. [PMID: 37373269]
  • Asghar Narmani, Roghayyeh Jahedi, Ehsan Bakhshian-Dehkordi, Saeid Ganji, Mahnaz Nemati, Ruhollah Ghahramani-Asl, Kave Moloudi, Seyed Mohammad Hosseini, Hamed Bagheri, Prashant Kesharwani, Ali Khani, Bagher Farhood, Amirhossein Sahebkar. Biomedical applications of PLGA nanoparticles in nanomedicine: Advances in drug delivery systems and cancer therapy. Expert opinion on drug delivery. 2023 Jun; ?(?):. doi: 10.1080/17425247.2023.2223941. [PMID: 37294853]
  • Xiangyu Zhang, Santosh Kumar Misra, Parikshit Moitra, Xiuli Zhang, Se-Jin Jeong, Jeremiah Stitham, Astrid Rodriguez-Velez, Arick Park, Yu-Sheng Yeh, William E Gillanders, Daping Fan, Abhinav Diwan, Jaehyung Cho, Slava Epelman, Irfan J Lodhi, Dipanjan Pan, Babak Razani. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy. 2023 Mar; 19(3):886-903. doi: 10.1080/15548627.2022.2108252. [PMID: 35982578]
  • Yue Na, Ning Zhang, Xinyu Zhong, Jinlian Gu, Chang Yan, Shun Yin, Xia Lei, Jihui Zhao, Fang Geng. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery. Nanomedicine (London, England). 2023 01; 18(2):125-143. doi: 10.2217/nnm-2022-0287. [PMID: 36916394]
  • Jing Wei, Qianghua Quan, Peiyu Wang, Yiming Wang, Tong Huo, Quan An. Portulaca oleracea extract relieves skin barrier damage induced by increased photosensitivity after GA peeling. Cutaneous and ocular toxicology. 2022 Sep; 41(3):257-263. doi: 10.1080/15569527.2022.2109658. [PMID: 35920724]
  • Maomao Tang, Yuzhe Huang, Xiao Liang, Yaotian Tao, Ning He, Zhenbao Li, Jian Guo, Shuangying Gui. Sorafenib-Loaded PLGA-TPGS Nanosystems Enhance Hepatocellular Carcinoma Therapy Through Reversing P-Glycoprotein-Mediated Multidrug Resistance. AAPS PharmSciTech. 2022 Apr; 23(5):130. doi: 10.1208/s12249-022-02214-y. [PMID: 35487999]
  • Giorgia Ceselin, Zoi Salta, Julien Bloino, Nicola Tasinato, Vincenzo Barone. Accurate Quantum Chemical Spectroscopic Characterization of Glycolic Acid: A Route Toward its Astrophysical Detection. The journal of physical chemistry. A. 2022 Apr; 126(15):2373-2387. doi: 10.1021/acs.jpca.2c01419. [PMID: 35384666]
  • Shengtang Li, Xuewen Shi, Bo Xu, Jian Wang, Peng Li, Xin Wang, Jinpeng Lou, Ziyao Li, Chengwei Yang, Songkai Li, Ping Zhen. In vitro drug release and antibacterial activity evaluation of silk fibroin coated vancomycin hydrochloride loaded poly (lactic-co-glycolic acid) (PLGA) sustained release microspheres. Journal of biomaterials applications. 2022 04; 36(9):1676-1688. doi: 10.1177/08853282211064098. [PMID: 35015589]
  • Avni Nautiyal, Sarika Wairkar. Management of hyperpigmentation: Current treatments and emerging therapies. Pigment cell & melanoma research. 2021 11; 34(6):1000-1014. doi: 10.1111/pcmr.12986. [PMID: 33998768]
  • Ankang Gu, Litao Zhang, Faku Ma, Xiangjun Kong. Induction of localized bullous pemphigoid on a young woman following a chemical peel. Indian journal of dermatology, venereology and leprology. 2021 Sep; 87(5):706-708. doi: 10.25259/ijdvl_1116_20. [PMID: 34379953]
  • Pouria Jarsiah, Joerg Roehrich, Theresa Kueting, Walter Martz, Cornelius Hess. GHB related acids are useful in routine casework of suspected GHB intoxication cases. Forensic science international. 2021 Jul; 324(?):110833. doi: 10.1016/j.forsciint.2021.110833. [PMID: 34020075]
  • Yaacov Frishberg, Georges Deschênes, Jaap W Groothoff, Sally-Anne Hulton, Daniella Magen, Jérôme Harambat, William G Van't Hoff, Ulrike Lorch, Dawn S Milliner, John C Lieske, Patrick Haslett, Pushkal P Garg, Akshay K Vaishnaw, Sandeep Talamudupula, Jiandong Lu, Bahru A Habtemariam, David V Erbe, Tracy L McGregor, Pierre Cochat. Phase 1/2 Study of Lumasiran for Treatment of Primary Hyperoxaluria Type 1: A Placebo-Controlled Randomized Clinical Trial. Clinical journal of the American Society of Nephrology : CJASN. 2021 07; 16(7):1025-1036. doi: 10.2215/cjn.14730920. [PMID: 33985991]
