Phosphoenolpyruvic acid (BioDeep_00000001640)
Secondary id: BioDeep_00000400436, BioDeep_00000405231, BioDeep_00000415799
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C3H5O6P (167.98237600000002)
中文名称: 磷烯醇丙酮酸, 磷烯醇丙酮酸 单钾盐, 磷烯醇丙酮酸 三钠盐 水合物, 磷酸烯醇式丙酮酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.07%
分子结构信息
SMILES: C=C(C(=O)O)OP(=O)(O)O
InChI: InChI=1S/C3H5O6P/c1-2(3(4)5)9-10(6,7)8/h1H2,(H,4,5)(H2,6,7,8)
描述信息
Phosphoenolpyruvate, also known as pep or 2-(phosphonooxy)-2-propenoic acid, is a member of the class of compounds known as phosphate esters. Phosphate esters are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group. Phosphoenolpyruvate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Phosphoenolpyruvate can be found in a number of food items such as okra, endive, chestnut, and dandelion, which makes phosphoenolpyruvate a potential biomarker for the consumption of these food products. Phosphoenolpyruvate can be found primarily in blood, cellular cytoplasm, and saliva, as well as in human prostate tissue. Phosphoenolpyruvate exists in all living species, ranging from bacteria to humans. In humans, phosphoenolpyruvate is involved in several metabolic pathways, some of which include glycolysis, amino sugar metabolism, gluconeogenesis, and glycogenosis, type IC. Phosphoenolpyruvate is also involved in several metabolic disorders, some of which include glycogen storage disease type 1A (GSD1A) or von gierke disease, salla disease/infantile sialic acid storage disease, phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), and pyruvate dehydrogenase complex deficiency. Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) as the ester derived from the enol of pyruvate and phosphate. It exists as an anion; the parent acid, which is only of theoretical interest, is phosphoenolpyruvic acid. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/mol) in living organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system .
Phosphoenolpyruvate (PEP) is an important chemical compound in biochemistry. It has a high energy phosphate bond, and is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells. In gluconeogenesis, PEP is formed from the decarboxylation of oxaloacetate and hydrolysis of 1 guanosine triphosphate molecule. This reaction is catalyzed by the enzyme phosphoenolpyruvate carboxykinase (PEPCK). This reaction is a rate-limiting step in gluconeogenesis. (wikipedia).
[Spectral] Phosphoenolpyruvate (exact mass = 167.98237) and 6-Phospho-D-gluconate (exact mass = 276.02463) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID P007
同义名列表
18 个代谢物同义名
Phosphoenolpyruvic Acid Trisodium Salt monohydrate; 2-Hydroxy-acrylic acid dihydrogen phosphate; 2-dihydroxyphosphinoyloxyacrylic acid; 2-(Phosphonooxy)-2-propenoic acid; 2-(phosphonooxy)prop-2-enoic acid; 2-Phosphonooxyprop-2-enoic acid; 2-(Phosphonooxy)-2-propenoate; 2-Phosphonooxyprop-2-enoate; 2-PHOSPHOENOLPYRUVIC ACID; Phosphoenolpyruvic acid; 2-PHOSPHOENOLPYRUVate; phosphoenol pyruvate; phosphoenolpyruvate; PEP (phosphate); p-enol-Pyruvate; PEP; Phosphoenolpyruvate; Phosphoenolpyruvic acid
数据库引用编号
44 个数据库交叉引用编号
- ChEBI: CHEBI:44897
- KEGG: C00074
- PubChem: 1005
- PubChem: 3374
- HMDB: HMDB0000263
- Metlin: METLIN152
- DrugBank: DB01819
- ChEMBL: CHEMBL1235228
- Wikipedia: Phosphoenolpyruvic_acid
- MeSH: Phosphoenolpyruvate
- MetaCyc: PHOSPHO-ENOL-PYRUVATE
- KNApSAcK: C00000798
- foodb: FDB031112
- chemspider: 980
- CAS: 138-08-9
- MoNA: KNA00747
- MoNA: KO003680
- MoNA: KNA00745
- MoNA: KO003676
- MoNA: KNA00744
- MoNA: KO003679
- MoNA: KO001575
- MoNA: PR100724
- MoNA: KO001574
- MoNA: KO001573
- MoNA: KO003677
- MoNA: KNA00366
- MoNA: PS062101
- MoNA: KO001571
- MoNA: PS062104
- MoNA: KO001572
- MoNA: KO003678
- MoNA: KNA00134
- MoNA: KNA00746
- PMhub: MS000000896
- ChEBI: CHEBI:18021
- PDB-CCD: PEP
- 3DMET: B00019
- NIKKAJI: J9.706C
- RefMet: Phosphoenolpyruvic acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-214
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-209
- KNApSAcK: 18021
- LOTUS: LTS0250994
分类词条
相关代谢途径
Reactome(0)
BioCyc(10)
- superpathway of central carbon metabolism
- CMP-KDO biosynthesis I
- peptidoglycan and lipid A precursor biosynthesis
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-DAP-containing)
- glycolysis I
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- superpathway of glyoxylate cycle
- superpathway of glycolysis and Entner-Doudoroff
- glycolysis II
- respiration (anaerobic)
PlantCyc(0)
代谢反应
160 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(27)
- glycolysis:
3-phosphoglycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP
- gluconeogenesis:
NAD+ + malate ⟶ CO2 + NADH + pyruvate
- CMP-KDO biosynthesis I:
D-arabinose 5-phosphate + H2O + phosphoenolpyruvate ⟶ 3-deoxy-D-manno-octulosonate 8-P + phosphate
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- formaldehyde assimilation I (serine pathway):
L-malyl-CoA ⟶ acetyl-CoA + glyoxylate
- Bifidobacterium shunt:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- Entner-Doudoroff pathway III (semi-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- superpathway of glycolysis and Entner-Doudoroff:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- glycolysis II:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- peptidoglycan and lipid A precursor biosynthesis:
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- peptidoglycan biosynthesis I (meso-diaminopimelate containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-DAP-containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- chorismate biosynthesis:
NADP+ + shikimate ⟶ 3-dehydro-shikimate + NADPH
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- succinic fermentation pathway:
(S)-malate ⟶ H2O + fumarate
- superpathway of glyoxylate cycle:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
WikiPathways(6)
- Glycolysis and gluconeogenesis:
Aspartate ⟶ Oxaloacetate
- Glycolysis and gluconeogenesis:
Phosphoenolpyruvate ⟶ Pyruvate
- Metabolism overview:
NH3 ⟶ Glutamic acid
- Aerobic glycolysis:
PYR ⟶ LAC
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
- Effect of L-carnitine on metabolism:
Phosphoenolpyruvate ⟶ pyruvate
Plant Reactome(0)
INOH(6)
- Glycolysis and Gluconeogenesis ( Glycolysis and Gluconeogenesis ):
D-Glucose 6-phosphate + H2O ⟶ D-Glucose + Orthophosphate
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- Aminosugars metabolism ( Aminosugars metabolism ):
D-Fructose 6-phosphate + NH3 ⟶ D-Glucosamine 6-phosphate + H2O
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- GTP + Oxaloacetic acid = GDP + Phosphoenol-pyruvic acid + CO2 ( Citrate cycle ):
GTP + Oxaloacetic acid ⟶ CO2 + GDP + Phosphoenol-pyruvic acid
- D-Glycerate 2-phosphate = Phosphoenol-pyruvic acid + H2O ( Glycolysis and Gluconeogenesis ):
D-Glycerate 2-phosphate ⟶ H2O + Phosphoenol-pyruvic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(121)
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose-1,6-diphosphatase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Triosephosphate Isomerase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IB:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IC:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IA. Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Citrate Cycle:
Isocitric acid ⟶ Water + cis-Aconitic acid
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis and Pyruvate Dehydrogenase:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- D-Glucarate and D-Galactarate Degradation:
Adenosine triphosphate + Pyruvic acid + Water ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid
- Gluconeogenesis from L-Malic Acid:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycolysis I:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis from L-Malic Acid:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glutamine Metabolism:
Adenosine triphosphate + Phosphate + Pyruvic acid ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoenolpyruvic acid + Pyrophosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycogenosis, Type VII. Tarui Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fanconi-Bickel Syndrome:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- D-Glucarate and D-Galactarate Degradation:
Adenosine triphosphate + Pyruvic acid + Water ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Chorismate Biosynthesis:
3-dehydroshikimate + Hydrogen Ion + NADPH ⟶ NADP + Shikimic acid
- Secondary Metabolites: Shikimate Pathway:
3-dehydroshikimate + Hydrogen Ion + NADPH ⟶ NADP + Shikimic acid
- Shikimate Pathway (Chorismate Biosynthesis):
Adenosine triphosphate + Shikimic acid ⟶ Adenosine diphosphate + Hydrogen Ion + shikimate 3-phosphate
- Chorismate Biosynthesis:
Adenosine triphosphate + Shikimic acid ⟶ Adenosine diphosphate + Hydrogen Ion + shikimate 3-phosphate
- Secondary Metabolites: Shikimate Pathway:
D-Erythrose 4-phosphate + Phosphoenolpyruvic acid + Water ⟶ 3-deoxy-D-arabino-heptulosonate-7-phosphate + Phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
PharmGKB(0)
39 个相关的物种来源信息
- 2 - Bacteria: LTS0250994
- 1890464 - Chroococcaceae: LTS0250994
- 5878 - Ciliophora: LTS0250994
- 3028117 - Cyanophyceae: LTS0250994
- 543 - Enterobacteriaceae: LTS0250994
- 561 - Escherichia: LTS0250994
- 562 - Escherichia coli: LTS0250994
- 33682 - Euglenozoa: LTS0250994
- 2759 - Eukaryota: LTS0250994
- 1236 - Gammaproteobacteria: LTS0250994
- 9606 - Homo sapiens: -
- 5653 - Kinetoplastea: LTS0250994
- 1890428 - Merismopediaceae: LTS0250994
- 6020 - Oligohymenophorea: LTS0250994
- 1214 - Prochloron: LTS0250994
- 135621 - Pseudomonadaceae: LTS0250994
- 286 - Pseudomonas: LTS0250994
- 303 - Pseudomonas putida: LTS0250994
- 590 - Salmonella: LTS0250994
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0250994
- 1883 - Streptomyces: LTS0250994
- 43759 - Streptomyces wedmorensis: 10.7164/ANTIBIOTICS.45.1008
- 43759 - Streptomyces wedmorensis: LTS0250994
- 2062 - Streptomycetaceae: LTS0250994
- 1890426 - Synechococcaceae: LTS0250994
- 1129 - Synechococcus: LTS0250994
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0250994
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0250994
- 5890 - Tetrahymena: LTS0250994
- 5908 - Tetrahymena pyriformis: 10.1021/BI00124A021
- 5908 - Tetrahymena pyriformis: LTS0250994
- 291294 - Tetrahymenidae: LTS0250994
- 5690 - Trypanosoma: LTS0250994
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0250994
- 5654 - Trypanosomatidae: LTS0250994
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Alexandra N Schoen, Alyssa M Weinrauch, Ian A Bouyoucos, Jason R Treberg, W Gary Anderson. Hormonal effects on glucose and ketone metabolism in a perfused liver of an elasmobranch, the North Pacific spiny dogfish, Squalus suckleyi.
General and comparative endocrinology.
2024 Jun; 352(?):114514. doi:
10.1016/j.ygcen.2024.114514
. [PMID: 38582175] - Masahiro Karikomi, Noriaki Katayama, Takashi Osanai. Pyruvate kinase 2 from Synechocystis sp. PCC 6803 increased substrate affinity via glucose-6-phosphate and ribose-5-phosphate for phosphoenolpyruvate consumption.
