Reaction Process: Reactome:R-XTR-211859

Biological oxidations related metabolites

find 185 related metabolites which is associated with chemical reaction(pathway) Biological oxidations

11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN

Umbelliferone

7-Hydroxy-2H-1-benzopyran-2-one

C9H6O3 (162.03169259999999)


Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.09674980000005)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Coumarin

2h-1-benzopyran-2-one;coumarin;2h-chromen-2-one;coumarin ;coumarin (2h-1-benzopyran-2-one) (chromen-2-one);2h-1-benzopyran-2-one coumarin 2h-chromen-2-one coumarin coumarin (2h-1-benzopyran-2-one) (chromen-2-one)

C9H6O2 (146.0367776)


Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266076)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Vitamin D3

(1S,3Z)-3-((2E)-2-((1R,3AR,7AS)-7A-METHYL-1-((2R)-6-METHYLHEPTAN-2-YL)-2,3,3A,5,6,7-HEXAHYDRO-1H-INDEN-4-YLIDENE)ETHYLIDENE)-4-METHYLIDENE-CYCLOHEXAN-1-OL

C27H44O (384.3391974)


Vitamin d3 appears as fine colorless crystals. Water insoluble. (NTP, 1992) Calciol is a hydroxy seco-steroid that is (5Z,7E)-9,10-secocholesta-5,7,10(19)-triene in which the pro-S hydrogen at position 3 has been replaced by a hydroxy group. It is the inactive form of vitamin D3, being hydroxylated in the liver to calcidiol (25-hydroxyvitamin D3), which is then further hydroxylated in the kidney to give calcitriol (1,25-dihydroxyvitamin D3), the active hormone. It has a role as a human metabolite and a geroprotector. It is a seco-cholestane, a hydroxy seco-steroid, a member of D3 vitamins, a secondary alcohol and a steroid hormone. Vitamin D, in general, is a secosteroid generated in the skin when 7-dehydrocholesterol located there interacts with ultraviolet irradiation - like that commonly found in sunlight. Both the endogenous form of vitamin D (that results from 7-dehydrocholesterol transformation), vitamin D3 (cholecalciferol), and the plant-derived form, vitamin D2 (ergocalciferol), are considered the main forms of vitamin d and are found in various types of food for daily intake. Structurally, ergocalciferol differs from cholecalciferol in that it possesses a double bond between C22 and C23 and has an additional methyl group at C24. Finally, ergocalciferol is pharmacologically less potent than cholecalciferol, which makes vitamin D3 the preferred agent for medical use. Appropriate levels of vitamin D must be upheld in the body in order to maintain calcium and phosphorus levels in a healthy physiologic range to sustain a variety of metabolic functions, transcription regulation, and bone metabolism. However, studies are also ongoing to determine whether or not cholecalciferol may also play certain roles in cancer, autoimmune disorders, cardiovascular disease, and other medical conditions that may be associated with vitamin D deficiency. Cholecalciferol is a Vitamin D. Cholecalciferol is a natural product found in Taiwanofungus camphoratus, Theobroma cacao, and other organisms with data available. Cholecalciferol is a steroid hormone produced in the skin when exposed to ultraviolet light or obtained from dietary sources. The active form of cholecalciferol, 1,25-dihydroxycholecalciferol (calcitriol) plays an important role in maintaining blood calcium and phosphorus levels and mineralization of bone. The activated form of cholecalciferol binds to vitamin D receptors and modulates gene expression. This leads to an increase in serum calcium concentrations by increasing intestinal absorption of phosphorus and calcium, promoting distal renal tubular reabsorption of calcium and increasing osteoclastic resorption. Cholecalciferol is only found in individuals that have used or taken this drug. It is a derivative of 7-dehydroxycholesterol formed by ultraviolet rays breaking of the C9-C10 bond. It differs from ergocalciferol in having a single bond between C22 and C23 and lacking a methyl group at C24. [PubChem]The first step involved in the activation of vitamin D3 is a 25-hydroxylation which is catalysed by the 25-hydroxylase in the liver and then by other enzymes. The mitochondrial sterol 27-hydroxylase catalyses the first reaction in the oxidation of the side chain of sterol intermediates. The active form of vitamin D3 (calcitriol) binds to intracellular receptors that then function as transcription factors to modulate gene expression. Like the receptors for other steroid hormones and thyroid hormones, the vitamin D receptor has hormone-binding and DNA-binding domains. The vitamin D receptor forms a complex with another intracellular receptor, the retinoid-X receptor, and that heterodimer is what binds to DNA. In most cases studied, the effect is to activate transcription, but situations are also known in which vitamin D suppresses transcription. Calcitriol increases the serum calcium concentrations by: increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubula... Vitamin D3, also called cholecalciferol, is one of the forms of vitamin D. Vitamin D3 is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. It is structurally similar to steroids such as testosterone, cholesterol, and cortisol (although vitamin D3, itself, is a secosteroid). Vitamin D3 is a derivative of 7-dehydroxycholesterol formed by ultraviolet rays breaking the C9-C10 bond. It differs from ergocalciferol in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D3 can also come from dietary sources, such as beef liver, cheese, egg yolks, and fatty fish (PubChem). The first step involved in the activation of vitamin D3 is a 25-hydroxylation catalyzed by 25-hydroxylase in the liver and then by other enzymes. The mitochondrial sterol 27-hydroxylase catalyzes the first reaction in the oxidation of the side chain of sterol intermediates. The active form of vitamin D3 (calcitriol) binds to intracellular receptors that then function as transcription factors to modulate gene expression. Like the receptors for other steroid hormones and thyroid hormones, the vitamin D receptor has hormone-binding and DNA-binding domains. The vitamin D receptor forms a complex with another intracellular receptor, the retinoid-X receptor, and that heterodimer is what binds to DNA. In most cases studied, the effect is to activate transcription, but situations are also known in which vitamin D suppresses transcription. Calcitriol increases the serum calcium concentrations by (1) increasing GI absorption of phosphorus and calcium, (2) increasing osteoclastic resorption, and (3) increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through the formation of a calcium-binding protein. Vitamin d, also known as colecalciferol or calciol, belongs to vitamin d and derivatives class of compounds. Those are compounds containing a secosteroid backbone, usually secoergostane or secocholestane. Thus, vitamin d is considered to be a secosteroid lipid molecule. Vitamin d is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Vitamin d can be found in a number of food items such as dumpling, vinegar, chocolate, and margarine, which makes vitamin d a potential biomarker for the consumption of these food products. Vitamin d can be found primarily in blood and urine. Vitamin d is a non-carcinogenic (not listed by IARC) potentially toxic compound. Vitamin d is a drug which is used for the treatment of vitamin d deficiency or insufficiency, refractory rickets (vitamin d resistant rickets), familial hypophosphatemia and hypoparathyroidism, and in the management of hypocalcemia and renal osteodystrophy in patients with chronic renal failure undergoing dialysis. also used in conjunction with calcium in the management and prevention of primary or corticosteroid-induced osteoporosis. A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000077264 - Calcium-Regulating Hormones and Agents D018977 - Micronutrients > D014815 - Vitamins D050071 - Bone Density Conservation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Benzoic acid

ScavengePore(TM) benzoic acid, macroporous, 40-70 mesh, extent of labeling: 0.5-1.5 mmol per g loading

C7H6O2 (122.0367776)


