Prostaglandin I2 (BioDeep_00000004022)
Secondary id: BioDeep_00000409898
human metabolite Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C20H32O5 (352.2249622)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.09%
分子结构信息
SMILES: CCCCCC(C=CC1C(CC2C1CC(=CCCCC(=O)O)O2)O)O
InChI: InChI=1S/C20H32O5/c1-2-3-4-7-14(21)10-11-16-17-12-15(8-5-6-9-20(23)24)25-19(17)13-18(16)22/h8,10-11,14,16-19,21-22H,2-7,9,12-13H2,1H3,(H,23,24)/b11-10+,15-8-/t14-,16+,17+,18+,19-/m0/s1
描述信息
Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension.
B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors
D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
C78568 - Prostaglandin Analogue
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
36 个代谢物同义名
5-[(3aR,4R,5R,6aS)-5-hydroxy-4-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-hexahydro-2H-cyclopenta[b]furan-2-ylidene]pentanoic acid; 5-[5-hydroxy-4-(3-hydroxyoct-1-enyl)-3,3a,4,5,6,6a-hexahydrocyclopenta[b]furan-2-ylidene]pentanoic acid; (5Z,9alpha,11alpha,13E,15S)-6,9-Epoxy-11,15-dihydroxyprosta-5,13-dien-1-Oic acid; (5Z,9alpha,11alpha,13E,15S)-6,9-Epoxy-11,15-dihydroxyprosta-5,13-dien-1-Oate; (5Z,13E)-(15S)-6,9-alpha-Epoxy-11-alpha,15-dihydroxyprosta-5,13-dienoic acid; (5Z,13E)-(15S)-6,9alpha-Epoxy-11alpha,15-dihydroxyprosta-5,13-dienoic acid; (5Z,9a,11a,13E,15S)-6,9-Epoxy-11,15-dihydroxyprosta-5,13-dien-1-Oic acid; (5Z,9Α,11α,13E,15S)-6,9-epoxy-11,15-dihydroxyprosta-5,13-dien-1-Oic acid; (5Z,13E)-(15S)-6,9-alpha-Epoxy-11-alpha,15-dihydroxyprosta-5,13-dienoate; (5Z,13E)-(15S)-6,9alpha-Epoxy-11alpha,15-dihydroxyprosta-5,13-dienoate; (5Z,9Α,11α,13E,15S)-6,9-epoxy-11,15-dihydroxyprosta-5,13-dien-1-Oate; (5Z,9a,11a,13E,15S)-6,9-Epoxy-11,15-dihydroxyprosta-5,13-dien-1-Oate; (5Z,13E)-(15S)-6,9Α-epoxy-11α,15-dihydroxyprosta-5,13-dienoic acid; (5Z,13E)-(15S)-6,9a-Epoxy-11a,15-dihydroxyprosta-5,13-dienoic acid; (5Z,13E,15S)-6,9a-Epoxy-11a,15-dihydroxyprosta-5,13-dienoic acid; (5Z,13E)-(15S)-6,9-Epoxy-11,15-dihydroxyprosta-5,13-dienoic acid; (5Z,13E)-(15S)-6,9a-Epoxy-11a,15-dihydroxyprosta-5,13-dienoate; (5Z,13E)-(15S)-6,9Α-epoxy-11α,15-dihydroxyprosta-5,13-dienoate; (5Z,13E)-(15S)-6,9-Epoxy-11,15-dihydroxyprosta-5,13-dienoate; Epoprostenol sodium salt, (5Z,9alpha,11alpha,13E,15S)-isomer; (5Z,13E,15S)-6,9a-Epoxy-11a,15-dihydroxyprosta-5,13-dienoate; 6,9S-epoxy-11R,15S-dihydoxy-5Z,13E-prostadienoic acid; Epoprostenol sodium; Prostaglandin I(2); Prostaglandin I2; Prostaglandin X; Prostacycline; Prostacyclin; Epoprostenol; Epoprostanol; Vasocyclin; Veletri; Flolan; PGI2; PGX; Prostaglandin I2
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:15552
- KEGG: C01312
- KEGGdrug: D00106
- PubChem: 5280427
- PubChem: 5282411
- PubChem: 159
- HMDB: HMDB0001335
- Metlin: METLIN36155
- Metlin: METLIN778
- DrugBank: DB01240
- ChEMBL: CHEMBL1139
- Wikipedia: Prostacyclin
- MeSH: Epoprostenol
- foodb: FDB022560
- chemspider: 4445566
- CAS: 63859-31-4
- CAS: 35121-78-9
- PMhub: MS000014722
- PubChem: 4527
- LipidMAPS: LMFA03010087
- 3DMET: B01438
- NIKKAJI: J17.550A
- RefMet: PGI2
- KNApSAcK: 15552
- LOTUS: LTS0176068
分类词条
相关代谢途径
Reactome(19)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Metabolism of vitamins and cofactors
- Metabolism of lipids
- Cytochrome P450 - arranged by substrate type
- Signaling Pathways
- Fatty acid metabolism
- Metabolism of water-soluble vitamins and cofactors
- Arachidonic acid metabolism
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX)
- Signaling by GPCR
- GPCR ligand binding
- Class A/1 (Rhodopsin-like receptors)
- Hemostasis
- Nicotinate metabolism
- Platelet homeostasis
- Nicotinamide salvaging
- Eicosanoids
BioCyc(0)
PlantCyc(0)
代谢反应
241 个相关的代谢反应过程信息。
Reactome(189)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
H+ + Oxygen + TPNH + Trioxilin A3 ⟶ 20OH-TrXA3 + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
prostaglandin H2 ⟶ Prostacyclin
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
prostaglandin H2 ⟶ Prostacyclin
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
H+ + Oxygen + TPNH + leukotriene B4 ⟶ 20OH-LTB4 + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
H+ + Oxygen + TPNH + leukotriene B4 ⟶ 20OH-LTB4 + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
H+ + Oxygen + TPNH + leukotriene B4 ⟶ 20OH-LTB4 + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
H+ + Oxygen + TPNH + leukotriene B4 ⟶ 20OH-LTB4 + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Eicosanoids:
prostaglandin H2 ⟶ Prostacyclin
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + F1MCJ0 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + F1PUR8 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + Homologues of OXER1 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
Homologues of PTGDR2 + prostaglandin D2 ⟶ PTGDR2:PGD2
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin + ptgir ⟶ PTGIR:PGI2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- Hemostasis:
3AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin:prostacyclin receptor:G-protein Gs (active) ⟶ G-protein beta-gamma complex + Gs:GTP + PTGIR + Prostacyclin
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + OXER1_HUMAN ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin + Ptgir ⟶ PTGIR:PGI2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
Ptgdr + prostaglandin D2 ⟶ PTGDR:PGD2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
Ptgdr + prostaglandin D2 ⟶ PTGDR:PGD2
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin + Ptgir ⟶ PTGIR:PGI2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
F1RIB0 + prostaglandin D2 ⟶ PTGDR2:PGD2
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin + ptgir ⟶ PTGIR:PGI2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + A0A6I8PVP2 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Eicosanoid ligand-binding receptors:
CrzR + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Prostacyclin signalling through prostacyclin receptor:
GTP + Prostacyclin:prostacyclin receptor:Gs (inactive) ⟶ GDP + Prostacyclin:prostacyclin receptor:G-protein Gs (active)
- Hemostasis:
AMP + GTP ⟶ ADP + GDP
- Platelet homeostasis:
H0ZG60 + LDL ⟶ LDL:LRP8
- Prostacyclin signalling through prostacyclin receptor:
GTP + Prostacyclin:prostacyclin receptor:Gs (inactive) ⟶ GDP + Prostacyclin:prostacyclin receptor:G-protein Gs (active)
BioCyc(0)
WikiPathways(5)
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
- Eicosanoid synthesis:
PGD2 ⟶ PGJ2
- Blood clotting and drug effects:
Fibrinogen ⟶ Fibrin
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
- Arachidonic acid (AA, ARA) oxylipin metabolism:
HXB3 ⟶ Trioxilin B3
Plant Reactome(0)
INOH(1)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Marta Z Pacia, Natalia Chorazy, Magdalena Sternak, Kamila Wojnar-Lason, Stefan Chlopicki. Vascular lipid droplets formed in response to TNF, hypoxia or OA: biochemical composition and prostacyclin generation.