Plant molecular biology.
2024 May; 114(3):60. doi:
10.1007/s11103-023-01401-0
. [PMID: 38758412] - Chenran Wang, Maohua Huang, Yuning Lin, Yiming Zhang, Jinghua Pan, Chang Jiang, Minjing Cheng, Shenrong Li, Wenzhuo He, Zhengqiu Li, Zhengchao Tu, Jun Fan, Huhu Zeng, Jiahui Lin, Yongjin Wang, Nan Yao, Tongzheng Liu, Qi Qi, Xiangning Liu, Zhimin Zhang, Minfeng Chen, Liangping Xia, Dongmei Zhang, Wencai Ye. ENO2-derived phosphoenolpyruvate functions as an endogenous inhibitor of HDAC1 and confers resistance to antiangiogenic therapy.
Nature metabolism.
2023 Sep; ?(?):. doi:
10.1038/s42255-023-00883-y
. [PMID: 37667133] - Lilan Luo, Xiaofeng Cao. Nodule-specific energy sensors determine symbiotic nitrogen fixation by regulating phosphoenolpyruvate allocation.
Science China. Life sciences.
2023 03; 66(3):643-645. doi:
10.1007/s11427-022-2256-2
. [PMID: 36515862] - Ferrol I Rome, Gregory L Shobert, William C Voigt, David B Stagg, Patrycja Puchalska, Shawn C Burgess, Peter A Crawford, Curtis C Hughey. Loss of hepatic phosphoenolpyruvate carboxykinase 1 dysregulates metabolic responses to acute exercise but enhances adaptations to exercise training in mice.
American journal of physiology. Endocrinology and metabolism.
2023 01; 324(1):E9-E23. doi:
10.1152/ajpendo.00222.2022
. [PMID: 36351254] - Xiaolong Ke, Han Xiao, Yaqi Peng, Jing Wang, Qi Lv, Xuelu Wang. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state.
Science (New York, N.Y.).
2022 12; 378(6623):971-977. doi:
10.1126/science.abq8591
. [PMID: 36454840] - Shan Tang, Fei Peng, Qingqing Tang, Yunhao Liu, Hui Xia, Xuan Yao, Shaoping Lu, Liang Guo. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus.
Journal of advanced research.
2022 12; 42(?):29-40. doi:
10.1016/j.jare.2022.07.008
. [PMID: 35907629] - Gokul Sudhakaran, Ravi Rajesh, Ajay Guru, B Haridevamuthu, Raghul Murugan, Nattamai Bhuvanesh, Mohammad Ahmad Wadaan, Shalid Mahboob, Annie Juliet, Pushparathinam Gopinath, Jesu Arockiaraj. Deacetylated nimbin analog N2 fortifies alloxan-induced pancreatic β-cell damage in insulin-resistant zebrafish larvae by upregulating phosphoenolpyruvate carboxykinase (PEPCK) and insulin levels.
Toxicology and applied pharmacology.
2022 11; 454(?):116229. doi:
10.1016/j.taap.2022.116229
. [PMID: 36089001] - Xu-Cong Lv, Qi Wu, Yu-Jie Yuan, Lu Li, Wei-Ling Guo, Xiao-Bin Lin, Zi-Rui Huang, Ping-Fan Rao, Lian-Zhong Ai, Li Ni. Organic chromium derived from the chelation of Ganoderma lucidum polysaccharide and chromium (III) alleviates metabolic syndromes and intestinal microbiota dysbiosis induced by high-fat and high-fructose diet.
International journal of biological macromolecules.
2022 Oct; 219(?):964-979. doi:
10.1016/j.ijbiomac.2022.07.211
. [PMID: 35940431] - Lirong Yao, Juncheng Wang, Ke Yang, Na Hu, Baochun Li, Yaxiong Meng, Xiaole Ma, Erjing Si, Xunwu Shang, Huajun Wang. Proteomic analysis reveals molecular mechanism of Cd2+ tolerance in the leaves of halophyte Halogeton glomeratus.
Journal of proteomics.
2022 Oct; 269(?):104703. doi:
10.1016/j.jprot.2022.104703
. [PMID: 36084920] - Jiangwei Xiao, Xiang Li, Zongbao Zhou, Shuwen Guan, Lingjian Zhuo, Botao Gao. Development of an in vitro insulin resistance dissociated model of hepatic steatosis by co-culture system.
Bioscience trends.
2022 Sep; 16(4):257-266. doi:
10.5582/bst.2022.01242
. [PMID: 35965099] - Surabhi Bangarbale, Blythe D Shepard, Shivani Bansal, Meth M Jayatilake, Ryan Kurtz, Moshe Levi, Carolyn M Ecelbarger. Renal Metabolome in Obese Mice Treated with Empagliflozin Suggests a Reduction in Cellular Respiration.
Biomolecules.
2022 08; 12(9):. doi:
10.3390/biom12091176
. [PMID: 36139016] - Stephanie Nguyen, Blagojce Jovcevski, Jia Q Truong, Tara L Pukala, John B Bruning. A structural model of the human plasminogen and Aspergillus fumigatus enolase complex.
Proteins.
2022 08; 90(8):1509-1520. doi:
10.1002/prot.26331
. [PMID: 35247004] - Dexing Jiang, Haizi Zhang, Hui Cai, Zhiping Gao, Guoxiang Chen. Overexpression of ZmPCK2, a phosphoenolpyruvate carboxykinase gene from maize confers enhanced tolerance to water deficit stress in rice.
Plant science : an international journal of experimental plant biology.