Benzoic acid appears as a white crystalline solid. Slightly soluble in water. The primary hazard is the potential for environmental damage if released. Immediate steps should be taken to limit spread to the environment. Used to make other chemicals, as a food preservative, and for other uses. Benzoic acid is a compound comprising a benzene ring core carrying a carboxylic acid substituent. It has a role as an antimicrobial food preservative, an EC 3.1.1.3 (triacylglycerol lipase) inhibitor, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a plant metabolite, a human xenobiotic metabolite, an algal metabolite and a drug allergen. It is a conjugate acid of a benzoate. A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid. As the sodium salt form, sodium benzoate is used as a treatment for urea cycle disorders due to its ability to bind amino acids. This leads to excretion of these amino acids and a decrease in ammonia levels. Recent research shows that sodium benzoate may be beneficial as an add-on therapy (1 gram/day) in schizophrenia. Total Positive and Negative Syndrome Scale scores dropped by 21\\\\\% compared to placebo. Benzoic acid is a Nitrogen Binding Agent. The mechanism of action of benzoic acid is as an Ammonium Ion Binding Activity. Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages). A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid. See also: Salicylic Acid (active moiety of); Benzoyl Peroxide (active moiety of); Sodium Benzoate (active moiety of) ... View More ... Widespread in plants especies in essential oils and fruits, mostly in esterified formand is also present in butter, cooked meats, pork fat, white wine, black and green tea, mushroom and Bourbon vanilla. It is used in foodstuffs as antimicrobial and flavouring agent and as preservative. In practical food preservation, the Na salt of benzoic acid is the most widely used form (see MDQ71-S). The antimicrobial activity comprises a wide range of microorganisms, particularly yeasts and moulds. Undissociated benzoic acid is more effective than dissociated, thus the preservative action is more efficient in acidic foodstuffs. Typical usage levels are 500-2000 ppm. Benzoic acid is found in many foods, some of which are animal foods, common grape, lovage, and fruits. Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages). It can be found in Serratia (PMID:23061754). Benzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=65-85-0 (retrieved 2024-06-28) (CAS RN: 65-85-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi. Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi.

   

Dehydroepiandrosterone

(1S,2R,5S,10R,11S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-one

C19H28O2 (288.2089188)


Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue and the brain. DHEA is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate- DEHAS) before secretion. DHEAS is the sulfated version of DHEA; - this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEAS with levels that are about 300 times higher than free DHEA. Blood measurements of DHEAS/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEAS. [HMDB]. Dehydroepiandrosterone is found in many foods, some of which are summer grape, quinoa, calabash, and chinese chives. Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue, and the brain. DHEA is structurally similar to and is a precursor of, androstenedione, testosterone, estradiol, estrone, and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate or DHEA-S) before secretion. DHEA-S is the sulfated version of DHEA; this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEA-S with levels that are about 300 times higher than free DHEA. Blood measurements of DHEA-S/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEA-S. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3085 D007155 - Immunologic Factors

   

3-Methylindole

3-Methyl-4,5-benzopyrrole

C9H9N (131.0734954)


3-Methylindole, or skatole, belongs to the indole family and has a methyl substituent in position 3 of the indole ring. It occurs naturally in feces, beets, and coal tar, and has a strong fecal odor. Its name is derived from skato, the Greek word for dung. It exists as a white crystalline or fine powder solid, and it browns upon aging. 3-Methylindole is produced from tryptophan in the mammalian digestive tract where tryptophan is converted to indoleacetic acid, which decarboxylates to give the methylindole. These reactions are largely driven by the microbiota in the digestive tract. 3-Methylindole is soluble in alcohol and benzene and it gives violet color in potassium ferrocyanide (K4Fe(CN)6.3H2O) mixed with sulfuric acid (H2SO4). Skatole has a double ring system which displays aromaticity that comes from the lone pair electrons on the nitrogen. It is continuous (all atoms in the ring are sp2 hybridized), planar, and follows the 4n+2 rule because it has 10 pi electrons. In a 1994 report released by five top cigarette companies, skatole was listed as one of the 599 additives to cigarettes. This is because in low concentrations skatole has a flowery smell and is found in several flowers and essential oils, including those of orange blossoms, jasmine, and Ziziphus mauritiana. As a result, skatole/3-methylindole is used as a fragrance and fixative in many perfumes and as a general aroma compound for other applications. 3-Methylindole has been found to be a bacterial metabolite of members of the Clostridium (PMID: 18223109) and Lactobacillus (PMID: 16345702) families. Skatole functions as an insect attractant and is one of many compounds that are attractive to males of various species of orchid bees, which apparently gather the chemical to synthesize pheromones; it is commonly used as bait for these bees for study (PMID: 12647866). It is also known for being an attractant for the Tasmanian grass grub beetle (Aphodius tasmaniae). Skatole has also been shown to be an attractant to gravid mosquitoes in both field and laboratory conditions (PMID: 24242053). 3-methylindole, also known as skatol or 3-methyl-4,5-benzopyrrole, is a member of the class of compounds known as 3-methylindoles. 3-methylindoles are aromatic heterocyclic compounds that contain an indole moiety substituted at the 3-position with a methyl group. 3-methylindole is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). 3-methylindole is a very strong, animal, and civet tasting compound found in common beet and red beetroot, which makes 3-methylindole a potential biomarker for the consumption of these food products. 3-methylindole can be found primarily in feces and saliva. Skatole or 3-methylindole is a mildly toxic white crystalline organic compound belonging to the indole family. It occurs naturally in feces (it is produced from tryptophan in the mammalian digestive tract) and coal tar and has a strong fecal odor. In low concentrations, it has a flowery smell and is found in several flowers and essential oils, including those of orange blossoms, jasmine, and Ziziphus mauritiana. It is used as a fragrance and fixative in many perfumes and as an aroma compound. Its name is derived from the Greek root skato- meaning "dung". Skatole was discovered in 1877 by the German physician Ludwig Brieger (1849–1919). Skatole is also used by U.S. military in its non-lethal weaponry; specifically, malodorants . Skatole. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-34-1 (retrieved 2024-07-02) (CAS RN: 83-34-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Skatole is produced by intestinal bacteria, regulates intestinal epithelial cellular functions through activating aryl hydrocarbon receptors and p38[1]. Skatole is produced by intestinal bacteria, regulates intestinal epithelial cellular functions through activating aryl hydrocarbon receptors and p38[1].

   

Androstenedione

(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-5,14-dione

C19H26O2 (286.1932696)


Androst-4-en-3,17-dione, also known as androstenedione or delta(4)-androsten-3,17-dione, belongs to androgens and derivatives class of compounds. Those are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, androst-4-en-3,17-dione is considered to be a steroid lipid molecule. Androst-4-en-3,17-dione is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Androst-4-en-3,17-dione can be found in a number of food items such as naranjilla, purslane, common cabbage, and oval-leaf huckleberry, which makes androst-4-en-3,17-dione a potential biomarker for the consumption of these food products. Androst-4-en-3,17-dione can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. In humans, androst-4-en-3,17-dione is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and androstenedione metabolism. Androst-4-en-3,17-dione is also involved in a couple of metabolic disorders, which include 17-beta hydroxysteroid dehydrogenase III deficiency and aromatase deficiency. Moreover, androst-4-en-3,17-dione is found to be associated with rheumatoid arthritis, thyroid cancer , cushings Syndrome, and schizophrenia. Androst-4-en-3,17-dione is a non-carcinogenic (not listed by IARC) potentially toxic compound. Androstenedione is a delta-4 19-carbon steroid that is produced not only in the testis, but also in the ovary and the adrenal cortex. Depending on the tissue type, androstenedione can serve as a precursor to testosterone as well as estrone and estradiol. It is the common precursor of male and female sex hormones. Some androstenedione is also secreted into the plasma and may be converted in peripheral tissues to testosterone and estrogens. Androstenedione originates either from the conversion of dehydroepiandrosterone or from 17-hydroxyprogesterone. It is further converted to either testosterone or estrone. The production of adrenal androstenedione is governed by ACTH, while the production of gonadal androstenedione is under control by gonadotropins. CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9081; ORIGINAL_PRECURSOR_SCAN_NO 9076 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9111; ORIGINAL_PRECURSOR_SCAN_NO 9108 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9069; ORIGINAL_PRECURSOR_SCAN_NO 9064 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9077; ORIGINAL_PRECURSOR_SCAN_NO 9075 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9113; ORIGINAL_PRECURSOR_SCAN_NO 9112 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2803 INTERNAL_ID 2803; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4165

   

12-Hydroxydodecanoic acid

ω-Hydroxydodecanoic acid

C12H24O3 (216.1725354)


12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1). The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM). The human glutathione-dependent formaldehyde dehydrogenase is unique among the structurally studied members of the alcohol dehydrogenase family in that it follows a random bi kinetic mechanism forming a binary complex, and a ternary complex with NAD+. (PMID 12196016). 12-hydroxydodecanoic acid is the substrate of the human glutathione-dependent formaldehyde dehydrogenase (EC1.1.1.1) . The enzyme that catalyzes the conversion of alcohols to aldehydes is a zinc-containing dimeric enzyme responsible for the oxidation of long-chain alcohols and omega-hydroxy fatty acids. (OMIM) 12-Hydroxydodecanoic acid is an endogenous metabolite.