Journal of lipid research.
2023 Mar; ?(?):100355. doi:
10.1016/j.jlr.2023.100355
. [PMID: 36934842] - Jacob Bell, C William Pike, Charles Kreisel, Rajiv Sonti, Nathan Cobb. Predicting Impact of Prone Position on Oxygenation in Mechanically Ventilated Patients with COVID-19.
Journal of intensive care medicine.
2022 Jul; 37(7):883-889. doi:
10.1177/08850666221081757
. [PMID: 35195460] - Felix Rafael De Bie, Christopher Gates Halline, Travis Kotzur, Kevin Hayes, Christopher Copeland Rouse, Jonathan Chang, Abby Christine Larson, Sameer Ahmad Khan, Ashley Spina, Samantha Tilden, Francesca Maria Russo, Holly Lee Hedrick, Jan Deprest, Emily Anne Partridge. Prenatal treprostinil reduces the pulmonary hypertension phenotype in the rat model of congenital diaphragmatic hernia.
EBioMedicine.
2022 Jul; 81(?):104106. doi:
10.1016/j.ebiom.2022.104106
. [PMID: 35779494] - Anthony Steven Lubinsky, Shari B Brosnahan, Andrew Lehr, Ola Elnadoury, Jacklyn Hagedorn, Bhaskara Garimella, Michael T Bender, Nancy Amoroso, Antonio Artigas, Lieuwe D J Bos, David Kaufman. Inhaled pulmonary vasodilators are not associated with improved gas exchange in mechanically ventilated patients with COVID-19: A retrospective cohort study.
Journal of critical care.
2022 06; 69(?):153990. doi:
10.1016/j.jcrc.2022.153990
. [PMID: 35180636] - Joe W Chiles, Kadambari Vijaykumar, Adrienne Darby, Ryan L Goetz, Lauren E Kane, Abhishek R Methukupally, Sheetal Gandotra, Derek W Russell, Micah R Whitson, Daniel Kelmenson. Letter to the Editor: 'Use of inhaled epoprostenol with high flow nasal oxygen in non-intubated patients with severe COVID-19'.
Journal of critical care.
2022 06; 69(?):153989. doi:
10.1016/j.jcrc.2022.153989
. [PMID: 35217371] - Martin Vigstedt, Peter Søe-Jensen, Morten H Bestle, Niels E Clausen, Klaus T Kristiansen, Theis Lange, Jakob Stensballe, Anders Perner, Pär I Johansson. The effect of prostacyclin infusion on markers of endothelial activation and damage in mechanically ventilated patients with SARS-CoV-2 infection.
Journal of critical care.
2022 06; 69(?):154010. doi:
10.1016/j.jcrc.2022.154010
. [PMID: 35183892] - Katrina M Mirabito Colafella, Daan C H van Dorst, Rugina I Neuman, Leni van Doorn, Karla Bianca Neves, Augusto C Montezano, Ingrid M Garrelds, Richard van Veghel, René de Vries, Estrellita Uijl, Marian C Clahsen-van Groningen, Hans J Baelde, Anton H van den Meiracker, Rhian M Touyz, Willy Visser, A H Jan Danser, Jorie Versmissen. Differential effects of cyclo-oxygenase 1 and 2 inhibition on angiogenesis inhibitor-induced hypertension and kidney damage.
Clinical science (London, England : 1979).
2022 05; 136(9):675-694. doi:
10.1042/cs20220182
. [PMID: 35441670] - Dietmar Schranz. COVID-19 in children: acute endotheliopathy, but forgotten prostacyclin replacement?.
Cardiology in the young.
2022 04; 32(4):572-573. doi:
10.1017/s1047951121002626
. [PMID: 34227929] - Vivek Kataria, Klayton Ryman, Ginger Tsai-Nguyen, Yosafe Wakwaya, Ariel Modrykamien. Evaluation of aerosolized epoprostenol for hypoxemia in non-intubated patients with coronavirus disease 2019.
Hospital practice (1995).
2022 Apr; 50(2):118-123. doi:
10.1080/21548331.2022.2047310
. [PMID: 35212586] - Zhenkun Li, Fengrong Zhang, Shicong Wang, Honghe Xiao, Jingyi Wang, Xianyu Li, Hongjun Yang. Endothelium-dependent vasorelaxant effects of praeruptorin a in isolated rat thoracic aorta.
Bioengineered.
2022 04; 13(4):10038-10046. doi:
10.1080/21655979.2022.2062979
. [PMID: 35416124] - Xuemei Wu, Xiaohan Zhang, Ruichao Xu, Imam Hussain Shaik, Raman Venkataramanan. Physiologically based pharmacokinetic modelling of treprostinil after intravenous injection and extended-release oral tablet administration in healthy volunteers: An extrapolation to other patient populations including patients with hepatic impairment.
British journal of clinical pharmacology.
2022 02; 88(2):587-599. doi:
10.1111/bcp.14966
. [PMID: 34190364] - Pär I Johansson, Peter Søe-Jensen, Morten H Bestle, Niels E Clausen, Klaus T Kristiansen, Theis Lange, Jakob Stensballe, Anders Perner. Prostacyclin in Intubated Patients with COVID-19 and Severe Endotheliopathy: A Multicenter, Randomized Clinical Trial.
