Subcellular Location: Golgi stack

Found 187 associated metabolites.

36 associated genes. AKAP9, ARSL, CLIP3, CLN3, COG2, DNMBP, GALNT2, GOLGA7, GOLGB1, LPCAT2, LYPLA2, MARCHF4, MARCHF9, MBTPS1, MGAT2, MGAT4A, MGAT4B, MGAT4D, NSF, NSFL1C, OCRL, PLK3, RAB14, RAB27B, RAB30, RAB34, RASIP1, SULF1, SULF2, TMBIM4, TOM1L1, TRAPPC4, USO1, VCPIP1, VRK1, ZFYVE1

Marmesin

(2S)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one

C14H14O4 (246.0892)


Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Nicotinic acid

pyridine-3-carboxylic acid

C6H5NO2 (123.032)


Nicotinic acid is an odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3\\\\\% solution) 3-3.5. (NTP, 1992) Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate. Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Nicotinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Niacin is a Nicotinic Acid. Niacin, also known as nicotinic acid and vitamin B3, is a water soluble, essential B vitamin that, when given in high doses, is effective in lowering low density lipoprotein (LDL) cholesterol and raising high density lipoprotein (HDL) cholesterol, which makes this agent of unique value in the therapy of dyslipidemia. Niacin can cause mild-to-moderate serum aminotransferase elevations and high doses and certain formulations of niacin have been linked to clinically apparent, acute liver injury which can be severe as well as fatal. Niacin is a water-soluble vitamin belonging to the vitamin B family, which occurs in many animal and plant tissues, with antihyperlipidemic activity. Niacin is converted to its active form niacinamide, which is a component of the coenzymes nicotinamide adenine dinucleotide (NAD) and its phosphate form, NADP. These coenzymes play an important role in tissue respiration and in glycogen, lipid, amino acid, protein, and purine metabolism. Although the exact mechanism of action by which niacin lowers cholesterol is not fully understood, it may act by inhibiting the synthesis of very low density lipoproteins (VLDL), inhibiting the release of free fatty acids from adipose tissue, increasing lipoprotein lipase activity, and reducing the hepatic synthesis of VLDL-C and LDL-C. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan (see below), but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. Nicotinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-67-6 (retrieved 2024-06-29) (CAS RN: 59-67-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.1534)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Fenofibrate

propan-2-yl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate

C20H21ClO4 (360.1128)


Fenofibrate is a chlorobenzophenone that is (4-chlorophenyl)(phenyl)methanone substituted by a [2-methyl-1-oxo-1-(propan-2-yloxy)propan-2-yl]oxy group at position 1 on the phenyl ring. It has a role as an antilipemic drug, an environmental contaminant, a xenobiotic and a geroprotector. It is a chlorobenzophenone, a member of monochlorobenzenes, an aromatic ether and an isopropyl ester. It is functionally related to a benzophenone. Fenofibrate is a fibric acid derivative like [clofibrate] and [gemfibrozil]. Fenofibrate is used to treat primary hypercholesterolemia, mixed dyslipidemia, severe hypertriglyceridemia. Fenofibrate was granted FDA approval on 31 December 1993. Fenofibrate is a Peroxisome Proliferator Receptor alpha Agonist. The mechanism of action of fenofibrate is as a Peroxisome Proliferator-activated Receptor alpha Agonist. Fenofibrate is a fibric acid derivative used in the therapy of hypertriglyceridemia and dyslipidemia. Fenofibrate therapy is associated with mild and transient serum aminotransferase elevations and with rare instances of acute liver injury, which can be severe and prolonged and lead to significant hepatic fibrosis. Fenofibrate is a synthetic phenoxy-isobutyric acid derivate and prodrug with antihyperlipidemic activity. Fenofibrate is hydrolyzed in vivo to its active metabolite fenofibric acid that binds to and activates peroxisome proliferator activated receptor alpha (PPARalpha), resulting in the activation of lipoprotein lipase and reduction of the production of apoprotein C-III, an inhibitor of lipoprotein lipase activity. Increased lipolysis and a fall in plasma triglycerides, in turn, leads to the modification of the small, dense low density lipoporotein (LDL) particles into larger particles that are catabolized more rapidly due to a greater affinity for cholesterol receptors. In addition, activation of PPARalpha also increases the synthesis of apoproteins A-I, A-II, and high density lipoprotein (HDL)-cholesterol. Overall, fenofibrate reduces total cholesterol, LDL cholesterol, apolipoprotein B, total triglycerides and triglyceride rich lipoprotein (VLDL) while increasing HDL cholesterol. An antilipemic agent which reduces both cholesterol and triglycerides in the blood. An antilipemic agent which reduces both CHOLESTEROL and TRIGLYCERIDES in the blood. See also: Fenofibric Acid (has active moiety). Fenofibrate is only found in individuals that have used or taken this drug. It is an antilipemic agent which reduces both cholesterol and triglycerides in the blood. [PubChem]Fenofibrate exerts its therapeutic effects through activation of peroxisome proliferator activated receptor a (PPARa). This increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of apoprotein C-III. The resulting fall in triglycerides produces an alteration in the size and composition of LDL from small, dense particles, to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly. Fenofibrate is mainly used for primary hypercholesterolemia or mixed dyslipidemia. Fenofibrate may slow the progression of diabetic retinopathy and the need for invasive treatment such as laser therapy in patients with type 2 diabetes with pre-existing retinopathy.[11][12][13] It was initially indicated for diabetic retinopathy in patients with type 2 diabetes and diabetic retinopathy in Australia.[14] The large scale, international FIELD and ACCORD-Eye trials found that fenofibrate therapy reduced required laser treatment for diabetic retinopathy by 1.5\\% over 5 years, as well as reducing progression by 3.7\\% over 4 years. [11][12][13][15] Further studies looking at the role of fenofibrate in the progression of diabetic retinopathy as the primary outcome is warranted to understand its role in this condition. Although no statistically significant cardiovascular risk benefits were identified in these trials, benefits may accrue to add on therapy to patients with high triglyceride dyslipidaemia currently taking statin medications.[16][17] Fenofibrate appears to reduce the risk of below ankle amputations in patients with Type 2 diabetes without microvascular disease.[18] The FIELD study reported that fenofibrate at doses of 200 mg daily, reduced the risk for any amputation by 37\\% independent of glycaemic control, presence or absence of dyslipidaemia and its lipid-lowering mechanism of action.[18][19] However, the cohort of participants who underwent amputations were more likely to have had previous cardiovascular disease (e.g. angina, myocardial infarction), longer duration of diabetes and had baseline neuropathy.[18][19] Fenofibrate has an off-label use as an added therapy of high blood uric acid levels in people who have gout.[20] It is used in addition to diet to reduce elevated low-density lipoprotein cholesterol (LDL), total cholesterol, triglycerides (TG), and apolipoprotein B (apo B), and to increase high-density lipoprotein cholesterol (HDL) in adults with primary hypercholesterolemia or mixed dyslipidemia. Fenofibrate is a selective PPARα agonist with an EC50 of 30 μM. Fenofibrate also inhibits human cytochrome P450 isoforms, with IC50s of 0.2, 0.7, 9.7, 4.8 and 142.1 μM for CYP2C19, CYP2B6, CYP2C9, CYP2C8, and CYP3A4, respectively.

   

Brazilin

(1R,10S)-8-oxatetracyclo[8.7.0.0?,?.0??,??]heptadeca-2(7),3,5,12,14,16-hexaene-5,10,14,15-tetrol

C16H14O5 (286.0841)


Brazilin is a organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). It has a role as a plant metabolite, a histological dye, an antineoplastic agent, a biological pigment, an anti-inflammatory agent, an apoptosis inducer, an antioxidant, an antibacterial agent, a NF-kappaB inhibitor and a hepatoprotective agent. It is an organic heterotetracyclic compound, a member of catechols and a tertiary alcohol. Brazilin is a natural product found in Guilandina bonduc, Biancaea decapetala, and other organisms with data available. A organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

(S)-4',5,7-Trihydroxy-6-prenylflavanone

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. (S)-4,5,7-Trihydroxy-6-prenylflavanone is found in alcoholic beverages. (S)-4,5,7-Trihydroxy-6-prenylflavanone is isolated from Humulus lupulus (hops). Isolated from Humulus lupulus (hops). 6-Prenylnaringenin is found in beer and alcoholic beverages. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.3705)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

3-Methylbenzaldehyde

3-methylbenzaldehyde;3-Methylbenzaldehyde, stab. with 0.1\\% hydroquinone

C8H8O (120.0575)


3-Methylbenzaldehyde, also known as 3-tolylaldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 3-Methylbenzaldehyde exists in all living organisms, ranging from bacteria to humans. 3-Methylbenzaldehyde is a sweet, benzaldehyde, and cherry tasting compound. 3-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as sweet cherries, alcoholic beverages, garden tomato, coffee and coffee products, and tea. This could make 3-methylbenzaldehyde a potential biomarker for the consumption of these foods. A tolualdehyde compound with the methyl substituent at the 3-position. M-tolualdehyde is a tolualdehyde compound with the methyl substituent at the 3-position. It has a role as a plant metabolite. 3-Methylbenzaldehyde is a natural product found in Aloe africana, Cichorium endivia, and other organisms with data available. Flavouring ingredient. Component of FEMA 3068; see further under 4-Methylbenzaldehyde BHW21-S. 3-Methylbenzaldehyde is found in many foods, some of which are coffee and coffee products, nuts, tea, and garden tomato. A tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

Forchlorfenuron

N-(2-chloropyridin-4-yl)-N-phenylcarbamimidic acid

C12H10ClN3O (247.0512)


CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8756 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8835; ORIGINAL_PRECURSOR_SCAN_NO 8832 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4401; ORIGINAL_PRECURSOR_SCAN_NO 4396 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4419; ORIGINAL_PRECURSOR_SCAN_NO 4414 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4428; ORIGINAL_PRECURSOR_SCAN_NO 4427 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8765; ORIGINAL_PRECURSOR_SCAN_NO 8763 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4391; ORIGINAL_PRECURSOR_SCAN_NO 4390 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8800; ORIGINAL_PRECURSOR_SCAN_NO 8798 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4416; ORIGINAL_PRECURSOR_SCAN_NO 4415 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8810; ORIGINAL_PRECURSOR_SCAN_NO 8809 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8790; ORIGINAL_PRECURSOR_SCAN_NO 8788 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4435; ORIGINAL_PRECURSOR_SCAN_NO 4431 D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; EAWAG_UCHEM_ID 3601 Forchlorfenuron is plant growth regulator and cytokinin; can be used to increase fruit size of fruits, such as kiwi fruit and grapes.

   

Canadine

(1S)-16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-2,4(8),9,15(20),16,18-hexaene

C20H21NO4 (339.1471)


(S)-canadine is the (S)-enantiomer of canadine. It has a role as a plant metabolite. It is an an (S)-7,8,13,14-tetrahydroprotoberberine and a canadine. It is functionally related to a (S)-nandinine. It is an enantiomer of a (R)-canadine. (S)-Canadine is a natural product found in Hydrastis canadensis, Corydalis turtschaninovii, and other organisms with data available. The (S)-enantiomer of canadine. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.721 D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.

   

Prunasin

(R)-2-Phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C14H17NO6 (295.1056)


(R)-prunasin is a prunasin. Prunasin is a natural product found in Polypodium californicum, Chaenorhinum minus, and other organisms with data available. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta) Prunasin belongs to the family of O-glycosyl Compounds. These are glycosides in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Isolated from kernels of Prunus subspecies, immature fruits of Passiflora subspecies and leaves of perilla (Perilla frutescens variety acuta). Prunasin is found in many foods, some of which are almond, sour cherry, black elderberry, and herbs and spices. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta D004791 - Enzyme Inhibitors

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. Liriodenine, also known as oxoushinsunine or micheline b, is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Liriodenine is practically insoluble (in water) and a strong basic compound (based on its pKa). Liriodenine can be found in cherimoya and custard apple, which makes liriodenine a potential biomarker for the consumption of these food products. Liriodenine is a bio-active isolate of the Chinese medicinal herb Zanthoxylum nitidum .