   

Acetaminophen

Bayer select maximum strength headache pain relief formula

C8H9NO2 (151.0633254)


The excellent tolerability of therapeutic doses of paracetamol (acetaminophen) is a major factor in the very wide use of the drug. The major problem in the use of paracetamol is its hepatotoxicity after an overdose. Hepatotoxicity has also been reported after therapeutic doses, but critical analysis indicates that most patients with alleged toxicity from therapeutic doses have taken overdoses. Importantly, prospective studies indicate that therapeutic doses of paracetamol are an unlikely cause of hepatotoxicity in patients who ingest moderate to large amounts of alcohol (PMID: 15733027). Single doses of paracetamol are effective analgesics for acute postoperative pain and give rise to few adverse effects (PMID: 14974073). Acetaminophen (AAP) overdose and the resulting hepatotoxicity is an important clinical problem. In addition, AAP is widely used as a prototype hepatotoxin to study mechanisms of chemical-induced cell injury and to test the hepatoprotective potential of new drugs and herbal medicines. Because of its importance, the mechanisms of AAP-induced liver cell injury have been extensively investigated and controversially discussed for many years (PMID: 16863451). The excellent tolerability of therapeutic doses of paracetamol (acetaminophen) is a major factor in the very wide use of the drug. The major problem in the use of paracetamol is its hepatotoxicity after an overdose. Hepatotoxicity has also been reported after therapeutic doses, but critical analysis indicates that most patients with alleged toxicity from therapeutic doses have taken overdoses. Importantly, prospective studies indicate that therapeutic doses of paracetamol are an unlikely cause of hepatotoxicity in patients who ingest moderate to large amounts of alcohol. (PMID 15733027) N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1126 D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Aldosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-2-methyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-15-carbaldehyde

C21H28O5 (360.1936638)


Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. [HMDB] Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically, it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2819 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Corticosterone

(1S,2R,10S,11S,14S,15S,17S)-17-hydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O4 (346.214398)


Corticosterone, also known as 17-deoxycortisol, belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, corticosterone is considered to be a steroid lipid molecule. Corticosterone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. In many species, including amphibians, reptiles, rodents and birds, corticosterone is a main glucocorticoid,[3] involved in regulation of energy, immune reactions, and stress responses. Corticosterone is the precursor molecule to the mineralocorticoid aldosterone, one of the major homeostatic modulators of sodium and potassium levels in vivo. Corticosterone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-22-6 (retrieved 2024-07-15) (CAS RN: 50-22-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4].

   

Debrisoquine

1,2,3,4-tetrahydroisoquinoline-2-carboximidamide

C10H13N3 (175.1109418)


Debrisoquine is an adrenergic neuron-blocking drug. Genetic and environmental factors are determinants of the interindividual and interethnic variability in drug metabolism. Thus, interethnic differences in debrisoquine hydroxylation polymorphism (Cytochrome p450, subfamily IID, polypeptide 6, CYP2D6) might be partly responsible for the variation in haloperidol disposition between races. The influence of tobacco, ethanol, caffeine, gender, and oral contraceptive use on the debrisoquine metabolic ratio (MR) has been analyzed in panels of healthy volunteers. About 5-10\\% of European white population has a genetically determinant defect of the CYP2D6, one of the enzymes of cytochrome P-450. This defect leads to the impaired metabolism of many drugs including various psychopharmacological agents. The measurement of the hydroxylation of debrisoquine is a laboratory test which allows identifying such an individual. Patients who show an impaired hydroxylation of debrisoquine usually demonstrate severe side effects and poor outcome of psychopharmacotherapy. In practice, knowledge of a patients debrisoquine metabolic phenotype is an advantage when prescribing tricyclic antidepressants and neuroleptics, as the drug concentration will be considerably higher in slow metabolisers than in the average patient. (PMID: 8839686, 1738265, 7878155) [HMDB] Debrisoquine is an adrenergic neuron-blocking drug. Genetic and environmental factors are determinants of the interindividual and interethnic variability in drug metabolism. Thus, interethnic differences in debrisoquine hydroxylation polymorphism (Cytochrome p450, subfamily IID, polypeptide 6, CYP2D6) might be partly responsible for the variation in haloperidol disposition between races. The influence of tobacco, ethanol, caffeine, gender, and oral contraceptive use on the debrisoquine metabolic ratio (MR) has been analyzed in panels of healthy volunteers. About 5-10\\% of European white population has a genetically determinant defect of the CYP2D6, one of the enzymes of cytochrome P-450. This defect leads to the impaired metabolism of many drugs including various psychopharmacological agents. The measurement of the hydroxylation of debrisoquine is a laboratory test which allows identifying such an individual. Patients who show an impaired hydroxylation of debrisoquine usually demonstrate severe side effects and poor outcome of psychopharmacotherapy. In practice, knowledge of a patients debrisoquine metabolic phenotype is an advantage when prescribing tricyclic antidepressants and neuroleptics, as the drug concentration will be considerably higher in slow metabolisers than in the average patient. (PMID: 8839686, 1738265, 7878155). C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CC - Guanidine derivatives C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents COVID info from COVID-19 Disease Map ATC code: C02CC04 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Salicyluric acid

2-[(2-hydroxyphenyl)formamido]acetic acid

C9H9NO4 (195.0531554)


Salicyluric acid is an aryl glycine conjugate formed by the body to eliminate excess salicylates, including aspirin. Aspirin is rapidly hydrolysed to salicylic acid which is further metabolized to various compounds, including salicyluric acid (SU) as well as various acyl and phenolic glucuronides, and hydroxylated metabolites. SU is the major metabolite of SA excreted in urine and it is present in the urine of people who have not taken salicylate drugs, although it has no anti-inflammatory effects in humans or in animals. More salicyluric acid (SU) is excreted in the urine of vegetarians than in non-vegetarians, primarily because fruits and vegetables are important sources of dietary salicylates. However, significantly less (10-15X) SU is excreted by vegetarians than individuals taking low-dose aspirin (PMID: 12944546). The induction of the salicyluric acid formation is one of the saturable pathways of salicylate elimination. The formation of the methyl ester of salicyluric acid is observed during the quantitation of salicyluric acid and other salicylate metabolites in urine by high-pressure liquid chromatography. This methyl ester formation causes artificially low values for salicyluric acid and high values for salicylic acid. (PMID: 6101164, 6857178). Salicyluric acid has been found to be a microbial metabolite. Constituent of milk KEIO_ID H028 Salicyluric acid is an endogenous metabolite.

