Subcellular Location: L-type voltage-gated calcium channel complex

Found 192 associated metabolites.

12 associated genes. CACNA1C, CACNA1D, CACNA1S, CACNA2D1, CACNB1, CACNB2, CACNB3, CACNG1, CACNG4, CACNG6, CACNG7, CACNG8

Arenobufagin

5-[(3S,5R,8R,9S,10S,11S,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-12-oxo-2,3,4,5,6,7,8,9,11,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H32O6 (416.2199)


Arenobufagin is a natural product found in Bufo gargarizans, Bufotes viridis, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2]. Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2].

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available. Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Senkyunolide

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (3S)-

C12H16O2 (192.115)


Senkyunolide is a member of 2-benzofurans. Senkyunolide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery (part of); Scutellaria baicalensis Root (part of); Angelica acutiloba Root (part of) ... View More ... Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

L-Leucine

(2S)-2-amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.0528)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

demethylsuberosin

2H-1-Benzopyran-2-one, 7-hydroxy-6-(3-methyl-2-buten-1-yl)-

C14H14O3 (230.0943)


Demethylsuberosin, also known as 7-hydroxy-6-prenylcoumarin or 7-hydroxy-6-prenyl-1-benzopyran-2-one, is a member of the class of compounds known as 7-hydroxycoumarins. 7-hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the C7 position the coumarin skeleton. Demethylsuberosin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Demethylsuberosin can be found in a number of food items such as rice, apple, black radish, and cloudberry, which makes demethylsuberosin a potential biomarker for the consumption of these food products. 7-demethylsuberosin is a hydroxycoumarin that is 7-hydroxycoumarin which is substituted at position 6 by a 3-methylbut-2-en-1-yl group. A natural product found in Citropsis articulata. It has a role as a plant metabolite. Demethylsuberosin is a natural product found in Prangos tschimganica, Limonia acidissima, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1]. Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1].

   

Nookatone

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-

C15H22O (218.1671)


Nootkatone is a natural organic compound and is the most important and expensive aromatic of grapefruit. It is a sesquiterpene and a ketone. Nootkatone was previously thought to be one of the main chemical components of the smell and flavour of grapefruits. In its solid form it is usually found as crystals. As a liquid, it is viscous and yellow. Nootkatone is typically extracted from grapefruit, but can also be manufactured with genetically modified organisms, or through the chemical or biochemical oxidation of valencene. It is also found in Alaska yellow cedar trees and vetiver grass. (+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. Constituent of grapefruit oil and juice. Flavouring ingredient. Nootkatone is found in many foods, some of which are citrus, sweet orange, lime, and lemon. Nootkatone is an organic compound, a sesquiterpenoid, which means that it is a C15 derivative that also contains an oxygen-containing functional group (a ketone). It is the most valuable aroma compound of grapefruit.[2] Nootkatone was originally isolated from the wood of the Alaskan yellow cedar, Cupressus nootkatensis. The species name, nootkatensis, is derived from the language of the Nuu-Chah-Nulth people of Canada (formerly referred to as the Nootka people).[3] Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].

   

Valtrats

BUTANOIC ACID, 3-METHYL-, 4-((ACETYLOXY)METHYL)-6,7A-DIHYDROSPIRO(CYCLOPENTA-(C)PYRAN-7(1H),2-OXIRANE)-1,6-DIYL ESTER, (1S-(1-.ALPHA.,6-.ALPHA,,7- .BETA.,7A-.ALPHA.))-

C22H30O8 (422.1941)


Valtratum is a fatty acid ester. Valtrate is a natural product found in Valeriana pulchella, Valeriana alpestris, and other organisms with data available. See also: Viburnum opulus bark (part of). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2]. Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2].

   

Ryanodine

1H-Pyrrole-2-carboxylic acid, (3S,4R,4aR,6S,6aS,7S,8R,8aS,8bR,9S,9aS)-dodecahydro-4,6,7,8a,8b,9a-hexahydroxy-3,6a,9-trimethyl-7-(1-methylethyl)-6,9-methanobenzo(1,2)pentaleno(1,6-bc)furan-8-yl ester

C25H35NO9 (493.2312)


An insecticide alkaloid isolated from South American plant Ryania speciosa. Ryania is a natural product found in Ryania speciosa and Spigelia anthelmia with data available. Ryanodine is a poisonous alkaloid found in the South American plant Ryania speciosa (Flacourtiaceae). It was originally used as an insecticide. The compound has extremely high affinity to the open-form ryanodine receptor, a group of calcium channels found in skeletal muscle, smooth muscle, and heart muscle cells. It binds with such high affinity to the receptor that it was used as a label for the first purification of that class of ion channels and gave its name to it. A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.

   

Lobeline

Ethanone, 2-(6-(2-hydroxy-2-phenylethyl)-1-methyl-2-piperidinyl)-1-phenyl-, (2R-(2alpha,6alpha(S*)))-

C22H27NO2 (337.2042)


(-)-lobeline is an optically active piperidine alkaloid having a 2-oxo-2-phenylethyl substituent at the 2-position and a 2-hydroxy-2-phenylethyl group at the 6-position. It has a role as a nicotinic acetylcholine receptor agonist. It is a piperidine alkaloid, a tertiary amine and an aromatic ketone. Lobeline is a natural product found in Lobelia sessilifolia, Lobelia inflata, and other organisms with data available. An alkaloid that has actions similar to NICOTINE on nicotinic cholinergic receptors but is less potent. It has been proposed for a variety of therapeutic uses including in respiratory disorders, peripheral vascular disorders, insomnia, and smoking cessation. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D019141 - Respiratory System Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.733 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728

   

Allicin

Diallyldisulfid-S-oxid, 3-prop-2-enylsulfinylsulfanylprop-1-ene

C6H10OS2 (162.0173)


Allicin is found in garden onion. Allicin is isolated from garlic (Allium sativum). Nutriceutical Allicin is an organic compound obtained from garlic. It is also obtainable from onions, and other species in the family Alliaceae. It was first isolated and studied in the laboratory by Chester J. Cavallito in 1944. This colourless liquid has a distinctively pungent smell. This compound exhibits antibacterial and anti-fungal properties. Allicin is garlics defence mechanism against attacks by pests Allicin is a sulfoxide and a botanical anti-fungal agent. It has a role as an antibacterial agent. Allicin has been used in trials studying the treatment of Follicular Lymphoma. Allicin is a natural product found in Allium chinense, Allium nutans, and other organisms with data available. See also: Garlic (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants Isolated from garlic (Allium sativum). Nutriceutical D009676 - Noxae > D000963 - Antimetabolites D000890 - Anti-Infective Agents D007004 - Hypoglycemic Agents Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2]. Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2].

   

Neocnidolide

1(3H)-Isobenzofuranone, 3-butyl-3a,4,5,6-tetrahydro-, (3S,3aR)-

C12H18O2 (194.1307)


Neocnidolide, also known as neocnidilide, cis-(-)-isomer or sedanolide, is a member of the class of compounds known as isobenzofurans. Isobenzofurans are organic aromatic compounds containing an isobenzofuran moiety. Neocnidolide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Neocnidolide can be found in dill, which makes neocnidolide a potential biomarker for the consumption of this food product. Neocnidilide is a gamma-lactone. Neocnidilide is a natural product found in Petroselinum crispum and Apium graveolens with data available.

   

Butin_(molecule)

4H-1-BENZOPYRAN-4-ONE, 2-(3,4-DIHYDROXYPHENYL)-2,3-DIHYDRO-7-HYDROXY-, (2S)-

C15H12O5 (272.0685)


Butin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. It has a role as an antioxidant, a protective agent and a metabolite. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. Butin is a natural product found in Dipteryx lacunifera, Acacia vestita, and other organisms with data available. A trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2].