  • Maryam Pourhajibagher, Maryam Azimi, Vahid Haddadi-Asl, Hanie Ahmadi, Mehrdad Gholamzad, Sara Ghorbanpour, Abbas Bahador. Robust antimicrobial photodynamic therapy with curcumin-poly (lactic-co-glycolic acid) nanoparticles against COVID-19: A preliminary in vitro study in Vero cell line as a model. Photodiagnosis and photodynamic therapy. 2021 Jun; 34(?):102286. doi: 10.1016/j.pdpdt.2021.102286. [PMID: 33838311]
  • Xin-Jian Li, Yun You, Qiong-Ling Zhang, Bing-Bing Zhang, Lin Yan, Ze-Min Ou, Yao Zhang, Yan-Jing Wang, Yan Tong, De-Wen Liu, Jin-Yu Wang. [Preparation of paclitaxel-loaded and folic acid-modified poly (lactic-co-glycolic acid) nano-micelles and in vitro anticancer effect on cervical cancer HeLa cells]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2021 May; 46(10):2481-2488. doi: 10.19540/j.cnki.cjcmm.20210302.303. [PMID: 34047094]
  • Ning Wu, Jia Liu, Weibo Ma, Xian Dong, Feng Wang, Dicheng Yang, Yan Xu. Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair. Biofabrication. 2021 03; 13(2):. doi: 10.1088/1758-5090/abcb48. [PMID: 33202398]
  • Pouria Jarsiah, Theresa Kueting, Joerg Roehrich, Tanja Germerott, Daniela Remane, Stefan W Toennes, Stefan Scholtis, Franziska Krumbiegel, Cornelius Hess. GHB related acids (dihydroxy butyric acids, glycolic acid) can help in the interpretation of post mortem GHB results. Forensic science international. 2020 Nov; 316(?):110536. doi: 10.1016/j.forsciint.2020.110536. [PMID: 33096454]
  • David Wiegmann, Lori Haddad. Two is better than one: The combined effects of glycolic acid and salicylic acid on acne-related disorders. Journal of cosmetic dermatology. 2020 Sep; 19(9):2349-2351. doi: 10.1111/jocd.13387. [PMID: 32250551]
  • Hudson K Takano, Roland Beffa, Christopher Preston, Philip Westra, Franck E Dayan. A novel insight into the mode of action of glufosinate: how reactive oxygen species are formed. Photosynthesis research. 2020 Jun; 144(3):361-372. doi: 10.1007/s11120-020-00749-4. [PMID: 32372199]
  • Amira Amin Zayed, Rehab Mohamed Sobhi, Randa Mohamed Saleh El Aguizy, Dina Sabry, Sara Bahaa Mahmoud. Sequential peeling as a monotherapy for treatment of milder forms of acne vulgaris. Journal of cosmetic dermatology. 2020 Jun; 19(6):1381-1387. doi: 10.1111/jocd.13162. [PMID: 31545017]
  • Tracy L McGregor, Karen A Hunt, Elaine Yee, Dan Mason, Paul Nioi, Simina Ticau, Marissa Pelosi, Perry R Loken, Sarah Finer, Deborah A Lawlor, Eric B Fauman, Qin Qin Huang, Christopher J Griffiths, Daniel G MacArthur, Richard C Trembath, Devin Oglesbee, John C Lieske, David V Erbe, John Wright, David A van Heel. Characterising a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. eLife. 2020 03; 9(?):. doi: 10.7554/elife.54363. [PMID: 32207686]
  • Brianna Buchalski, Kyle D Wood, Anil Challa, Sonia Fargue, Ross P Holmes, W Todd Lowther, John Knight. The effects of the inactivation of Hydroxyproline dehydrogenase on urinary oxalate and glycolate excretion in mouse models of primary hyperoxaluria. Biochimica et biophysica acta. Molecular basis of disease. 2020 03; 1866(3):165633. doi: 10.1016/j.bbadis.2019.165633. [PMID: 31821850]
  • Agni Kumar Biswal, Hariprasad P, Sampa Saha. Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. Materials science & engineering. C, Materials for biological applications. 2020 Mar; 108(?):110496. doi: 10.1016/j.msec.2019.110496. [PMID: 31923956]