   

Glaucine

(6aS,11aM)-1,2,9,10-tetramethoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline

C21H25NO4 (355.1783)


(S)-glaucine is an aporphine alkaloid that is (S)-1,2,9,10-tetrahydroxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline in which the four phenolic hydrogens have been replaced by methyl groups. It has a role as a platelet aggregation inhibitor, a NF-kappaB inhibitor, an antitussive, an antibacterial agent, a muscle relaxant, an antineoplastic agent, a plant metabolite and a rat metabolite. It is an aporphine alkaloid, a polyether, an organic heterotetracyclic compound and a tertiary amino compound. It is a conjugate base of a (S)-glaucine(1+). Glaucine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. An aporphine alkaloid that is (S)-1,2,9,10-tetrahydroxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline in which the four phenolic hydrogens have been replaced by methyl groups. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D019141 - Respiratory System Agents > D000996 - Antitussive Agents D020011 - Protective Agents > D000975 - Antioxidants D002491 - Central Nervous System Agents Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Aporphine alkaloids Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3]. Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3]. Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3].

   

Neriifolin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2R,3S,4R,5S,6S)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C30H46O8 (534.3193)


Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.

   

Indole-3-carboxaldehyde

1H-indole-3-carbaldehyde

C9H7NO (145.0528)


Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

Epinephrine

(R)-(-)-3,4-Dihydroxy-α-(methylaminomethyl)benzyl alcohol, L-Adrenaline, L-Epinephrine

C9H13NO3 (183.0895)


Epinephrine, also known as adrenaline, is both a neurotransmitter and a hormone. It plays an important role in your body’s “fight-or-flight” response. It’s also used as a medication to treat many life-threatening conditions. Epinephrine is a catecholamine, a sympathomimetic monoamine derived from the amino acids phenylalanine and tyrosine. It is the active sympathomimetic hormone secreted from the adrenal medulla in most species. It stimulates both the alpha- and beta- adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. It is used in asthma and cardiac failure and to delay absorption of local anesthetics. Epinephrine also constricts arterioles in the skin and gut while dilating arterioles in leg muscles. It elevates the blood sugar level by increasing hydrolysis of glycogen to glucose in the liver, and at the same time begins the breakdown of lipids in adipocytes. Epinephrine has a suppressive effect on the immune system. [HMDB] Epinephrine, also called adrenaline, is both a hormone and a neurotransmitter. As a hormone, it’s made and released by your adrenal glands, which are hat-shaped glands that sit on top of each kidney. As a central nervous system neurotransmitter, it’s a chemical messenger that helps transmit nerve signals across nerve endings to another nerve cell, muscle cell or gland cell. Epinephrine is part of your sympathetic nervous system, which is part of your body’s emergency response system to danger — the “fight-or-flight” response. Medically, the flight-or-flight response is known as the acute stress response. Epinephrine is also called a catecholamine, as are norepinephrine and dopamine. They’re given this name because of a certain molecule in its structure. As a hormone, epinephrine is made from norepinephrine inside of your adrenal gland. As a neurotransmitter, epinephrine plays a small role. Only a small amount is produced in your nerves. It plays a role in metabolism, attention, focus, panic and excitement. Abnormal levels are linked to sleep disorders, anxiety, hypertension and lowered immunity. Epinephrine’s major action is in its role as a hormone. Epinephrine is released by your adrenal glands in response to stress. This reaction causes a number of changes in your body and is known as the fight-or-flight response.

   

Norepinephrine

L-alpha-(Aminomethyl)-3,4-dihydroxybenzyl alcohol

C8H11NO3 (169.0739)


Norepinephrine is the precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic. Norepinephrine is elevated in the urine of people who consume bananas. Norepinephrine is also a microbial metabolite; urinary noradrenaline is produced by Escherichia, Bacillus, and Saccharomyces (PMID: 24621061). Norepinephrine is found in alcoholic beverages, banana peels and pulp (Musa paradisiaca), red plum fruit (Prunus domestica), orange pulp (Citrus sinensis), potato tubers (Solanum tuberosum), and whole purslane (Portulaca oleracea). P. oleracea is the richest of these sources. Norepinephrine has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Present in banana peel and pulp (Musa paradisiaca), red plum fruit (Prunus domestica), orange pulp (Citrus sinensis), potato tubers (Solanum tuberosum) and whole purslane (Portulaca oleracea). P. oleracea is the richest of these sources. xi-Norepinephrine is found in many foods, some of which are potato, green vegetables, alcoholic beverages, and fruits.

   

ST 24:4;O5

1beta,3beta,14beta-trihydroxy-5beta-bufa-20,22-dienolide

C24H34O5 (402.2406)


C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D01693

   

Decanoyl-CoA (n-C10:0CoA)

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Glycerate

(2R)-2,3-dihydroxypropanoic acid

C3H6O4 (106.0266)


Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Amlodipine

3-Ethyl-5-methyl (+-)-2-(2-aminoethoxymethyl)-4-(O-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid

C20H25ClN2O5 (408.1452)


Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium.; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. [HMDB] Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium. Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

oxazepam

oxazepam

C15H11ClN2O2 (286.0509)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8781; ORIGINAL_PRECURSOR_SCAN_NO 8778 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8746; ORIGINAL_PRECURSOR_SCAN_NO 8744 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4409; ORIGINAL_PRECURSOR_SCAN_NO 4408 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8712; ORIGINAL_PRECURSOR_SCAN_NO 8710 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8742; ORIGINAL_PRECURSOR_SCAN_NO 8740 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8755 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4422; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4393; ORIGINAL_PRECURSOR_SCAN_NO 4390 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8709; ORIGINAL_PRECURSOR_SCAN_NO 8708 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4374; ORIGINAL_PRECURSOR_SCAN_NO 4372 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1083 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2743 CONFIDENCE standard compound; INTERNAL_ID 8604 CONFIDENCE standard compound; INTERNAL_ID 2680

   

Atorvastatin

(R-(R*,r*))-2-(4-fluorophenyl)-beta,delta-dihydroxy-5-(1-methylethyl)-3-phenyl-4-((phenylamino)carbonyl)-1H-pyrrole-1-heptanoic acid

C33H35FN2O5 (558.253)


Atorvastatin (INN) is a member of the drug class known as statins, used for lowering cholesterol and thereby reducing cardiovascular disease. Atorvastatin inhibits a rate-determining enzyme located in hepatic tissue used in cholesterol synthesis, which lowers the amount of cholesterol produced. This also has the effect of lowering the total amount of LDL cholesterol; Atorvastatin is a member of the drug class known as statins, used for lowering cholesterol and thereby reducing cardiovascular disease. Atorvastatin inhibits a rate-determining enzyme located in hepatic tissue used in cholesterol synthesis, which lowers the amount of cholesterol produced. This also has the effect of lowering the total amount of LDL cholesterol; As with other statins, atorvastatin is a competitive inhibitor of HMG-CoA reductase. Unlike most others, however, it is a completely synthetic compound. HMG-CoA reductase catalyzes the reduction of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonate, which is the rate-limiting step in hepatic cholesterol biosynthesis. Inhibition of the enzyme decreases de novo cholesterol synthesis, increasing expression of low-density lipoprotein receptors (LDL receptors) on hepatocytes. This increases the LDL uptake by the hepatocytes, decreasing the amount of LDL in the blood. [HMDB] Atorvastatin is a member of the drug class known as statins, used for lowering cholesterol and thereby reducing cardiovascular disease. Atorvastatin inhibits a rate-determining enzyme located in hepatic tissue used in cholesterol synthesis, which lowers the amount of cholesterol produced. This also has the effect of lowering the total amount of LDL cholesterol; Atorvastatin is a member of the drug class known as statins, used for lowering cholesterol and thereby reducing cardiovascular disease. Atorvastatin inhibits a rate-determining enzyme located in hepatic tissue used in cholesterol synthesis, which lowers the amount of cholesterol produced. This also has the effect of lowering the total amount of LDL cholesterol; As with other statins, atorvastatin is a competitive inhibitor of HMG-CoA reductase. Unlike most others, however, it is a completely synthetic compound. HMG-CoA reductase catalyzes the reduction of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonate, which is the rate-limiting step in hepatic cholesterol biosynthesis. Inhibition of the enzyme decreases de novo cholesterol synthesis, increasing expression of low-density lipoprotein receptors (LDL receptors) on hepatocytes. This increases the LDL uptake by the hepatocytes, decreasing the amount of LDL in the blood. CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4818; ORIGINAL_PRECURSOR_SCAN_NO 4814 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9291 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4848; ORIGINAL_PRECURSOR_SCAN_NO 4846 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9346; ORIGINAL_PRECURSOR_SCAN_NO 9343 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4838; ORIGINAL_PRECURSOR_SCAN_NO 4836 ORIGINAL_ACQUISITION_NO 4846; CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 4844 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9248; ORIGINAL_PRECURSOR_SCAN_NO 9243 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9306; ORIGINAL_PRECURSOR_SCAN_NO 9305 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4854; ORIGINAL_PRECURSOR_SCAN_NO 4852 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9353; ORIGINAL_PRECURSOR_SCAN_NO 9351 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9350; ORIGINAL_PRECURSOR_SCAN_NO 9348 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4846; ORIGINAL_PRECURSOR_SCAN_NO 4844 CONFIDENCE standard compound; INTERNAL_ID 1385; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4833 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4366; ORIGINAL_PRECURSOR_SCAN_NO 4362 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9335; ORIGINAL_PRECURSOR_SCAN_NO 9331 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9233; ORIGINAL_PRECURSOR_SCAN_NO 9231 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9381; ORIGINAL_PRECURSOR_SCAN_NO 9378 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9353; ORIGINAL_PRECURSOR_SCAN_NO 9351 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4881; ORIGINAL_PRECURSOR_SCAN_NO 4879 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4377; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4961; ORIGINAL_PRECURSOR_SCAN_NO 4959 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9365; ORIGINAL_PRECURSOR_SCAN_NO 9364 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4867; ORIGINAL_PRECURSOR_SCAN_NO 4865 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4882; ORIGINAL_PRECURSOR_SCAN_NO 4880 CONFIDENCE standard compound; INTERNAL_ID 358; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9339; ORIGINAL_PRECURSOR_SCAN_NO 9336 C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 1129 CONFIDENCE standard compound; INTERNAL_ID 8593 D009676 - Noxae > D000963 - Antimetabolites Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Atorvastatin is an orally active HMG-CoA reductase inhibitor, has the ability to effectively decrease blood lipids. Atorvastatin inhibits human SV-SMC proliferation and invasion with IC50s of 0.39 μM and 2.39 μM, respectively[1][2][3].

   

Deoxycholic acid glycine conjugate

2-[[4-(3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1-oxopentyl]amino]acetic acid

C26H43NO5 (449.3141)


Deoxycholic acid glycine conjugate, or or Deoxyglycocholic acid or Deoxygcholylglycine is a bile salt formed in the liver by conjugation of deoxycholate with glycine. It usually exists as the sodium salt. Deoxygcholylglycine is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). As a bile acid Deoxyglycocholic acid acts as a detergent to solubilize fats for absorption and is itself absorbed. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Deoxyglycocholic acid is used as a cholagogue and choleretic. Deoxycholic acid glycine conjugate, or Deoxygcholylglycine, is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). As a bile salt it acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and choleretic. [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.