   

Aldosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-2-methyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-15-carbaldehyde

C21H28O5 (360.1937)


Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. [HMDB] Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically, it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2819 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Amlodipine

3-Ethyl-5-methyl (+-)-2-(2-aminoethoxymethyl)-4-(O-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid

C20H25ClN2O5 (408.1452)


Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium.; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. [HMDB] Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium. Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diltiazem

Acetic acid (2S,3S)-5-(2-dimethylamino-ethyl)-2-(4-methoxy-phenyl)-4-oxo-2,3,4,5-tetrahydro-benzo[b][1,4]thiazepin-3-yl ester

C22H26N2O4S (414.1613)


Diltiazem is only found in individuals that have used or taken this drug. It is a benzothiazepine derivative with vasodilating action due to its antagonism of the actions of the calcium ion in membrane functions. It is also teratogenic. [PubChem]Possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, diltiazem, like verapamil, inhibits the influx of extracellular calcium across both the myocardial and vascular smooth muscle cell membranes. The resultant inhibition of the contractile processes of the myocardial smooth muscle cells leads to dilation of the coronary and systemic arteries and improved oxygen delivery to the myocardial tissue. C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DB - Benzothiazepine derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Gabapentin

2-[1-(aminomethyl)cyclohexyl]acetic acid

C9H17NO2 (171.1259)


Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201) [HMDB] Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Verapamil

2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile

C27H38N2O4 (454.2831)


Verapamil is only found in individuals that have used or taken this drug. Verapamil is a calcium channel blocker that is a class IV anti-arrhythmia agent. [PubChem]Verapamil inhibits voltage-dependent calcium channels. Specifically, its effect on L-type calcium channels in the heart causes a reduction in ionotropy and chronotropy, thuis reducing heart rate and blood pressure. Verapamils mechanism of effect in cluster headache is thought to be linked to its calcium-channel blocker effect, but which channel subtypes are involved is presently not known. [PubChem] Calcium channel antagonists can be quite toxic. In the management of poisoning, early recognition is critical. Calcium channel antagonists are frequently prescribed, and the potential for serious morbidity and mortality with over dosage is significant. Ingestion of these agents should be suspected in any patient who presents in an overdose situation with unexplained hypotension and conduction abnormalities. The potential for toxicity should be noted in patients with underlying hepatic or renal dysfunction who are receiving therapeutic doses. (PMID 8213877). C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker A calcium channel blocker that is a class IV anti-arrhythmia agent. -- Pubchem; COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 8557 CONFIDENCE standard compound; INTERNAL_ID 2260 CONFIDENCE standard compound; INTERNAL_ID 4081 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker KEIO_ID V021; [MS2] KO009311 Corona-virus KEIO_ID V021 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sotalol

N-(4-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}phenyl)methanesulfonamide

C12H20N2O3S (272.1195)


Sotalol is only found in individuals that have used or taken this drug. It is an adrenergic beta-antagonist that is used in the treatment of life-threatening arrhythmias (PubChem). Sotalol has both beta-adrenoreceptor blocking (Vaughan Williams Class I) and cardiac action potential duration prolongation (Vaughan Williams Class I) antiarrhythmic properties. Sotalol is a racemic mixture of d- and l-sotalol. Both isomers have similar Class I antiarrhythmic effects, while the l-isomer is responsible for virtually all of the beta-blocking activity. Sotalol inhibits response to adrenergic stimuli by competitively blocking β1-adrenergic receptors within the myocardium and β2-adrenergic receptors within bronchial and vascular smooth muscle. The electrophysiologic effects of sotalol may be due to its selective inhibition of the rapidly activating component of the potassium channel involved in the repolarization of cardiac cells. The class II electrophysiologic effects are caused by an increase in sinus cycle length (slowed heart rate), decreased AV nodal conduction, and increased AV nodal refractoriness, while the class III electrophysiological effects include prolongation of the atrial and ventricular monophasic action potentials, and effective refractory period prolongation of atrial muscle, ventricular muscle, and atrio-ventricular accessory pathways (where present) in both the anterograde and retrograde directions.

   

Sulfadiazine

4-amino-N-(pyrimidin-2-yl)benzene-1-sulfonamide

C10H10N4O2S (250.0524)


Sulfadiazine is only found in individuals that have used or taken this drug. It is one of the short-acting sulfonamides used in combination with pyrimethamine to treat toxoplasmosis in patients with acquired immunodeficiency syndrome and in newborns with congenital infections. [PubChem]Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EC - Intermediate-acting sulfonamides D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides Antibacterial agent. It is used in some countries for control of bacterial disease in farmed fish. Not approved for aquacultural use in the USA D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 179 CONFIDENCE standard compound; INTERNAL_ID 1011

   

Nifedipine

3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C17H18N2O6 (346.1165)


Nifedipine has been formulated as both a long- and short-acting 1,4-dihydropyridine calcium channel blocker. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, nifedipine prevents calcium-dependent myocyte contraction and vasoconstriction. A second proposed mechanism for the drugs vasodilatory effects involves pH-dependent inhibition of calcium influx via inhibition of smooth muscle carbonic anhydrase. Nifedipine is used to treat hypertension and chronic stable angina. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Aminosalicylic Acid

p-Aminosalicylic acid, monosodium salt, dihydrate

C7H7NO3 (153.0426)


Aminosalicylic Acid is only found in individuals that have used or taken this drug. It is an antitubercular agent often administered in association with isoniazid. The sodium salt of the drug is better tolerated than the free acid. [PubChem]There are two mechanisms responsible for aminosalicylic acids bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slows. Secondly, aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank KEIO_ID A129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

M-Coumaric acid

trans-3-(m-Hydroxyphenyl)-2-propenoic acid

C9H8O3 (164.0473)


m-Coumaric acid, also known as 3-coumarate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. m-Coumaric acid exists in all living organisms, ranging from bacteria to humans. m-Coumaric acid (CAS: 588-30-7) is a polyphenol metabolite from caffeic acid, formed by the gut microflora. Outside of the human body, m-Coumaric acid is found, on average, in the highest concentration within a few different foods, such as olives, corns, and beers. m-Coumaric acid has also been detected, but not quantified in several different foods, such as carrots, strawberries, grape wines, garden tomato, and bilberries. MCT-mediated absorption of phenolic compounds per se and their colonic metabolites would exert a significant impact on human health (PMID:16870009, 15479001, 15479001). m-Coumaric acid is transported by the monocarboxylic acid transporter (MCT). The amount of this compound in human biofluids is diet-dependant. m-Coumaric acid is detected after the consumption of whole grain. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. m-Coumaric acid is found in many foods, some of which are corn, garden tomato (variety), grape wine, and beer. Acquisition and generation of the data is financially supported in part by CREST/JST. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

Sedoheptulose 7-phosphate

[(2R,3R,4R,5S)-2,3,4,5,7-pentahydroxy-6-oxoheptyl] dihydrogen phosphate

C7H15O10P (290.0403)


KEIO_ID S083

   

2-Aminoethyl diphenylborinate

2-Aminoethyl diphenylborinate

C14H16BNO (225.1325)


   

Butyl 4-aminobenzoate

p-Aminobenzoic acid butyl ester

C11H15NO2 (193.1103)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Acetazolamide

N-[5-(Aminosulphonyl)-1,3,5-thiadiazol-2-yl]acetamide

C4H6N4O3S2 (221.9881)


One of the carbonic anhydrase inhibitors that is sometimes effective against absence seizures. It is sometimes useful also as an adjunct in the treatment of tonic-clonic, myoclonic, and atonic seizures, particularly in women whose seizures occur or are exacerbated at specific times in the menstrual cycle. However, its usefulness is transient often because of rapid development of tolerance. Its antiepileptic effect may be due to its inhibitory effect on brain carbonic anhydrase, which leads to an increased transneuronal chloride gradient, increased chloride current, and increased inhibition. (From Smith and Reynard, Textbook of Pharmacology, 1991, p337) S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3011

   

Bioallethrin

(1R)-2-methyl-4-oxo-3-(prop-2-en-1-yl)cyclopent-2-en-1-yl (1R,3S)-2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropanecarboxylate

C19H26O3 (302.1882)


D010575 - Pesticides > D007306 - Insecticides > D000487 - Allethrins D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals

   

Astemizole

1-[(4-fluorophenyl)methyl]-N-{1-[2-(4-methoxyphenyl)ethyl]piperidin-4-yl}-1H-1,3-benzodiazol-2-amine

C28H31FN4O (458.2482)


Astemizole is a long-acting, non-sedating second generation antihistamine used in the treatment of allergy symptoms. It was withdrawn from market by the manufacturer in 1999 due to the potential to cause arrhythmias at high doses, especially when when taken with CYP inhibitors or grapefruit juice. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].