  • Dewi van Harskamp, Sander F Garrelfs, Michiel J S Oosterveld, Jaap W Groothoff, Johannes B van Goudoever, Henk Schierbeek. Development and Validation of a New Gas Chromatography-Tandem Mass Spectrometry Method for the Measurement of Enrichment of Glyoxylate Metabolism Analytes in Hyperoxaluria Patients Using a Stable Isotope Procedure. Analytical chemistry. 2020 01; 92(2):1826-1832. doi: 10.1021/acs.analchem.9b03670. [PMID: 31867958]
  • Yusuke Marikawa, Hong-Ru Chen, Mark Menor, Youping Deng, Vernadeth B Alarcon. Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells. Reproductive toxicology (Elmsford, N.Y.). 2020 01; 91(?):74-91. doi: 10.1016/j.reprotox.2019.10.004. [PMID: 31711903]
  • Shun Li, Qian Xu, Liang Zhao, Chengkun Ye, Lei Hua, Jun Liang, Rutong Yu, Hongmei Liu. Angiopep-2 Modified Cationic Lipid-Poly-Lactic-Co-Glycolic Acid Delivery Temozolomide and DNA Repair Inhibitor Dbait to Achieve Synergetic Chemo-Radiotherapy Against Glioma. Journal of nanoscience and nanotechnology. 2019 12; 19(12):7539-7545. doi: 10.1166/jnn.2019.16775. [PMID: 31196258]
  • Ramasubba Reddy Palem, Kummara Madhusudana Rao, Tae June Kang. Self-healable and dual-functional guar gum-grafted-polyacrylamidoglycolic acid-based hydrogels with nano-silver for wound dressings. Carbohydrate polymers. 2019 Nov; 223(?):115074. doi: 10.1016/j.carbpol.2019.115074. [PMID: 31427000]
  • Seong Kwang Lim, Jean Yoo, Haewon Kim, Woong Kim, Ilseob Shim, Byung-Il Yoon, Pilje Kim, Seung DO Yu, Ig-Chun Eom. Acute and 28-Day Repeated Inhalation Toxicity Study of Glycolic Acid in Male Sprague-Dawley Rats. In vivo (Athens, Greece). 2019 Sep; 33(5):1507-1519. doi: 10.21873/invivo.11631. [PMID: 31471399]
  • Marion Eisenhut, Marc-Sven Roell, Andreas P M Weber. Mechanistic understanding of photorespiration paves the way to a new green revolution. The New phytologist. 2019 09; 223(4):1762-1769. doi: 10.1111/nph.15872. [PMID: 31032928]
  • Allen Rodgers, Phindile Cele, Neil Ravenscroft, Cesarina Edmonds-Smith, Graham Jackson. Theoretical and laboratory investigations of the effects of hydroxyproline ingestion on the metabolic and physicochemical risk factors for calcium oxalate kidney stone formation in a small group of healthy subjects. International urology and nephrology. 2019 Jul; 51(7):1121-1127. doi: 10.1007/s11255-019-02186-2. [PMID: 31161522]
  • Maria Michelle Papamichael, Charis Katsardis, Bircan Erbas, Catherine Itsiopoulos, Dimitris Tsoukalas. Urinary organic acids as biomarkers in the assessment of pulmonary function in children with asthma. Nutrition research (New York, N.Y.). 2019 01; 61(?):31-40. doi: 10.1016/j.nutres.2018.10.004. [PMID: 30683437]
  • Gaspar Tuero, Jesús González, Laura Sahuquillo, Anna Freixa, Isabel Gomila, Miguel Ángel Elorza, Bernardino Barceló. Value of glycolic acid analysis in ethylene glycol poisoning: A clinical case report and systematic review of the literature. Forensic science international. 2018 Sep; 290(?):e9-e14. doi: 10.1016/j.forsciint.2018.07.007. [PMID: 30055870]
  • Pavol Ďurč, František Foret, Petr Kubáň. Fast blood plasma separation device for point-of-care applications. Talanta. 2018 Jun; 183(?):55-60. doi: 10.1016/j.talanta.2018.02.004. [PMID: 29567189]
  • Sonia Fargue, Dawn S Milliner, John Knight, Julie B Olson, W Todd Lowther, Ross P Holmes. Hydroxyproline Metabolism and Oxalate Synthesis in Primary Hyperoxaluria. Journal of the American Society of Nephrology : JASN. 2018 06; 29(6):1615-1623. doi: 10.1681/asn.2017040390. [PMID: 29588429]