   

N-acetylaspartate (NAA)

N-Acetylaspartate, monopotassium salt

C6H9NO5 (175.0481)


N-Acetyl-L-Aspartic acid (NAA) or N-Acetylaspartic acid, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-aspartic acid can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-aspartic acid is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-aspartic acid. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylaspartate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free aspartic acid can also occur. In particular, N-Acetyl-L-aspartic acid can be synthesized in neurons from the amino acid aspartate and acetyl coenzyme A (acetyl CoA). Specifically, the enzyme known as aspartate N-acetyltransferase (EC 2.3.1.17) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of aspartate. N-Acetyl-L-aspartic acid is the second most concentrated molecule in the brain after the amino acid glutamate. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include (1) acting as a neuronal osmolyte that is involved in fluid balance in the brain, (2) serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes (the glial cells that myelinate neuronal axons), (3) serving as a precursor for the synthesis of the important dipeptide neurotransmitter N-acetylaspartylglutamate (NAAG), and (4) playing a potential role in energy production from the amino acid glutamate in neuronal mitochondria. High neurotransmitter (i.e. N-acetylaspartic acid) levels can lead to abnormal neural signaling, delayed or arrested intellectual development, and difficulties with general motor skills. When present in sufficiently high levels, N-acetylaspartic acid can be a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of N-acetylaspartic acid are associated with Canavan disease. Because N-acetylaspartic acid functions as an organic acid and high levels of organic acids can lead to a condition known... N-Acetylaspartic acid is a derivative of aspartic acid. It is the second most concentrated molecule in the brain after the amino acid glutamate. It is synthesized in neurons from the amino acid aspartate and acetyl coenzyme A. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include: Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A142 N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

Xanthosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-9H-purine-2,6-diol

C10H12N4O6 (284.0757)


Xanthosine, also known as xanthine riboside, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine exists in all living species, ranging from bacteria to plants to humans. In plants xanthosine is the biosynthetic precursor to 7-methylxanthosine which is produced by the action of the enzyme known as 7-methylxanthosine synthase. 7-Methylxanthosine in turn is the precursor to theobromine (the active alkaloid in chocolate), which in turn is the precursor to caffeine, the active alkaloid in coffee and tea. Within humans, xanthosine participates in a number of enzymatic reactions. In particular, xanthosine can be biosynthesized from xanthylic acid; which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In addition, xanthosine can be converted into xanthine and ribose 1-phosphate; which is mediated by the enzyme purine nucleoside phosphorylase. Xanthosine monophosphate (XMP) is an intermediate in purine metabolism, formed from IMP (inosine monophosphate). Biological Source: Production by guanine-free mutants of bacteria e.g. Bacillus subtilis, Aerobacter aerogenesand is also reported from seeds of Trifolium alexandrinum Physical Description: Prismatic cryst. (H2O) (Chemnetbase) The deamination product of guanosine; Xanthosine monophosphate is an intermediate in purine metabolism, formed from IMP, and forming GMP.; Xanthylic acid can be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism, as recommended to ensure optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Xanthosine is found in many foods, some of which are calabash, rambutan, apricot, and pecan nut. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 126 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].

   

4-Methylumbelliferone sulfate

(4-Methyl-2-oxidanylidene-chromen-7-yl) hydrogen sulphuric acid

C10H8O6S (256.0042)


CONFIDENCE standard compound; INTERNAL_ID 8324

   

D-myo-Inositol 1,4-bisphosphate

{[(1R,2R,3R,4R,5R,6S)-2,3,5,6-tetrahydroxy-4-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H14O12P2 (339.9961)


D-myo-Inositol 1,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,4-bisphosphate is a substrate for several proteins including inositol polyphosphate 1-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, skeletal muscle and kidney enriched inositol phosphatase, and type I inositol-1,4,5-trisphosphate 5-phosphatase. 1D-Myo-inositol 1,4-bisphosphate is a substrate for Inositol polyphosphate 1-phosphatase, Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, Skeletal muscle and kidney enriched inositol phosphatase and Type I inositol-1,4,5-trisphosphate 5-phosphatase. [HMDB]

   

Flecainide

N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

C17H20F6N2O3 (414.1378)


A potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Paradoxically, however, in myocardial infarct patients with either symptomatic or asymptomatic arrhythmia, flecainide exacerbates the arrhythmia and is not recommended for use in these patients. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3020 CONFIDENCE standard compound; INTERNAL_ID 2276 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Fluvoxamine

(2-aminoethoxy)({5-methoxy-1-[4-(trifluoromethyl)phenyl]pentylidene})amine

C15H21F3N2O2 (318.1555)


Fluvoxamine is an antidepressant which functions pharmacologically as a selective serotonin reuptake inhibitor. Though it is in the same class as other SSRI drugs, it is most often used to treat obsessive-compulsive disorder. Fluvoxamine has been in use in clinical practice since 1983 and has a clinical trial database comprised of approximately 35,000 patients. It was launched in the US in December 1994 and in Japan in June 1999. As of the end of 1995, more than 10 million patients worldwide have been treated with fluvoxamine. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent CONFIDENCE standard compound; INTERNAL_ID 8519 D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Testosterone enanthate

[(8R,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl] heptanoate

C26H40O3 (400.2977)


testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150) [HMDB] Testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Propafenone

1-(2-(2-Hydroxy-3-(propylamino)propoxy)phenyl)-3-phenyl-1-propanone

C21H27NO3 (341.1991)


Propafenone is only found in individuals that have used or taken this drug. It is an antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. The drug is generally well tolerated. [PubChem]The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; INTERNAL_ID 2285 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

Dimethyltryptamine

N-(2-(1H-indol-3-yl)Ethyl)-N,N-dimethylamine (acd/name 4.0)

C12H16N2 (188.1313)


An N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others.; DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat.; DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it.; DMT is classified in the United States as a Schedule I drug. In December of 2004, the Supreme Court lifted a stay thereby allowing the Brazil-based Uniaeo do Vegetal (UDV) church to use a decoction containing DMT in their Christmas services that year. This decoction is a tea made from boiled leaves and vines, known as hoasca within the UDV, and ayahuasca in different cultures. In Gonzales v. O Centro EspArita Beneficente Uniaeo do Vegetal, the Supreme Court heard arguments on November 1, 2005 and unanimously ruled in February 2006 that the U.S. federal government must allow the UDV to import and consume the tea for religious ceremonies under the 1993 Religious Freedom Restoration Act. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT.; Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca.; Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they... Dimethyltryptamine is an N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others. DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat. DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it. DMT is classified in the United States as a Schedule I drug. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT. Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca. Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they can have lethal complications with some prescription drugs, such as SSRI antidepressants, and some over-the-counter drugs. Smoked: If DMT is smoked, the maximal effects last for a short period of time (5-30 minutes dose dependent). The onset after inhalation is very fast (less than 45 seconds) and maximal effects are reached within about a minute. The Business Mans lunch trip is a common name due to the relatively short duration of vaporized, insufflated, or injected DMT. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

Nevirapine

2-cyclopropyl-7-methyl-2,4,9,15-tetraazatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,12,14-hexaen-10-one

C15H14N4O (266.1168)


Nevirapine is only found in individuals that have used or taken this drug. It is a potent, non-nucleoside reverse transcriptase inhibitor used in combination with nucleoside analogues for treatment of HIV infection and AIDS. [PubChem]Nevirapine binds directly to reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by causing a disruption of the enzymes catalytic site. The activity of nevirapine does not compete with template or nucleoside triphosphates. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

4-Tert-Amylphenol

P-Tert-amylphenol, monopotassium salt

C11H16O (164.1201)


   

Oleamide

(9Z)-octadec-9-enamide

C18H35NO (281.2719)


Oleamide is an amide of the fatty acid oleic acid. It is an endogenous substance: it occurs naturally in the body of animals. It accumulates in the cerebrospinal fluid during sleep deprivation and induces sleep in animals. It is being studied as a potential medical treatment for mood and sleep disorders, and cannabinoid-regulated depression. The mechanism of action of oleamides sleep inducing effects is an area of current research. It is likely that oleamide interacts with multiple neurotransmitter systems. Oleamide is structurally related to the endogenous cannabinoid anandamide, and has the ability to bind to the CB1 receptor as a full agonist. Oleamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=301-02-0 (retrieved 2024-07-02) (CAS RN: 301-02-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.

   

Haloperidol

4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-1-(4-fluorophenyl)butan-1-one

C21H23ClFNO2 (375.1401)


A phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. (From AMA Drug Evaluations Annual, 1994, p279) CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7649; ORIGINAL_PRECURSOR_SCAN_NO 7647 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7684; ORIGINAL_PRECURSOR_SCAN_NO 7682 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7681; ORIGINAL_PRECURSOR_SCAN_NO 7680 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7678; ORIGINAL_PRECURSOR_SCAN_NO 7677 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7604; ORIGINAL_PRECURSOR_SCAN_NO 7602 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7639; ORIGINAL_PRECURSOR_SCAN_NO 7638 D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3566 CONFIDENCE standard compound; INTERNAL_ID 1122 Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.

   

UDP-α-D-N-Acetylglucosamine disodium

(2R,3R,4R,5S,6R)-3-(Acetylamino)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl [(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl dihydrogen diphosphoric acid (non-preferred name)

C17H27N3O17P2 (607.0816)


Uridine diphosphate-N-acetylglucosamine (uridine 5-diphosphate-GlcNAc, or UDP-Glc-NAc) is an acetylated aminosugar nucleotide. UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc). Nutrient sensing in mammals is done through the hexosamine biosynthetic pathway (HSP), which produces uridine 5-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Mammals respond to nutrient excess by activating O-GlcNAcylation (addition of O-linked N-acetylglucosamine). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Due to the chemical makeup of UDP-GlcNAc, it is well positioned to serve as a glucose sensor in that it is a high-energy compound that requires and/or responds to glucose, amino acid, fatty acid and nucleotide metabolism for synthesis. Elevated levels of O-GlcNAc have an effect on insulin-stimulated glucose uptake. (PMID: 12678487). Uridine 5-diphosphate-GlcNAc (UDP-Glc-NAc )respond to nutrient excess to activate O-GlcNAcylation (addition of O-linked N-acetylglucosamine) in the hexosamine signaling pathway (HSP). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Doxazosin

1 (4-amino-6,7-Dimethoxy-2-quinazolinyl)-4-((2,3-dihydro-1,4-benzodioxin-2-yl)carbonyl)piperazine

C23H25N5O5 (451.1856)


Doxazosin is a quinazoline-derivative that selectively antagonizes postsynaptic α1-adrenergic receptors. It may be used to mild to moderate hypertension and in the management of symptomatic benign prostatic hyperplasia (BPH). α1-Receptors mediate contraction and hypertrophic growth of smooth muscle cells. Antagonism of these receptors leads to smooth muscle relaxation in the peripheral vasculature and prostate gland. C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Doxepin

dimethyl(3-{9-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene}propyl)amine

C19H21NO (279.1623)


Doxepin hydrochloride is a dibenzoxepin-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, doxepin does not affect mood or arousal, but may cause sedation. In depressed individuals, doxepin exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. Tertiary amine TCAs, such as doxepin and amitriptyline, are more potent inhibitors of serotonin reuptake than secondary amine TCAs, such as nortriptyline and desipramine. TCAs also down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. Doxepin has less sedative and anticholinergic effects than amitriptyline. See toxicity section below for a complete listing of side effects. Doxepin may be used to treat depression and insomnia. Unlabeled indications include chronic and neuropathic pain, and anxiety. Doxepin may also be used as a second line agent to treat idiopathic urticaria. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists EAWAG_UCHEM_ID 3676; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 3676

   

Gemfibrozil

2,2-Dimethyl-5-(2,5-dimethylphenoxy)valeriansaeure

C15H22O3 (250.1569)


A lipid-regulating agent that lowers elevated serum lipids primarily by decreasing serum triglycerides with a variable reduction in total cholesterol. These decreases occur primarily in the VLDL fraction and less frequently in the LDL fraction. Gemfibrozil increases HDL subfractions HDL2 and HDL3 as well as apolipoproteins A-I and A-II. Its mechanism of action has not been definitely established. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 448; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5593; ORIGINAL_PRECURSOR_SCAN_NO 5591 CONFIDENCE standard compound; INTERNAL_ID 448; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5614; ORIGINAL_PRECURSOR_SCAN_NO 5613 CONFIDENCE standard compound; INTERNAL_ID 448; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5641; ORIGINAL_PRECURSOR_SCAN_NO 5637 CONFIDENCE standard compound; INTERNAL_ID 448; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5627; ORIGINAL_PRECURSOR_SCAN_NO 5624 CONFIDENCE standard compound; INTERNAL_ID 448; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5626; ORIGINAL_PRECURSOR_SCAN_NO 5624 CONFIDENCE standard compound; INTERNAL_ID 448; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5624; ORIGINAL_PRECURSOR_SCAN_NO 5622 C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065687 - Cytochrome P-450 CYP2C8 Inhibitors C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AB - Fibrates D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents CONFIDENCE standard compound; INTERNAL_ID 4077 CONFIDENCE standard compound; INTERNAL_ID 2691 D009676 - Noxae > D000963 - Antimetabolites Gemfibrozil is an activator of PPAR-α, used as a lipid-lowering agent; Gemfibrozil is also a nonselective inhibitor of several P450 isoforms, with Ki values for CYP2C9, 2C19, 2C8, and 1A2 of 5.8, 24, 69, and 82 μM, respectively.