   

Bendroflumethiazide

+--3-Benzyl-3,4-dihydro-6-(trifluoromethyl)-2H-1,2,4-benzothiadiazine-7-sulphonamide 1,1-dioxide

C15H14F3N3O4S2 (421.0378)


Bendroflumethiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with actions and uses similar to those of hydrochlorothiazide. It has been used in the treatment of familial hyperkalemia, hypertension, edema, and urinary tract disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p810)As a diuretic, bendroflumethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like bendroflumethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of bendroflumethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Bisoprolol

1-[(propan-2-yl)amino]-3-(4-{[2-(propan-2-yloxy)ethoxy]methyl}phenoxy)propan-2-ol

C18H31NO4 (325.2253)


Bisoprolol is a cardioselective β1-adrenergic blocking agent used for secondary prevention of myocardial infarction (MI), heart failure, angina pectoris and mild to moderate hypertension. Bisoprolol is structurally similar to metoprolol, acebutolol and atenolol in that it has two substituents in the para position of the benzene ring. The β1-selectivity of these agents is thought to be due in part to the large substituents in the para position. At lower doses (less than 20 mg daily), bisoprolol selectively blocks cardiac β1-adrenergic receptors with little activity against β2-adrenergic receptors of the lungs and vascular smooth muscle. Receptor selectivity decreases with daily doses of 20 mg or greater. Unlike propranolol and pindolol, bisoprolol does not exhibit membrane-stabilizing or sympathomimetic activity. Bisoprolol possesses a single chiral centre and is administered as a racemic mixture. Only l-bisoprolol exhibits significant β-blocking activity. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3013 CONFIDENCE standard compound; INTERNAL_ID 8595 CONFIDENCE standard compound; INTERNAL_ID 2677

   

Flecainide

N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

C17H20F6N2O3 (414.1378)


A potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Paradoxically, however, in myocardial infarct patients with either symptomatic or asymptomatic arrhythmia, flecainide exacerbates the arrhythmia and is not recommended for use in these patients. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3020 CONFIDENCE standard compound; INTERNAL_ID 2276 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Fluvoxamine

(2-aminoethoxy)({5-methoxy-1-[4-(trifluoromethyl)phenyl]pentylidene})amine

C15H21F3N2O2 (318.1555)


Fluvoxamine is an antidepressant which functions pharmacologically as a selective serotonin reuptake inhibitor. Though it is in the same class as other SSRI drugs, it is most often used to treat obsessive-compulsive disorder. Fluvoxamine has been in use in clinical practice since 1983 and has a clinical trial database comprised of approximately 35,000 patients. It was launched in the US in December 1994 and in Japan in June 1999. As of the end of 1995, more than 10 million patients worldwide have been treated with fluvoxamine. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent CONFIDENCE standard compound; INTERNAL_ID 8519 D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Miglitol

(2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol

C8H17NO5 (207.1107)


Miglitol is an oral anti-diabetic drug that acts by inhibiting the ability of the patient to breakdown complex carbohydrates into glucose. It is primarily used in diabetes mellitus type 2 for establishing greater glycemic control by preventing the digestion of carbohydrates (such as disaccharides, oligosaccharides, and polysaccharides) into monosaccharides which can be absorbed by the body. Miglitol inhibits glycoside hydrolase enzymes called alpha-glucosidases. Since miglitol works by preventing digestion of carbohydrates, it lowers the degree of postprandial hyperglycemia. It must be taken at the start of main meals to have maximal effect. Its effect will depend on the amount of non-monosaccharide carbohydrates in a persons diet. In contrast to acarbose (another alpha-glucosidase inhibitor), miglitol is systemically absorbed; however, it is not metabolized and is excreted by the kidneys. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors C471 - Enzyme Inhibitor > C2846 - Glucosidase Inhibitor D004791 - Enzyme Inhibitors

   

Nicardipine

3-{2-[benzyl(methyl)amino]ethyl} 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C26H29N3O6 (479.2056)


A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3807; ORIGINAL_PRECURSOR_SCAN_NO 3803 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3813; ORIGINAL_PRECURSOR_SCAN_NO 3810 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7839; ORIGINAL_PRECURSOR_SCAN_NO 7837 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7818; ORIGINAL_PRECURSOR_SCAN_NO 7816 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7789; ORIGINAL_PRECURSOR_SCAN_NO 7787 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3822; ORIGINAL_PRECURSOR_SCAN_NO 3819 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3813; ORIGINAL_PRECURSOR_SCAN_NO 3811 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3884; ORIGINAL_PRECURSOR_SCAN_NO 3883 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3807; ORIGINAL_PRECURSOR_SCAN_NO 3805 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7827; ORIGINAL_PRECURSOR_SCAN_NO 7825 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7806; ORIGINAL_PRECURSOR_SCAN_NO 7805 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7845; ORIGINAL_PRECURSOR_SCAN_NO 7843 C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Nimodipine

2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-beta-methoxyethyl ester 5-isopropyl ester

C21H26N2O7 (418.174)


Nimodipine is a 1,4-dihydropyridine calcium channel blocker. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, nimodipine prevents calcium-dependent smooth muscle contraction and subsequent vasoconstriction. Compared to other calcium channel blocking agents, nimodipine exhibits greater effects on cerebral circulation than on peripheral circulation. Nimodipine is used to as an adjunct to improve the neurologic outcome following subarachnoid hemorrhage from ruptured intracranial aneurysm. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Trichlormethiazide

6-chloro-3-(dichloromethyl)-1,1-dioxo-3,4-dihydro-2H-1λ⁶,2,4-benzothiadiazine-7-sulfonamide

C8H8Cl3N3O4S2 (378.9022)


Trichlormethiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with properties similar to those of hydrochlorothiazide. (From Martindale, The Extra Pharmacopoeia, 30th ed, p830)Trichlormethiazide appears to block the active reabsorption of chloride and possibly sodium in the ascending loop of Henle, altering electrolyte transfer in the proximal tubule. This results in excretion of sodium, chloride, and water and, hence, diuresis. As a diuretic, Trichloromethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like Trichloromethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of Trichloromethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Chlorpyrifos-methyl

Phosphorothioic acid, O,O-dimethyl O-(3,5,6-trichloro-2-pyridinyl) ester

C7H7Cl3NO3PS (320.895)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2951

   

Doxycycline

(4S,4AR,5S,5ar,6R,12as)-4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide

C22H24N2O8 (444.1533)


Doxycycline is only found in individuals that have used or taken this drug. It is a synthetic tetracycline derivative with similar antimicrobial activity. Animal studies suggest that it may cause less tooth staining than other tetracyclines. It is used in some areas for the treatment of chloroquine-resistant falciparum malaria (malaria, falciparum). [PubChem]Doxycycline, like minocycline, is lipophilic and can pass through the lipid bilayer of bacteria. Doxycycline reversibly binds to the 30 S ribosomal subunits and possibly the 50S ribosomal subunit(s), blocking the binding of aminoacyl tRNA to the mRNA and inhibiting bacterial protein synthesis. Doxycycline prevents the normal function of the apicoplast of Plasmodium falciparum, a malaria causing organism. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

pymetrozine

Pesticide4_Pymetrozine_C10H11N5O_(E)-4,5-Dihydro-6-methyl-4-[(3-pyridinylmethylene)amino]-1,2,4-triazin-3(2H)-one

C10H11N5O (217.0964)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 2947 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2674; ORIGINAL_PRECURSOR_SCAN_NO 2673 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2682; ORIGINAL_PRECURSOR_SCAN_NO 2681 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2679; ORIGINAL_PRECURSOR_SCAN_NO 2677 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2664; ORIGINAL_PRECURSOR_SCAN_NO 2662 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2667; ORIGINAL_PRECURSOR_SCAN_NO 2665

   

Tamoxifen

1-Para-beta-dimethylaminoethoxyphenyl-trans-1,2-diphenylbut-1-ene

C26H29NO (371.2249)


Tamoxifen is only found in individuals that have used or taken this drug. It is one of the selective estrogen receptor modulators with tissue-specific activities. Tamoxifen acts as an anti-estrogen (inhibiting agent) in the mammary tissue, but as an estrogen (stimulating agent) in cholesterol metabolism, bone density, and cell proliferation in the endometrium. [PubChem]Tamoxifen binds to estrogen receptors (ER), inducing a conformational change in the receptor. This results in a blockage or change in the expression of estrogen dependent genes. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BA - Anti-estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D050071 - Bone Density Conservation Agents D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Amiodarone

{2-[4-(2-butyl-1-benzofuran-3-carbonyl)-2,6-diiodophenoxy]ethyl}diethylamine

C25H29I2NO3 (645.0237)