  • Chunlin Chen, Haibin Wang, Guozhang Zhu, Zhongsheng Sun, Xiang Xu, Fangwei Li, Shengkang Luo. Three-dimensional poly lactic-co-glycolic acid scaffold containing autologous platelet-rich plasma supports keloid fibroblast growth and contributes to keloid formation in a nude mouse model. Journal of dermatological science. 2018 Jan; 89(1):67-76. doi: 10.1016/j.jdermsci.2017.07.020. [PMID: 29122407]
  • Oliver Clifford-Mobley, Gill Rumsby, Swati Kanodia, Mohammed Didi, Richard Holt, Senthil Senniappan. Glycolate oxidase deficiency in a patient with congenital hyperinsulinism and unexplained hyperoxaluria. Pediatric nephrology (Berlin, Germany). 2017 Nov; 32(11):2159-2163. doi: 10.1007/s00467-017-3741-1. [PMID: 28752386]
  • Tapan K Bhattacharyya, Hope Bueller, Yvonne Hsia, J Regan Thomas. Dermal Histology in Mouse Skin Exposed to Cosmeceuticals. Facial plastic surgery : FPS. 2017 Oct; 33(5):545-550. doi: 10.1055/s-0037-1605600. [PMID: 28962062]
  • Emmanuel Richard, Jean-Marc Blouin, Jérome Harambat, Brigitte Llanas, Stéphane Bouchet, Cécile Acquaviva, Renaud de la Faille. Late diagnosis of primary hyperoxaluria type III. Annals of clinical biochemistry. 2017 May; 54(3):406-411. doi: 10.1177/0004563216677101. [PMID: 27742850]
  • Jessica Schmitz, Nishtala V Srikanth, Meike Hüdig, Gereon Poschmann, Martin J Lercher, Veronica G Maurino. The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate. Photosynthesis research. 2017 May; 132(2):183-196. doi: 10.1007/s11120-017-0355-1. [PMID: 28247236]
  • Xin Guan, Yozo Okazaki, Andrew Lithio, Ling Li, Xuefeng Zhao, Huanan Jin, Dan Nettleton, Kazuki Saito, Basil J Nikolau. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System. Plant physiology. 2017 04; 173(4):2010-2028. doi: 10.1104/pp.16.01732. [PMID: 28202596]
  • Stéphanie Arrivault, Toshihiro Obata. Quantification of Photorespiratory Intermediates by Mass Spectrometry-Based Approaches. Methods in molecular biology (Clifton, N.J.). 2017; 1653(?):97-104. doi: 10.1007/978-1-4939-7225-8_7. [PMID: 28822128]
  • Leonardo Perez de Souza, Marek Szecówka, Alisdair R Fernie, Takayuki Tohge. 13CO2 Labeling and Mass Spectral Analysis of Photorespiration. Methods in molecular biology (Clifton, N.J.). 2017; 1653(?):157-166. doi: 10.1007/978-1-4939-7225-8_11. [PMID: 28822132]
  • B Liang, G Q Zuo, Y Y Zheng, S He, D Y Zuo. [Clinical effect of ultrasound-guided injection of biodegradable poly(lactic-co-glycolic acid)-Fe3O4 in situ implant for magnetic thermal ablation in treatment of nude mice with human liver cancer SMMC-7721 cells]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology. 2016 Dec; 24(12):911-915. doi: 10.3760/cma.j.issn.1007-3418.2016.12.007. [PMID: 28073412]
  • M Soledade C Pedras, Myung Ryeol Park. The biosynthesis of brassicicolin A in the phytopathogen Alternaria brassicicola. Phytochemistry. 2016 Dec; 132(?):26-32. doi: 10.1016/j.phytochem.2016.09.009. [PMID: 27665682]
  • Oliver Clifford-Mobley, Laura Hewitt, Gill Rumsby. Simultaneous analysis of urinary metabolites for preliminary identification of primary hyperoxaluria. Annals of clinical biochemistry. 2016 Jul; 53(Pt 4):485-94. doi: 10.1177/0004563215606158. [PMID: 26342005]
  • Berkley J Walker, Paul F South, Donald R Ort. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Photosynthesis research. 2016 Jul; 129(1):93-103. doi: 10.1007/s11120-016-0277-3. [PMID: 27251551]
  • Sonia Fargue, John Knight, Ross P Holmes, Gill Rumsby, Christopher J Danpure. Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochimica et biophysica acta. 2016 06; 1862(6):1055-62. doi: 10.1016/j.bbadis.2016.02.004. [PMID: 26854734]