American journal of respiratory and critical care medicine.
2022 02; 205(3):324-329. doi:
10.1164/rccm.202108-1855oc
. [PMID: 34813414] - Xiaoxiao Tao, Chenfeng Qiu, Xuewen Feng, Linlin Wang. Predictive Analysis of Serum NO, PGI2, and Ox-LDL Levels on Disease Progression in Patients with Lacunar Cerebral Infarction.
Computational and mathematical methods in medicine.
2022; 2022(?):1221810. doi:
10.1155/2022/1221810
. [PMID: 35419075] - Kamrouz Ghadimi, Jhaymie Cappiello, Mary Cooter-Wright, John C Haney, John M Reynolds, Brandi A Bottiger, Jacob A Klapper, Jerrold H Levy, Matthew G Hartwig. Inhaled Pulmonary Vasodilator Therapy in Adult Lung Transplant: A Randomized Clinical Trial.
JAMA surgery.
2022 01; 157(1):e215856. doi:
10.1001/jamasurg.2021.5856
. [PMID: 34787647] - Pai B H Poonam, Rebecca Koscik, Trong Nguyen, Shefali Rikhi, Hung-Mo Lin. Nitric oxide versus epoprostenol for refractory hypoxemia in Covid-19.
PloS one.
2022; 17(6):e0270646. doi:
10.1371/journal.pone.0270646
. [PMID: 35759496] - Peyman Nowrouzi-Sohrabi, Reza Tabrizi, Kamran Hessami, Mojtaba Shabani-Borujeni, Mahnaz Hosseini-Bensenjan, Shahla Rezaei, Mohammad Jalali, Pedram Keshavarz, Fariba Ahmadizar. The effects of beraprost sodium on renal function and cardiometabolic profile in patients with diabetes mellitus: a systematic review and meta-analysis of clinical trials.
International urology and nephrology.
2022 Jan; 54(1):111-120. doi:
10.1007/s11255-021-02887-7
. [PMID: 34019221] - Anna Stochmal, Joanna Czuwara, Michał Zaremba, Lidia Rudnicka. Epoprostenol up-regulates serum adiponectin level in patients with systemic sclerosis: therapeutic implications.
Archives of dermatological research.
2021 Nov; 313(9):783-791. doi:
10.1007/s00403-020-02172-0
. [PMID: 33433715] - Joyce Hou, Evelyn Tolbert, Mark Birkenbach, Nisanne S Ghonem. Treprostinil alleviates hepatic mitochondrial injury during rat renal ischemia-reperfusion injury.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Nov; 143(?):112172. doi:
10.1016/j.biopha.2021.112172
. [PMID: 34560548] - Allison E Norlander, R Stokes Peebles. Prostaglandin I2 and T Regulatory Cell Function: Broader Impacts.
DNA and cell biology.
2021 Oct; 40(10):1231-1234. doi:
10.1089/dna.2021.0515
. [PMID: 34265210] - Sofia Sidiropoulou, Styliani Papadaki, Aikaterini N Tsouka, Ioannis K Koutsaliaris, Vasileios G Chantzichristos, Despoina Pantazi, Minas E Paschopoulos, Kenny M Hansson, Alexandros D Tselepis. The Effect of Platelet-Rich Plasma on Endothelial Progenitor Cell Functionality.
Angiology.
2021 Sep; 72(8):776-786. doi:
10.1177/0003319721998895
. [PMID: 33678047] - Meiwen Ding, Evelyn Tolbert, Mark Birkenbach, Reginald Gohh, Fatemeh Akhlaghi, Nisanne S Ghonem. Treprostinil reduces mitochondrial injury during rat renal ischemia-reperfusion injury.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Sep; 141(?):111912. doi:
10.1016/j.biopha.2021.111912
. [PMID: 34328097] - Omar Abdulhameed Almazroo, Mohammad Kowser Miah, Venkateswaran C Pillai, Imam H Shaik, Ruichao Xu, Stalin Dharmayan, Heather J Johnson, Swaytha Ganesh, Raymond M Planinsic, Anthony J Demetris, Ali Al-Khafaji, Roberto Lopez, Michele Molinari, Amit D Tevar, Christopher Hughes, Abhinav Humar, Raman Venkataramanan. An evaluation of the safety and preliminary efficacy of peri- and post-operative treprostinil in preventing ischemia and reperfusion injury in adult orthotopic liver transplant recipients.
Clinical transplantation.
2021 06; 35(6):e14298. doi:
10.1111/ctr.14298
. [PMID: 33764591] - Ikumi Nakajo, Hiroshi Inoue, Masaki Inaba, Keishi Oikawa, Masataka Katashima, Taiji Sawamoto, Hajimu Kurumatani, Masanari Shiramoto. Comparison of Pharmacokinetic Profiles of Beraprost Sustained Release in Japanese, Chinese, and Korean Healthy Adult Males.
Clinical drug investigation.
2021 Jun; 41(6):549-555. doi:
10.1007/s40261-021-01031-8
. [PMID: 33913081] - Eric J Rubin, Lindsey R Baden, Jeffrey M Drazen, Darren B Taichman, Stephen Morrissey. Audio Interview: Vaccination in Nursing Homes and New Pulmonary/Critical Care Research.
The New England journal of medicine.
2021 May; 384(20):e89. doi:
10.1056/nejme2108598
. [PMID: 34010537] - H James Ford, Wayne H Anderson, Blair Wendlandt, Thomas Bice, Agathe Ceppe, Joyce Lanier, Shannon S Carson. Randomized, Placebo-controlled Trial of Inhaled Treprostinil for Patients at Risk for Acute Respiratory Distress Syndrome.
Annals of the American Thoracic Society.
2021 04; 18(4):641-647. doi:
10.1513/annalsats.202004-374oc
. [PMID: 33095030] - Mohammed A Abosheasha, Afnan H El-Gowily. Superiority of cilostazol among antiplatelet FDA-approved drugs against COVID 19 Mpro and spike protein: Drug repurposing approach.
Drug development research.
2021 04; 82(2):217-229. doi:
10.1002/ddr.21743
. [PMID: 32984987] - Rajiv Sonti, C William Pike, Nathan Cobb. Responsiveness of Inhaled Epoprostenol in Respiratory Failure due to COVID-19.
Journal of intensive care medicine.
2021 Mar; 36(3):327-333. doi:
10.1177/0885066620976525
. [PMID: 33234007] - Sean X Gu, Tarun Tyagi, Kanika Jain, Vivian W Gu, Seung Hee Lee, Jonathan M Hwa, Jennifer M Kwan, Diane S Krause, Alfred I Lee, Stephanie Halene, Kathleen A Martin, Hyung J Chun, John Hwa. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation.
Nature reviews. Cardiology.