2022 Apr; 317(?):111195. doi:
10.1016/j.plantsci.2022.111195
. [PMID: 35193744] - Asmaa Elnagar, Khalifa El-Dawy, Hussein I El-Belbasi, Ibrahim F Rehan, Hamdy Embark, Zeinab Al-Amgad, Obeid Shanab, Elsayed Mickdam, Gaber E Batiha, Salman Alamery, Samer S Fouad, Simona Cavalu, Mohammed Youssef. Ameliorative Effect of Oxytocin on FBN1 and PEPCK Gene Expression, and Behavioral Patterns in Rats' Obesity-Induced Diabetes.
Frontiers in public health.
2022; 10(?):777129. doi:
10.3389/fpubh.2022.777129
. [PMID: 35462799] - Iliana López-Soldado, Joan J Guinovart, Jordi Duran. Hepatic overexpression of protein targeting to glycogen attenuates obesity and improves hyperglycemia in db/db mice.
Frontiers in endocrinology.
2022; 13(?):969924. doi:
10.3389/fendo.2022.969924
. [PMID: 36157460] - W W Zhang, R Xue, T Y Mi, X M Shen, J C Li, S Li, Y Zhang, Y Li, L X Wang, X L Yin, H L Wang, Y Z Zhang. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation.
Biochemical and biophysical research communications.
2022 01; 586(?):121-128. doi:
10.1016/j.bbrc.2021.11.073
. [PMID: 34839190] - Xin-Cheng Liu, Xia-Hui Lin, Sheng-Chao Liu, Chang-Qing Zhu, Donald Grierson, Shao-Jia Li, Kun-Song Chen. The effect of NH4+ on phosphoenolpyruvate carboxykinase gene expression, metabolic flux and citrate content of citrus juice sacs.
Plant physiology and biochemistry : PPB.
2021 Oct; 167(?):123-131. doi:
10.1016/j.plaphy.2021.07.041
. [PMID: 34352515] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Shoki Ito, Takumi Hakamada, Tatsumi Ogino, Takashi Osanai. Reconstitution of oxaloacetate metabolism in the tricarboxylic acid cycle in Synechocystis sp. PCC 6803: discovery of important factors that directly affect the conversion of oxaloacetate.
The Plant journal : for cell and molecular biology.
2021 03; 105(6):1449-1458. doi:
10.1111/tpj.15120
. [PMID: 33280178] - Bruno S do Amaral, Larissa R G da Silva, Alessandra L Valverde, Lorena R F de Sousa, Richele P Severino, Dulce H F de Souza, Quezia B Cass. Phosphoenolpyruvate carboxykinase from T. cruzi magnetic beads affinity-based screening assays on crude plant extracts from Brazilian Cerrado.
Journal of pharmaceutical and biomedical analysis.
2021 Jan; 193(?):113710. doi:
10.1016/j.jpba.2020.113710
. [PMID: 33166842] - Rosario A Muñoz-Clares, Lilian González-Segura, Javier Andrés Juárez-Díaz, Carlos Mújica-Jiménez. Structural and biochemical evidence of the glucose 6-phosphate-allosteric site of maize C4-phosphoenolpyruvate carboxylase: its importance in the overall enzyme kinetics.
The Biochemical journal.
2020 06; 477(11):2095-2114. doi:
10.1042/bcj20200304
. [PMID: 32459324] - Brendan M O'Leary, Glenda Guek Khim Oh, Chun Pong Lee, A Harvey Millar. Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation.
The Plant cell.
2020 03; 32(3):666-682. doi:
10.1105/tpc.19.00157
. [PMID: 31888967] - María Ramos-Payán, Juan Antonio Ocaña-González, Rut Fernández-Torres, Miguel Ángel Bello-López. A Method for the Determination of Veterinary Drugs from Different Therapeutic Classes in Animal Urine.
Journal of chromatographic science.
2020 Jan; 58(2):127-135. doi:
10.1093/chromsci/bmz084
. [PMID: 32154562] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - H Madej-Śmiechowska, A Orzoł, A Jasiecka-Mikołajczyk, H Ziółkowski, J J Jaroszewski. Differences in the pharmacokinetics of flumequine after single and continuous oral administration in non-fasted broiler chickens.
Polish journal of veterinary sciences.
2018 Sep; 21(3):631-634. doi:
10.24425/124298
. [PMID: 30468341] - Feroza K Choudhury, Amith R Devireddy, Rajeev K Azad, Vladimir Shulaev, Ron Mittler. Rapid Accumulation of Glutathione During Light Stress in Arabidopsis.
Plant & cell physiology.
2018 Sep; 59(9):1817-1826. doi:
10.1093/pcp/pcy101
. [PMID: 29800382] - Jingbo Li, Qiong Peng, Heping Han, Alex Nyporko, Tymofii Kulynych, Qin Yu, Stephen Powles. Glyphosate Resistance in Tridax procumbens via a Novel EPSPS Thr-102-Ser Substitution.
Journal of agricultural and food chemistry.
2018 Aug; 66(30):7880-7888. doi:
10.1021/acs.jafc.8b01651
. [PMID: 29985610] - M A Troncoso-Ponce, J Rivoal, S Dorion, R Sánchez, M Venegas-Calerón, A J Moreno-Pérez, S Baud, R Garcés, E Martínez-Force. Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development.
Plant science : an international journal of experimental plant biology.
2018 Jul; 272(?):117-130. doi:
10.1016/j.plantsci.2018.04.007
. [PMID: 29807582] - Franziska Fichtner, Francois F Barbier, Regina Feil, Mutsumi Watanabe, Maria Grazia Annunziata, Tinashe G Chabikwa, Rainer Höfgen, Mark Stitt, Christine A Beveridge, John E Lunn. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).
The Plant journal : for cell and molecular biology.
2017 Nov; 92(4):611-623. doi:
10.1111/tpj.13705
. [PMID: 28869799] - Alexander Minges, Astrid Höppner, Georg Groth. Trapped intermediate state of plant pyruvate phosphate dikinase indicates substeps in catalytic swiveling domain mechanism.
Protein science : a publication of the Protein Society.