Amiodarone is only found in individuals that have used or taken this drug. It is an antianginal and antiarrhythmic drug. It increases the duration of ventricular and atrial muscle action by inhibiting Na,K-activated myocardial adenosine triphosphatase. There is a resulting decrease in heart rate and in vascular resistance. [PubChem]The antiarrhythmic effect of amiodarone may be due to at least two major actions. It prolongs the myocardial cell-action potential (phase 3) duration and refractory period and acts as a noncompetitive a- and b-adrenergic inhibitor. CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9504; ORIGINAL_PRECURSOR_SCAN_NO 9502 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9437; ORIGINAL_PRECURSOR_SCAN_NO 9432 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9523; ORIGINAL_PRECURSOR_SCAN_NO 9522 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9470; ORIGINAL_PRECURSOR_SCAN_NO 9468 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9458; ORIGINAL_PRECURSOR_SCAN_NO 9457 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9497; ORIGINAL_PRECURSOR_SCAN_NO 9495 C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3067 CONFIDENCE standard compound; INTERNAL_ID 2733 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Minocycline

(4S,4AS,5ar,12as)-4,7-bis(dimethylamino)-3,10,12,12a-tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide

C23H27N3O7 (457.1849)


Minocycline is only found in individuals that have used or taken this drug. It is a tetracycline analog, having a 7-dimethylamino and lacking the 5 methyl and hydroxyl groups, which is effective against tetracycline-resistant staphylococcus infections. [PubChem]Minocycline passes directly through the lipid bilayer or passively diffuses through porin channels in the bacterial membrane. Tetracyclines like minocycline bind to the 30S ribosomal subunit, preventing the binding of tRNA to the mRNA-ribosome complex and interfering with protein synthesis. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AF - Antiinfectives for treatment of acne J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3205 KEIO_ID M159; [MS3] KO009052 KEIO_ID M159; [MS2] KO009051 KEIO_ID M159

   

Nateglinide

(2R)-3-phenyl-2-[(4-propan-2-ylcyclohexanecarbonyl)amino]propanoic acid

C19H27NO3 (317.1991)


Nateglinide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It belongs to the meglitinide class of short-acting insulin secretagogues, which act by binding to cells of the pancreas to stimulate insulin release. Nateglinide is an amino acid derivative that induces an early insulin response to meals decreasing postprandial blood glucose levels. It should only be taken with meals and meal-time doses should be skipped with any skipped meal. Approximately one month of therapy is required before a decrease in fasting blood glucose is seen. Meglitnides may have a neutral effect on weight or cause a slight increase in weight. The average weight gain caused by meglitinides appears to be lower than that caused by sulfonylureas and insulin and appears to occur only in those naive to oral antidiabetic agents. Due to their mechanism of action, meglitinides may cause hypoglycemia although the risk is thought to be lower than that of sulfonylureas since their action is dependent on the presence of glucose. In addition to reducing postprandial and fasting blood glucose, meglitnides have been shown to decrease glycosylated hemoglobin (HbA1c) levels, which are reflective of the last 8-10 weeks of glucose control. Meglitinides appear to be more effective at lowering postprandial blood glucose than metformin, sulfonylureas and thiazolidinediones. Nateglinide is extensively metabolized in the liver and excreted in urine (83\\%) and feces (10\\%). The major metabolites possess less activity than the parent compound. One minor metabolite, the isoprene, has the same potency as its parent compound. C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents

   

Phenylephrine

(R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol

C9H13NO2 (167.0946)


Phenylephrine is an alpha-adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent (PubChem). Phenylephrine is used as a decongestant, available as an oral medicine or as a nasal spray. Phenylephrine is not the most common over-the-counter (OTC) decongestant (wikipedia). (R)-(-)-Phenylephrine is a selective α1-adrenoceptor agonist primarily used as a decongestant.

   

Moxifloxacin

7-[(4aS,7aS)-octahydro-1H-pyrrolo[3,4-b]pyridin-6-yl]-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

C21H24FN3O4 (401.1751)


Moxifloxacin is only found in individuals that have used or taken this drug. It is a synthetic fluoroquinolone antibiotic agent. Bayer AG developed the drug (initially called BAY 12-8039) and it is marketed worldwide (as the hydrochloride) under the brand name Avelox (in some countries also Avalox) for oral treatment.The bactericidal action of moxifloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV. DNA gyrase is an essential enzyme that is involved in the replication, transcription and repair of bacterial DNA. Topoisomerase IV is an enzyme known to play a key role in the partitioning of the chromosomal DNA during bacterial cell division. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Phenylacetone

1-phenylpropan-2-one

C9H10O (134.0732)


Phenylacetone is a DEA Schedule II controlled substance. Substances in the DEA Schedule II have a high potential for abuse which may lead to severe psychological or physical dependence. It is a Immediate precursors substance. Phenylacetone is a propanone that is propan-2-one substituted by a phenyl group at position 1. It is a member of propanones and a methyl ketone. Phenylacetone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=103-79-7 (retrieved 2024-10-28) (CAS RN: 103-79-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ritodrine

4-(2-{[(1R,2S)-1-hydroxy-1-(4-hydroxyphenyl)propan-2-yl]amino}ethyl)phenol

C17H21NO3 (287.1521)


Ritodrine is only found in individuals that have used or taken this drug. It is an adrenergic beta-agonist used to control premature labor. [PubChem]Ritodrine is beta-2 adrenergic agonist. It binds to beta-2 adrenergic receptors on outer membrane of myometrial cell, activates adenyl cyclase to increase the level of cAMP which decreases intracellular calcium and leads to a decrease of uterine contractions. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Dantrolene

1-({[5-(4-nitrophenyl)furan-2-yl]methylidene}amino)imidazolidine-2,4-dione

C14H10N4O5 (314.0651)


Dantrolene is only found in individuals that have used or taken this drug.Chemically, dantrolene is a hydantoin derivative, but does not exhibit antiepileptic activity like other hydantoin derivates such as phenytoin.Dantrolene depresses excitation-contraction coupling in skeletal muscle by binding to the ryanodine receptor 1, and decreasing intracellular calcium concentration. Ryanodine receptors mediate the release of calcium from the sarcoplasmic reticulum, an essential step in muscle contraction. M - Musculo-skeletal system > M03 - Muscle relaxants > M03C - Muscle relaxants, directly acting agents > M03CA - Dantrolene and derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents

   

Mexiletine

Boehringer ingelheim brand OF mexiletine hydrochloride

C11H17NO (179.131)


Mexiletine is only found in individuals that have used or taken this drug. It is an antiarrhythmic agent pharmacologically similar to lidocaine. It may have some anticonvulsant properties. [PubChem]Mexiletine, like lidocaine, inhibits the inward sodium current required for the initiation and conduction of impulses, thus reducing the rate of rise of the action potential, Phase 0. It achieves this reduced sodium current by inhibiting sodium channels. Mexiletine decreases the effective refractory period (ERP) in Purkinje fibers in the heart. The decrease in ERP is of lesser magnitude than the decrease in action potential duration (APD), which results in an increase in the ERP/APD ratio. It does not significantly affect resting membrane potential or sinus node automaticity, left ventricular function, systolic arterial blood pressure, atrioventricular (AV) conduction velocity, or QRS or QT intervals C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3010 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Acrylic acid

Acrylic acid, ca (2:1) salt, dihydrate

C3H4O2 (72.0211)


Polyacrylic acid, sodium salt is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Monomer component of packaging materials for food. Acrylic acid is found in pineapple. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives KEIO_ID A041

   

4-Chloro-3-methylphenol

1-Chloro-2-methyl-4-hydroxybenzene

C7H7ClO (142.0185)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468

   

Asymmetric dimethylarginine

(2S)-2-amino-5-[(E)-[amino(dimethylamino)methylidene]amino]pentanoic acid

C8H18N4O2 (202.143)


Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally-essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide, a key chemical to endothelial and hence cardiovascular health. Asymmetric dimethylarginine is created in protein methylation, a common mechanism of post-translational protein modification. This reaction is catalyzed by an enzyme set called S-adenosylmethionine protein N-methyltransferases (protein methylases I and II). The methyl groups transferred to create ADMA are derived from the methyl group donor S-adenosylmethionine, an intermediate in the metabolism of homocysteine. (Homocysteine is an important blood chemical, because it is also a marker of cardiovascular disease). After synthesis, ADMA migrates into the extracellular space and thence into blood plasma. Asymmetric dimethylarginine is measured using high performance liquid chromatography. ADMA has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Isolated from broad bean seeds (Vicia faba). NG,NG-Dimethyl-L-arginine is found in many foods, some of which are yellow wax bean, spinach, green zucchini, and white cabbage. D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

2-Phenylacetamide

(alpha-)2-Phenylacetamide

C8H9NO (135.0684)


2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. [HMDB] 2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. 2-Phenylacetamide is an endogenous metabolite.