2021 03; 18(3):194-209. doi:
10.1038/s41569-020-00469-1
. [PMID: 33214651] - Jane A Mitchell, Fisnik Shala, Maria Elisa Lopes Pires, Rachel Y Loy, Andrew Ravendren, Joshua Benson, Paula Urquhart, Anna Nicolaou, Harvey R Herschman, Nicholas S Kirkby. Endothelial cyclooxygenase-1 paradoxically drives local vasoconstriction and atherogenesis despite underpinning prostacyclin generation.
Science advances.
2021 03; 7(12):. doi:
10.1126/sciadv.abf6054
. [PMID: 33741600] - Ahmed Aburima, Martin Berger, Benjamin E J Spurgeon, Bethany A Webb, Katie S Wraith, Maria Febbraio, Alastair W Poole, Khalid M Naseem. Thrombospondin-1 promotes hemostasis through modulation of cAMP signaling in blood platelets.
Blood.
2021 02; 137(5):678-689. doi:
10.1182/blood.2020005382
. [PMID: 33538796] - Daoyuan Sun, Wenlan Yang, Zhenwei Wang, Beilan Gao. Efficacy of Beraprost Sodium Combined with Sildenafil and Its Effects on Vascular Endothelial Function and Inflammation in Patients Experiencing Left Heart Failure Complicated with Pulmonary Arterial Hypertension.
Medical science monitor : international medical journal of experimental and clinical research.
2021 Feb; 27(?):e928413. doi:
10.12659/msm.928413
. [PMID: 33531453] - Richard W Chapman, Zhili Li, Donald Chun, Helena Gauani, Vladimir Malinin, Adam J Plaunt, David Cipolla, Walter R Perkins, Michel R Corboz. Treprostinil palmitil, an inhaled long-acting pulmonary vasodilator, does not show tachyphylaxis with daily dosing in rats.
Pulmonary pharmacology & therapeutics.
2021 02; 66(?):101983. doi:
10.1016/j.pupt.2020.101983
. [PMID: 33346142] - Son Hai Vu, Alisha Wehdnesday Bernardo Reyes, Tran Xuan Ngoc Huy, Wongi Min, Hu Jang Lee, Hyun-Jin Kim, John Hwa Lee, Suk Kim. Prostaglandin I2 (PGI2) inhibits Brucella abortus internalization in macrophages via PGI2 receptor signaling, and its analogue affects immune response and disease outcome in mice.
Developmental and comparative immunology.
2021 02; 115(?):103902. doi:
10.1016/j.dci.2020.103902
. [PMID: 33091457] - Michel R Corboz, William Salvail, Sandra Gagnon, Daniel LaSala, Charles E Laurent, Dany Salvail, Kuan-Ju Chen, David Cipolla, Walter R Perkins, Richard W Chapman. Prostanoid receptor subtypes involved in treprostinil-mediated vasodilation of rat pulmonary arteries and in treprostinil-mediated inhibition of collagen gene expression of human lung fibroblasts.
Prostaglandins & other lipid mediators.
2021 02; 152(?):106486. doi:
10.1016/j.prostaglandins.2020.106486
. [PMID: 33011365] - Meiwen Ding, Evelyn Tolbert, Mark Birkenbach, Fatemeh Akhlaghi, Reginald Gohh, Nisanne S Ghonem. Treprostinil, a prostacyclin analog, ameliorates renal ischemia-reperfusion injury: preclinical studies in a rat model of acute kidney injury.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.
2021 01; 36(2):257-266. doi:
10.1093/ndt/gfaa236
. [PMID: 33156922] - Shabbir Ahmed, Md Abdullah Al Baki, Junbeom Lee, Dong Yeon Seo, Daeweon Lee, Yonggyun Kim. The first report of prostacyclin and its physiological roles in insects.
General and comparative endocrinology.
2021 01; 301(?):113659. doi:
10.1016/j.ygcen.2020.113659
. [PMID: 33166533] - Jichun Han, Jing Dong, Rui Zhang, Xiaofeng Zhang, Minghan Chen, Xiangcheng Fan, Maoru Li, Jiajing Li, Junyi Zhu, Jing Shang, Yunyun Yue. Dendrobium catenatum Lindl. Water Extracts Attenuate Atherosclerosis.
Mediators of inflammation.
2021; 2021(?):9951946. doi:
10.1155/2021/9951946
. [PMID: 34475805] - Yao Tang, Sunhua Huang, Wenhao Lin, Ke Wen, Zhexuan Lin, Ming Han. Arachidonic Acid-Dependent Pathway Inhibition in Platelets: its Role in Multiple Injury-Induced Coagulopathy and the Potential Mechanisms.
Shock (Augusta, Ga.).
2021 01; 55(1):121-127. doi:
10.1097/shk.0000000000001563
. [PMID: 32433211] - Megan Griffiths, Jun Yang, Melanie Nies, Dhananjay Vaidya, Stephanie Brandal, Monica Williams, Elizabeth C Matsui, Torie Grant, Rachel Damico, Dunbar Ivy, Eric D Austin, William C Nichols, Michael W Pauciulo, Katie Lutz, Erika B Rosenzweig, Russel Hirsch, Delphine Yung, Allen D Everett. Pediatric pulmonary hypertension: insulin-like growth factor-binding protein 2 is a novel marker associated with disease severity and survival.
Pediatric research.
2020 12; 88(6):850-856. doi:
10.1038/s41390-020-01113-x
. [PMID: 32927467] - Caroline Honaiser Lescano, Guilherme Leonardi, Pedro Henrique Portugal Torres, Tiago Nardi Amaral, Luiz Henrique de Freitas Filho, Edson Antunes, Cristina Pontes Vicente, Gabriel Forato Anhê, Fabiola Zakia Mónica. The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation.
Biochemical pharmacology.
2020 12; 182(?):114276. doi:
10.1016/j.bcp.2020.114276
. [PMID: 33039417] - Richard W Chapman, Michel R Corboz, Vladimir S Malinin, Adam J Plaunt, Donna M Konicek, Zhili Li, Walter R Perkins. An overview of the biology of a long-acting inhaled treprostinil prodrug.
Pulmonary pharmacology & therapeutics.
2020 12; 65(?):102002. doi:
10.1016/j.pupt.2021.102002
. [PMID: 33596473] - Bin Liu, Ruhui Zeng, Tingting Guo, Yingzhan Zhang, Jing Leng, Jiahui Ge, Gang Yu, Yineng Xu, Yingbi Zhou. Differential properties of E prostanoid receptor-3 and thromboxane prostanoid receptor in activation by prostacyclin to evoke vasoconstrictor response in the mouse renal vasculature.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2020 12; 34(12):16105-16116. doi:
10.1096/fj.202000845rr
. [PMID: 33047360] - Nicolai Rytter, Peter Piil, Howard Carter, Michael Nyberg, Ylva Hellsten, Lasse Gliemann. Microvascular Function Is Impaired after Short-Term Immobilization in Healthy Men.