2017 Aug; 26(8):1667-1673. doi:
10.1002/pro.3184
. [PMID: 28470715] - Franco Moritz, Moritz Kaling, Jörg-Peter Schnitzler, Philippe Schmitt-Kopplin. Characterization of poplar metabotypes via mass difference enrichment analysis.
Plant, cell & environment.
2017 Jul; 40(7):1057-1073. doi:
10.1111/pce.12878
. [PMID: 27943315] - Adam J Coggins, Matthew W Powner. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis.
Nature chemistry.
2017 04; 9(4):310-317. doi:
10.1038/nchem.2624
. [PMID: 28338685] - Alexander Minges, Daniel Ciupka, Christian Winkler, Astrid Höppner, Holger Gohlke, Georg Groth. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase.
Scientific reports.
2017 03; 7(?):45389. doi:
10.1038/srep45389
. [PMID: 28358005] - Lucia Abela, Ronen Spiegel, Lisa M Crowther, Andrea Klein, Katharina Steindl, Sorina Mihaela Papuc, Pascal Joset, Yoav Zehavi, Anita Rauch, Barbara Plecko, Thomas Luke Simmons. Plasma metabolomics reveals a diagnostic metabolic fingerprint for mitochondrial aconitase (ACO2) deficiency.
PloS one.
2017; 12(5):e0176363. doi:
10.1371/journal.pone.0176363
. [PMID: 28463998] - Zhao-Hong Hu, Yang-Guang Wang, Huo-Xi Jin, Xiao-Kun Ouyang, Wei-Jian Wu. Analysis of flumequine enantiomers in rat plasma by UFLC-ESI-MS/MS.
Chirality.
2016 11; 28(11):737-743. doi:
10.1002/chir.22654
. [PMID: 27791319] - Xiaoqun Nie, Bin Yang, Lei Zhang, Yang Gu, Sheng Yang, Weihong Jiang, Chen Yang. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.
Molecular microbiology.
2016 Apr; 100(2):289-302. doi:
10.1111/mmi.13316
. [PMID: 26691835] - N Xu, J Dong, Y Yang, Q Yang, Y Liu, X Ai. Pharmacokinetics and bioavailability of flumequine in blunt snout bream (Megalobrama amblycephala) after intravascular and oral administrations.
Journal of veterinary pharmacology and therapeutics.
2016 Apr; 39(2):191-5. doi:
10.1111/jvp.12261
. [PMID: 26411430] - Yue Zhen Li, Dan Wang, Xue Ying Feng, Jian Jiao, Wen Xin Chen, Chang Fu Tian. Genetic Analysis Reveals the Essential Role of Nitrogen Phosphotransferase System Components in Sinorhizobium fredii CCBAU 45436 Symbioses with Soybean and Pigeonpea Plants.
Applied and environmental microbiology.
2016 02; 82(4):1305-15. doi:
10.1128/aem.03454-15
. [PMID: 26682851] - Eunsook S Jin, A Dean Sherry, Craig R Malloy. Lactate Contributes to Glyceroneogenesis and Glyconeogenesis in Skeletal Muscle by Reversal of Pyruvate Kinase.
The Journal of biological chemistry.
2015 Dec; 290(51):30486-97. doi:
10.1074/jbc.m115.689174
. [PMID: 26491014] - Robert P Walker, Alberto Battistelli, Stefano Moscatello, László Técsi, Richard C Leegood, Franco Famiani. Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp.
Plant physiology and biochemistry : PPB.
2015 Dec; 97(?):62-9. doi:
10.1016/j.plaphy.2015.09.004
. [PMID: 26432988] - Nuria K Koteyeva, Elena V Voznesenskaya, Gerald E Edwards. An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.
Plant science : an international journal of experimental plant biology.
2015 Jun; 235(?):70-80. doi:
10.1016/j.plantsci.2015.03.004
. [PMID: 25900567] - Evgenia L Auslender, Sonia Dorion, Sébastien Dumont, Jean Rivoal. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase.
Protein expression and purification.
2015 Jun; 110(?):7-13. doi:
10.1016/j.pep.2014.12.015
. [PMID: 25573389] - Rafia Mir, Shais Jallu, T P Singh. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes.
Critical reviews in microbiology.
2015 Jun; 41(2):172-89. doi:
10.3109/1040841x.2013.813901
. [PMID: 23919299] - Vincenzo Venditti, Vitali Tugarinov, Charles D Schwieters, Alexander Grishaev, G Marius Clore. Large interdomain rearrangement triggered by suppression of micro- to millisecond dynamics in bacterial Enzyme I.
Nature communications.
2015 Jan; 6(?):5960. doi:
10.1038/ncomms6960
. [PMID: 25581904] - Marte Kaldestad, Gyri T Haugland, Anita Rønneseth, Heidrun I Wergeland, Ole Bent Samuelsen. Antibiotic uptake by cultured Atlantic cod leucocytes and effect on intracellular Francisella noatunensis subsp. noatunensis replication.
Diseases of aquatic organisms.
2014 Feb; 108(1):11-21. doi:
10.3354/dao02696
. [PMID: 24492050] - C Ferraresi, L Lucatello, V Meucci, L Intorre, G Grilli, A Piccirillo, E Russo, R Villa, C Montesissa, P Cagnardi. Pharmacokinetic/pharmacodynamic evaluation of the efficacy of flumequine in treating colibacillosis in turkeys.
Poultry science.
2013 Dec; 92(12):3158-65. doi:
10.3382/ps.2013-03460
. [PMID: 24235225] - Jan de Weille, Christine Fabre, Camille Gaven, Norbert Bakalara. Similar pyruvate kinase modifications in glioblastoma cells by 7β-hydroxycholesterol and glutamine withdrawal.
Biochemical pharmacology.
2013 Jul; 86(1):161-7. doi:
10.1016/j.bcp.2013.03.012
. [PMID: 23537700] - A Etienne, M Génard, P Lobit, D Mbeguié-A-Mbéguié, C Bugaud. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells.