  • Younès Dellero, Mathieu Jossier, Jessica Schmitz, Veronica G Maurino, Michael Hodges. Photorespiratory glycolate-glyoxylate metabolism. Journal of experimental botany. 2016 05; 67(10):3041-52. doi: 10.1093/jxb/erw090. [PMID: 26994478]
  • Nadine Rademacher, Ramona Kern, Takayuki Fujiwara, Tabea Mettler-Altmann, Shin-Ya Miyagishima, Martin Hagemann, Marion Eisenhut, Andreas P M Weber. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. Journal of experimental botany. 2016 05; 67(10):3165-75. doi: 10.1093/jxb/erw118. [PMID: 26994474]
  • Xin Guan, Hui Chen, Alex Abramson, Huimin Man, Jinxia Wu, Oliver Yu, Basil J Nikolau. A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis. The Plant journal : for cell and molecular biology. 2015 Nov; 84(4):718-32. doi: 10.1111/tpj.13034. [PMID: 26402847]
  • Tomáš Hložek, Miroslava Bursová, Pavel Coufal, Radomír Čabala. Identification and quantification of acidosis inducing metabolites in cases of alcohols intoxication by GC-MS for emergency toxicology. Journal of pharmaceutical and biomedical analysis. 2015 Oct; 114(?):16-21. doi: 10.1016/j.jpba.2015.04.039. [PMID: 26001161]
  • Martin K M Engqvist, Jessica Schmitz, Anke Gertzmann, Alexandra Florian, Nils Jaspert, Muhammad Arif, Salma Balazadeh, Bernd Mueller-Roeber, Alisdair R Fernie, Veronica G Maurino. GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast l-Lactate Cytochrome c Oxidoreductase, Supports l-Lactate Oxidation in Roots of Arabidopsis. Plant physiology. 2015 Oct; 169(2):1042-61. doi: 10.1104/pp.15.01003. [PMID: 26246447]
  • Jenni Viinamäki, Antti Sajantila, Ilkka Ojanperä. Ethylene Glycol and Metabolite Concentrations in Fatal Ethylene Glycol Poisonings. Journal of analytical toxicology. 2015 Jul; 39(6):481-5. doi: 10.1093/jat/bkv044. [PMID: 25907169]
  • Tomáš Hložek, Miroslava Bursová, Radomír Čabala. Simultaneous and cost-effective determination of ethylene glycol and glycolic acid in human serum and urine for emergency toxicology by GC-MS. Clinical biochemistry. 2015 Feb; 48(3):189-91. doi: 10.1016/j.clinbiochem.2014.12.002. [PMID: 25500419]
  • Gilbert Richarme, Mouadh Mihoub, Julien Dairou, Linh Chi Bui, Thibaut Leger, Aazdine Lamouri. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. The Journal of biological chemistry. 2015 Jan; 290(3):1885-97. doi: 10.1074/jbc.m114.597815. [PMID: 25416785]
  • Jin Nakahara, Katsuaki Takechi, Fumiyoshi Myouga, Yasuko Moriyama, Hiroshi Sato, Susumu Takio, Hiroyoshi Takano. Bending of protonema cells in a plastid glycolate/glycerate transporter knockout line of Physcomitrella patens. PloS one. 2015; 10(3):e0118804. doi: 10.1371/journal.pone.0118804. [PMID: 25793376]
  • Xin Shen, Feng Su, Jianting Dong, Zhongyong Fan, Yourong Duan, Suming Li. In vitro biocompatibility evaluation of bioresorbable copolymers prepared from L-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications. Journal of biomaterials science. Polymer edition. 2015; 26(8):497-514. doi: 10.1080/09205063.2015.1030992. [PMID: 25783945]
  • Julia E Vela-Ramirez, Jonathan T Goodman, Paola M Boggiatto, Rajarshi Roychoudhury, Nicola L B Pohl, Jesse M Hostetter, Michael J Wannemuehler, Balaji Narasimhan. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. The AAPS journal. 2015 Jan; 17(1):256-67. doi: 10.1208/s12248-014-9699-z. [PMID: 25421457]
  • Tomáš Hložek, Miroslava Bursová, Radomír Čabalaa. Fast determination of ethylene glycol, 1,2-propylene glycol and glycolic acid in blood serum and urine for emergency and clinical toxicology by GC-FID. Talanta. 2014 Dec; 130(?):470-4. doi: 10.1016/j.talanta.2014.07.020. [PMID: 25159437]