   

Tiagabine

(R)-(4,4-Bis(3-methyl-2-thienyl)-3-butenyl)-3-piperidinecarboxylic acid, hydrochloride

C20H25NO2S2 (375.1327)


Tiagabine is an anti-convulsive medication. It is also used in the treatment for panic disorder as are a few other anticonvulsants. Though the exact mechanism by which tiagabine exerts its effect on the human body is unknown, it does appear to operate as a selective GABA reuptake inhibitor. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

Epibatidine

(+/-)-epibatidine

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Mexiletine

Boehringer ingelheim brand OF mexiletine hydrochloride

C11H17NO (179.131)


Mexiletine is only found in individuals that have used or taken this drug. It is an antiarrhythmic agent pharmacologically similar to lidocaine. It may have some anticonvulsant properties. [PubChem]Mexiletine, like lidocaine, inhibits the inward sodium current required for the initiation and conduction of impulses, thus reducing the rate of rise of the action potential, Phase 0. It achieves this reduced sodium current by inhibiting sodium channels. Mexiletine decreases the effective refractory period (ERP) in Purkinje fibers in the heart. The decrease in ERP is of lesser magnitude than the decrease in action potential duration (APD), which results in an increase in the ERP/APD ratio. It does not significantly affect resting membrane potential or sinus node automaticity, left ventricular function, systolic arterial blood pressure, atrioventricular (AV) conduction velocity, or QRS or QT intervals C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3010 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Pentazocine

(1R,9R,13R)-1,13-dimethyl-10-(3-methylbut-2-en-1-yl)-10-azatricyclo[7.3.1.0²,⁷]trideca-2,4,6-trien-4-ol

C19H27NO (285.2093)


Pentazocine is only found in individuals that have used or taken this drug. It is the first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97)The preponderance of evidence suggests that pentazocine antagonizes the opioid effects by competing for the same receptor sites, especially the opioid mu receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics

   

2-Hydroxypyridine

2-Hydroxypyridine sodium salt

C5H5NO (95.0371)


This colourless crystalline solid is used in peptide synthesis. It is well known to form hydrogen bonded structures somewhat related to the base-pairing mechanism found in RNA and DNA. It is also a classic case of a molecule that exists as tautomers. Some publications only focus one of the two possible patterns, and neglect the influence of the other. For example, to calculation of the energy difference of the two tautomers in a non-polar solution will lead to a wrong result if a large quantity of the substance is on the side of the dimer in an equilibrium. The direct tautomerisation is not energetically favoured, but a dimerisation followed by a double proton transfer and dissociation of the dimer is a self catalytic path from one tautomer to the other. Protic solvents also mediate the proton transfer during the tautomerisation. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H021 α-Pyridone is an endogenous metabolite.

   

O-Phosphothreonine

(2S,3R)-2-Amino-3-hydroxybutanoic acid 3-phosphoric acid

C4H10NO6P (199.0246)


Phosphothreonine is a phosphoamino acid. It is the phosphorylated ester of threonine. There are three amino acids that are typically phosphorylated in eukaryotes: serine, threonine, and tyrosine. Threonine residues in endogenous proteins undergo phosphorylation through the action of a threonine kinase. Small amounts of free phosphothreonine can be detected in urine [PMID: 7693088]. [HMDB] Phosphothreonine is a phosphoamino acid. It is the phosphorylated ester of threonine. There are three amino acids that are typically phosphorylated in eukaryotes: serine, threonine, and tyrosine. Threonine residues in endogenous proteins undergo phosphorylation through the action of a threonine kinase. Small amounts of free phosphothreonine can be detected in urine [PMID: 7693088]. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

11Z-Eicosenoic acid(20:1)

(11Z)-icos-11-enoic acid

C20H38O2 (310.2872)


11Z-Eicosenoic acid, also known as gondoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. 11Z-Eicosenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). More specifically, 11Z-Eicosenoic acid is a monounsaturated omega-9 fatty acid found in a variety of nuts and plant oils. It is not produced by humans and comes from the diet. It has been found in the red blood cell membrane with increased concentrations in children with regressive autism (PMID: 16581239 ). (11Z)-icos-11-enoic acid is an icosenoic acid having a cis- double bond at position 11. It has a role as a plant metabolite and a human metabolite. It is a conjugate acid of a gondoate. cis-11-Eicosenoic acid is a natural product found in Delphinium fissum, Calophyllum inophyllum, and other organisms with data available. Gondoic Acid is a monounsaturated long-chain fatty acid with a 20-carbon backbone and the sole double bond originating from the 9th position from the methyl end, with the bond in the cis- configuration. See also: Cod Liver Oil (part of). Constituent of rape oil and fish oils as glycerideand is also in other plant oils, e.g. false flax (Camelina sativa), and swede (Brassica napobrassica) cis-11-Eicosenoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5561-99-9 (retrieved 2024-07-15) (CAS RN: 5561-99-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gondoic acid (cis-11-Eicosenoic acid), a monounsaturated long-chain fatty acid, is contained in a variety of plant oils and nuts[1]. Gondoic acid (cis-11-Eicosenoic acid), a monounsaturated long-chain fatty acid, is contained in a variety of plant oils and nuts[1].

   

Myo-Inositol

1,2,3,4,5,6-Hexahydroxycyclohexane, i-inositol, meso-Inositol

C6H12O6 (180.0634)


myo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, of which cis-1,2,3,5-trans-4,6-cyclohexanehexol, or myo-inositol is the most widely occurring form in nature. The other known inositols include scyllo-inositol, muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol and cis-inositol. myo-Inositol is found naturally in many foods (particularly in cereals with high bran content) and can be used as a sweetner as it has half the sweetness of sucrose (table sugar). myo-Inositol was once considered a member of the vitamin B complex and given the name: vitamin B8. However, because it is produced by the human body from glucose, it is not an essential nutrient, and therefore cannot be called a vitamin. myo-Inositol is a precursor molecule for a number of secondary messengers including various inositol phosphates. In addition, inositol/myo-inositol is an important component of the lipids known as phosphatidylinositol (PI) phosphatidylinositol phosphate (PIP). myo-Inositol is synthesized from glucose, via glucose-6-phosphate (G-6-P) in two steps. First, G-6-P is isomerised by an inositol-3-phosphate synthase enzyme to myo-inositol 1-phosphate, which is then dephosphorylated by an inositol monophosphatase enzyme to give free myo-inositol. In humans, myo-inositol is primarily synthesized in the kidneys at a rate of a few grams per day. myo-Inositol can be used in the management of preterm babies who have or are at a risk of infant respiratory distress syndrome. It is also used as a treatment for polycystic ovary syndrome (PCOS). It works by increasing insulin sensitivity, which helps to improve ovarian function and reduce hyperandrogenism. Reduced levels of myo-inositol have been found in the spinal fluid of depressed patients and levels are significantly reduced in brain samples of suicide victims. Of common occurrence in plants and animals . obtained comly. from phytic acid in corn steep liquor. Dietary supplement C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

12-HETE

(5Z,8Z,10E,14Z)-(12S)-12-Hydroxyeicosa-5,8,10,14-tetraenoic acid

C20H32O3 (320.2351)


12-Hydroxyeicosatetraenoic acid (CAS: 71030-37-0), also known as 12-HETE, is an eicosanoid, a 5-lipoxygenase metabolite of arachidonic acid. 5-Lipoxygenase (LO)-derived leukotrienes are involved in inflammatory glomerular injury. LO product 12-HETE is associated with the pathogenesis of hypertension and may mediate angiotensin II and TGFbeta induced mesangial cell abnormality in diabetic nephropathy. 12-HETE is markedly elevated in the psoriatic lesions. 12-HETE is a vasoconstrictor eicosanoid that contributes to high blood pressure in (renovascular) hypertension and pregnancy-induced hypertension. A significant percentage of patients suffering from a selective increase in plasma LDL cholesterol (type IIa hyperlipoproteinemia) exhibits increased platelet reactivity. This includes enhanced platelet responsiveness against a variety of platelet-stimulating agents ex vivo and enhanced arachidonic acid metabolism associated with increased generation of arachidonic acid metabolites such as 12-HETE, and secretion of platelet-storage products (PMID: 7562532, 12480795, 17361113, 8498970, 1333255, 2119633). 12-HETE is a highly selective ligand used to label mu-opioid receptors in both membranes and tissue sections. The 12-S-HETE analog has been reported to augment tumour cell metastatic potential through activation of protein kinase C. 12-HETE has a diversity of biological actions and is generated by a number of tissues including the renal glomerulus and the vasculature. 12-HETE is one of the six monohydroxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid. 12-HETE is a neuromodulator that is synthesized during ischemia. Its neuronal effects include attenuation of calcium influx and glutamate release as well as inhibition of AMPA receptor (AMPA-R) activation. 12-HETE is found to be associated with peroxisomal biogenesis defect and Zellweger syndrome, which are inborn errors of metabolism.

   

2-Amino-3-phosphonopropionic acid

2-Amino-3-phosphonopropionic acid, sodium salt

C3H8NO5P (169.014)


2-Amino-3-phosphonopropionic acid (AP-3 or 2-AP3), also known as 3-phosphonoalanine, is a non-proteinogenc alpha-amino acid that is alanine in which one of the hydrogens of the terminal methyl group has been replaced by a dihydroxy(oxido)-lambda(5)-phosphanyl group. It is found in many organisms ranging from microbes to invertebrates to animals. In humans AP-3 is found in diverse tissues, such as liver, intestine and spleen. (PMID: 2627760). 2-Amino-3-phosphonopropionic acid is a ubiquitous naturally occurring phosphonate used as a source of phosphorus by many prokaryotic organisms (PMID: 30119975). The natural occurrence of 2-amino-3-phosphonopropionic acid. the phosphonate analogue of aspartic acid, was first reported by Kittredge & Hughes (PMID: 14214094) in the sea anemone Zoanthus sociatus and the protozoon Tetrahymena pyriformis. It has since been established to be one of the most widely distributed of the biogenic C–P compounds, particularly among the lower marine invertebrates (PMID: 19191873). AP-3 has been determined to be a metabotropic glutamate receptor agonist (PMID: 8836635). It has been shown to block the amyloid precursor protein (APP) release evoked by glutamate receptor stimulation in neurons of the cortex and hippocampus. APP accumulation is believed to produce the damage in Alzheimer’s disease (PMID: 7644542). 2-Amino-3-phosphonopropionic acid (AP-3)is a normal human metabolite found in diverse tissues, such as liver, intestine and spleen. (PMID 2627760) AP-3 is a metabotropic glutamate receptor agonist (PMID 8836635) shown to block the amyloid precursor protein (APP) release evoked by glutamate receptor stimulation in neurons of the cortex and hippocampus; APP accumulation is believed to produce the damage in Alzheimer disease (PMID 7644542) [HMDB] D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists KEIO_ID A131 DL-AP3 is a competitive mGluR1 and mGluR5 antagonist. DL-AP3 is also an inhibitor of phosphoserine phosphatase. DL-AP3 has neuroprotective effect[1][2][3].

   

(S)-2-Azetidinecarboxylic acid

1-Azetidinecarboxylicacid, 2-(aminocarbonyl)-, 1,1-dimethylethyl ester, (2S)-

C4H7NO2 (101.0477)


Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.