Journal of experimental botany.
2013 Apr; 64(6):1451-69. doi:
10.1093/jxb/ert035
. [PMID: 23408829] - Alketa Tarushi, Kostas Lafazanis, Jakob Kljun, Iztok Turel, Anastasia A Pantazaki, George Psomas, Dimitris P Kessissoglou. First- and second-generation quinolone antibacterial drugs interacting with zinc(II): structure and biological perspectives.
Journal of inorganic biochemistry.
2013 Apr; 121(?):53-65. doi:
10.1016/j.jinorgbio.2012.12.009
. [PMID: 23353082] - Chang-Yan Zhou, Yong-Sheng Tian, Zhi-Sheng Xu, Wei Zhao, Chen Chen, Wen-Hua Bao, Lin Bian, Run Cai, Ai-Zhong Wu. Identification of a new gene encoding 5-enolpyruvylshikimate-3-phosphate synthase using genomic library construction strategy.
Molecular biology reports.
2012 Dec; 39(12):10939-47. doi:
10.1007/s11033-012-1994-0
. [PMID: 23090479] - Yu Kitaoka, Kazutaka Mukai, Hiroko Aida, Atsushi Hiraga, Hiroyuki Masuda, Tohru Takemasa, Hideo Hatta. Effects of high-intensity training on lipid metabolism in Thoroughbreds.
American journal of veterinary research.
2012 Nov; 73(11):1813-8. doi:
10.2460/ajvr.73.11.1813
. [PMID: 23106469] - Vincenzo Venditti, G Marius Clore. Conformational selection and substrate binding regulate the monomer/dimer equilibrium of the C-terminal domain of Escherichia coli enzyme I.
The Journal of biological chemistry.
2012 Aug; 287(32):26989-98. doi:
10.1074/jbc.m112.382291
. [PMID: 22722931] - Pierre Dizengremel, Marie-Noëlle Vaultier, Didier Le Thiec, Mireille Cabané, Matthieu Bagard, Dominique Gérant, Joëlle Gérard, Ata Allah Dghim, Nicolas Richet, Dany Afif, Jean-Claude Pireaux, Marie-Paule Hasenfratz-Sauder, Yves Jolivet. Phosphoenolpyruvate is at the crossroads of leaf metabolic responses to ozone stress.
The New phytologist.
2012 Aug; 195(3):512-517. doi:
10.1111/j.1469-8137.2012.04211.x
. [PMID: 22686461] - Evropi Chalkidou, Franc Perdih, Iztok Turel, Dimitris P Kessissoglou, George Psomas. Copper(II) complexes with antimicrobial drug flumequine: structure and biological evaluation.
Journal of inorganic biochemistry.
2012 Aug; 113(?):55-65. doi:
10.1016/j.jinorgbio.2012.03.005
. [PMID: 22694822] - J Musembi Mutuku, Akihiro Nose. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
Plant & cell physiology.
2012 Jun; 53(6):1017-32. doi:
10.1093/pcp/pcs047
. [PMID: 22492233] - Jitender Singh, Guda Maheedhara Reddy, Aakrati Agarwal, Kottakota Chandrasekhar, S K Sopory, M K Reddy, Tanushri Kaul. Molecular and structural analysis of C4-specific PEPC isoform from Pennisetum glaucum plays a role in stress adaptation.
Gene.
2012 Jun; 500(2):224-31. doi:
10.1016/j.gene.2012.03.018
. [PMID: 22712066] - Sudhakar Pandurangan, Agnieszka Pajak, Stephen J Molnar, Elroy R Cober, Sangeeta Dhaubhadel, Cinta Hernández-Sebastià, Werner M Kaiser, Randall L Nelson, Steven C Huber, Frédéric Marsolais. Relationship between asparagine metabolism and protein concentration in soybean seed.
Journal of experimental botany.
2012 May; 63(8):3173-84. doi:
10.1093/jxb/ers039
. [PMID: 22357599] - Laura Marroquí, Thiago M Batista, Alejandro Gonzalez, Elaine Vieira, Alex Rafacho, Simone J Colleta, Sebastião R Taboga, Antonio C Boschero, Angel Nadal, Everardo M Carneiro, Ivan Quesada. Functional and structural adaptations in the pancreatic α-cell and changes in glucagon signaling during protein malnutrition.
Endocrinology.
2012 Apr; 153(4):1663-72. doi:
10.1210/en.2011-1623
. [PMID: 22334714] - Anita Zamboni, Laura Zanin, Nicola Tomasi, Mario Pezzotti, Roberto Pinton, Zeno Varanini, Stefano Cesco. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency.
BMC genomics.
2012 Mar; 13(?):101. doi:
10.1186/1471-2164-13-101
. [PMID: 22433273] - Shiu-Cheung Lung, Makoto Yanagisawa, Simon Dx Chuong. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici.
Plant methods.
2012 Mar; 8(1):8. doi:
10.1186/1746-4811-8-8
. [PMID: 22394490] - Birgit Pudelski, Annette Schock, Stefan Hoth, Ruslana Radchuk, Hans Weber, Jörg Hofmann, Uwe Sonnewald, Jürgen Soll, Katrin Philippar. The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination.
Journal of experimental botany.
2012 Mar; 63(5):1919-36. doi:
10.1093/jxb/err375
. [PMID: 22155670] - Randor Radakovits, Robert E Jinkerson, Susan I Fuerstenberg, Hongseok Tae, Robert E Settlage, Jeffrey L Boore, Matthew C Posewitz. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.
Nature communications.