  • Jeeyoun Jung, Youngae Jung, Eun Jung Bang, Sung-il Cho, You-Jin Jang, Jung-Myun Kwak, Do Hyun Ryu, Sungsoo Park, Geum-Sook Hwang. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Annals of surgical oncology. 2014 Dec; 21 Suppl 4(?):S736-42. doi: 10.1245/s10434-014-3886-0. [PMID: 25092158]
  • Yaacov Frishberg, Avraham Zeharia, Roman Lyakhovetsky, Ruth Bargal, Ruth Belostotsky. Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria. Journal of medical genetics. 2014 Aug; 51(8):526-9. doi: 10.1136/jmedgenet-2014-102529. [PMID: 24996905]
  • Ashish C Bhatia, Felipe Jimenez. Rapid treatment of mild acne with a novel skin care system containing 1\% salicylic acid, 10\% buffered glycolic acid, and botanical ingredients. Journal of drugs in dermatology : JDD. 2014 Jun; 13(6):678-83. doi: ". [PMID: 24918557]
  • Puziah Hashim. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast. Pakistan journal of pharmaceutical sciences. 2014 Mar; 27(2):233-7. doi: ". [PMID: 24577907]
  • Petr Kubáň, Pavol Ďurč, Miroslava Bittová, František Foret. Separation of oxalate, formate and glycolate in human body fluid samples by capillary electrophoresis with contactless conductometric detection. Journal of chromatography. A. 2014 Jan; 1325(?):241-6. doi: 10.1016/j.chroma.2013.12.039. [PMID: 24388242]
  • Zelai He, Qi Wang, Ying Sun, Ming Shen, Mingjie Zhu, Malin Gu, Yi Wang, Yourong Duan. The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility. Journal of biomaterials science. Polymer edition. 2014; 25(9):943-64. doi: 10.1080/09205063.2014.914705. [PMID: 24811211]
  • Vijay Shankar Pandey, Shiv Kumar Verma, Mithilesh Yadav, Kunj Behari. Guar gum-g-N,N'-dimethylacrylamide: synthesis, characterization and applications. Carbohydrate polymers. 2014 Jan; 99(?):284-90. doi: 10.1016/j.carbpol.2013.08.024. [PMID: 24274508]
  • Christian Blume, Christof Behrens, Holger Eubel, Hans-Peter Braun, Christoph Peterhansel. A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism. Phytochemistry. 2013 Nov; 95(?):168-76. doi: 10.1016/j.phytochem.2013.07.009. [PMID: 23916564]
  • Alok Arora. The 'gap' in the 'plasma osmolar gap'. BMJ case reports. 2013 Aug; 2013(?):. doi: 10.1136/bcr-2013-200250. [PMID: 23929610]
  • R Ros, B Cascales-Miñana, J Segura, A D Anoman, W Toujani, M Flores-Tornero, S Rosa-Tellez, J Muñoz-Bertomeu. Serine biosynthesis by photorespiratory and non-photorespiratory pathways: an interesting interplay with unknown regulatory networks. Plant biology (Stuttgart, Germany). 2013 Jul; 15(4):707-12. doi: 10.1111/j.1438-8677.2012.00682.x. [PMID: 23199004]
  • Thea R Pick, Andrea Bräutigam, Matthias A Schulz, Toshihiro Obata, Alisdair R Fernie, Andreas P M Weber. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proceedings of the National Academy of Sciences of the United States of America. 2013 Feb; 110(8):3185-90. doi: 10.1073/pnas.1215142110. [PMID: 23382251]
  • Andrei Tintu, Ellen Rouwet, Henk Russcher. Interference of ethylene glycol with (L)-lactate measurement is assay-dependent. Annals of clinical biochemistry. 2013 Jan; 50(Pt 1):70-2. doi: 10.1258/acb.2012.012052. [PMID: 23129723]
  • Anja Günther, Torsten Jakob, Reimund Goss, Swetlana König, Daniel Spindler, Norbert Räbiger, Saskia John, Susanne Heithoff, Mark Fresewinkel, Clemens Posten, Christian Wilhelm. Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresource technology. 2012 Oct; 121(?):454-7. doi: 10.1016/j.biortech.2012.06.120. [PMID: 22850169]
  • Isabel Garcia-Perez, Alma Villaseñor, Anisha Wijeyesekera, Joram M Posma, Zhirong Jiang, Jeremiah Stamler, Peter Aronson, Robert Unwin, Coral Barbas, Paul Elliott, Jeremy Nicholson, Elaine Holmes. Urinary metabolic phenotyping the slc26a6 (chloride-oxalate exchanger) null mouse model. Journal of proteome research. 2012 Sep; 11(9):4425-35. doi: 10.1021/pr2012544. [PMID: 22594923]