   

Blasticidin S

(2S,3S,6R)-3-{[(3R)-3-amino-1-hydroxy-5-(N-methylcarbamimidamido)pentylidene]amino}-6-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)-3,6-dihydro-2H-pyran-2-carboxylate

C17H26N8O5 (422.2026)


Contact fungicide used against rice blast disease in Japan Blasticidin S is an antibiotic used to select transformed cells in genetic engineering. In short, DNA of interest is fused to DNA encoding a resistance gene, and then is transformed into cells. After allowing time for recovery and for cells to begin transcribing and translating their new DNA, blasticidin is added. Now only the cells that have the new DNA can grow D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents KEIO_ID B019; [MS3] KO008877 KEIO_ID B019; [MS2] KO008876 D004791 - Enzyme Inhibitors KEIO_ID B019

   

Bis(4-nitrophenyl) hydrogen phosphate

Bis(4-nitrophenyl) hydrogen phosphoric acid

C12H9N2O8P (340.0097)


D004791 - Enzyme Inhibitors KEIO_ID B069

   

Oxamate

Oxalic monoamide

C2H3NO3 (89.0113)


KEIO_ID O011

   

N-ethylmaleimide

1-ethyl-2,5-dihydro-1H-pyrrole-2,5-dione

C6H7NO2 (125.0477)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D004791 - Enzyme Inhibitors KEIO_ID E008

   

Sinigrin

{[(e)-(1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}but-3-en-1-ylidene)amino]oxy}sulphonic acid

C10H17NO9S2 (359.0345)


Sinigrin is found in brassicas. Sinigrin is isolated from seeds of black mustard (Brassica nigra) and cabbage, as K salt. Sinigrin is present in many crucifers, major glucosinolate in Brussels sprouts (Brassica oleraceae). Sinigrin is isolated from seeds of black mustard (Brassica nigra) and cabbage, as a K salt. It is found in many crucifers, major glucosinolate in Brussels sprouts (Brassica oleraceae). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

7-Ketodeoxycholic acid

(4R)-4-[(1S,2S,5R,7S,10R,11S,14R,15R,16S)-5,16-dihydroxy-2,15-dimethyl-9-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoic acid

C24H38O5 (406.2719)


7-Ketodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). 7-Ketodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids 7-keto-lithocholic acid is a metabolite of bile acids in Clostridium absonum. 7-keto-lithocholic acid is also converted from Lactobacillus and Bifidobacterium with specific condition[1][2].

   

Convolamine

(8-BROMO-1-NAPHTHYL)METHANOL

C17H23NO4 (305.1627)


Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Tropane alkaloids

   

Prostaglandin I2

5-[(3aR,4R,5R,6aS)-5-hydroxy-4-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-hexahydro-2H-cyclopenta[b]furan-2-ylidene]pentanoic acid

C20H32O5 (352.225)


Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78568 - Prostaglandin Analogue Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Glycerylphosphorylethanolamine

2-AMINOETHYL (2,3-DIHYDROXYPROPYL) HYDROGEN PHOSPHATE

C5H14NO6P (215.0559)


Glycerylphosphorylethanolamine is a membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. A membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. [HMDB]

   

Sterol

tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-ol

C17H28O (248.214)


Sterols, also known as steroid alcohols, are a subgroup of the steroids and an important class of organic molecules. They occur naturally in plants, animals, and fungi, with the most familiar type of animal sterol being cholesterol. Cholesterol is vital to animal cell membrane structure and function and a precursor to fat-soluble vitamins and steroid hormones. (Wikipedia) Sterols are a subgroup of the steroids and an important class of organic molecules. They occur naturally in plants, animals, and fungi, with the most familiar type of animal sterol being cholesterol. Cholesterol is vital to cellular function, and a precursor to fat-soluble vitamins and steroid hormones. Sterols is found in burdock, soft-necked garlic, and sesame.

   

Pepstatin

Pepstatinum

C34H63N5O9 (685.4626)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D010436 - Pepstatins C471 - Enzyme Inhibitor > C783 - Protease Inhibitor Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2]. Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2].

   

N-Sulfo-D-glucosamine

N-[(2R,3R,4R,5S,6R)-2,4,5-Trihydroxy-6-(hydroxymethyl)oxan-3-yl]sulphamic acid

C6H13NO8S (259.0362)


N-Sulfo-D-glucosamine is a structurally altered form of N-acetyl-D-glucosamine (a polysaccharide found in animal tissues) by heparan sulfate N-deacetylase /N-sulfotransferase enzymes. No human references found [HMDB]

   

Glycerophosphoinositol

[(2R)-2,3-dihydroxypropoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C9H19O11P (334.0665)


Glycerophosphoinositol (CAS: 16824-65-0), also known as 1-(sn-glycero-3-phospho)-1D-myo-inositol, is produced through deacylation by phospholipase B of the essential phospholipid phosphatidylinositol. Glycerophosphoinositols are ubiquitous phosphoinositide metabolites involved in the control of several cell functions. They exert their actions both intracellularly and by rapidly equilibrating across the plasma membrane. Their transport is mediated by the Glut2 transporter, the human ortholog of GIT1 (PMID: 17141226). Glycerophosphoinositol is a substrate for glycerophosphoinositol inositolphosphodiesterase (EC 3.1.4.43) and is involved in the following reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = glycerol + 1D-myo-inositol 1-phosphate. It is also a substrate for glycerophosphoinositol glycerophosphodiesterase (EC 3.1.4.44) which catalyzes the chemical reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = myo-inositol + sn-glycerol 3-phosphate. Isolated from beef liver. Glycerylphosphoinositol is found in animal foods.

   

Inositol 1,3,4-trisphosphate

(2,3,5-Trihydroxy-4,6-diphosphonooxycyclohexyl) dihydrogen phosphate

C6H15O15P3 (419.9624)


Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]

   

myo-Inositol 1,3,4,5-tetrakisphosphate

{[(1S,2S,3S,4S,5R,6S)-2,4-dihydroxy-3,5,6-tris(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H16O18P4 (499.9287)


myo-Inositol 1,3,4,5-tetrakisphosphate (CAS: 102850-29-3), also known as IP4, is a second messenger responsible for mediating Ca2+ entry through the plasma membrane and mobilizing intracellular Ca2+ by acting synergistically with inositol 1,4,5-trisphosphate (IP3). Inositol 1,4,5-trisphosphate 3-kinase (IP3K, EC 2.7.1.127) phosphorylates IP3 into IP4. Evidence shows that IP4 can activate a protein with ras- and rap-GAP activity and finally inactivate the G protein. This indicates that IP4 regulates Ca2+ influx in a GTP-dependent way, which potentially links the IP3 signalling pathway to GTP-regulated signalling mechanisms. IP4 is demonstrated to be a common regulator in Ca2+ homeostasis. IP4 can bind with a high affinity to several intracellular proteins: synaptotagmin (I and II), Gap1, Btk, and centaurin-alpha and may interact with synaptotagmin to inhibit synaptic transmission. IP4 also acts as a mediator in neuronal death in the ischemic hippocampus. IP4 production is not always associated with a modification in calcium concentration, and control of calcium mobilization is not the sole function proposed for IP4. IP4 defines an essential signalling pathway for T cell precursor responsiveness and development. In the thymus, IP4 is essential during the positive and negative selection of double-positive thymocytes, and in the control of thymocyte reactivity to antigens. IP4 is also a substrate for type I inositol-1,4,5-trisphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, and skeletal muscle and kidney enriched inositol phosphatase (PMID: 15740635, 14517551).

   

Anisole

Methoxy-benzene (anisol)

C7H8O (108.0575)


Anisole is a flavouring agent Anisole is a precursor to perfumes, insect pheromones, and pharmaceuticals. For example, synthetic anethole is prepared from anisole. Anisole undergoes electrophilic aromatic substitution reaction more quickly than does benzene, which in turn reacts more quickly than nitrobenzene. The methoxy group is an ortho/para directing group, which means that electrophilic substitution preferentially occurs at these three sites. The enhanced nucleophilicity of anisole vs benzene reflects the influence of the methoxy group, which renders the ring more electron-rich. The methoxy group strongly affects the pi cloud of the ring, moreso than the inductive effect of the electronegative oxygen. Flavouring agent

   

Carbamic acid

Carbamic acid, potassium salt

CH3NO2 (61.0164)


Carbamic acid is occasionally found as carbamate in workers exposed to pesticides. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Neurological symptoms occur among farmers occupationally exposed to acetylcholinesterase-inhibiting insecticides such as carbamates. Carbamic acid products of several amines, such as beta-N-methylamino-L-alanine (BMAA), ethylenediamine, and L-cysteine have been implicated in toxicity. Studies suggested that a significant portion of amino-compounds in biological samples (that naturally contain CO2/bicarbonate) can be present as a carbamic acid. The formation of carbamate glucuronide metabolites has been described for numerous pharmaceuticals and they have been identified in all of the species commonly used in drug metabolism studies (rat, dog, mouse, rabbit, guinea pig, and human). There has been no obvious species specificity for their formation and no preference for 1 or 2 degree amines. Many biological reactions have also been described in the literature that involve the reaction of CO2 with amino groups of biomolecules. For example, CO2 generated from cellular respiration is expired in part through the reversible formation of a carbamate between CO2 and the -amino groups of the alpha and beta-chains of hemoglobin. Glucuronidation is an important mechanism used by mammalian systems to clear and eliminate both endogenous and foreign chemicals. Many functional groups are susceptible to conjugation with glucuronic acid, including hydroxyls, phenols, carboxyls, activated carbons, thiols, amines, and selenium. Primary and secondary amines can also react with carbon dioxide (CO2) via a reversible reaction to form a carbamic acid. The carbamic acid is also a substrate for glucuronidation and results in a stable carbamate glucuronide metabolite. The detection and characterization of these products has been facilitated greatly by the advent of soft ionization mass spectrometry techniques and high field NMR instrumentation. (PMID: 16268118, 17168688, 12929145).

   

Phytanate

3,7,11,15-Tetramethylhexadecoanoic acid

C20H40O2 (312.3028)


Phytanic acid (or 3,7,11,15-tetramethylhexadecanoic acid) is a 20-carbon branched-chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. It is primarily formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. Unlike most fatty acids, phytanic acid cannot be metabolized by beta-oxidation (because of a methyl group in the beta position). Instead, it undergoes alpha-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon. Pristanic acid can undergo several rounds of beta-oxidation in the peroxisome to form medium-chain fatty acids that can be converted into carbon dioxide and water in mitochondria. Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, is characterized by having impaired alpha-oxidation activity. Individuals with Refsum disease accumulate large stores of phytanic acid in their blood and tissues. This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss. Therefore, chronically high levels of phytanic acid can be neurotoxic. Phytanic acids neurotoxicity appears to lie in its ability to initiate astrocyte/neural cell death by activating the mitochondrial route of apoptosis. In particular, phytanic acid can induce the substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. It also induces the release of cytochrome c from mitochondria. A 20-carbon branched chain fatty acid, Phytanic acid is present in animal (primarily herbivores or omnivores) tissues where it may be derived from the chlorophyll in consumed plant material. Phytanic acid derives from the corresponding alcohol, phytol, and is ultimately oxidized into pristanic acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids in plasma. These high levels in Refsum disease (a neurological disorder) are due to a phytanic acid alpha-hydroxylase deficiency.; A 20-carbon branched chain fatty acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids of the plasma. This is due to a phytanic acid alpha-hydroxylase deficiency. [HMDB]

   

Linoleoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9Z,12Z)-octadeca-9,12-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H66N7O17P3S (1029.3449)


Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long-chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation. ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (PMID: 17184976, 16020546).

   

Arachidonyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H66N7O17P3S (1053.3449)


Arachidonyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. Arachidonyl-CoA is produced from 8,11,14-Eicosatrienoyl-CoA via the enzyme fatty acid desaturase 1 (EC 1.14.19.-). It is then converted to Arachidonic acid via the enzymepalmitoyl-CoA hydrolase (EC 3.1.2.2).

   

5a-Androstan-3b-ol

(1S,2S,5S,7S,10S,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-ol

C19H32O (276.2453)


5a-Androstan-3b-ol is a steroidal compound belonging to the group of odorous 16-androstenes, first isolated from boar testes and also found in humans. 5a-Androstan-3b-ol has pheromone-like properties in both animals and humans, but the molecular targets of its pheromonal activity are unknown. 5a-Androstan-3b-ol as a pheromone is well suited because of high volatility and lipophilicity. (PMID: 1419890, 8142319, 16415088) [HMDB] 5a-Androstan-3b-ol is a steroidal compound belonging to the group of odorous 16-androstenes, first isolated from boar testes and also found in humans. 5a-Androstan-3b-ol has pheromone-like properties in both animals and humans, but the molecular targets of its pheromonal activity are unknown. 5a-Androstan-3b-ol as a pheromone is well suited because of high volatility and lipophilicity. (PMID: 1419890, 8142319, 16415088).