   

Pregnenolone

1-[(3S,8S,9S,10R,13S,14S,17S)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]ethanone

C21H32O2 (316.24021719999996)


Pregnenolone is a derivative of cholesterol, the product of cytochrome P450 side-chain cleavage (EC 1.14.15.6, CYP11A1. This reaction consists of three consecutive monooxygenations, a 22-hydroxylation, a 20-hydroxylation, and the cleavage of the C20-C22 bond, yielding pregnenolone. Pregnenolone is the precursor to gonadal steroid hormones and the adrenal corticosteroids. This reaction occurs in steroid hormone-producing tissues such as the adrenal cortex, corpus luteum, and placenta. The most notable difference between the placenta and other steroidogenic tissues is that electron supply to CYP11A1 limits the rate at which cholesterol is converted into pregnenolone in the placenta. The limiting component for electron delivery to CYP11A1 is the concentration of adrenodoxin reductase in the mitochondrial matrix which is insufficient to maintain the adrenodoxin pool in a fully reduced state. Pregnenolone is also a neurosteroid, and is produced in the spinal cord; CYP11A1 is the key enzyme catalyzing the conversion of cholesterol into pregnenolone, the rate-limiting step in the biosynthesis of all classes of steroids, and has been localized in sensory networks of the spinal cord dorsal horn. In the adrenal glomerulosa cell, angiotensin II, one of the major physiological regulators of mineralocorticoid synthesis, appears to affect most of the cholesterol transfer to the mitochondrial outer membrane and many steps in the transport to the inner membrane. Thus, it exerts a powerful control over the use of cholesterol for aldosterone production (PMID: 17222962, 15823613, 16632873, 15134809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].

   

Testosterone

17-Hydroxy-10,13-dimethyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-cyclopenta[a]phenanthren-3-one

C19H28O2 (288.2089188)


Testosterone is the primary male sex hormone and anabolic steroid from the androstane class of steroids. It is the most important androgen in potency and quantity for vertebrates. In humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair. In addition, testosterone is involved in health and well-being, and the prevention of osteoporosis. Testosterone exerts its action through binding to and activation of the androgen receptor. In mammals, testosterone is metabolized mainly in the liver. Approximately 50\\% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases. An additional 40\\% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5alpha- and 5beta-reductases, 3alpha-hydroxysteroid dehydrogenase, and 17beta-HSD. Like other steroid hormones, testosterone is derived from cholesterol. The first step in the biosynthesis of testosterone involves the oxidative cleavage of the side-chain of cholesterol by the cholesterol side-chain cleavage enzyme (P450scc, CYP11A1) to give pregnenolone. In the next step, two additional carbon atoms are removed by the CYP17A1 (17alpha-hydroxylase/17,20-lyase) enzyme to yield a variety of C19 steroids. In addition, the 3beta-hydroxyl group is oxidized by 3beta-hydroxysteroid dehydrogenase to produce androstenedione. In the final and rate limiting step, the C17 keto group androstenedione is reduced by 17beta-hydroxysteroid hydrogenase to yield testosterone. Testosterone is synthesized and released by the Leydig cells in the testes that lie between the tubules and comprise less than 5\\% of the total testicular volume. Testosterone diffuses into the seminiferous tubules where it is essential for maintaining spermatogenesis. Some testosterone binds to an androgen-binding protein (ABP) that is produced by the Sertoli cells and is homologous to the sex-hormone binding globulin that transports testosterone in the general circulation. The ABP carries testosterone in the testicular fluid where it maintains the activity of the accessory sex glands and may also help to retain testosterone within the tubule and bind excess free hormone. Some testosterone is converted to estradiol by Sertoli cell-derived aromatase enzyme. Leydig cell steroidogenesis is controlled primarily by luteinizing hormone with negative feedback of testosterone on the hypothalamic-pituitary axis. The requirement of spermatogenesis for high local concentrations of testosterone means that loss of androgen production is likely to be accompanied by loss of spermatogenesis. Indeed, if testicular androgen production is inhibited by the administration of exogenous androgens then spermatogenesis ceases. This is the basis of using exogenous testosterone as a male contraceptive. The largest amounts of testosterone (>95\\%) are produced by the testes in men, while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta. Testosterone levels fall by about 1\\% each year in men. Therefore, with increasing longevity and the aging of the population, the number of older men with testosterone deficiency will increase substantially over the next several decades. Serum testosterone levels decrease progressively in aging men, but the rate and magnitude of decrease vary considerably. Approximately 1\\% of healthy young men have total serum testosterone levels below normal; in contrast, approximately 20\\% of healthy men over age 60 years have serum testosterone levels below normal. (PMID: 17904450, 17875487). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03B - Androgens > G03BA - 3-oxoandrosten (4) derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Cortisol

(1S,2R,10S,11S,14R,15S,17S)-14,17-dihydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O5 (362.209313)


Cortisol is the main glucocorticoid secreted by the adrenal cortex and it is involved in the stress response. Its synthetic counterpart hydrocortisone is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Hydrocortisone is synthesized from pregnenolone and is used as an immunosuppressive drug given by injection in the treatment of severe allergic reactions such as anaphylaxis and angioedema, in place of prednisolone in patients who need steroid treatment but cannot take oral medication, and peri-operatively in patients on long-term steroid treatment to prevent an Addisonian crisis. Cortisol increases blood pressure, blood sugar levels, may cause infertility in women, and suppresses the immune system. The amount of cortisol present in the serum undergoes diurnal variation, with the highest levels present in the early morning and lower levels in the evening, several hours after the onset of sleep. Cortisol is found to be associated with ACTH deficiency and glucocorticoid deficiency, which are inborn errors of metabolism. Cortisol binds to the cytosolic glucocorticoid receptor. After binding the receptor, the newly formed receptor-ligand complex translocates itself into the cell nucleus where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA-bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically, glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes and prevents phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products of inflammation, prostaglandins and leukotrienes, are inhibited by the action of glucocorticoids. Glucocorticoids also stimulate the escape of lipocortin-1 into the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst, and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines, etc.) from neutrophils, macrophages, and mastocytes. Additionally, the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Cortisol is a steroid hormone, in the glucocorticoid class of hormones and a stress hormone. When used as a medication, it is known as hydrocortisone. It is produced in many animals, mainly by the zona fasciculata of the adrenal cortex in the adrenal gland.[1] It is produced in other tissues in lower quantities.[2] It is released with a diurnal cycle and its release is increased in response to stress and low blood-glucose concentration.[1] It functions to increase blood sugar through gluconeogenesis, to suppress the immune system, and to aid in the metabolism of fat, protein, and carbohydrates.[3] It also decreases bone formation.[4] Many of these functions are carried out by cortisol binding to glucocorticoid or mineralocorticoid receptors inside the cell, which then bind to DNA to affect gene expression.[1][5] Hydrocortisone (Cortisol) is a steroid hormone or glucocorticoid secreted by the adrenal cortex[1].

   

Dextromethorphan

(1R,9R,10R)-4-methoxy-17-methyl-17-azatetracyclo[7.5.3.0^{1,10}.0^{2,7}]heptadeca-2(7),3,5-triene

C18H25NO (271.193604)


Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. Dextromethorphan shows high affinity binding to several regions of the brain, including the medullary cough center. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia. This compound is an NMDA receptor antagonist (receptors, N-methyl-D-aspartate) and acts as a non-competitive channel blocker. It is also used to study the involvement of glutamate receptors in neurotoxicity. [PubChem] Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia [HMDB] R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents

   

Loperamide

4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-N,N-dimethyl-2,2-diphenylbutanamide

C29H33ClN2O2 (476.22304280000003)


Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines; it does not affect the central nervous system like other opioids; Loperamide usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; Treatment should be avoided in the presence of fever or if the stool is bloody. Treatment is not recommended for patients who could suffer detrimental effects from rebound constipation. If there is a suspicion of diarrhea associated with organisms that can penetrate the intestinal walls, such as E. coli O157:H7 or salmonella, loperamide is contraindicated; Loperamide, usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; it does not affect the central nervous system like other opioids; One of the long-acting synthetic antidiarrheals; it is not significantly absorbed from the gut, and has no effect on the adrenergic system or central nervous system, but may antagonize histamine and interfere with acetylcholine release locally; Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines [HMDB] Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines; it does not affect the central nervous system like other opioids; Loperamide usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; Treatment should be avoided in the presence of fever or if the stool is bloody. Treatment is not recommended for patients who could suffer detrimental effects from rebound constipation. If there is a suspicion of diarrhea associated with organisms that can penetrate the intestinal walls, such as E. coli O157:H7 or salmonella, loperamide is contraindicated; Loperamide, usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; it does not affect the central nervous system like other opioids; One of the long-acting synthetic antidiarrheals; it is not significantly absorbed from the gut, and has no effect on the adrenergic system or central nervous system, but may antagonize histamine and interfere with acetylcholine release locally; Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals KEIO_ID L047; [MS2] KO009036 KEIO_ID L047