Medicine and science in sports and exercise.
2020 10; 52(10):2107-2116. doi:
10.1249/mss.0000000000002369
. [PMID: 32496738] - Felix R De Bie, Karel Allegaert, Holly L Hedrick, Natalie E Rintoul, Alexander Davidson. Treprostinil Attains Clinically Therapeutic Concentrations in Neonates with Pulmonary Hypertension on Extracorporeal Membrane Oxygenation Support.
Pharmacotherapy.
2020 10; 40(10):1054-1060. doi:
10.1002/phar.2459
. [PMID: 32866289] - Chao Fang, Alvin H Schmaier. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems.
Pharmacological research.
2020 10; 160(?):105096. doi:
10.1016/j.phrs.2020.105096
. [PMID: 32712319] - Nicolai Rytter, Howard Carter, Peter Piil, Henrik Sørensen, Thomas Ehlers, Frederik Holmegaard, Christoffer Tuxen, Helen Jones, Dick Thijssen, Lasse Gliemann, Ylva Hellsten. Ischemic Preconditioning Improves Microvascular Endothelial Function in Remote Vasculature by Enhanced Prostacyclin Production.
Journal of the American Heart Association.
2020 08; 9(15):e016017. doi:
10.1161/jaha.120.016017
. [PMID: 32750305] - Katrina M Mirabito Colafella, Karla B Neves, Augusto C Montezano, Ingrid M Garrelds, Richard van Veghel, René de Vries, Estrellita Uijl, Hans J Baelde, Anton H van den Meiracker, Rhian M Touyz, A H Jan Danser, Jorie Versmissen. Selective ETA vs. dual ETA/B receptor blockade for the prevention of sunitinib-induced hypertension and albuminuria in WKY rats.
Cardiovascular research.
2020 08; 116(10):1779-1790. doi:
10.1093/cvr/cvz260
. [PMID: 31593221] - Changqing Dong, Shengmao Liu, Yingchun Cui, Qiaoyan Guo. 12-Lipoxygenase as a key pharmacological target in the pathogenesis of diabetic nephropathy.
European journal of pharmacology.
2020 Jul; 879(?):173122. doi:
10.1016/j.ejphar.2020.173122
. [PMID: 32333927] - Bianca Rocca, Alberto Tosetto, Silvia Betti, Denise Soldati, Giovanna Petrucci, Elena Rossi, Andrea Timillero, Viviana Cavalca, Benedetta Porro, Alessandra Iurlo, Daniele Cattaneo, Cristina Bucelli, Alfredo Dragani, Mauro Di Ianni, Paola Ranalli, Francesca Palandri, Nicola Vianelli, Eloise Beggiato, Giuseppe Lanzarone, Marco Ruggeri, Giuseppe Carli, Elena Maria Elli, Monica Carpenedo, Maria Luigia Randi, Irene Bertozzi, Chiara Paoli, Giorgina Specchia, Alessandra Ricco, Alessandro Maria Vannucchi, Francesco Rodeghiero, Carlo Patrono, Valerio De Stefano. A randomized double-blind trial of 3 aspirin regimens to optimize antiplatelet therapy in essential thrombocythemia.
Blood.
2020 07; 136(2):171-182. doi:
10.1182/blood.2019004596
. [PMID: 32266380] - Pingli Li, Rui Zhang, Guiyan Yuan, Keguang Chen, Huanjun Liu, Yanyan Wang, Abdul Sami Shaikh, Benjie Wang, Rong Li, Ruichen Guo. Pharmacokinetics and vasodilating effect study of beraprost sodium in healthy volunteers.
Pakistan journal of pharmaceutical sciences.
2020 Jul; 33(4):1659-1664. doi:
NULL
. [PMID: 33583799] - Daigoro Hirohama, Wakako Kawarazaki, Mitsuhiro Nishimoto, Nobuhiro Ayuzawa, Takeshi Marumo, Shigeru Shibata, Toshiro Fujita. PGI2 Analog Attenuates Salt-Induced Renal Injury through the Inhibition of Inflammation and Rac1-MR Activation.
International journal of molecular sciences.
2020 Jun; 21(12):. doi:
10.3390/ijms21124433
. [PMID: 32580367] - Qing-Lan Ling, Hironari Akasaka, Chang Chen, Colin N Haile, Kevin Winoske, Ke-He Ruan. The Protective Effects of Up-Regulating Prostacyclin Biosynthesis on Neuron Survival in Hippocampus.
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology.
2020 06; 15(2):292-308. doi:
10.1007/s11481-019-09896-5
. [PMID: 31897976] - Michał Majewski, Ewa Kucharczyk, Roman Kaliszan, Michał Markuszewski, Bartosz Fotschki, Jerzy Juśkiewicz, Małgorzata Borkowska-Sztachańska, Katarzyna Ognik. The Characterization of Ground Raspberry Seeds and the Physiological Response to Supplementation in Hypertensive and Normotensive Rats.
Nutrients.
2020 Jun; 12(6):. doi:
10.3390/nu12061630
. [PMID: 32492905] - Kenta Yamamura, Johsuke Hara, Tamami Sakai, Noriyuki Ohkura, Miki Abo, Naohiko Ogawa, Akihito Okazaki, Takashi Sone, Hideharu Kimura, Masaki Fujimura, Shinji Nakao, Kazuo Kasahara. Repeated bronchoconstriction attenuates the cough response to bronchoconstriction in naïve guinea pigs.
Allergology international : official journal of the Japanese Society of Allergology.
2020 Apr; 69(2):223-231. doi:
10.1016/j.alit.2019.09.002
. [PMID: 31601467] - Martin Berger, Zaher Raslan, Ahmed Aburima, Simbarashe Magwenzi, Katie S Wraith, Benjamin E J Spurgeon, Matthew S Hindle, Robert Law, Maria Febbraio, Khalid M Naseem. Atherogenic lipid stress induces platelet hyperactivity through CD36-mediated hyposensitivity to prostacyclin: the role of phosphodiesterase 3A.
Haematologica.
2020 03; 105(3):808-819. doi:
10.3324/haematol.2018.213348
. [PMID: 31289200] - Lasse Gliemann, Nicolai Rytter, Andrea Tamariz-Ellemann, Jon Egelund, Nina Brandt, Howard H Carter, Ylva Hellsten. Lifelong Physical Activity Determines Vascular Function in Late Postmenopausal Women.
Medicine and science in sports and exercise.
2020 03; 52(3):627-636. doi:
10.1249/mss.0000000000002180
. [PMID: 31609299] - S Rangarajan, G Rezonzew, P Chumley, H Fatima, M Y Golovko, W Feng, P Hua, E A Jaimes. COX-2-derived prostaglandins as mediators of the deleterious effects of nicotine in chronic kidney disease.