   

Dofetilide

N-[4-(2-{[2-(4-methanesulfonamidophenyl)ethyl](methyl)amino}ethoxy)phenyl]methanesulfonamide

C19H27N3O5S2 (441.1392)


Dofetilide is a class III antiarrhythmic agent that is approved by the Food and Drug Administration (FDA) for the maintenance of sinus rhythm in individuals prone to the formation of atrial fibrillation and flutter, and for the chemical cardioversion to sinus rhythm from atrial fibrillation and flutter. [Wikipedia] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Carglumic acid

(2S)-2-(Carbamoylamino)pentanedioic acid

C6H10N2O5 (190.059)


Carglumic acid is an orphan drug used for the treatment of hyperammonaemia in patients with N-acetylglutamate synthase deficiency. This rare genetic disorder results in elevated blood levels of ammonia, which can eventually cross the blood-brain barrier and cause neurologic problems, cerebral edema, coma, and death. Carglumic acid was approved by the U.S. Food and Drug Administration (FDA) on 18 March 2010. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives C78275 - Agent Affecting Blood or Body Fluid KEIO_ID C078

   

succinylcholine

succinylcholine

C14H30N2O4+2 (290.2205)


M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents > M03AB - Choline derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Enterodiol

[R-(R*,r*)]-2,3-bis[(3-hydroxyphenyl)methyl]-1,4-butanediol

C18H22O4 (302.1518)


Enterodiol is one of the most important lignan-type phytoestrogens identified in serum, urine, bile and seminal fluids of humans and animals. Phytoestrogens are a diverse group of compounds found in many edible plants that have, as their common denominator, a phenolic group that they share with estrogenic steroids. This phenolic group appears to play an important role in determining the estrogenic agonist/antagonistic properties of these compounds. Phytoestrogens have been categorized according to their chemical structures as isoflavones, lignans and coumestans. Enterodiol is formed by bacteria in the intestinal tract from the plant lignans matairesinol and secoisolariciresinol, which exist in various whole-grain cereals (barley, rye and wheat), seeds, nuts, legumes and vegetables. (PMID: 12270221, J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Sep 25;777(1-2):289-309.) [HMDB]. Enterodiol is a biomarker for the consumption of soy beans and other soy products. Enterodiol is one of the most important lignan-type phytoestrogens identified in serum, urine, bile, and seminal fluids of humans and animals. Phytoestrogens are a diverse group of compounds found in many edible plants that have, as their common denominator, a phenolic group that they share with estrogenic steroids. This phenolic group appears to play an important role in determining the estrogenic agonist/antagonistic properties of these compounds. Phytoestrogens have been categorized according to their chemical structures as isoflavones, lignans, and coumestans. Enterodiol is formed by bacteria in the intestinal tract from the plant lignans matairesinol and secoisolariciresinol, which exist in various whole-grain cereals (barley, rye, and wheat), seeds, nuts, legumes, and vegetables (PMID: 12270221, J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Sep 25;777(1-2):289-309.). Enterodiol is a biomarker for the consumption of soy beans and other soy products. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

1-Butanol

Alcohol, N-butyl

C4H10O (74.0732)


1-butanol, also known as 1-butyl alcohol or 1-hydroxybutane, is a member of the class of compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-butanol is considered to be a fatty alcohol lipid molecule. 1-butanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). 1-butanol can be found in a number of food items such as sugar apple, kumquat, cherry tomato, and angelica, which makes 1-butanol a potential biomarker for the consumption of these food products. 1-butanol can be found primarily in blood, feces, and saliva, as well as throughout most human tissues. 1-butanol exists in all eukaryotes, ranging from yeast to humans. Moreover, 1-butanol is found to be associated with diabetes mellitus type 2. The largest use of n-butanol is as an industrial intermediate, particularly for the manufacture of butyl acetate (itself an artificial flavorant and industrial solvent). It is a petrochemical, manufactured from propylene and usually used close to the point of manufacture. Estimated production figures for 1997 are: United States 784,000 tonnes; Western Europe 575,000 tonnes; Japan 225,000 tonnes . 1-Butanol, which is also known as n-butanol or 1-butanol or butyl alcohol (sometimes also called biobutanol when produced biologically), is an alcohol with a 4 carbon structure and the molecular formula of C4H10O. It is primarily used as a solvent, as an intermediate in chemical synthesis, and as a fuel. There are four isomeric structures for butanol. The straight chain isomer with the alcohol at an internal carbon is sec-butanol or 2-butanol. The branched isomer with the alcohol at a terminal carbon is isobutanol, and the branched isomer with the alcohol at the internal carbon is tert-butanol. 1-Butanol is produced in small amounts by gut microbial fermenetation through the butanoate metabolic pathway. It has been found in Bacillus, Clostridium, Escherichia, Lactobacillus, Pseudomonas, Saccharomyces, Synechococcus and Thermoanaerobacterium.

   

3'-Hydroxygenistein

4H-1-Benzopyran-4-one, 3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-

C15H10O6 (286.0477)


Orobol is a member of the class of 7-hydroxyisoflavones which consists of isoflavone substituted by hydroxy groups at positions 5, 7, 3 and 4. It has been isolated from the mycelia of Cordyceps sinensis. It has a role as an anti-inflammatory agent, a radical scavenger, a plant metabolite and a fungal metabolite. It is functionally related to an isoflavone. Orobol is a natural product found in Tritirachium, Ammopiptanthus mongolicus, and other organisms with data available. A member of the class of 7-hydroxyisoflavones which consists of isoflavone substituted by hydroxy groups at positions 5, 7, 3 and 4. It has been isolated from the mycelia of Cordyceps sinensis. 3-Hydroxygenistein is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Calcium

Calcium Cation

Ca+2 (39.9626)


   

Potassium

Liver regeneration factor 1

K+ (38.9637)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

N-Carbamoylsarcosine

[Carbamoyl(methyl)amino]acetic acid

C4H8N2O3 (132.0535)


N-Carbamoylsarcosine is an intermediate in arginine and proline metabolism. It is also involved in a metabolic pathway for the degradation of creatinine. In this pathway, creatinine is not hydrolyzed back to creatine. Instead, it is deaminated to N-methylhydantoin, releasing an amonia molecule, by the action of creatinine deaminase (also known as creatinine iminohydrolase). N-methylhydantoin is then hydrolyzed to N-carbamoylsarcosine, by the action of N-methylhydantoin amidohydrolase, at the expense of one ATP molecule. N-carbamoylsarcosine is deaminated further to sarcosine by N-carbamoylsarcosine amidohydrolase, releasing a second ammonia molecule. In the last step of this pathway, sarcosine is hydrolyzed to glycine and formaldehyde, by either sarcosine dehydrogenase or sarcosine oxidase. [HMDB] N-Carbamoylsarcosine is an intermediate in arginine and proline metabolism. It is also involved in a metabolic pathway for the degradation of creatinine. In this pathway, creatinine is not hydrolyzed back to creatine. Instead, it is deaminated to N-methylhydantoin, releasing an amonia molecule, by the action of creatinine deaminase (also known as creatinine iminohydrolase). N-methylhydantoin is then hydrolyzed to N-carbamoylsarcosine, by the action of N-methylhydantoin amidohydrolase, at the expense of one ATP molecule. N-carbamoylsarcosine is deaminated further to sarcosine by N-carbamoylsarcosine amidohydrolase, releasing a second ammonia molecule. In the last step of this pathway, sarcosine is hydrolyzed to glycine and formaldehyde, by either sarcosine dehydrogenase or sarcosine oxidase.

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

5-Aminoimidazole

1H-imidazol-5-amine

C3H5N3 (83.0483)


Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054) [HMDB] Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054).

   

Prostaglandin-c2

(5Z)-7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]hept-5-enoic acid

C20H30O4 (334.2144)


This compound belongs to the family of Prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.