   

all-trans-Retinoic acid

(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenoic acid

C20H28O2 (300.2089188)


all-trans-Retinoic acid is an isomer of retinoic acid, the oxidized form of vitamin A. Retinoic acid functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID:17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. As a drug, all-trans-retinoic acid is known as tretinoin. Tretinoin is derived from maternal vitamin A and is essential for normal growth and embryonic development. An excess of tretinoin can be teratogenic. Tretinoin is used in the treatment of psoriasis, acne vulgaris, and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute). Retinoic acid is the oxidized form of Vitamin A. It functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID: 17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. Tretinoin, also known as retinoic acid and derived from maternal vitamin A, is essential for normal growth and embryonic development. An excess of tretinoin can be teratogenic. It is used in the treatment of psoriasis; acne vulgaris; and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute). [HMDB] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XF - Retinoids for cancer treatment D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D000970 - Antineoplastic Agents Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha.

   

6-Methylmercaptopurine

6-(methylsulfanyl)-9H-purine

C6H6N4S (166.0313156)


6-Methylmercaptopurine is a metabolite of mercaptopurine. Mercaptopurine (also called 6-mercaptopurine, 6-MP or its brand name Purinethol) is an immunosuppressive drug. It is a thiopurine. (Wikipedia) KEIO_ID M104

   

Estrone

(1S,10R,11S,15S)-5-hydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-14-one

C18H22O2 (270.1619712)


Estrone is a major mammalian estrogen. The conversion of the natural C19 steroids, testosterone and androstenedione into estrone is dependent on a complex key reaction catalyzed by the cytochrome P450 aromatase (EC 1.14.14.1, unspecific monooxygenase), which is expressed in many tissues of the adult human (e.g. ovary, fat tissue), but not in the liver. The ovaries after menopause continue to produce androstenedione and testosterone in significant amounts and these androgens are converted in fat, muscle, and skin into estrone. When women between the ages of 45 and 64 years have prophylactic oophorectomy (when hysterectomy is performed for benign disease to prevent the development of ovarian cancer), evidence suggests that oophorectomy increases the subsequent risk of coronary heart disease (CHD) and osteoporosis. Whereas 14,000 women die of ovarian cancer every year nearly 490,000 women die of heart disease and 48,000 women die within 1 year after hip fracture. Therefore, the decision to perform prophylactic oophorectomy should be approached with great caution for the majority of women who are at low risk of developing ovarian cancer. Steroid sulfatase (EC 3.1.6.2, STS) hydrolyzes steroid sulfates, such as estrone sulfate to estrone which can be converted to steroids with potent estrogenic properties, that is, estradiol; STS activity is much higher in breast tumors and high levels of STS mRNA expression in tumors are associated with a poor prognosis. The biological roles of estrogens in tumorigenesis are certainly different between the endometrium and breast, although both are considered "estrogen-dependent tissues". 17beta-hydroxysteroid dehydrogenases (EC 1.1.1.62, 17-HSDs) are enzymes involved in the formation of active sex steroids. estrone is interconverted by two enzymes 17-HSD types. Type 1 converts estrone to estradiol and Type 2 catalyzes the reverse reaction. (PMID: 17653961, 17513923, 17470679, 17464097). CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8882 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8944; ORIGINAL_PRECURSOR_SCAN_NO 8942 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8921 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8903; ORIGINAL_PRECURSOR_SCAN_NO 8901 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4815 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4832 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4774; ORIGINAL_PRECURSOR_SCAN_NO 4772 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4794 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8953; ORIGINAL_PRECURSOR_SCAN_NO 8951 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4804; ORIGINAL_PRECURSOR_SCAN_NO 4803 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8970; ORIGINAL_PRECURSOR_SCAN_NO 8969 A trace constituent of plant tissues, e.g. seeds of date (Phoenix dactylifera) and pomegranate (Punica granatum). Estrone is found in many foods, some of which are cauliflower, sweet rowanberry, carrot, and coconut. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen CONFIDENCE standard compound; INTERNAL_ID 2391 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2]. Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2].

   

Taurolithocholate 3-sulfate

2-[[(4R)-4-[(3R,5R,10S,13R,17R)-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO8S2 (563.258645)


Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072

   

Estrone 3-sulfate

[(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthren-3-yl] hydrogen sulfate

C18H22O5S (350.1187882)


Estrone sulfate is a sulfated estrone derivative. Estrone sulfate acts as a long-lived reservoir that can be converted as needed to the more active estradiol (from estrone via 17 beta-hydroxysteroid dehydrogenase). Estrone Sulfate (E1S) is the most abundant circulating estrogen in non-pregnant women as well as normal men. Estrone is primarily synthesized from estrone sulfate. Estrone is an estrogenic hormone secreted by the ovaries and adipose tissues. Estrone is one of the three estrogens found in humans. The other two are estriol and estradiol. Estrone is the least prevalent of the three. Estradiol plays a critical role on reproductive and sexual functioning in women and it also affects other organs including the bones. Estriol is an estrogen that is prevalent primarily during pregnancy. [HMDB] Estrone sulfate is a sulfated estrone derivative. Estrone sulfate acts as a long-lived reservoir that can be converted as needed to the more active estradiol (from estrone via 17 beta-hydroxysteroid dehydrogenase). Estrone Sulfate (E1S) is the most abundant circulating estrogen in non-pregnant women as well as normal men. Estrone is primarily synthesized from estrone sulfate. Estrone is an estrogenic hormone secreted by the ovaries and adipose tissues. Estrone is one of the three estrogens found in humans. The other two are estriol and estradiol. Estrone is the least prevalent of the three. Estradiol plays a critical role on reproductive and sexual functioning in women and it also affects other organs including the bones. Estriol is an estrogen that is prevalent primarily during pregnancy. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Nicotinamide adenine dinucleotide phosphate

{[(2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-[({[({[(2R,3S,4R,5R)-5-(3-carbamoyl-1,4-dihydropyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C21H30N7O17P3 (745.0911)


NADPH is the reduced form of NADP+, and NADP+ is the oxidized form of NADPH. Nicotinamide adenine dinucleotide phosphate (NADP) is a coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled with a pyrophosphate linkage to 5-phosphate adenosine 2,5-bisphosphate. NADP serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage (Dorland, 27th ed). This extra phosphate is added by the enzyme NAD+ kinase and removed via NADP+ phosphatase. NADP is also known as TPN (triphosphopyridine nucleotide) and it is an important cofactor used in anabolic reactions in all forms of cellular life. Examples include the Calvin cycle, cholesterol synthesis, fatty acid elongation, and nucleic acid synthesis (Wikipedia). Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled by pyrophosphate linkage to the 5-phosphate adenosine 2,5-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed.) [HMDB]. NADPH is found in many foods, some of which are american pokeweed, rice, ginseng, and ostrich fern. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tyramine

alpha-(4-Hydroxyphenyl)-beta-aminoethane

C8H11NO (137.0840596)


Tyramine is a monoamine compound derived from the amino acid tyrosine. Tyramine is metabolized by the enzyme monoamine oxidase. In foods, it is often produced by the decarboxylation of tyrosine during fermentation or decay. Foods containing considerable amounts of tyramine include fish, chocolate, alcoholic beverages, cheese, soy sauce, sauerkraut, and processed meat. A large dietary intake of tyramine can cause an increase in systolic blood pressure of 30 mmHg or more. Tyramine acts as a neurotransmitter via a G protein-coupled receptor with high affinity for tyramine called TA1. The TA1 receptor is found in the brain as well as peripheral tissues including the kidney. An indirect sympathomimetic, Tyramine can also serve as a substrate for adrenergic uptake systems and monoamine oxidase so it prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine is a biomarker for the consumption of cheese [Spectral] Tyramine (exact mass = 137.08406) and L-Methionine (exact mass = 149.05105) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Tyramine (exact mass = 137.08406) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents IPB_RECORD: 267; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 5105 D049990 - Membrane Transport Modulators KEIO_ID T008 Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].