American journal of physiology. Renal physiology.
2020 02; 318(2):F475-F485. doi:
10.1152/ajprenal.00407.2019
. [PMID: 31841390] - Hidetomo Nakamoto, Xue-Qing Yu, Suhnggwon Kim, Hideki Origasa, Hongguang Zheng, Jianghua Chen, Kwon Wook Joo, Suchai Sritippayawan, Qinkai Chen, Hung-Chun Chen, Yoshiharu Tsubakihara, Hirofumi Tamai, Sang Heon Song, Indralingam Vaithilingam, Kang Wook Lee, Kuo-Hsiung Shu, Stanley Hok-King Lo, Masanao Isono, Hajimu Kurumatani, Kiyonobu Okada, Hiroyuki Kanoh, Takashi Kiriyama, Shunsuke Yamada, Toshiro Fujita. Effects of Sustained-Release Beraprost in Patients With Primary Glomerular Disease or Nephrosclerosis: CASSIOPEIR Study Results.
Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy.
2020 Feb; 24(1):42-55. doi:
10.1111/1744-9987.12840
. [PMID: 31119846] - Gulsev Ozen, Chabha Benyahia, Yasmine Amgoud, Jigisha Patel, Heba Abdelazeem, Amel Bouhadoun, Sonia Yung, Fangfang Li, Youcef Mahieddine, Adam M Silverstein, Yves Castier, Aurélie Cazes, Dan Longrois, Lucie H Clapp, Xavier Norel. Interaction between PGI2 and ET-1 pathways in vascular smooth muscle from Group-III pulmonary hypertension patients.
Prostaglandins & other lipid mediators.
2020 02; 146(?):106388. doi:
10.1016/j.prostaglandins.2019.106388
. [PMID: 31672620] - August A Olsen, Rune B Strandby, Nikolaj Nerup, Rikard Ambrus, Jens Peter Gøtze, Lars Bo Svendsen, Michael P Achiam. Development of a severe mesenteric traction syndrome during major abdominal surgery is associated with increased postoperative morbidity: Secondary data analysis on prospective cohorts.
Langenbeck's archives of surgery.
2020 Feb; 405(1):81-90. doi:
10.1007/s00423-019-01847-1
. [PMID: 31820096] - Ling Xie, Ruonan Zhai, Teng Chen, Chongting Gao, Rui Xue, Niansong Wang, Jianbo Wang, Youhua Xu, Dingkun Gui. Panax Notoginseng Ameliorates Podocyte EMT by Targeting the Wnt/β-Catenin Signaling Pathway in STZ-Induced Diabetic Rats.
Drug design, development and therapy.
2020; 14(?):527-538. doi:
10.2147/dddt.s235491
. [PMID: 32103895] - Yun Mi Choi, Hyuk Sang Kwon, Kyung Mook Choi, Won Young Lee, Eun Gyoung Hong. Short-Term Effects of Beraprost Sodium on the Markers for Cardiovascular Risk Prediction in Type 2 Diabetic Patients with Microalbuminuria.
Endocrinology and metabolism (Seoul, Korea).
2019 12; 34(4):398-405. doi:
10.3803/enm.2019.34.4.398
. [PMID: 31884740] - Jane A Mitchell, Fisnik Shala, Youssef Elghazouli, Timothy D Warner, Carles Gaston-Massuet, Marilena Crescente, Paul C Armstrong, Harvey R Herschman, Nicholas S Kirkby. Cell-Specific Gene Deletion Reveals the Antithrombotic Function of COX1 and Explains the Vascular COX1/Prostacyclin Paradox.
Circulation research.
2019 10; 125(9):847-854. doi:
10.1161/circresaha.119.314927
. [PMID: 31510878] - Linea L Ring, Rune B Strandby, Amalie Henriksen, Rikard Ambrus, Henrik Sørensen, Jens P Gøtze, Lars B Svendsen, Michael P Achiam. Laser speckle contrast imaging for quantitative assessment of facial flushing during mesenteric traction syndrome in upper gastrointestinal surgery.
Journal of clinical monitoring and computing.
2019 Oct; 33(5):903-910. doi:
10.1007/s10877-018-0226-0
. [PMID: 30460600] - Dongshuai Shen, Ning Ma, Yajun Yang, Xiwang Liu, Zhe Qin, Shihong Li, Zenghua Jiao, Xiaojun Kong, Jianyong Li. UPLC-Q-TOF/MS-Based Plasma Metabolomics to Evaluate the Effects of Aspirin Eugenol Ester on Blood Stasis in Rats.
Molecules (Basel, Switzerland).
2019 Jun; 24(13):. doi:
10.3390/molecules24132380
. [PMID: 31252591] - Keeley Hall, Michelle Ogawa, Charlotte Sakarovitch, Rachel K Hopper, Gregory T Adamson, Brian Hanna, David D Ivy, Kathleen Miller-Reed, Delphine Yung, Elisa McCarthy, Stephanie L Siehr-Handler, Jeffrey A Feinstein. Subcutaneous and Intravenous Treprostinil Pharmacokinetics in Children With Pulmonary Vascular Disease.
Journal of cardiovascular pharmacology.
2019 06; 73(6):383-393. doi:
10.1097/fjc.0000000000000674
. [PMID: 31162247] - Shulin Li, Yanping Wang, Lu Chen, Zhuojun Wang, Guodong Liu, Bangjie Zuo, Caixia Liu, Dong Sun. Beraprost sodium mitigates renal interstitial fibrosis through repairing renal microvessels.
Journal of molecular medicine (Berlin, Germany).
2019 06; 97(6):777-791. doi:
10.1007/s00109-019-01769-x
. [PMID: 30923844] - Yingxue Cao, Yi Guan, Yun-Yu Xu, Chuan-Ming Hao. Endothelial prostacyclin protects the kidney from ischemia-reperfusion injury.
Pflugers Archiv : European journal of physiology.
2019 04; 471(4):543-555. doi:
10.1007/s00424-018-2229-6
. [PMID: 30413885] - Jane A Mitchell, Nicholas S Kirkby. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system.
British journal of pharmacology.
2019 04; 176(8):1038-1050. doi:
10.1111/bph.14167
. [PMID: 29468666] - Mohammad Sharifur Rahman. Prostacyclin: A major prostaglandin in the regulation of adipose tissue development.
Journal of cellular physiology.
2019 04; 234(4):3254-3262. doi:
10.1002/jcp.26932
. [PMID: 30431153] - Undurti N Das. Vitamin C for Type 2 Diabetes Mellitus and Hypertension.
Archives of medical research.