2012 Feb; 3(?):686. doi:
10.1038/ncomms1688
. [PMID: 22353717] - Huan Yu, Yanfei Tao, Dongmei Chen, Yuanhu Pan, Zhenli Liu, Yulian Wang, Lingli Huang, Menghong Dai, Dapeng Peng, Xu Wang, Zonghui Yuan. Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Feb; 885-886(?):150-9. doi:
10.1016/j.jchromb.2011.12.016
. [PMID: 22230742] - Sonia Giacometti, Claudia Adriana Marrano, Maria Cristina Bonza, Laura Luoni, Margherita Limonta, Maria Ida De Michelis. Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana.
Journal of experimental botany.
2012 Feb; 63(3):1215-24. doi:
10.1093/jxb/err346
. [PMID: 22090438] - Reza Ghanbarpour, Shirin Daneshdoost. Identification of shiga toxin and intimin coding genes in Escherichia coli isolates from pigeons (Columba livia) in relation to phylotypes and antibiotic resistance patterns.
Tropical animal health and production.
2012 Feb; 44(2):307-12. doi:
10.1007/s11250-011-0021-0
. [PMID: 22105907] - W Jiang, R S Pinder, J A Patterson, S C Ricke. Sugar phosphorylation activity in ruminal acetogens.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2012; 47(6):843-6. doi:
10.1080/10934529.2012.664998
. [PMID: 22423990] - Fabien Baldacci-Cresp, Christine Chang, Mickaël Maucourt, Catherine Deborde, Julie Hopkins, Philippe Lecomte, Stéphane Bernillon, Renaud Brouquisse, Annick Moing, Pierre Abad, Didier Hérouart, Alain Puppo, Bruno Favery, Pierre Frendo. (Homo)glutathione deficiency impairs root-knot nematode development in Medicago truncatula.
PLoS pathogens.
2012 Jan; 8(1):e1002471. doi:
10.1371/journal.ppat.1002471
. [PMID: 22241996] - Huawu Jiang, Pingzhi Wu, Sheng Zhang, Chi Song, Yaping Chen, Meiru Li, Yongxia Jia, Xiaohua Fang, Fan Chen, Guojiang Wu. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.
PloS one.
2012; 7(5):e36522. doi:
10.1371/journal.pone.0036522
. [PMID: 22574177] - Su Jeong Ban, Catherine W Rico, In Chul Um, Mi Young Kang. Antihyperglycemic and antioxidative effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in mice fed with a high fat diet.
International journal of molecular sciences.
2012; 13(3):3738-3750. doi:
10.3390/ijms13033738
. [PMID: 22489179] - Alessandra Ferramosca, Annalea Conte, Lena Burri, Kjetil Berge, Francesco De Nuccio, Anna Maria Giudetti, Vincenzo Zara. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.
PloS one.
2012; 7(6):e38797. doi:
10.1371/journal.pone.0038797
. [PMID: 22685607] - Zoltán Áy, Róbert Mihály, Mátyás Cserháti, Éva Kótai, János Pauk. The effect of high concentrations of glufosinate ammonium on the yield components of transgenic spring wheat (Triticum aestivum L.) constitutively expressing the bar gene.
TheScientificWorldJournal.
2012; 2012(?):657945. doi:
10.1100/2012/657945
. [PMID: 22649303] - Nan Wang, Wajahatullah Khan, Donald L Smith. Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature.
PloS one.
2012; 7(2):e31571. doi:
10.1371/journal.pone.0031571
. [PMID: 22348109] - Wei Guo, Li-fang Zou, Yu-rong Li, Yi-ping Cui, Zhi-yuan Ji, Lu-lu Cai, Hua-song Zou, William C Hutchins, Ching-hong Yang, Gong-you Chen. Fructose-bisphophate aldolase exhibits functional roles between carbon metabolism and the hrp system in rice pathogen Xanthomonas oryzae pv. oryzicola.
PloS one.
2012; 7(2):e31855. doi:
10.1371/journal.pone.0031855
. [PMID: 22384086] - Mingjun Li, Fengjuan Feng, Lailiang Cheng. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development.
PloS one.
2012; 7(3):e33055. doi:
10.1371/journal.pone.0033055
. [PMID: 22412983] - Jianfang Xu, Xiao Fan, Xiaowen Zhang, Dong Xu, Shanli Mou, Shaona Cao, Zhou Zheng, Jinlai Miao, Naihao Ye. Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.
PloS one.
2012; 7(5):e37438. doi:
10.1371/journal.pone.0037438
. [PMID: 22616009] - Xuelan Chen, Hengyi Xu, Weihua Lai, Yuan Chen, Xiaohui Yang, Yonghua Xiong. A sensitive chromatographic strip test for the rapid detection of enrofloxacin in chicken muscle.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2012; 29(3):383-91. doi:
10.1080/19440049.2011.641509
. [PMID: 22243423] - Nancy Nader, Sinnie Sin Man Ng, Yonghong Wang, Brent S Abel, George P Chrousos, Tomoshige Kino. Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism.
PloS one.
2012; 7(3):e26751. doi:
10.1371/journal.pone.0026751
. [PMID: 22457708] - Amy M Trowbridge, Dolores Asensio, Allyson S D Eller, Danielle A Way, Michael J Wilkinson, Jörg-Peter Schnitzler, Robert B Jackson, Russell K Monson. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.
PloS one.
2012; 7(2):e32387. doi:
10.1371/journal.pone.0032387
. [PMID: 22384238] - Xin-Yuan Ding, Cheng-Jiao Hong, Yang Liu, Zong-Lin Gu, Kong-Lang Xing, Ai-Jun Zhu, Wei-Liang Chen, Lin-Seng Shi, Xue-Nong Zhang, Qiang Zhang. Pharmacokinetics, tissue distribution, and metabolites of a polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle formulation in rats and mice, using LC-MS/MS.
International journal of nanomedicine.
2012; 7(?):1723-35. doi:
10.2147/ijn.s29696
. [PMID: 22619523] - Cuiyue Liang, Lili Sun, Zhufang Yao, Hong Liao, Jiang Tian. Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean.
PloS one.