  • Eduardo Salido, Angel L Pey, Rosa Rodriguez, Victor Lorenzo. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochimica et biophysica acta. 2012 Sep; 1822(9):1453-64. doi: 10.1016/j.bbadis.2012.03.004. [PMID: 22446032]
  • Mikolaj Milewski, Raghotham R Pinninti, Audra L Stinchcomb. Naltrexone salt selection for enhanced transdermal permeation through microneedle-treated skin. Journal of pharmaceutical sciences. 2012 Aug; 101(8):2777-86. doi: 10.1002/jps.23189. [PMID: 22628183]
  • Jalal A Aliyev. Photosynthesis, photorespiration and productivity of wheat and soybean genotypes. Physiologia plantarum. 2012 Jul; 145(3):369-83. doi: 10.1111/j.1399-3054.2012.01613.x. [PMID: 22420741]
  • Clemencia Rojas, Kirankumar S Mysore. Glycolate oxidase is an alternative source for H2O2 production during plant defense responses and functions independently from NADPH oxidase. Plant signaling & behavior. 2012 Jul; 7(7):752-5. doi: 10.4161/psb.20429. [PMID: 22751316]
  • Miguel A Rosales, Edilia Ocampo, Rocío Rodríguez-Valentín, Yadira Olvera-Carrillo, Jorge Acosta-Gallegos, Alejandra A Covarrubias. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant physiology and biochemistry : PPB. 2012 Jul; 56(?):24-34. doi: 10.1016/j.plaphy.2012.04.007. [PMID: 22579941]
  • Annathurai Gnanasambandam, David J Anderson, Edwina Mills, Stevens M Brumbley. Heterologous C-terminal signals effectively target fluorescent fusion proteins to leaf peroxisomes in diverse plant species. Journal of plant physiology. 2012 May; 169(8):830-3. doi: 10.1016/j.jplph.2012.01.003. [PMID: 22386008]
  • Markus Niessen, Katrin Krause, Ina Horst, Norma Staebler, Stephanie Klaus, Stefanie Gaertner, Rashad Kebeish, Wagner L Araujo, Alisdair R Fernie, Christoph Peterhansel. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice. Journal of experimental botany. 2012 Apr; 63(7):2705-16. doi: 10.1093/jxb/err453. [PMID: 22268146]
  • Jonathan McClain, Tadahiro Uemura, Subramanian Sathishkumar, Zakiyah Kadry. Liver donation after ethylene glycol overdose: when is it safe?. Transplant international : official journal of the European Society for Organ Transplantation. 2012 Apr; 25(4):e55-7. doi: 10.1111/j.1432-2277.2012.01436.x. [PMID: 22340516]
  • Alessandra Salvioli, Inès Zouari, Michel Chalot, Paola Bonfante. The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC plant biology. 2012 Mar; 12(?):44. doi: 10.1186/1471-2229-12-44. [PMID: 22452950]
  • John Knight, Ross P Holmes, Scott D Cramer, Tatsuya Takayama, Eduardo Salido. Hydroxyproline metabolism in mouse models of primary hyperoxaluria. American journal of physiology. Renal physiology. 2012 Mar; 302(6):F688-93. doi: 10.1152/ajprenal.00473.2011. [PMID: 22189945]
  • Shinya Sato, Hiroyuki Fujiwara, Tetsuro Oishi, Muneaki Shimada, Shizuo Machida, Yuji Takei, Hiroaki Itamochi, Mitsuaki Suzuki, Junzo Kigawa. Evaluation of a formula for individual dosage of nedaplatin based on renal function. Cancer chemotherapy and pharmacology. 2012 Mar; 69(3):599-603. doi: 10.1007/s00280-011-1739-0. [PMID: 21918903]
  • Ana P Ortega-Galisteo, María Rodríguez-Serrano, Diana M Pazmiño, Dharmendra K Gupta, Luisa M Sandalio, María C Romero-Puertas. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. Journal of experimental botany. 2012 Mar; 63(5):2089-103. doi: 10.1093/jxb/err414. [PMID: 22213812]
  • William H Porter. Ethylene glycol poisoning: quintessential clinical toxicology; analytical conundrum. Clinica chimica acta; international journal of clinical chemistry. 2012 Feb; 413(3-4):365-77. doi: 10.1016/j.cca.2011.10.034. [PMID: 22085425]