   

Diphenidol

SmithKline beecham brand OF diphenidol hydrochloride

C21H27NO (309.2093)


Diphenidol is only found in individuals that have used or taken this drug. It is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Mibefradil

2-methoxyacetic acid [2-[2-[3-(1H-benzimidazol-2-yl)propyl-methylamino]ethyl]-6-fluoro-1-propan-2-yl-3,4-dihydro-1H-naphthalen-2-yl] ester

C29H38FN3O3 (495.2897)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

3-Pyridinecarboxaldehyde

3-Pyridinecarboxaldehyde

C6H5NO (107.0371)


   

Nitroglycerin

1,3-bis(nitrooxy)propan-2-yl nitrate

C3H5N3O9 (227.0026)


Nitroglycerin is only found in individuals that have used or taken this drug. It is a volatile vasodilator which relieves angina pectoris by stimulating guanylate cyclase and lowering cytosolic calcium. [PubChem]Similar to other nitrites and organic nitrates, nitroglycerin is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase. This stimulates the synthesis of cyclic guanosine 3,5-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isosorbide Dinitrate

(3S,3aS,6R,6aS)-6-(nitrooxy)-hexahydrofuro[3,2-b]furan-3-yl nitrate

C6H8N2O8 (236.0281)


Isosorbide Dinitrate is only found in individuals that have used or taken this drug. It is a vasodilator used in the treatment of angina pectoris. Its actions are similar to nitroglycerin but with a slower onset of action. [PubChem]Similar to other nitrites and organic nitrates, isosorbide dinitrate is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase (atrial natriuretic peptide receptor A). This stimulates the synthesis of cyclic guanosine 3,5-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Halothane

1,1,1-Trifluoro-2-bromo-2-chloroethane

C2HBrClF3 (195.8902)


A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. nitrous oxide is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Desflurane

(+-)-2-Difluoromethyl 1,2,2,2-tetrafluoroethyl ether

C3H2F6O (168.001)


Desflurane is a highly fluorinated methyl ethyl ether used for maintenance of general anaesthesia. Volatile agents such as desflurane may activate GABA channels and hyperpolarize cell membranes. In addition, they may inhibit certain calcium channels and therefore prevent release of neurotransmitters and inhibit glutamate channels. Volatile anesthetics easily partition into cellular membranes and could expand the volume of the cell membrane and subsequently distort channels necessary for sodium ion flux and the development of action potentials necessary for synaptic transmission. Desflurane preconditions human myocardium against ischemia through activation of mitochondrial K(ATP) channels, adenosine A1 receptor, and alpha and beta adrenoceptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Mivacurium

Mivacurium mixture of isomers

C58H80N2O14+2 (1028.5609)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist

   

Pancuronium

Pancuronium

C35H60N2O4+2 (572.4553)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Sertindole

1-(2-(4-(5-Chloro-1-(4-fluorophenyl)-1H-indol-3-yl)-1-piperidinyl)ethyl)-2-imidazolidinone

C24H26ClFN4O (440.1779)


Sertindole, a neuroleptic, is one of the newer antipsychotic medications available. Serdolect is developed by the Danish pharmaceutical company H. Lundbeck. Like the other atypical antipsychotics, it has activity at dopamine and serotonin receptors in the brain. It is used in the treatment of schizophrenia. It is classified chemically as a phenylindole derivative. It was first marketed in 1996 in several European countries before being withdrawn two years later because of numerous cardiac adverse effects. It has once again been approved and should soon be available on the French and Australian market. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

Reverse-triiodthyronine

2-amino-3-[4-(4-hydroxy-3,5-diiodophenoxy)-3-iodophenyl]propanoic acid

C15H12I3NO4 (650.7901)


This compound belongs to the family of Phenylpropanoic Acids. These are compounds whose structure contain a benzene ring conjugated to a propanoic acid. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Nisoldipine

3-methyl 5-(2-methylpropyl) 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C20H24N2O6 (388.1634)


Nisoldipine is a 1,4-dihydropyridine calcium channel blocker. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, nisoldipine prevents calcium-dependent smooth muscle contraction and subsequent vasoconstriction. Nisoldipine may be used in alone or in combination with other agents in the management of hypertension. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Ground limestone

Calcium carbonic acid, precipitated

CCaO3 (99.9473)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02A - Antacids > A02AC - Calcium compounds A - Alimentary tract and metabolism > A12 - Mineral supplements > A12A - Calcium > A12AA - Calcium D005765 - Gastrointestinal Agents > D000863 - Antacids It is used as a food additive .

   

Cryptolepine

5-methyl-5H-indolo[3,2-b]quinoline

C16H12N2 (232.1)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

ibogaine

Ibogamine, 12-methoxy-

C20H26N2O (310.2045)


An organic heteropentacyclic compound that is ibogamine in which the indole hydrogen para to the indole nitrogen has been replaced by a methoxy group. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

Sulfur dioxide

Sulfur dioxide (so2) 10\\% by volume or more so2

O2S (63.9619)


Sulfur dioxide is a food preservative. Sanitising agent for food containers and fermentation equipment. Also used in foods as stabiliser, moisture control agent, flavour modifier and texturise Food preservative. Sanitising agent for food containers and fermentation equipmentand is) also used in foods as stabiliser, moisture control agent, flavour modifier and texturiser D004785 - Environmental Pollutants > D000393 - Air Pollutants

   
   

Mycosporine

SCHEMBL19129760

C11H19NO6 (261.1212)


   

Dexniguldipine

3-((4,4-Diphenyl-1-piperidinyl)propyl)-5-methyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate hydrochloride

C36H39N3O6 (609.2839)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents

   

Azidopine

3-{2-[(4-azidophenyl)formamido]ethyl} 5-ethyl 2,6-dimethyl-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3,5-dicarboxylic acid

C27H26F3N5O5 (557.1886)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels

   

Aziridine

Aziridine, conjugate acid

C2H5N (43.0422)


Glucosidase, also known as ethyleneimine or azacyclopropane, is a member of the class of compounds known as aziridines. Aziridines are organic compounds containing a saturated three-member heterocycle with one amino group and two methylene groups. Glucosidase is soluble (in water) and a very strong basic compound (based on its pKa). Glucosidase can be found in soy bean and wild celery, which makes glucosidase a potential biomarker for the consumption of these food products. Glucosidases are glycoside hydrolase enzymes categorized under the EC number 3.2.1 . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

Naspm

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

5-Nitro-2-(3-phenylpropylamino)benzoic acid

5-NITRO-2-PHENYLPROPYLAMINOBENZOIC ACID [NPPB]

C16H16N2O4 (300.111)


D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors

   

CID 56928080

Betrachotoxinin A, 20-alpha-(2,4-dimethyl-1H-pyrrole-3-carboxylate)

C31H42N2O6 (538.3043)


   

Methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate

3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, methyl ester

C16H15F3N2O4 (356.0984)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Methyl 4-(2-benzylbenzoyl)-2,5-dimethyl-1H-pyrrole-3-carboxylate

Methyl-2,5-dimethyl-4-(2-(phenylmethyl)benzoyl)-1H-pyrrole-3-carboxylic acid

C22H21NO3 (347.1521)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Devazepide

2-(3,4-dimethoxyphenyl)-5-{[2-(3-methoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile

C26H36N2O3 (424.2726)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

10,10-bis[(pyridin-4-yl)methyl]-9,10-dihydroanthracen-9-one

C26H20N2O (376.1576)


   

1-EBIO

1-Ethyl-1,3-dihydro-2H-benzimidazol-2-one

C9H10N2O (162.0793)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Levomycin

Quinomycin a

C51H64N12O12S2 (1100.4208)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

Neoherculin

(Z,2E,6Z,8E,10Z)-N-(2-methylpropyl)dodeca-2,6,8,10-tetraenimidic acid

C16H25NO (247.1936)


Neoherculin is found in herbs and spices. Neoherculin is a constituent of Zanthoxylum species Constituent of Zanthoxylum subspecies Neoherculin is found in herbs and spices.

   

Neocnidilide

1(3H)-Isobenzofuranone, 3-butyl-3a,4,5,6-tetrahydro-, (3S,3aR)-

C12H18O2 (194.1307)


Sedanolide is a member of 2-benzofurans. Sedanolide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. Constituent of celery oil. Neocnidilide is found in many foods, some of which are dill, coriander, wild celery, and green vegetables. Neocnidilide is found in coriander. Neocnidilide is a constituent of celery oil Sedanolide, a natural compound occurring in edible umbelliferous plants, possesses anti-inflammatory and antioxidant activities[1][2]. Sedanolide, a natural compound occurring in edible umbelliferous plants, possesses anti-inflammatory and antioxidant activities[1][2].