   

Cocaine

[1R-(exo,exo)]-3-(Benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid, methyl ester

C17H21NO4 (303.1470506)


Cocaine, also known as coke, is an alkaloid ester obtained from the leaves of the coca plant (PMID: 20857618). It is a weakly alkaline compound and can therefore combine with acidic compounds to form white salts or powders (which is how it is typically sold and consumed). Cocaine is a strong stimulant that is most frequently used as a recreational drug. It is the second most frequently used illegal drug globally, after cannabis. The stimulant and hunger suppression properties of cocaine and coca leaf extracts have been known for thousands of years by indigenous groups in central and South America. The coca leaf was, and still is, chewed almost universally by some indigenous communities. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This inhibition leads to a number of mental and physical effects that may include loss of contact with reality, an intense feeling of happiness, periods of agitation, along with a rapid heart rate, sweating, and dialated pupils. Cocaine is highly addictive due to its effect on the reward pathway in the brain (PMID: 22856655). Cocaine addiction occurs through overexpression of the FosB protein in the nucleus accumbens of the brain, which results in altered transcriptional regulation in neurons within the nucleus accumbens. Cocaine is harmful. Its use increases the risk of stroke, myocardial infarction, lung problems (in those who smoke it), blood infections, and sudden cardiac death. Medically, cocaine is infrequently used as a local anesthetic and vasoconstrictor to cause loss of feeling or numbness before certain medical procedures (e.g., biopsy, stitches, wound cleaning) (PMID: 28956316). Topical cocaine is occasionally used as a local numbing agent to help with painful procedures in the mouth or nose. Cocaine is now predominantly used for nasal and lacrimal duct surgery. It works quickly to numb certain areas of the body (e.g., nose, ear, or throat) about 1-2 minutes after application. Cocaine functions as an anesthesia by reversibly binding to and inactivating sodium channels, thereby inhibiting excitation of nerve endings or by blocking conduction in peripheral nerves. Cocaine and its major metabolites are only found in individuals that have used or taken this drug. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BC - Esters of benzoic acid S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2817 EAWAG_UCHEM_ID 2817; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 1619 D049990 - Membrane Transport Modulators

   

Tamoxifen

1-Para-beta-dimethylaminoethoxyphenyl-trans-1,2-diphenylbut-1-ene

C26H29NO (371.2249024)


Tamoxifen is only found in individuals that have used or taken this drug. It is one of the selective estrogen receptor modulators with tissue-specific activities. Tamoxifen acts as an anti-estrogen (inhibiting agent) in the mammary tissue, but as an estrogen (stimulating agent) in cholesterol metabolism, bone density, and cell proliferation in the endometrium. [PubChem]Tamoxifen binds to estrogen receptors (ER), inducing a conformational change in the receptor. This results in a blockage or change in the expression of estrogen dependent genes. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BA - Anti-estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D050071 - Bone Density Conservation Agents D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Aflatoxin B1

(3S,7R)-11-methoxy-6,8,19-trioxapentacyclo[10.7.0.0^{2,9}.0^{3,7}.0^{13,17}]nonadeca-1(12),2(9),4,10,13(17)-pentaene-16,18-dione

C17H12O6 (312.06338519999997)


Aflatoxins are naturally occurring mycotoxins that are produced by many species of Aspergillus, a fungus. At least 13 different types of aflatoxin are produced in nature. Aflatoxin B1 is considered the most toxic and is produced by both Aspergillus flavus and Aspergillus parasiticus. The native habitat of Aspergillus is in soil, decaying vegetation, hay, and grains undergoing microbiological deterioration and it invades all types of organic substrates whenever conditions are favourable for its growth. Favourable conditions include high moisture content (at least 7\\\%) and high temperature. Aflatoxins B1 (AFB1) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage (PMID: 17214555). Crops which are frequently affected by Aspergillus contamination include cereals (maize, sorghum, pearl millet, rice, wheat), oilseeds (peanut, soybean, sunflower, cotton), spices (chile peppers, black pepper, coriander, turmeric, ginger), and tree nuts (almond, pistachio, walnut, coconut, brazil nut). Production by Aspergillus flavus and Aspergillus parasiticus. Toxin causing Turkey X disease. One of the most potent carcinogens known in animals. Potential food contaminant especies in grains and nuts D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].

   

Deoxycorticosterone

(1S,2R,10S,11S,14S,15S)-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O3 (330.21948299999997)


11-Deoxycorticosterone (also called desoxycortone, 21-hydroxyprogesterone, DOC, or simply deoxycorticosterone) is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is classified as a member of the 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Deoxycorticosterone is very hydrophobic, practically insoluble (in water), and relatively neutral. Deoxycorticosterone can be synthesized from progesterone by 21-beta-hydroxylase and is then converted to corticosterone by 11-beta-hydroxylase. Corticosterone is then converted to aldosterone by aldosterone synthase. Deoxycorticosterone stimulates the collecting tubules in the kidney to continue to excrete potassium in much the same way that aldosterone does. Deoxycorticosterone has about 1/20 of the sodium retaining power of aldosterone and about 1/5 the potassium excreting power of aldosterone (Wikipedia). Deoxycorticosterone can be found throughout all human tissues and has been detected in amniotic fluid and blood. When present in sufficiently high levels, deoxycorticosterone can act as a hypertensive agent and a metabotoxin. A hypertensive agent increases blood pressure and causes the production of more urine. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxycorticosterone are associated with congenital adrenal hyperplasia (CAH) and with adrenal tumors producing deoxycorticosterone (PMID: 20671982). High levels of this mineralocorticoid are associated with resistant hypertension, which can result in polyuria, polydipsia, increased blood volume, edema, and cardiac enlargement. Deoxycorticosterone can be used to treat adrenal insufficiency. In particular, desoxycorticosterone acetate (DOCA) is used as replacement therapy in Addisons disease. Desoxycorticosterol, also known as 21-hydroxy-4-pregnene-3,20-dione or 21-hydroxyprogesterone, is a member of the class of compounds known as 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, desoxycorticosterol is considered to be a steroid lipid molecule. Desoxycorticosterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Desoxycorticosterol can be synthesized from progesterone. Desoxycorticosterol can also be synthesized into 11-deoxycorticosterone-21-hemisuccinate and 5beta-dihydrodeoxycorticosterone. Desoxycorticosterol can be found in rice, which makes desoxycorticosterol a potential biomarker for the consumption of this food product. Desoxycorticosterol can be found primarily in amniotic fluid and blood, as well as throughout all human tissues. In humans, desoxycorticosterol is involved in the steroidogenesis. Desoxycorticosterol is also involved in several metabolic disorders, some of which include corticosterone methyl oxidase I deficiency (CMO I), 21-hydroxylase deficiency (CYP21), corticosterone methyl oxidase II deficiency - CMO II, and 11-beta-hydroxylase deficiency (CYP11B1). Desoxycorticosterol is a non-carcinogenic (not listed by IARC) potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9329 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9427; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9386; ORIGINAL_PRECURSOR_SCAN_NO 9384 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9356; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9399; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9378; ORIGINAL_PRECURSOR_SCAN_NO 9376 H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D008901 - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor. Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor.