   

DG(10:0/10:0/0:0)

(2S)-1-(decanoyloxy)-3-hydroxypropan-2-yl decanoate

C23H44O5 (400.3189)


DG(10:0/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

Dihydropteridine

6,7-dihydropteridine

C6H6N4 (134.0592)


Dihydropteridine is a generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166). A generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166) [HMDB]

   

24,25-Dihydroxyvitamin D

(6R)-6-[(1R,3aS,4E,7aR)-4-{2-[(1Z,5R)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyl-octahydro-1H-inden-1-yl]-2-methylheptane-2,3-diol

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formation. Also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746). D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents

   

deoxymannojirimycin

Duvoglustat (hydrochloride)

C6H13NO4 (163.0845)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Swainsonine

1,2,8-INDOLIZINETRIOL, OCTAHYDRO-, (1S-(1.ALPHA.,2.ALPHA.,8.BETA.,8A.BETA.))-

C8H15NO3 (173.1052)


Swainsonine is an indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. It has a role as an antineoplastic agent, an immunological adjuvant, an EC 3.2.1.114 (mannosyl-oligosaccharide 1,3-1,6-alpha-mannosidase) inhibitor and a plant metabolite. An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. Swainsonine is a natural product found in Slafractonia leguminicola, Astragalus whitneyi, and other organisms with data available. Swainsonine is a plant toxin found in locoweed (families Fabaceae, Oxytropis, Astragalus and Swainsona) and some fungi (Metarhizium anisopliae, Rizoctonia leguminicola). It has been known to cause a potentially lethal central nervous system condition in livestock known as locoism and is a significant cause of economic losses in livestock industries. Along with slaframine, the other biologially active compound of R. leguminicola, it may contribute to a condition called "slobbers syndrome" in livestock that has ingested contaminated feed. (L1248, A3092) An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. An indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent > C2117 - Carbohydrate Processing Inhibitor C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent C471 - Enzyme Inhibitor > C2119 - Golgi Alpha-Mannosidase II Inhibitor C274 - Antineoplastic Agent > C2196 - Antimetastatic Agent D000970 - Antineoplastic Agents D007155 - Immunologic Factors D004791 - Enzyme Inhibitors

   
   

Sulbenicillin

alpha-Sulfobenzylpenicillin

C16H18N2O7S2 (414.0555)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A penicillin antibiotic having a 6beta-[phenyl(sulfo)acetamido] side-chain. Same as: D08534 C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

SB 206553

Benzo(1,2-b:4,5-b)dipyrrole-1(2H)-carboxamide, 3,5-dihydro-5-methyl-N-3-pyridinyl-

C17H16N4O (292.1324)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants

   

Myrtenal

6,6-Dimethyl-bicyclo[3,1,1]hept-2-ene-2-carboxaldehyde

C10H14O (150.1045)


Occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils. Myrtenal is found in many foods, some of which are peppermint, fruits, wild celery, and sweet bay. Myrtenal is found in cardamom. Myrtenal occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils.

   

TG(8:0/8:0/8:0)

Octanoic acid, 1,1,1-(1,2,3-propanetriyl) ester

C27H50O6 (470.3607)


TG(8:0/8:0/8:0) belongs to the family of triradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. Their general formula is [R1]OCC(CO[R2])O[R3]. TG(8:0/8:0/8:0) is made up of one octanoyl(R1), one octanoyl(R2), and one octanoyl(R3). It is used in bakery products. Carrier for essential oils and flavours. Glycerol trioctanoate is found in cereals and cereal products. D010592 - Pharmaceutic Aids > D014677 - Pharmaceutical Vehicles > D005079 - Excipients Same as: D01587 Tricaprilin (Trioctanoin) is used in study for patients with mild to moderate Alzheimer's disease and has a role as an anticonvulsant and a plant metabolite[1][2].

   

alpha-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLEPROPIONIC ACID

2-amino-3-(5-methyl-3-oxo-2,3-dihydro-1,2-oxazol-4-yl)propanoic acid

C7H10N2O4 (186.0641)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].

   

Nocodazole

(5-(2-Thienylcarbonyl)-1H-benzimidazol-2-yl)-carbamic acid methyl ester

C14H11N3O3S (301.0521)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197

   

MG(12:0/0:0/0:0)

(2R)-2,3-dihydroxypropyl dodecanoate

C15H30O4 (274.2144)


MG(12:0/0:0/0:0) belongs to the family of monoradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at one fatty acyl group is attached. Their general formula is [R1]OCC(CO[R2])O[R3]. MG(12:0/0:0/0:0) is made up of one dodecanoyl(R1).

   

Fluprednisolone

Pregna-1,4-diene-3,20-dione, 6-fluoro-11,17,21-trihydroxy-, (6.alpha.,11.beta.)-

C21H27FO5 (378.1842)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents Same as: D04227

   

1,2-Diphenylethane

1,1-(1,2-Ethanediyl)bis(benzene)

C14H14 (182.1095)


   

manoalide

manoalide

C25H36O5 (416.2563)


A sesterterpenoid isolated from the marine sponge Luffariella variabilis and which has been shown to exhibit inhibitory activity towards phospholipase A2. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

Canadine

(1S)-16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.0^{2,10.0^{4,8.0^{15,20]henicosa-2,4(8),9,15(20),16,18-hexaene

C20H21NO4 (339.1471)


Canadine is a berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. It is a berberine alkaloid, an organic heteropentacyclic compound, an aromatic ether and an oxacycle. Canadine is a natural product found in Glaucium squamigerum, Hydrastis canadensis, and other organisms with data available. A berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.

   

Forchlorfenuron

N-(2-Chloro-4-pyridyl)-N-phenylurea, applicable for cell culture, BioReagent

C12H10ClN3O (247.0512)


Forchlorfenuron is a member of the class of phenylureas that is urea substituted by a phenyl group and a 2-chloropyridin-4-yl group at positions 1 and 3 respectively. It is a plant growth regulator widely used in agriculture for improving fruit quality and fruit size. It has a role as a plant growth regulator. It is a member of phenylureas and a monochloropyridine. Forchlorfenuron is a diphenylurea-derivative cytokinin growth stimulating substance used as plant growth regulator (PGR) to enhance fruit set, size and increase yields. It is absorbed by most plant parts and acts synergistically with natural auxins to promote cell division and growth. It has been approved for use on kiwi fruit and grapes in the USA, and it has been associated with exploding watermelons in China. Forchlorfenuronis is commonly used in horticulture to stimulate the growth of kiwi fruit and grapes. D006133 - Growth Substances > D010937 - Plant Growth Regulators Forchlorfenuron is plant growth regulator and cytokinin; can be used to increase fruit size of fruits, such as kiwi fruit and grapes.

   

Oxazepam

7-chloro-3-hydroxy-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one

C15H11ClN2O2 (286.0509)


Oxazepam is only found in individuals that have used or taken this drug. It is an intermediate-acting benzodiazepine used to treat alcohol withdrawal and anxiety disorders. It is a metabolite of diazepam, prazepam, temazepam, and clorazepate, and has moderate amnesic, anxiolytic, anticonvulsant, hypnotic, sedative, and skeletal muscle relaxant properties compared to other benzodiazepines (Wikipedia). Like other benzodiazepines, oxazepam exerts its anxiolytic effects by potentiating the effect of gamma-aminobutyric acid (GABA) on GABA-A receptors through a cooperative mechanism of action. GABA receptors are ionotropic chloride-linked channel receptors that produce inhibitory postsynaptic potentials. When activated by GABA, the GABA receptor/chloride ionophore complex undergoes a conformational change that allows the passage of chloride ions through the channel. Benzodiazepines are believed to exert their effect by increasing the effect of GABA at its receptor. Benzodiazepine binding increases chloride conductance in the presence of GABA by increasing the frequency at which the channel opens. In contrast, barbiturates increase chloride conductance in the presence of GABA by prolonging the time in which the channel remains open. There are 18 subtypes of the GABA receptor subunits. The α2 subunit of the α2β3γ2 receptor complex is thought to mediate anxiolytic effects while the α1 subunit of the α1β2γ2 receptor complex is thought to mediate sedative, anticonvulsant, and anterograde amnesia effects. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

sn-glycero-3-Phosphoethanolamine

(2-aminoethoxy)[(2S)-2,3-dihydroxypropoxy]phosphinic acid

C5H14NO6P (215.0559)


Sn-glycero-3-phosphoethanolamine is a substrate for: Lysoplasmalogenase. Glycerophosphoethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1190-00-7 (retrieved 2024-07-25) (CAS RN: 1190-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

3D,7D,11D-Phytanic acid

3,7,11,15-Tetramethyl-[3R-(3R*,7R*,11R*)]-hexadecanoic acid

C20H40O2 (312.3028)


3D,7D,11D-Phytanic acid is an isomer of Phytanic acid, an unusual 20-carbon branched-chain fatty acid; Phytanic acid accumulates in blood and tissues of patients with Refsum disease (RD, an inborn error of lipid metabolism inherited as an autosomal recessive trait (OMIM 266500)), and is a reliable identifier of RD from a large number of other neurological disorders. Phytanic acid also accumulates in a number of other disorders with a very different clinical course: disorders of peroxisome biogenesis (Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), infantile Refsum disease (OMIM 266510)) and rhizomelic chondrodysplasia punctata, type 1 (OMIM 215100). Phytanic acid is a 3-methyl fatty acid that cannot be beta-oxidized directly, and first undergoes an alpha-oxidation a reaction catalyzed by the enzyme phytanoyl-CoA hydroxylase, which is deficient in RD, the only true disorder of phytanic acid alpha-oxidation. (The Metabolic and Molecular Bases of Inherited Disease).

   

Uridine diphosphate-N-acetylgalactosamine

N-[2-({[({[3,4-dihydroxy-5-(4-hydroxy-2-oxo-1,2-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]ethanimidate

C17H27N3O17P2 (607.0816)


Uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) is a sugar donor metabolite, transferring N-acetylgalactosamine (GalNAc, an O-glycan) from UDP-GalNAc to serine and threonine residues, forming an alpha-anomeric linkage in a reaction catalyzed by enzymes known as UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases. The addition of GalNAc to serine or threonine represents the first committed step in mucin biosynthesis. O-Glycans impart unique structural features to mucin glycoproteins and numerous membrane receptors, and resistance to thermal change and proteolytic attack in a number of diverse proteins. O-Linked carbohydrate side chains function as ligands for receptors, lymphocyte and leukocyte homing, and as signals for protein sorting (PMID: 12634319). Animal studies suggest that overactivity of the hexosamine pathway, resulting in increased UDP-hexosamines (i.e. UDP-GalNAc) is an important mechanism by which hyperglycemia causes insulin resistance. However, to date, human studies concerning the role of the hexosamine pathway in hyperglycemia-induced insulin resistance are scarce and restricted to measurements of glutamine fructose-6-phosphate amidotransferase (GFAT) enzyme activity. Both positive and negative correlations between GFAT activity in human muscle tissue from patients with type 2 DM and glucose disposal rate have been reported (PMID: 12414889). Uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) is a sugar donor metabolite, transferring N-acetylgalactosamine (GalNAc, an O-glycan) from UDP-GalNAc to serine and threonine residues, forming an alpha anomeric linkage in a reaction catalyzed by enzymes known as UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases; addition of GalNAc to serine or threonine represents the first committed step in mucin biosynthesis. O-glycans impart unique structural features to mucin glycoproteins and numerous membrane receptors, and resistance to thermal change and proteolytic attack in a number of diverse proteins. O-linked carbohydrate side chains function as ligands for receptors; lymphocyte and leukocyte homing and as signals for protein sorting. (PMID: 12634319)