   

Sedoheptulose 7-phosphate

sedoheptulose-7-phosphate

C7H15O10P (290.0403)


   

Ritodrina

4-(1-hydroxy-2-{[2-(4-hydroxyphenyl)ethyl]amino}propyl)phenol

C17H21NO3 (287.1521)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Inflatine

2-[6-(2-hydroxy-2-phenylethyl)-1-methylpiperidin-2-yl]-1-phenylethan-1-one

C22H27NO2 (337.2042)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D019141 - Respiratory System Agents

   

gabapentin

gabapentin

C9H17NO2 (171.1259)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2561

   

Verapamil

Verapamil

C27H38N2O4 (454.2831)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 674 EAWAG_UCHEM_ID 674; CONFIDENCE standard compound D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Orobol

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(3,4-dihydroxyphenyl)-

C15H10O6 (286.0477)


   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


(2s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, (2s)-pinocembrin is considered to be a flavonoid lipid molecule (2s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (2s)-pinocembrin can be found in a number of food items such as acorn, lentils, mulberry, and sorghum, which makes (2s)-pinocembrin a potential biomarker for the consumption of these food products. (s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3 (s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-pinocembrin is a bitter tasting compound found in mexican oregano and tarragon, which makes (s)-pinocembrin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.069 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.067 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.071 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.070 5,7-Dihydroxyflavanone is a natural product found in Pinus contorta var. latifolia, Piper nigrum, and other organisms with data available. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

amlodipine

Amlodipine (Norvasc)

C20H25ClN2O5 (408.1452)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1544

   

gabapentin

gabapentin

C9H17NO2 (171.1259)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1678 CONFIDENCE standard compound; INTERNAL_ID 4114 CONFIDENCE Reference Standard (Level 1)

   

Diltiazem

Dilacor XR

C22H26N2O4S (414.1613)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DB - Benzothiazepine derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker CONFIDENCE standard compound; EAWAG_UCHEM_ID 3017

   

Nateglinide

Nateglinide (Starlix)

C19H27NO3 (317.1991)


C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3289

   

Doxycycline

Doxycycline

C22H24N2O8 (444.1533)


Tetracycline in which the 5beta-hydrogen is replaced by a hydroxy group, while the 6alpha-hydroxy group is replaced by hydrogen. A semi-synthetic tetracycline antibiotic, it is used to inhibit bacterial protein synthesis and treat non-gonococcal urethritis and cervicitis, exacerbations of bronchitis in patients with chronic obstructive pulmonary disease (COPD), and adult periodontitis. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; EAWAG_UCHEM_ID 3678

   

BISOPROLOL

BISOPROLOL

C18H31NO4 (325.2253)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE Reference Standard (Level 1)

   

sotalol

sotalol

C12H20N2O3S (272.1195)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker CONFIDENCE Reference Standard (Level 1)

   

Verapamil

Verapamil aka "Benzeneacetonitrile, Alpha-[3-[[2-(3,4-dimethoxyphenyl)ethyl]methylamino]propyl]-3,4-dimethoxy-Alpha-(1-methylethyl)-, (R)- [CAS]"

C27H38N2O4 (454.2831)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.908

   

Dofetilide

Dofetilide (Tikosyn)

C19H27N3O5S2 (441.1392)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

nimodipine

Nimodipine (Nimotop)

C21H26N2O7 (418.174)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

nisoldipine

Nisoldipine (Sular)

C20H24N2O6 (388.1634)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

nifedipine

Nifedipine (Adalat)

C17H18N2O6 (346.1165)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tamoxifen

Tamoxifen

C26H29NO (371.2249)


L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BA - Anti-estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D050071 - Bone Density Conservation Agents D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent CONFIDENCE standard compound; INTERNAL_ID 1073; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9057; ORIGINAL_PRECURSOR_SCAN_NO 9056 CONFIDENCE standard compound; INTERNAL_ID 1073; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9069; ORIGINAL_PRECURSOR_SCAN_NO 9068 CONFIDENCE standard compound; INTERNAL_ID 1073; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9071; ORIGINAL_PRECURSOR_SCAN_NO 9070 CONFIDENCE standard compound; INTERNAL_ID 1073; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9106; ORIGINAL_PRECURSOR_SCAN_NO 9105 CONFIDENCE standard compound; INTERNAL_ID 1073; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9127; ORIGINAL_PRECURSOR_SCAN_NO 9123 CONFIDENCE standard compound; INTERNAL_ID 1073; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9110; ORIGINAL_PRECURSOR_SCAN_NO 9109 CONFIDENCE standard compound; INTERNAL_ID 2715 CONFIDENCE standard compound; INTERNAL_ID 8612

   

Phenylephrine

(R)-(-)-Phenylephrine

C9H13NO2 (167.0946)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants R - Respiratory system > R01 - Nasal preparations > R01B - Nasal decongestants for systemic use > R01BA - Sympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78274 - Agent Affecting Cardiovascular System > C126567 - Vasopressor D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents (R)-(-)-Phenylephrine is a selective α1-adrenoceptor agonist primarily used as a decongestant.

   

Caproaldehyde

Caproic aldehyde

C6H12O (100.0888)


A saturated fatty aldehyde that is hexane in which one of the terminal methyl group has been mono-oxygenated to form the corresponding aldehyde. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2-PHENYLACETAMIDE

2-PHENYLACETAMIDE

C8H9NO (135.0684)


A monocarboxylic acid amide that is acetamide substituted by a phenyl group at position 2. 2-Phenylacetamide is an endogenous metabolite.

   

amiodarone

amiodarone

C25H29I2NO3 (645.0237)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Fluvoxamine

Fluvoxamine

C15H21F3N2O2 (318.1555)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2740

   

Miglitol

Miglitol

C8H17NO5 (207.1107)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BF - Alpha glucosidase inhibitors D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors C471 - Enzyme Inhibitor > C2846 - Glucosidase Inhibitor D004791 - Enzyme Inhibitors

   

Moxifloxacin

1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-quinoline-3-carboxylic acid

C21H24FN3O4 (401.1751)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AE - Fluoroquinolones D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N,N-Dimethylarginine

L-Arg(Me, Me)-OH (asymmetrical)

C8H18N4O2 (202.143)


D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

Enterodiol

Enterodiol

C18H22O4 (302.1518)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Annotation level-1

   

flecainide

flecainide

C17H20F6N2O3 (414.1378)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Minocycline

Minocycline

C23H27N3O7 (457.1849)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AF - Antiinfectives for treatment of acne A tetracycline analogue having a dimethylamino group at position 7 and lacking the methyl and hydroxy groups at position 5. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic

   

butamben

Butyl 4-aminobenzoate

C11H15NO2 (193.1103)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

BENDROFLUMETHIAZIDE

BENDROFLUMETHIAZIDE

C15H14F3N3O4S2 (421.0378)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

nicardipine

nicardipine

C26H29N3O6 (479.2056)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Mexiletine

1-(2,6-Dimethylphenoxy)-2-propanamine

C11H17NO (179.131)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

3-Hydroxycinnamic acid

3-Hydroxycinnamic acid

C9H8O3 (164.0473)


Annotation level-1 (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

4-Aminosalicylic acid

4-Aminosalicylic acid

C7H7NO3 (153.0426)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WUBBRNOQWQTFEX-UHFFFAOYSA-N_STSL_0188_4-Aminosalicylic Acid_0125fmol_180831_S2_L02M02_81; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Esbiothrin

S-Bioallethrin

C19H26O3 (302.1882)


D010575 - Pesticides > D007306 - Insecticides > D000487 - Allethrins D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2459

   

acetazolamide

acetazolamide

C4H6N4O3S2 (221.9881)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2118; ORIGINAL_PRECURSOR_SCAN_NO 2116 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2114 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 INTERNAL_ID 366; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2106; ORIGINAL_PRECURSOR_SCAN_NO 2104 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2172; ORIGINAL_PRECURSOR_SCAN_NO 2170 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2112 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4436; ORIGINAL_PRECURSOR_SCAN_NO 4434 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4453; ORIGINAL_PRECURSOR_SCAN_NO 4450 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4473; ORIGINAL_PRECURSOR_SCAN_NO 4469 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4469; ORIGINAL_PRECURSOR_SCAN_NO 4466 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4488; ORIGINAL_PRECURSOR_SCAN_NO 4483 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4487; ORIGINAL_PRECURSOR_SCAN_NO 4484

   

4-Chloro-3-methylphenol

4-Chloro-3-methylphenol

C7H7ClO (142.0185)


CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4527; ORIGINAL_PRECURSOR_SCAN_NO 4526 C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4489; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4509; ORIGINAL_PRECURSOR_SCAN_NO 4507 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4535; ORIGINAL_PRECURSOR_SCAN_NO 4534

   

dantrolene

Dantrolenum; Dantrium; Dantrolenum

C14H10N4O5 (314.0651)


M - Musculo-skeletal system > M03 - Muscle relaxants > M03C - Muscle relaxants, directly acting agents > M03CA - Dantrolene and derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3945; ORIGINAL_PRECURSOR_SCAN_NO 3940 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3956; ORIGINAL_PRECURSOR_SCAN_NO 3954 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3932; ORIGINAL_PRECURSOR_SCAN_NO 3929 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3942; ORIGINAL_PRECURSOR_SCAN_NO 3939 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3694; ORIGINAL_PRECURSOR_SCAN_NO 3692 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3687; ORIGINAL_PRECURSOR_SCAN_NO 3685

   

3,3,5-triiodothyronine

3,3,5-Triiodo-L-thyronine

C15H12I3NO4 (650.7901)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

ACRYLIC ACID

Polyacrylic acid, sodium salt

C3H4O2 (72.0211)


A alpha,beta-unsaturated monocarboxylic acid that is ethene substituted by a carboxy group. D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives It is used as a food additive .