2012; 7(5):e38106. doi:
10.1371/journal.pone.0038106
. [PMID: 22662274] - Mauro Medori, Lucia Michelini, Isabel Nogues, Francesco Loreto, Carlo Calfapietra. The impact of root temperature on photosynthesis and isoprene emission in three different plant species.
TheScientificWorldJournal.
2012; 2012(?):525827. doi:
10.1100/2012/525827
. [PMID: 22701360] - Ri-He Peng, Yong-Sheng Tian, Ai-Sheng Xiong, Wei Zhao, Xiao-Yan Fu, Hong-Juan Han, Chen Chen, Xiao-Fen Jin, Quan-Hong Yao. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.
PloS one.
2012; 7(8):e39579. doi:
10.1371/journal.pone.0039579
. [PMID: 22870190] - Tom A Mendum, Jane Newcombe, Ahmad A Mannan, Andrzej M Kierzek, Johnjoe McFadden. Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera.
Genome biology.
2011 Dec; 12(12):R127. doi:
10.1186/gb-2011-12-12-r127
. [PMID: 22208880] - Ki-Hwan Han. Mechanisms of the effects of acidosis and hypokalemia on renal ammonia metabolism.
Electrolyte & blood pressure : E & BP.
2011 Dec; 9(2):45-9. doi:
10.5049/ebp.2011.9.2.45
. [PMID: 22438855] - Stéphanie Daval, Lionel Lebreton, Kévin Gazengel, Morgane Boutin, Anne-Yvonne Guillerm-Erckelboudt, Alain Sarniguet. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots.
Molecular plant pathology.
2011 Dec; 12(9):839-54. doi:
10.1111/j.1364-3703.2011.00715.x
. [PMID: 21726382] - Alexandra Molitor, Doreen Zajic, Lars M Voll, Jorn Pons-K Hnemann, Birgit Samans, Karl-Heinz Kogel, Frank Waller. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew.
Molecular plant-microbe interactions : MPMI.
2011 Dec; 24(12):1427-39. doi:
10.1094/mpmi-06-11-0177
. [PMID: 21830949] - Shaowei Wei, Yin Li. [Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2011 Dec; 27(12):1702-10. doi:
. [PMID: 22506410]
- Brendan O'Leary, Eric T Fedosejevs, Allyson T Hill, James Bettridge, Joonho Park, Srinath K Rao, Craig A Leach, William C Plaxton. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L.
Journal of experimental botany.
2011 Nov; 62(15):5485-95. doi:
10.1093/jxb/err225
. [PMID: 21841182] - Ehud Katz, Kyung Hwan Boo, Ho Youn Kim, Richard A Eigenheer, Brett S Phinney, Vladimir Shulaev, Florence Negre-Zakharov, Avi Sadka, Eduardo Blumwald. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development.
Journal of experimental botany.
2011 Nov; 62(15):5367-84. doi:
10.1093/jxb/err197
. [PMID: 21841177] - Maria-Nefeli Tsaloglou, George S Attard, Marcus K Dymond. The effect of lipids on the enzymatic activity of 6-phosphofructo-1-kinase from B. stearothermophilus.
Chemistry and physics of lipids.
2011 Nov; 164(8):713-21. doi:
10.1016/j.chemphyslip.2011.08.003
. [PMID: 21871874] - Yunliu Zeng, Zhiyong Pan, Yuduan Ding, Andan Zhu, Hongbo Cao, Qiang Xu, Xiuxin Deng. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].
Journal of experimental botany.
2011 Nov; 62(15):5297-309. doi:
10.1093/jxb/err140
. [PMID: 21841170] - Yizhou Wang, Michael R Blatt. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells.
The Biochemical journal.
2011 Oct; 439(1):161-70. doi:
10.1042/bj20110845
. [PMID: 21745184] - Kalliopi C Skyrianou, Franc Perdih, Athanasios N Papadopoulos, Iztok Turel, Dimitris P Kessissoglou, George Psomas. Nickel-quinolones interaction. Part 5-Biological evaluation of nickel(II) complexes with first-, second- and third-generation quinolones.
Journal of inorganic biochemistry.
2011 Oct; 105(10):1273-85. doi:
10.1016/j.jinorgbio.2011.06.005
. [PMID: 21820989] - Zhixin Zhao, Sarah M Assmann. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana.
Journal of experimental botany.
2011 Oct; 62(14):5179-89. doi:
10.1093/jxb/err223
. [PMID: 21813794] - Guillaume Tcherkez, Aline Mahé, Edouard Boex-Fontvieille, Elisabeth Gout, Florence Guérard, Richard Bligny. Experimental evidence of phosphoenolpyruvate resynthesis from pyruvate in illuminated leaves.
Plant physiology.
2011 Sep; 157(1):86-95. doi:
10.1104/pp.111.180711
. [PMID: 21730197] - Tracy P Torres, Yuka Fujimoto, E P Donahue, Richard L Printz, Karen L Houseknecht, Judith L Treadway, Masakazu Shiota. Defective glycogenesis contributes toward the inability to suppress hepatic glucose production in response to hyperglycemia and hyperinsulinemia in zucker diabetic fatty rats.
Diabetes.
2011 Sep; 60(9):2225-33. doi:
10.2337/db09-1156
. [PMID: 21771972] - Meritxell Rosell, Marius C Jones, Malcolm G Parker. Role of nuclear receptor corepressor RIP140 in metabolic syndrome.
Biochimica et biophysica acta.
2011 Aug; 1812(8):919-28. doi:
10.1016/j.bbadis.2010.12.016
. [PMID: 21193034] - Apaporn Boonmee, Chantragan Srisomsap, Daranee Chokchaichamnankit, Aphichart Karnchanatat, Polkit Sangvanich. A proteomic analysis of Curcuma comosa Roxb. rhizomes.
Proteome science.
2011 Jul; 9(?):43. doi:
10.1186/1477-5956-9-43
. [PMID: 21801377]