2019 02; 50(2):11-14. doi:
10.1016/j.arcmed.2019.05.004
. [PMID: 31349946] - Budi Prasaja, Yahdiana Harahap, Windy Lusthom, Anna Sofiana, Falah Safira, Monika Sandra, Girinanda Puspanegara. Study on bioequivalence of beraprost in healthy volunteers by liquid chromatography with tandem mass spectrometry.
Biomedical chromatography : BMC.
2019 Feb; 33(2):e4403. doi:
10.1002/bmc.4403
. [PMID: 30276833] - Johanna Ebmeyer, Jessica Behrend, Mario Lorenz, Georgia Günther, Raymond Reif, Jan G Hengstler, Albert Braeuning, Alfonso Lampen, Stefanie Hessel-Pras. Pyrrolizidine alkaloid-induced alterations of prostanoid synthesis in human endothelial cells.
Chemico-biological interactions.
2019 Jan; 298(?):104-111. doi:
10.1016/j.cbi.2018.11.007
. [PMID: 30465738] - Shanzana I Khan, Waled A Shihata, Karen L Andrews, Man K S Lee, Xiao-Lei Moore, Ann-Maree Jefferis, Antony Vinh, Tracey Gaspari, Dragana Dragoljevic, Garry L Jennings, Andrew J Murphy, Jaye P F Chin-Dusting. Effects of high- and low-dose aspirin on adaptive immunity and hypertension in the stroke-prone spontaneously hypertensive rat.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2019 01; 33(1):1510-1521. doi:
10.1096/fj.201701498rr
. [PMID: 30156911] - Ziming Wan, Ying Zhu, Ruikun Yang, Yongjian Zhang, Chen Yang, Lei Cao, Wenjing Yan, Qi Wang, Ning Li, Mingdong Zhao, Keke Gui, Min Xiong. Beraprost sodium versus clopidogrel for preventing vascular thromboembolic events of arteriovenous fistula in uraemic patients: a retrospective study with a mean 3-year follow-up.
The Journal of international medical research.
2019 Jan; 47(1):252-264. doi:
10.1177/0300060518800517
. [PMID: 30270798] - Yosuke Toyoda, Kazushi Morimoto, Ryoji Suno, Shoichiro Horita, Keitaro Yamashita, Kunio Hirata, Yusuke Sekiguchi, Satoshi Yasuda, Mitsunori Shiroishi, Tomoko Shimizu, Yuji Urushibata, Yuta Kajiwara, Tomoaki Inazumi, Yunhon Hotta, Hidetsugu Asada, Takanori Nakane, Yuki Shiimura, Tomoya Nakagita, Kyoshiro Tsuge, Suguru Yoshida, Tomoko Kuribara, Takamitsu Hosoya, Yukihiko Sugimoto, Norimichi Nomura, Miwa Sato, Takatsugu Hirokawa, Masahiro Kinoshita, Takeshi Murata, Kiyoshi Takayama, Masaki Yamamoto, Shuh Narumiya, So Iwata, Takuya Kobayashi. Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface.
Nature chemical biology.
2019 01; 15(1):18-26. doi:
10.1038/s41589-018-0131-3
. [PMID: 30510193] - Beatrice Drambarean, Paula Bielnicka, Ali Alobaidi. Midodrine treatment in a patient with treprostinil-induced hypotension receiving hemodialysis.
American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists.
2019 Jan; 76(1):13-16. doi:
10.1093/ajhp/zxy001
. [PMID: 31381098] - Yu Zhou, Ling Du, Bo Tu, Qiquan Lai, Xiaonan Du, Bo Xu, Fan Zhang, Mingdong Zhao, Ziming Wan, Jiajie Lai. Comparing the vascular thromboembolic events following arteriovenous fistula in Chinese population with end-stage renal diseases receiving Clopidogrel versus Beraprost sodium therapy: a retrospective cohort study.
BMC nephrology.
2018 12; 19(1):376. doi:
10.1186/s12882-018-1166-0
. [PMID: 30587157] - A Kij, K Kus, M Smeda, A Zakrzewska, B Proniewski, K Matyjaszczyk, A Jasztal, M Stojak, M Walczak, S Chlopicki. Differential effects of nitric oxide deficiency on primary tumour growth, pulmonary metastasis and prostacyclin/thromboxane A2 balance in orthotopic and intravenous murine models of 4T1 breast cancer.
Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.
2018 Dec; 69(6):. doi:
10.26402/jpp.2018.6.05
. [PMID: 30802213] - Franziska G Leifer, Donna M Konicek, Kuan-Ju Chen, Adam J Plaunt, Dany Salvail, Charles E Laurent, Michel R Corboz, Zhili Li, Richard W Chapman, Walter R Perkins, Vladimir S Malinin. Inhaled Treprostinil-Prodrug Lipid Nanoparticle Formulations Provide Long-Acting Pulmonary Vasodilation.
Drug research.
2018 Nov; 68(11):605-614. doi:
10.1055/s-0044-100374
. [PMID: 29791923] - Yun-Yi Yan, Lu-Yao Ao, Lin Zhou, Cheng-Yuan Li, Wei-Rong Fang, Wei-Yang Shen, Bing-Wen Liang, Xiong Zhu, Yun-Man Li. Therapeutic effects of JLX001 on cerebral ischemia through inhibiting platelet activation and thrombus formation in rats.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Oct; 106(?):805-812. doi:
10.1016/j.biopha.2018.07.023
. [PMID: 29990874] - Weisong Zhou, Jian Zhang, Shinji Toki, Kasia Goleniewska, Marc O Johnson, Melissa H Bloodworth, Dawn C Newcomb, R Stokes Peebles. The PGI2 Analog Cicaprost Inhibits IL-33-Induced Th2 Responses, IL-2 Production, and CD25 Expression in Mouse CD4+ T Cells.
Journal of immunology (Baltimore, Md. : 1950).
2018 10; 201(7):1936-1945. doi:
10.4049/jimmunol.1700605
. [PMID: 30127087] - Hamid Reza Nejabati, Aynaz Mihanfar, Masoud Pezeshkian, Amir Fattahi, Zeinab Latifi, Naser Safaie, Mohammad Valiloo, Ahmad Reza Jodati, Mohammad Nouri. N1-methylnicotinamide (MNAM) as a guardian of cardiovascular system.
Journal of cellular physiology.
2018 10; 233(10):6386-6394. doi:
10.1002/jcp.26636
. [PMID: 29741779] - Seema P Deshpande, Michael A Mazzeffi, Erik Strauss, Allison Hollis, Kenichi A Tanaka. Prostacyclins in Cardiac Surgery: Coming of Age.
Seminars in cardiothoracic and vascular anesthesia.