   

Indolin-2-one

1,3-dihydro-(2H)-indol-2-One

C8H7NO (133.0527612)


1,3-Dihydro-(2H)-indol-2-one, also known as 2-oxindole or 2-indolinone, belongs to the class of organic compounds known as indolines. Indolines are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole. CONFIDENCE standard compound; INTERNAL_ID 2508 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors. Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776204)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Estradiol

(1S,10R,11S,14S,15S)-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-triene-5,14-diol

C18H24O2 (272.17762039999997)


Estradiol is the most potent form of mammalian estrogenic steroids. Estradiol is produced in the ovaries. The ovary requires both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) to produce sex steroids. LH stimulates the cells surrounding the follicle to produce progesterone and androgens. The androgens diffuse across the basement membrane to the granulosa cell layer, where, under the action of FSH, they are aromatized to estrogens, mainly estradiol. The ovary shows cyclical activity, unlike the testis that is maintained in a more or less constant state of activity. Hormone secretions vary according to the phase of the menstrual cycle. In the developing follicle LH receptors (LH-R) are only located on the thecal cells and FSH receptors (FSHR) on the granulosa cells. The dominant pre-ovulatory follicle develops LH-Rs on the granulosa cells prior to the LH surge. Thecal cells of the preovulatory follicle also develop the capacity to synthesize estradiol and this persists when the thecal cells become incorporated into the corpus luteum. After ovulation, the empty follicle is remodelled and plays an important role in the second half or luteal phase of the menstrual cycle. This phase is dominated by progesterone and, to a lesser extent, estradiol secretion by the corpus luteum. estradiol is also synthesized locally from cholesterol through testosterone in the hippocampus and acts rapidly to modulate neuronal synaptic plasticity. Localization of estrogen receptor alpha (ERalpha) in spines in addition to nuclei of principal neurons implies that synaptic ERalpha is responsible for rapid modulation of synaptic plasticity by endogenous estradiol. estradiol is a potent endogenous antioxidant which suppresses hepatic fibrosis in animal models, and attenuates induction of redox sensitive transcription factors, hepatocyte apoptosis and hepatic stellate cells activation by inhibiting a generation of reactive oxygen species in primary cultures. This suggests that the greater progression of hepatic fibrosis and hepatocellular carcinoma in men and postmenopausal women may be due, at least in part, to lower production of estradiol and a reduced response to the action of estradiol. estradiol has been reported to induce the production of interferon (INF)-gamma in lymphocytes, and augments an antigen-specific primary antibody response in human peripheral blood mononuclear cells. IFN-gamma is a potent cytokine with immunomodulatory and antiproliferative properties. Therefore, female subjects, particularly before menopause, may produce antibodies against hepatitis B virus e antigen and hepatitis B virus surface antigen at a higher frequency than males with chronic hepatitis B virus infection. The estradiol-Dihydrotestosterone model of prostate cancer (PC) proposes that the first step in the development of most PC and breast cancer (BC) occurs when aromatase converts testosterone to estradiol. (PMID: 17708600, 17678531, 17644764). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Growth promoter for livestock. Permitted in the USA Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2]. Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2].

   

Methimazole

1-methyl-2,3-dihydro-1H-imidazole-2-thione

C4H6N2S (114.02516759999999)


A thioureylene antithyroid agent that inhibits the formation of thyroid hormones by interfering with the incorporation of iodine into tyrosyl residues of thyroglobulin. This is done by interfering with the oxidation of iodide ion and iodotyrosyl groups through inhibition of the peroxidase enzyme. [PubChem] H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations > H03BB - Sulfur-containing imidazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C885 - Antithyroid Agent CONFIDENCE standard compound; INTERNAL_ID 1166 KEIO_ID M126

   

Aflatoxin M1

Cyclopenta(c)furo(3,2:4,5)furo(2,3-h)(1)benzopyran-1,11-dione, 2,3,6a,9a-tetrahydro-9a-hydroxy-4-methoxy-

C17H12O7 (328.05830019999996)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins

   

Olmesartan

4-(2-hydroxypropan-2-yl)-2-propyl-1-({4-[2-(1H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1H-imidazole-5-carboxylic acid

C24H26N6O3 (446.20662860000004)


Olmesartan is an antihypertensive agent which belongs to the class of medicines called angiotensin II receptor antagonists. It acts rapidly to lower high blood pressure. It is marketed worldwide by Daiichi Sankyo, Ltd. and in the United States by Daiichi Sankyo, Inc. and Forest Laboratories. C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Olmesartan (RNH-6270) is an angiotensin II receptor (AT1R) antagonist used to treat high blood pressure[1][2].

   

Glutathione

(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-sulfanylethyl]carbamoyl}butanoic acid

C10H17N3O6S (307.08380220000004)


Glutathione is a compound synthesized from cysteine, perhaps the most important member of the bodys toxic waste disposal team. Like cysteine, glutathione contains the crucial thiol (-SH) group that makes it an effective antioxidant. There are virtually no living organisms on this planet-animal or plant whose cells dont contain some glutathione. Scientists have speculated that glutathione was essential to the very development of life on earth. glutathione has many roles; in none does it act alone. It is a coenzyme in various enzymatic reactions. The most important of these are redox reactions, in which the thiol grouping on the cysteine portion of cell membranes protects against peroxidation; and conjugation reactions, in which glutathione (especially in the liver) binds with toxic chemicals in order to detoxify them. glutathione is also important in red and white blood cell formation and throughout the immune system. glutathiones clinical uses include the prevention of oxygen toxicity in hyperbaric oxygen therapy, treatment of lead and other heavy metal poisoning, lowering of the toxicity of chemotherapy and radiation in cancer treatments, and reversal of cataracts. (http://www.dcnutrition.com/AminoAcids/) glutathione participates in leukotriene synthesis and is a cofactor for the enzyme glutathione peroxidase. It is also important as a hydrophilic molecule that is added to lipophilic toxins and waste in the liver during biotransformation before they can become part of the bile. glutathione is also needed for the detoxification of methylglyoxal, a toxin produced as a by-product of metabolism. This detoxification reaction is carried out by the glyoxalase system. Glyoxalase I (EC 4.4.1.5) catalyzes the conversion of methylglyoxal and reduced glutathione to S-D-Lactoyl-glutathione. Glyoxalase II (EC 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoyl-glutathione to glutathione and D-lactate. GSH is known as a substrate in both conjugation reactions and reduction reactions, catalyzed by glutathione S-transferase enzymes in cytosol, microsomes, and mitochondria. However, it is also capable of participating in non-enzymatic conjugation with some chemicals, as in the case of n-acetyl-p-benzoquinone imine (NAPQI), the reactive cytochrome P450-reactive metabolite formed by acetaminophen, that becomes toxic when GSH is depleted by an overdose (of acetaminophen). glutathione in this capacity binds to NAPQI as a suicide substrate and in the process detoxifies it, taking the place of cellular protein thiol groups which would otherwise be covalently modified; when all GSH has been spent, NAPQI begins to react with the cellular proteins, killing the cells in the process. The preferred treatment for an overdose of this painkiller is the administration (usually in atomized form) of N-acetylcysteine, which is used by cells to replace spent GSSG and renew the usable GSH pool. (http://en.wikipedia.org/wiki/glutathione). Glutathione (GSH) - reduced glutathione - is a tripeptide with a gamma peptide linkage between the amine group of cysteine (which is attached by normal peptide linkage to a glycine) and the carboxyl group of the glutamate side-chain. It is an antioxidant, preventing damage to important cellular components caused by reactive oxygen species such as free radicals and peroxides. [Wikipedia]. Glutathione is found in many foods, some of which are cashew nut, epazote, ucuhuba, and canada blueberry. Glutathione. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-18-8 (retrieved 2024-07-15) (CAS RN: 70-18-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Glutathione reduced (GSH; γ-L-Glutamyl-L-cysteinyl-glycine) is an endogenous antioxidant and is capable of scavenging oxygen-derived free radicals.