   

scyllo-Inositol

(1R,2R,3R,4R,5R,6R)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0634)


scyllo-Inositol or scyllitol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. scyllo-Inositol was first isolated from the kidneys of fish in 1858 by Staedeler and Freierchs. scyllo-Inositol is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm. It appears to accumulate in a number of human tissues and biofluids through dietary consumption. It has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379). Results reported by Viola et al (PMID: 15340856) suggest that high CSF concentrations of scyllo-inositol can be induced by chronic alcoholism. scyllo-Inositol when fed to transgenic mice that exhibit a memory disease very similar to human Alzheimers disease, can block the accumulation of soluble amyloid-beta (Aβ) plaques in the brain. scyllo-Inositol was found to reverse memory deficits in the mice, reduce the amount of Aβ plaque in the brains of the mice, and reversed other symptoms associated with the presence of Aβ in the brain (PMID: 16767098). Scyllitol is an isomer of cyclohexanehexol or inositol. It was first isolated from the kidneys of fish in 1858 by Staedeler and Freierchs. Scyllitol is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm. It appears to accumulate in a number of human tissues and biofluids through dietary consumption. It has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379). Results reported by Viola et al (PMID: 15340856) suggest that high CSF concentrations of scyllo-inositol can be induced by chronic alcoholism. scyllo-Inositol (also called "scyllitol") when fed to transgenic mice that exhibit a memory disease very similar to human Alzheimers disease, can block the accumulation of soluble amyloid-beta (Aβ) plaques in the brain. Scyllitol was found to reverse memory deficits in the mice, reduce the amount of Aβ plaque in the brains of the mice, and reversed other symptoms associated with the presence of Aβ in the brain (PMID: 16767098). [HMDB] C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

24R,25-Dihydroxyvitamin D3

(3R,6R)-6-[(1R,3aS,4E,7aR)-4-{2-[(1Z,5S)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyl-octahydro-1H-inden-1-yl]-2-methylheptane-2,3-diol

C27H44O3 (416.329)


24R,25-Dihydroxyvitamin D3, also known as 24(R),25(OH)2D3, is a vitamin D metabolite; a dihydroxylated form of the seco-steroid. With the identification of a target cell, the growth plate resting zone (RC) chondrocyte, studies indicate that there are specific membrane-associated signal transduction pathways that mediate both rapid, nongenomic, and genomic responses of RC cells to 24(R),25(OH)2D3. These studies indicate that 24(R),25(OH)2D3 plays an important role in endochondral ossification by regulating less mature chondrocytes and promoting their maturation in the endochondral lineage. 24(R),25(OH)2D3 binds RC chondrocyte membranes with high specificity, increasing protein kinase C (PKC) activity. The effect is stereospecific; 24R,25(OH)2D3, but not 24S,25(OH)2D3, causes the increase, indicating a receptor-mediated response. Phospholipase D-2 (PLD2) activity is increased, resulting in increased production of diacylglycerol (DAG), which in turn activates PKC. 24(R),25(OH)2D3 does not cause translocation of PKC to the plasma membrane but activates existing PKCα. There is a rapid decrease in Ca2+ efflux, and the influx is stimulated. 24(R),25(OH)2D3 also reduces arachidonic acid release by decreasing phospholipase A2 (PLA2) activity, thereby decreasing the available substrate for prostaglandin production via the action of cyclooxygenase-1. PGE2 that is produced acts on the EP1 and EP2 receptors expressed by RC cells to downregulate PKC via protein kinase A, but the reduction in PGE2 decreases this negative feedback mechanism. Both pathways converge on MAP kinase, leading to new gene expression. One consequence of this is the production of new matrix vesicles containing PKCα and PKCγ, and an increase in PKC activity. The chondrocytes also produce 24(R),25(OH)2D3, and the secreted metabolite acts directly on the matrix vesicle membrane. Only PKCγ is directly affected by 24(R),25(OH)2D3 in the matrix vesicles, and activity of this isoform is inhibited. This effect may be involved in the control of matrix maturation and turnover. 24(R),25(OH)2D3 causes RC cells to mature along the endochondral developmental pathway, where they become responsive to 1α,25(OH)2D3 and lose responsiveness to 24(R),25(OH)2D3, a characteristic of more mature growth zone (GC) chondrocytes. 1α,25(OH)2D3 elicits its effects on GC through different signal transduction pathways than those used by 24(R),25(OH)2D3 (PMID: 11179745). 24R,25-Dihydroxyvitamin D3 (24(R),25(OH)2D3 ) is a vitamin D metabolite, a dihydroxylated form of the seco-steroid. With the identification of a target cell, the growth plate resting zone (RC) chondrocyte, studies indicate that there are specific membrane-associated signal transduction pathways that mediate both rapid, nongenomic and genomic responses of RC cells to 24(R),25(OH)2D3. These studies indicate that 24(R),25(OH)2D3 plays an important role in endochondral ossification by regulating less mature chondrocytes and promoting their maturation in the endochondral lineage. D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents

   

muco-Inositol

(1R,2S,3S,4R,5S,6r)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0634)


muco-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. While classed as a sugar-alcohol for historical reasons, muco-inositol is more properly described as a sweet-alcohol due its perception as sweet. However, muco-inositol is perceived as both sweet and salty by humans. It is perceived as salty due to its pair of diaxial-trans-hydroxyl pairs. This pair of hydroxyl groups can form a dimer with the diaxial-trans-hydroxyl pair of the hydrated sodium-ion receptor. muco-Inositol is a critically important chemical in the gustatory (taste) process in mammals. It is coupled to a phospholipid of the outer lemma of the sensory neurons associated with the sodium ion sensitive channel (previously known as the "salty" channel) of gustation. muco-Inositol is typically phosphorylated (becoming muco-inositol phosphate) in the process of being attached to a lipid of the outer lemma of the sensory neurons of taste. The final chemical is phosphatidyl muco-inositol (PtdIns). PtdIns occurs in a specialized area of the cilia of the sensory neurons where it exists in a liquid crystalline form. C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

DL-Adrenaline

4-[1-hydroxy-2-(methylamino)ethyl]benzene-1,2-diol

C9H13NO3 (183.0895)


Oxidized-adrenal-ferredoxin, also known as Epinephrine racemic or Racepinefrine, is classified as a member of the Catechols. Catechols are compounds containing a 1,2-benzenediol moiety. Oxidized-adrenal-ferredoxin is considered to be soluble (in water) and acidic D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Chiro-inositol

(1R,2R,3S,4S,5S,6s)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0634)


Chiro-inositol, also known as (+)-inositol or (1r,2r,3s,4s,5s,6s)-cyclohexane-1,2,3,4,5,6-hexol, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Chiro-inositol is soluble (in water) and a very weakly acidic compound (based on its pKa). Chiro-inositol can be found in carob and soy bean, which makes chiro-inositol a potential biomarker for the consumption of these food products. Inositol or its phosphates and associated lipids are found in many foods, in particular fruit, especially cantaloupe and oranges. In plants, the hexaphosphate of inositol, phytic acid or its salts, the phytates, serve as phosphate stores in seed, for example in nuts and beans. Phytic acid also occurs in cereals with high bran content. Phytate is, however, not directly bioavailable to humans in the diet, since it is not digestible. Some food preparation techniques partly break down phytates to change this. However, inositol in the form of glycerophospholipids, as found in certain plant-derived substances such as lecithins is well-absorbed and relatively bioavailable . D-chiro-Inositol (also known as 1D-chiro-inositol, abbreviated DCI) is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. myo-Inositol is converted into DCI by an insulin dependent NAD/NADH epimerase enzyme. It is known to be an important secondary messenger in insulin signal transduction. DCI accelerates the dephosphorylation of glycogen synthase and pyruvate dehydrogenase, rate limiting enzymes of non-oxidative and oxidative glucose disposal. DCI may act to bypass defective normal epimerization of myo-inositol to DCI associated with insulin resistance and at least partially restore insulin sensitivity and glucose disposal. C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

(+)-Epibatidine

2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

2,3-Dihydroxypropyl dodecanoate

Dodecanoic acid, 2,3-dihydroxypropyl ester

C15H30O4 (274.2144)


D020011 - Protective Agents > D002327 - Cariostatic Agents D001697 - Biomedical and Dental Materials D013501 - Surface-Active Agents

   

(6As,11bS)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol

8-oxatetracyclo[8.7.0.0²,⁷.0¹²,¹⁷]heptadeca-2,4,6,12,14,16-hexaene-5,10,14,15-tetrol

C16H14O5 (286.0841)


Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

decanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl-coa, also known as 10:0-coa or decanoyl-coenzyme a, is a member of the class of compounds known as 2,3,4-saturated fatty acyl coas. 2,3,4-saturated fatty acyl coas are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain. Thus, decanoyl-coa is considered to be a fatty ester lipid molecule. Decanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Decanoyl-coa can be synthesized from decanoic acid and coenzyme A. Decanoyl-coa can also be synthesized into 3-oxodecanoyl-CoA. Decanoyl-coa can be found in a number of food items such as swede, triticale, ohelo berry, and moth bean, which makes decanoyl-coa a potential biomarker for the consumption of these food products. Decanoyl-coa may be a unique S.cerevisiae (yeast) metabolite.

   

Atorvastatin

(rel)-Atorvastatin

C33H35FN2O5 (558.253)


C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2810 D009676 - Noxae > D000963 - Antimetabolites Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Atorvastatin is an orally active HMG-CoA reductase inhibitor, has the ability to effectively decrease blood lipids. Atorvastatin inhibits human SV-SMC proliferation and invasion with IC50s of 0.39 μM and 2.39 μM, respectively[1][2][3].

   

OXAMIC ACID

OXAMIC ACID

C2H3NO3 (89.0113)


A dicarboxylic acid monoamide resulting from the formal condensation of one of the carboxy groups of oxalic acid with ammonia.

   

6-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. A trihydroxyflavanone having a structure of naringenin prenylated at C-6. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

Decanoyl-CoA (n-C10:0CoA)

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(decanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C31H54N7O17P3S (921.251)


Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. An oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

doxepin

Cidoxepin

C19H21NO (279.1623)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists CONFIDENCE standard compound; INTERNAL_ID 1532

   

amlodipine

Amlodipine (Norvasc)

C20H25ClN2O5 (408.1452)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1544

   

gemfibrozil

gemfibrozil

C15H22O3 (250.1569)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent > C98150 - Fibrate Antilipidemic Agent D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065687 - Cytochrome P-450 CYP2C8 Inhibitors C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AB - Fibrates D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites CONFIDENCE standard compound; EAWAG_UCHEM_ID 3071 Gemfibrozil is an activator of PPAR-α, used as a lipid-lowering agent; Gemfibrozil is also a nonselective inhibitor of several P450 isoforms, with Ki values for CYP2C9, 2C19, 2C8, and 1A2 of 5.8, 24, 69, and 82 μM, respectively.

   

doxazosin

Doxazosin, (R)-

C23H25N5O5 (451.1856)


C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; EAWAG_UCHEM_ID 3293

   

Dehydrocholic acid

(4R)-4-[(5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12-trioxo-1,2,4,5,6,8,9,11,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pentanoic acid

C24H34O5 (402.2406)


Dehydrocholic acid is a synthetic bile acid, manufactured by the oxidation of cholic acid. It acts as a hydrocholeretic, increasing bile output to clear increased bile acid load. 3,7,12-trioxo-5beta-cholanic acid is an oxo-5beta-cholanic acid in which three oxo substituents are located at positions 3, 7 and 12 on the cholanic acid skeleton. It has a role as a gastrointestinal drug. It is an oxo-5beta-cholanic acid, a 7-oxo steroid, a 12-oxo steroid and a 3-oxo-5beta-steroid. It is a conjugate acid of a 3,7,12-trioxo-5beta-cholan-24-oate. Dehydrocholic acid is a synthetic bile acid that was prepared from the oxidation of cholic acid with chromic acid. It has been used for stimulation of biliary lipid secretion. The use of dehydrocholic acid in over-the-counter products has been discontinued by Health Canada.

   

Xanthosine

Xanthosine

C10H12N4O6 (284.0757)


A purine nucleoside in which xanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].

   

nevirapine

Nevirapine (Viramune)

C15H14N4O (266.1168)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

Fenofibrate (Tricor, Trilipix)

propan-2-yl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate

C20H21ClO4 (360.1128)


Fenofibrate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=49562-28-9 (retrieved 2024-07-12) (CAS RN: 49562-28-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fenofibrate is a selective PPARα agonist with an EC50 of 30 μM. Fenofibrate also inhibits human cytochrome P450 isoforms, with IC50s of 0.2, 0.7, 9.7, 4.8 and 142.1 μM for CYP2C19, CYP2B6, CYP2C9, CYP2C8, and CYP3A4, respectively.

   

haloperidol

Haloperidol (Haldol)

C21H23ClFNO2 (375.1401)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.