  • Iliana González-Hernández, María Isabel Ruiz-Olmedo, Graciela Cárdenas, Helgi Jung-Cook. A simple LC-MS/MS method to determine plasma and cerebrospinal fluid levels of albendazole metabolites (albendazole sulfoxide and albendazole sulfone) in patients with neurocysticercosis. Biomedical chromatography : BMC. 2012 Feb; 26(2):267-72. doi: 10.1002/bmc.1659. [PMID: 21721022]
  • Krisztián Fodor, Janina Wolf, Ralf Erdmann, Wolfgang Schliebs, Matthias Wilmanns. Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS biology. 2012; 10(4):e1001309. doi: 10.1371/journal.pbio.1001309. [PMID: 22529745]
  • Nicole Linka, Christian Esser. Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes. Frontiers in plant science. 2012; 3(?):3. doi: 10.3389/fpls.2012.00003. [PMID: 22645564]
  • Alexandra Maier, Holger Fahnenstich, Susanne von Caemmerer, Martin K M Engqvist, Andreas P M Weber, Ulf-Ingo Flügge, Veronica G Maurino. Transgenic Introduction of a Glycolate Oxidative Cycle into A. thaliana Chloroplasts Leads to Growth Improvement. Frontiers in plant science. 2012; 3(?):38. doi: 10.3389/fpls.2012.00038. [PMID: 22639647]
  • Yasutaka Otsuki, Akira Kotani, Fumiyo Kusu. Capillary liquid chromatography with UV detection using N,N-diethyl dithiocarbamate for determining platinum-based antitumor drugs in plasma. Chemical & pharmaceutical bulletin. 2012; 60(5):665-9. doi: 10.1248/cpb.60.665. [PMID: 22689405]
  • David Toubiana, Yaniv Semel, Takayuki Tohge, Romina Beleggia, Luigi Cattivelli, Leah Rosental, Zoran Nikoloski, Dani Zamir, Alisdair R Fernie, Aaron Fait. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS genetics. 2012; 8(3):e1002612. doi: 10.1371/journal.pgen.1002612. [PMID: 22479206]
  • Kabir Mustapha Umar, S M Abdulkarim, Son Radu, Azizah Abdul Hamid, Nazamid Saari. Engineering the production of major catechins by Escherichia coli carrying metabolite genes of Camellia sinensis. TheScientificWorldJournal. 2012; 2012(?):529031. doi: 10.1100/2012/529031. [PMID: 22645428]
  • Salma Balazadeh, Nils Jaspert, Muhammad Arif, Bernd Mueller-Roeber, Veronica G Maurino. Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts. Frontiers in plant science. 2012; 3(?):234. doi: 10.3389/fpls.2012.00234. [PMID: 23125844]
  • Atsushi Yonezawa. [Platinum agent-induced nephrotoxicity via organic cation transport system]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2012; 132(11):1281-5. doi: 10.1248/yakushi.12-00211. [PMID: 23123720]
  • András Szarka, Bálint Tomasskovics, Gábor Bánhegyi. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. International journal of molecular sciences. 2012; 13(4):4458-4483. doi: 10.3390/ijms13044458. [PMID: 22605990]
  • Melisa Gualdron-López, Miia H Vapola, Ilkka J Miinalainen, J Kalervo Hiltunen, Paul A M Michels, Vasily D Antonenkov. Channel-forming activities in the glycosomal fraction from the bloodstream form of Trypanosoma brucei. PloS one. 2012; 7(4):e34530. doi: 10.1371/journal.pone.0034530. [PMID: 22506025]
  • Waja Wegner, Birgitta Christina Burckhardt, Gerhard Burckhardt, Maja Henjakovic. Male-dominant activation of rat renal organic anion transporter 1 (Oat1) and 3 (Oat3) expression by transcription factor BCL6. PloS one. 2012; 7(4):e35556. doi: 10.1371/journal.pone.0035556. [PMID: 22530049]
  • Jessica N Lange, Kyle D Wood, John Knight, Dean G Assimos, Ross P Holmes. Glyoxal formation and its role in endogenous oxalate synthesis. Advances in urology. 2012; 2012(?):819202. doi: 10.1155/2012/819202. [PMID: 22567004]