2018 Sep; 22(3):306-323. doi:
10.1177/1089253217749298
. [PMID: 29277148] - Preeti Kanikarla-Marie, Scott Kopetz, Ernest T Hawk, Steven W Millward, Anil K Sood, Paolo Gresele, Michael Overman, Kenneth Honn, David G Menter. Bioactive lipid metabolism in platelet "first responder" and cancer biology.
Cancer metastasis reviews.
2018 09; 37(2-3):439-454. doi:
10.1007/s10555-018-9755-8
. [PMID: 30112590] - Kendall M Lawrence, Holly L Hedrick, Heather M Monk, Lisa Herkert, Lindsay N Waqar, Brian D Hanna, William H Peranteau, Natalie E Rintoul, Rachel K Hopper. Treprostinil Improves Persistent Pulmonary Hypertension Associated with Congenital Diaphragmatic Hernia.
The Journal of pediatrics.
2018 09; 200(?):44-49. doi:
10.1016/j.jpeds.2018.04.052
. [PMID: 29784517] - Tawfeq Naal, Batool Abuhalimeh, Ghaleb Khirfan, Raed A Dweik, W H Wilson Tang, Adriano R Tonelli. Serum Chloride Levels Track With Survival in Patients With Pulmonary Arterial Hypertension.
Chest.
2018 09; 154(3):541-549. doi:
10.1016/j.chest.2018.04.022
. [PMID: 29698719] - Remigiusz Kazimierczyk, Piotr Błaszczak, Krzysztof Kowal, Małgorzata Jasiewicz, Małgorzata Knapp, Anna Szpakowicz, Katarzyna Ptaszyńska-Kopczyńska, Bożena Sobkowicz, Ewa Waszkiewicz, Ryszard Grzywna, Włodzimierz J Musial, Karol A Kamiński. The significance of diminished sTWEAK and P-selectin content in platelets of patients with pulmonary arterial hypertension.
Cytokine.
2018 07; 107(?):52-58. doi:
10.1016/j.cyto.2017.11.014
. [PMID: 29203267] - Zeming Zhang, Zheng Li, Lu Chen, Yancun Wang. The effects of inhaled NO on plasma vasoactive factor and CTnI level in rabbits with acute massive pulmonary embolism1.
Acta cirurgica brasileira.
2018 Jul; 33(7):577-587. doi:
10.1590/s0102-865020180070000003
. [PMID: 30110059] - Longfei Wang, Yong Li, Shenglan Lin, Zhiqiang Pu, Haiping Li, Zhili Tang. Protective Effects of Baicalin on Experimental Myocardial Infarction in Rats.
Brazilian journal of cardiovascular surgery.
2018 Jul; 33(4):384-390. doi:
10.21470/1678-9741-2018-0059
. [PMID: 30184036] - Rasa Tamosiuniene, Olga Manouvakhova, Paul Mesange, Toshie Saito, Jin Qian, Mrinmoy Sanyal, Yu-Chun Lin, Linh P Nguyen, Amir Luria, Allen B Tu, Joshua M Sante, Marlene Rabinovitch, Desmond J Fitzgerald, Brian B Graham, Aida Habtezion, Norbert F Voelkel, Laure Aurelian, Mark R Nicolls. Dominant Role for Regulatory T Cells in Protecting Females Against Pulmonary Hypertension.
Circulation research.
2018 06; 122(12):1689-1702. doi:
10.1161/circresaha.117.312058
. [PMID: 29545367] - Chu Shan Tan, Mun Fei Yam. Mechanism of vasorelaxation induced by 3'-hydroxy-5,6,7,4'-tetramethoxyflavone in the rats aortic ring assay.
Naunyn-Schmiedeberg's archives of pharmacology.
2018 06; 391(6):561-569. doi:
10.1007/s00210-018-1481-9
. [PMID: 29552696] - Rui Tan, Yun Jung Lee, Kyung Woo Cho, Dae Gill Kang, Ho Sub Lee. Beneficial Effect of Berberis amurensis Rupr. on Penile Erection.
Chinese journal of integrative medicine.
2018 Jun; 24(6):448-454. doi:
10.1007/s11655-017-2920-z
. [PMID: 29335865] - E Buczek, A Denslow, L Mateuszuk, B Proniewski, T Wojcik, B Sitek, A Fedorowicz, A Jasztal, E Kus, A Chmura-Skirlinska, R Gurbiel, J Wietrzyk, S Chlopicki. Alterations in NO- and PGI2- dependent function in aorta in the orthotopic murine model of metastatic 4T1 breast cancer: relationship with pulmonary endothelial dysfunction and systemic inflammation.
BMC cancer.
2018 May; 18(1):582. doi:
10.1186/s12885-018-4445-z
. [PMID: 29788918] - M H Lundberg Slingsby, L Gliemann, M Thrane, N Rytter, J Egelund, M V Chan, P C Armstrong, T D Warner, Y Hellsten. Platelet responses to pharmacological and physiological interventions in middle-aged men with different habitual physical activity levels.
Acta physiologica (Oxford, England).
2018 05; 223(1):e13028. doi:
10.1111/apha.13028
. [PMID: 29297976] - Shinji Toki, Weisong Zhou, Kasia Goleniewska, Sara Reiss, Daniel E Dulek, Dawn C Newcomb, William E Lawson, R Stokes Peebles. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.
Prostaglandins & other lipid mediators.
2018 05; 136(?):33-43. doi:
10.1016/j.prostaglandins.2018.04.001
. [PMID: 29660395] - Richard W Chapman, Zhili Li, Michel R Corboz, Helena Gauani, Adam J Plaunt, Donna M Konicek, Franziska G Leifer, Charles E Laurent, Han Yin, Dany Salvail, Chad Dziak, Walter R Perkins, Vladimir Malinin. Inhaled hexadecyl-treprostinil provides pulmonary vasodilator activity at significantly lower plasma concentrations than infused treprostinil.
Pulmonary pharmacology & therapeutics.
2018 04; 49(?):104-111. doi:
10.1016/j.pupt.2018.02.002
. [PMID: 29421665] - Michel R Corboz, Jimin Zhang, Daniel LaSala, Keith DiPetrillo, Zhili Li, Vladimir Malinin, Jeremy Brower, Philip J Kuehl, Ted E Barrett, Walter R Perkins, Richard W Chapman. Therapeutic administration of inhaled INS1009, a treprostinil prodrug formulation, inhibits bleomycin-induced pulmonary fibrosis in rats.
Pulmonary pharmacology & therapeutics.
2018 04; 49(?):95-103. doi:
10.1016/j.pupt.2018.01.012
. [PMID: 29408757] - N McLewee, T Archer, R Wills, A Mackin, J Thomason. Effects of aspirin dose escalation on platelet function and urinary thromboxane and prostacyclin levels in normal dogs.
Journal of veterinary pharmacology and therapeutics.
2018 Feb; 41(1):60-67. doi:
10.1111/jvp.12432
. [PMID: 28664658]