   

Sulfur oxide

Sulfur dioxide (so2) 10\\% by volume or more so2

O2S (63.9619)


D004785 - Environmental Pollutants > D000393 - Air Pollutants

   

FA 3:1

2-Propenoic acid

C3H4O2 (72.0211)


D001697 - Biomedical and Dental Materials > D014014 - Tissue Adhesives

   

Prostaglandin C2

9-oxo-15S-hydroxy-5Z,11Z,13E-prostatrienoic acid

C20H30O4 (334.2144)


A member of the class of prostaglandins C that is prosta-5,11,13-trien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 5Z,13E,15S-stereoisomer).

   

FAL 6:0

Caproic aldehyde

C6H12O (100.0888)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Dexniguldipine

Dexniguldipine

C36H39N3O6 (609.2839)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker C1744 - Multidrug Resistance Modulator C93038 - Cation Channel Blocker

   

D-Sedoheptulose 7-phosphate

{[(2R,3S,4R,5S,6S)-3,4,5,6-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}phosphonic acid

C7H15O10P (290.0403)


D-Sedoheptulose 7-phosphate (CAS: 2646-35-7) is an intermediate of the pentose phosphate pathway (PPP) that has two functions: (1) the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and (2) the formation of ribose residues for nucleotide and nucleic acid biosynthesis (PMID: 16055050). It is formed by transketolase and acted upon (degraded) by transaldolase. Sedoheptulose 7-phosphate can be increased in the blood of patients affected with a transaldolase deficiency, a genetic disorder (PMID: 12881455). Sedoheptulose is a ketoheptose, a monosaccharide with seven carbon atoms and a ketone functional group. It is one of the few heptoses found in nature (Wikipedia). D-Sedoheptulose 7-phosphate is an intermediate of the Pentose phosphate pathway (PPP) that has two functions: the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and the formation of ribose residues for nucleotide and nucleic acid biosynthesis. (PMID 16055050)

   

LS-2339

4-01-00-03296 (Beilstein Handbook Reference)

C6H12O (100.0888)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Senkyunolide A

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (S)-

C12H16O2 (192.115)


Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

Butanol

Butyric or normal primary butyl alcohol

C4H10O (74.0732)


   

AI3-32389

InChI=1\C9H8O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-6,10H,(H,11,12)\b5-4

C9H8O3 (164.0473)


(E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

AI3-02938

InChI=1\C9H10O\c1-8(10)7-9-5-3-2-4-6-9\h2-6H,7H2,1H

C9H10O (134.0732)


   

Demethylsuberosin

2H-1-Benzopyran-2-one, 7-hydroxy-6-(3-methyl-2-buten-1-yl)-

C14H14O3 (230.0943)


7-demethylsuberosin is a hydroxycoumarin that is 7-hydroxycoumarin which is substituted at position 6 by a 3-methylbut-2-en-1-yl group. A natural product found in Citropsis articulata. It has a role as a plant metabolite. Demethylsuberosin is a natural product found in Prangos tschimganica, Limonia acidissima, and other organisms with data available. A hydroxycoumarin that is 7-hydroxycoumarin which is substituted at position 6 by a 3-methylbut-2-en-1-yl group. A natural product found in Citropsis articulata. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1]. Demethylsuberosin (7-Demethylsuberosin) is a coumarin compound isolated from Angelica gigas Nakai, and has anti-inflammatory activity[1].

   

Nootkatone

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-

C15H22O (218.1671)


(+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. A sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].

   

Limestone

calcium carbonate

CCaO3 (99.9473)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02A - Antacids > A02AC - Calcium compounds A - Alimentary tract and metabolism > A12 - Mineral supplements > A12A - Calcium > A12AA - Calcium D005765 - Gastrointestinal Agents > D000863 - Antacids

   

astemizole

astemizole

C28H31FN4O (458.2482)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].

   

isosorbide dinitrate

isosorbide dinitrate

C6H8N2O8 (236.0281)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

sulfur dioxide

sulfur dioxide

O2S (63.9619)


D004785 - Environmental Pollutants > D000393 - Air Pollutants

   

sulfadiazine

sulfadiazine

C10H10N4O2S (250.0524)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EC - Intermediate-acting sulfonamides D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents A sulfonamide consisting of pyrimidine with a 4-aminobenzenesulfonamido group at the 2-position. C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides

   

trichlormethiazide

trichlormethiazide

C8H8Cl3N3O4S2 (378.9022)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

halothane

halothane

C2HBrClF3 (195.8902)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

nitroglycerin

1,2,3-Propanetriyl trinitrate

C3H5N3O9 (227.0026)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Carglumic Acid

Carglumic Acid

C6H10N2O5 (190.059)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives C78275 - Agent Affecting Blood or Body Fluid

   

DESFLURANE

DESFLURANE

C3H2F6O (168.001)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Nicotinaldehyde

3-Pyridinecarboxaldehyde

C6H5NO (107.0371)


   

SERTINDOLE

SERTINDOLE

C24H26ClFN4O (440.1779)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

Aldosterone

(+)-aldosterone

C21H28O5 (360.1937)


A pregnane-based steroidal hormone produced by the outer-section (zona glomerulosa) of the adrenal cortex in the adrenal gland, and acts on the distal tubules and collecting ducts of the kidney to cause the conservation of sodium, secretion of potassium, increased water retention, and increased blood pressure. The overall effect of aldosterone is to increase reabsorption of ions and water in the kidney. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Difenidol

DIPHENIDOL

C21H27NO (309.2093)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Mivacurium

Mivacurium

C58H80N2O14+2 (1028.5609)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist

   

Pancuronium

Pancuronium

C35H60N2O4+2 (572.4553)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Potassium cation

Potassium cation

K+ (38.9637)


   

Calcium Cation

Calcium Cation

Ca+2 (39.9626)


   

ritodrine

ritodrine

C17H21NO3 (287.1521)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Cryptolepine

Cryptolepine

C16H12N2 (232.1)


An organic heterotetracyclic compound that is 5H-indolo[3,2-b]quinoline in which the hydrogen at position N-5 is replaced by a methyl group. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

2-Fluorobenzamide

N-Carbamoylsarcosine

C4H8N2O3 (132.0535)


   
   

4-aminoimidazole

4-aminoimidazole

C3H5N3 (83.0483)


   

Sedoheptulose 7-phosphate

Sedoheptulose 7-phosphate

C7H15O10P (290.0403)


A ketoheptose phosphate consisting of sedoheptulose having a phosphate group at the 7-position. It is an intermediate metabolite in the pentose phosphate pathway.

   

Sanshool

alpha-Sanshool

C16H25NO (247.1936)


   

Chlorocresol

4-Chloro-3-methylphenol

C7H7ClO (142.0185)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468

   

Aziridine

Polyethyleneimine

C2H5N (43.0422)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

Chlorpyrifos-methyl

Chlorpyrifos-methyl

C7H7Cl3NO3PS (320.895)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Bay K-8644

Methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate

C16H15F3N2O4 (356.0984)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

NPPB

5-Nitro-2-(3-phenylpropylamino)benzoic acid

C16H16N2O4 (300.111)


D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Ritodrina

Ritodrine hydrochloride

C17H21NO3 (287.1521)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

XE991

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

C26H20N2O (376.1576)


   

Devapamil

5-(N-(3-METHOXYPHENETHYL)-N-METHYLAMINO)-2-ISOPROPYL-2-(3,4-DIMETHOXYPHENYL)PENTANENITRILE

C26H36N2O3 (424.2726)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Azidopine

Azidopine

C27H26F3N5O5 (557.1886)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels

   

FPL64176

Methyl-2,5-dimethyl-4-(2-(phenylmethyl)benzoyl)-1H-pyrrole-3-carboxylate

C22H21NO3 (347.1521)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

1-Naphthylacetylspermine

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.