   

N-acetyl-L-aspartic acid

N-acetyl-L-aspartic acid

C6H9NO5 (175.0481)


An N-acyl-L-aspartic acid in which the acyl group is specified as acetyl. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OTCCIMWXFLJLIA-BYPYZUCNSA-N_STSL_0218_N-Acetyl-L-aspartic acid_2000fmol_190326_S2_LC02MS02_065; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

2-pyridone

2-HYDROXYPYRIDINE

C5H5NO (95.0371)


α-Pyridone is an endogenous metabolite.

   

Nicotinic acid

Nicotinic acid

C6H5NO2 (123.032)


CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 706; ORIGINAL_PRECURSOR_SCAN_NO 705 C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AD - Nicotinic acid and derivatives C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators > C04AC - Nicotinic acid and derivatives D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D018977 - Micronutrients > D014815 - Vitamins D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 699; ORIGINAL_PRECURSOR_SCAN_NO 697 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 707; ORIGINAL_PRECURSOR_SCAN_NO 706 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1277; ORIGINAL_PRECURSOR_SCAN_NO 1275 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1271; ORIGINAL_PRECURSOR_SCAN_NO 1269 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1283; ORIGINAL_PRECURSOR_SCAN_NO 1281 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1265; ORIGINAL_PRECURSOR_SCAN_NO 1263 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PVNIIMVLHYAWGP_STSL_0169_Nicotinic acid_0125fmol_180506_S2_LC02_MS02_96; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

GLYCERIC ACID

D-(+)-Glyceric acid hemicalcium salt

C3H6O4 (106.0266)


A trionic acid that consists of propionic acid substituted at positions 2 and 3 by hydroxy groups.

   

Norepinephrine

4-(2-Amino-1-hydroxyethyl)benzene-1,2-diol

C8H11NO3 (169.0739)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78274 - Agent Affecting Cardiovascular System > C126567 - Vasopressor C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

inositol

1,2,3,4,5,6-Cyclohexanehexol

C6H12O6 (180.0634)


C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

PHYTANIC ACID

Hexadecanoic acid, 3,7,11,15-tetramethyl-

C20H40O2 (312.3028)


A branched-chain saturated fatty acid consisting of hexadecanoic acid carrying methyl substituents at positions 3, 7, 11 and 15.

   

Fluvoxamine

Fluvoxamine

C15H21F3N2O2 (318.1555)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2740

   

Tiagabine

Tiagabine

C20H25NO2S2 (375.1327)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

Pentazocine

(R)-Pentazocine

C19H27NO (285.2093)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Oleamide

9Z-octadecenamide

C18H35NO (281.2719)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D000074385 - Food Ingredients > D005503 - Food Additives A fatty amide derived from oleic acid. Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.

   

7-Ketodeoxycholic acid

7-Keto-3α,12-α-dihydroxycholanic Acid

C24H38O5 (406.2719)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids CONFIDENCE standard compound; INTERNAL_ID 265 7-keto-lithocholic acid is a metabolite of bile acids in Clostridium absonum. 7-keto-lithocholic acid is also converted from Lactobacillus and Bifidobacterium with specific condition[1][2].

   

propafenone

propafenone

C21H27NO3 (341.1991)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

flecainide

flecainide

C17H20F6N2O3 (414.1378)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Mexiletine

1-(2,6-Dimethylphenoxy)-2-propanamine

C11H17NO (179.131)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Racepinephrine

Alipogene tiparvovec

C9H13NO3 (183.0895)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

12-Hete

(5Z,8Z,10E,14Z)-(12S)-12-Hydroxyeicosa-5,8,10,14-tetraenoic acid

C20H32O3 (320.2351)


A HETE that is icosa-5,8,10,14-tetraenoic acid substituted by a hydroxy group at position 12. It is a metabolite of arachidonic acid. A HETE having a (12S)-hydroxy group and (5Z)-, (8Z)-, (10E)- and (14Z)-double bonds.

   

CoA 18:2

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


   

CoA 20:4

(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-CoA;(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-coenzyme A;(5Z,8Z,11Z,14Z)-5,8,11,14-icosatetraenoyl-coenzyme A;C20:4-CoA;all-cis-5,8,11,14-eicosatetraenoyl-CoA;all-cis-5,8,11,14-eicosatetraenoyl-coenzyme A;arachidonoyl-coenzyme A;arachidonyl-coenzyme A;cis-Delta(5,8,11,14)-eicosatetraenoyl-CoA;cis-Delta(5,8,11,14)-eicosatetraenoyl-coenzyme A

C41H66N7O17P3S (1053.3449)


   

CoA 10:0

3-phosphoadenosine 5-(3-{(3R)-4-[(3-{[2-(decanoylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl} dihydrogen diphosphate)

C31H54N7O17P3S (921.251)


   

ST 26:3;O3

17-heptanoyl-17beta-hydroxyandrost-4-en-3-one

C26H40O3 (400.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

ANISOLE

ANISOLE

C7H8O (108.0575)


A monomethoxybenzene that is benzene substituted by a methoxy group.

   

5-METHYL-1-(3-PYRIDYLCARBAMOYL)-1,2,3,5-TETRAHYDROPYRROLO [2,3-F]INDOLE

Benzo(1,2-b:4,5-b)dipyrrole-1(2H)-carboxamide, 3,5-dihydro-5-methyl-N-3-pyridinyl-

C17H16N4O (292.1324)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants

   

Tricaprilin

Trioctanoylglycerol

C27H50O6 (470.3607)


D010592 - Pharmaceutic Aids > D014677 - Pharmaceutical Vehicles > D005079 - Excipients Same as: D01587 Tricaprilin (Trioctanoin) is used in study for patients with mild to moderate Alzheimer's disease and has a role as an anticonvulsant and a plant metabolite[1][2].

   

nocodazole

nocodazole

C14H11N3O3S (301.0521)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197

   

Linic

InChI=1\C6H5NO2\c8-6(9)5-2-1-3-7-4-5\h1-4H,(H,8,9

C6H5NO2 (123.032)


C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AD - Nicotinic acid and derivatives C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators > C04AC - Nicotinic acid and derivatives D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D018977 - Micronutrients > D014815 - Vitamins D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

AI3-52407

5-21-08-00246 (Beilstein Handbook Reference)

C9H7NO (145.0528)


Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

Marmesin

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892)


Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.

   

Anizol

InChI=1\C7H8O\c1-8-7-5-3-2-4-6-7\h2-6H,1H

C7H8O (108.0575)


   

Gondoic acid

cis-Delta(11)-eicosenoic acid

C20H38O2 (310.2872)


Gondoic acid (cis-11-Eicosenoic acid), a monounsaturated long-chain fatty acid, is contained in a variety of plant oils and nuts[1]. Gondoic acid (cis-11-Eicosenoic acid), a monounsaturated long-chain fatty acid, is contained in a variety of plant oils and nuts[1].

   

c0242

InChI=1\C8H8O\c1-7-3-2-4-8(5-7)6-9\h2-6H,1H

C8H8O (120.0575)


m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

Dibenzil

InChI=1\C14H14\c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14\h1-10H,11-12H

C14H14 (182.1095)


   

24 25-Dihydroxy VD3

24,25-Dihydroxyvitamin D3

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formationand is) also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746 ) [HMDB]

   

Linoleoyl-CoA

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


An octadecadienoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of linoleic acid. Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of Glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid {beta}-oxidation; ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates. (PMID: 17184976, 16020546) [HMDB]

   

Blasticidin S

(2S,3S,6R)-3-[[3-amino-5-[carbamimidoyl(methyl)amino]pentanoyl]amino]-6-(4-amino-2-oxopyrimidin-1-yl)-3,6-dihydro-2H-pyran-2-carboxylic acid

C17H26N8O5 (422.2026)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents A blasticidin that is an antibiotic obtained from Streptomyces griseochromogene. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors

   

Atorvastatin

(rel)-Atorvastatin

C33H35FN2O5 (558.253)


C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Atorvastatin is an orally active HMG-CoA reductase inhibitor, has the ability to effectively decrease blood lipids. Atorvastatin inhibits human SV-SMC proliferation and invasion with IC50s of 0.39 μM and 2.39 μM, respectively[1][2][3].

   

Dimethyltryptamine

N,N-DIMETHYLTRYPTAMINE

C12H16N2 (188.1313)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens A tryptamine derivative having two N-methyl substituents on the side-chain.

   

N-ethylmaleimide

N-ethylmaleimide

C6H7NO2 (125.0477)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D004791 - Enzyme Inhibitors

   

Testosterone Enanthate

Testosterone Enanthate

C26H40O3 (400.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Secalciferol

(24R)-24,25-Dihydroxycalciol

C27H44O3 (416.329)


D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents

   

Bis(4-nitrophenyl) phosphate

Bis(4-nitrophenyl) hydrogen phosphate

C12H9N2O8P (340.0097)


D004791 - Enzyme Inhibitors

   

URIDINE-diphosphATE-N-acetylglucosamine

URIDINE-diphosphATE-N-acetylglucosamine

C17H27N3O17P2 (607.0816)


A UDP-amino sugar having N-acetyl-alpha-D-glucosamine as the amino sugar component.

   

CARBAMIC ACID

CARBAMIC ACID

CH3NO2 (61.0164)


A one-carbon compound that is ammonia in which one of the hydrogens is replaced by a carboxy group. Although carbamic acid derivatives are common, carbamic acid itself has never been synthesised.

   

DL-AP3

2-Amino-3-phosphonopropionic acid

C3H8NO5P (169.014)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists DL-AP3 is a competitive mGluR1 and mGluR5 antagonist. DL-AP3 is also an inhibitor of phosphoserine phosphatase. DL-AP3 has neuroprotective effect[1][2][3].

   

decanoyl-CoA

decanoyl-CoA

C31H54N7O17P3S (921.251)


A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of decanoic acid.

   

Inositol 1,3,4,5-tetrakisphosphate

Inositol 1,3,4,5-tetrakisphosphate

C6H16O18P4 (499.9287)


   

Inositol 1,3,4-trisphosphate

1D-Myo-inositol 1,3,4-trisphosphate

C6H15O15P3 (419.9624)


   
   

1D-myo-inositol 1,4-bisphosphate

1D-myo-inositol 1,4-bisphosphate

C6H14O12P2 (339.9961)


   

6,7-dihydropteridine

6,7-dihydropteridine

C6H6N4 (134.0592)


   

1-(sn-Glycero-3-phospho)-1D-myo-inositol

1-(sn-Glycero-3-phospho)-1D-myo-inositol

C9H19O11P (334.0665)


A myo-inositol monophosphate derivative that is 1D-myo-inositol substituted at position 1 by an sn-glycero-3-phospho group.

   

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] N-sulfooxybut-3-enimidothioate

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] N-sulfooxybut-3-enimidothioate

C10H17NO9S2 (359.0345)


   

N-Sulfo-D-glucosamine

N-Sulfo-D-glucosamine

C6H13NO8S (259.0362)


   

L-Threonine phosphate

threoninium dihydrogen phosphate

C4H10NO6P (199.0246)


A L-threonine derivative phosphorylated at the side-chain hydroxy function. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

4-tert-Amylphenol

4-tert-Amylphenol

C11H16O (164.1201)


   

Talwin

Talwin

C19H27NO (285.2093)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Monolaurin

2,3-Dihydroxypropyl dodecanoate

C15H30O4 (274.2144)


D020011 - Protective Agents > D002327 - Cariostatic Agents D001697 - Biomedical and Dental Materials D013501 - Surface-Active Agents

   

Dibenzyl

1,2-dihydrostilbene

C14H14 (182.1095)


   

(RS)-AMPA

alpha-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLEPROPIONIC ACID

C7H10N2O4 (186.0641)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].

   

Glycerophosphorylethanolamine

2-AMINOETHYL (2,3-DIHYDROXYPROPYL) HYDROGEN PHOSPHATE

C5H14NO6P (215.0559)


   

brasilin

(+)-BRAZILIN

C16H14O5 (286.0841)


Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

4-Methylumbelliferone sulfate

4-Methylumbelliferone sulfate

C10H8O6S (256.0042)


A member of the class of coumarins that is umbelliferone sulfate which carries a methyl group at position 4. It is a metabolite of 4-methylumbelliferone.

   

Vitamin P

Quercetin 3-O-rutinoside

C27H30O16 (610.1534)


   

1,2-Didecanoylglycerol

1,2-Didecanoylglycerol

C23H44O5 (400.3189)