   

Dimethylarsinic acid

Hydroxydimethylarsine oxide

C2H7AsO2 (137.9661982)


Dimethylarsinic acid, also known as cacodylic acid, is formally rated as possibly a carcinogenic (IARC 2B), potentially toxic compound. Derivatives of cacodylic acid, cacodylates, were frequently used as herbicides. For example, Agent Blue, one of the chemicals used during the Vietnam War, is a mixture of cacodylic acid and sodium cacodylate. Sodium cacodylate is frequently used as a buffering agent in the preparation and fixation of biological samples for transmission electron microscopy. Dimethylarsinic acid is highly toxic by ingestion, inhalation, or skin contact. Once thought to be a byproduct of inorganic arsenic detoxification, it is now believed to have serious health consequences of its own. It has been shown to be teratogenic in rodents, most often causing cleft palate but also fetal fatality at high doses. It has been shown to be genotoxic in human cells, causing apoptosis and also decreased DNA production and shorter DNA strands. While not itself a strong carcinogen, dimethylarsinic acid does promote tumours in the presence of carcinogens in organs such as the kidneys and liver (Wikipedia). Cacodylic acid is the chemical compound with the formula (CH3)2AsO2H. Derivatives of cacodylic acid, cacodylates, were frequently used as herbicides. For example, "Agent Blue," one of the chemicals used during the Vietnam War, is a mixture of cacodylic acid and sodium cacodylate. Sodium cacodylate is frequently used as a buffering agent in the preparation and fixation of biological samples for transmission electron microscopy. D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

4-Nitrophenol

4-Nitrophenol, sodium salt, (2:1), dihydrate

C6H5NO3 (139.02694200000002)


4-Nitrophenol (also called p-nitrophenol or 4-hydroxynitrobenzene) is a phenolic compound that has a nitro group at the opposite position of the hydroxyl group on the benzene ring. It belongs to the class of organic compounds known as nitrophenols. Nitrophenols are compounds containing a nitrophenol moiety, which consists of a benzene ring bearing both a hydroxyl group and a nitro group on two different ring carbon atoms. 4-Nitrophenol shows two polymorphs in the crystalline state. The alpha-form is colorless pillars, unstable at room temperature, and stable toward sunlight. The beta-form is yellow pillars, stable at room temperature, and gradually turns red upon irradiation of sunlight. Usually 4-nitrophenol exists as a mixture of these two forms. 4-Nitrophenol can be used as a pH indicator and as an intermediate in the synthesis of paracetamol. Itis also used as the precursor for the preparation of phenetidine and acetophenetidine, indicators, and raw materials for fungicides. Bioaccumulation of this compound rarely occurs. In peptide synthesis, carboxylate ester derivatives of 4-nitrophenol may serve as activated components for construction of amide moieties. 4-Nitrophenol is a potentially toxic compound: it can cause eyes, skin, and respiratory tract irritations. It may also cause inflammation of those parts. It has a delayed interaction with blood and forms methaemoglobin which is responsible for methemoglobinemia -which is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen-, potentially causing cyanosis, confusion, and unconsciousness. When ingested, it causes abdominal pain and vomiting. Prolonged contact with skin may cause allergic response. Genotoxicity and carcinogenicity of 4-nitrophenol are not known. The LD50 in mice is 282 mg/kg and in rats is 202 mg/kg. Outside of the human body, 4-Nitrophenol has been detected, but not quantified in cow milk. Conjugates are more polar than the parent compounds and therefore are easier to excrete in the urine. CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3370; ORIGINAL_PRECURSOR_SCAN_NO 3368 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3384; ORIGINAL_PRECURSOR_SCAN_NO 3382 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3386; ORIGINAL_PRECURSOR_SCAN_NO 3382 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3360; ORIGINAL_PRECURSOR_SCAN_NO 3357 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3383; ORIGINAL_PRECURSOR_SCAN_NO 3379 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9235; ORIGINAL_PRECURSOR_SCAN_NO 9231 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9286; ORIGINAL_PRECURSOR_SCAN_NO 9282 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9273; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9283; ORIGINAL_PRECURSOR_SCAN_NO 9278 CONFIDENCE standard compound; INTERNAL_ID 1202; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3372; ORIGINAL_PRECURSOR_SCAN_NO 3370 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3485; ORIGINAL_PRECURSOR_SCAN_NO 3484 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3494; ORIGINAL_PRECURSOR_SCAN_NO 3493 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3463; ORIGINAL_PRECURSOR_SCAN_NO 3462 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3492; ORIGINAL_PRECURSOR_SCAN_NO 3491 CONFIDENCE standard compound; INTERNAL_ID 982; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3496; ORIGINAL_PRECURSOR_SCAN_NO 3495 4-Nitrophenol is a phenolic metabolite of environmental chemicals present in samples from the general population. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 2298

   

Phenol

Hydroxybenzene

C6H6O (94.0418626)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05B - Antivaricose therapy > C05BB - Sclerosing agents for local injection An organic hydroxy compound that consists of benzene bearing a single hydroxy substituent. The parent of the class of phenols. R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics D019999 - Pharmaceutical Solutions > D012597 - Sclerosing Solutions N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D000890 - Anti-Infective Agents D002317 - Cardiovascular Agents D004202 - Disinfectants CONFIDENCE standard compound; INTERNAL_ID 225

   

Phenylethylamine

Phenethylamine, beta-(14)C-labeled CPD

C8H11N (121.0891446)


Phenylethylamine (PEA) is an aromatic amine, which is a colorless liquid at room temperature. It is soluble in water, ethanol, and ether. Similar to other low-molecular-weight amines, it has a fishy odor. Upon exposure to air, it forms a solid carbonate salt with carbon dioxide. Phenethylamine is strongly basic and forms a stable crystalline hydrochloride salt with a melting point of 217 °C. Phenethylamine is also a skin irritant and possible sensitizer. Phenethylamine also has a constitutional isomer (+)-phenylethylamine (1-phenylethylamine), which has two stereoisomers: (R)-(+)-1-phenylethylamine and (S)-(-)-1-phenylethylamine. In the human brain, 2-phenethylamine is believed to function as a neuromodulator or neurotransmitter (a trace amine). Phenethylamine can be biosynthesized from the amino acid phenylalanine by enzymatic decarboxylation. It is also found in many foods such as chocolate, especially after microbial fermentation. However trace amounts from food are quickly metabolized by the enzyme MAO-B (into phenylacetic acid), preventing significant concentrations from reaching the brain. Phenylethylamine is a precursor to the neurotransmitter phenylethanolamine. High levels of PEA have been found in the urine of schizophrenics but it is not significantly elevated in the serum or CSF of schizophrenics (PMID:7906896, PMID:7360842).¬† Urinary levels of PEA are significantly lower in children with attention deficit hyperactivity disorder (ADHD) (PMID:12205654).¬† It has been found that PEA is the primary compound found in carnivore (especially cat) urine that leads to rodent (mouse and rat) avoidance. In other words, phenylethylamine is useful for scaring off rodent pests.¬† Quantitative HPLC analysis across 38 mammalian species has shown that PEA production in urine is especially enhanced in carnivores, with some producing >3,000-fold more than herbivores (PMID:21690383). Phenethylamine has been found to be a metabolite of Bacillus, Enterococcus and Lactobacillus (PMID:22953951; PMID:17307265; PMID:16630269). Present in cooked cabbage, cheeses, sherry, wine, processed lean fish, cocoa, raw cauliflower, raw beetroot and raw radish. Flavouring ingredient

   

Phenylacetaldehyde

alpha-Phenylacetaldehyde

C8H8O (120.0575118)


Phenylacetaldehyde is one important oxidation-related aldehyde. Exposure to styrene gives phenylacetaldehyde as a secondary metabolite. Styrene has been implicated as reproductive toxicant, neurotoxicant, or carcinogen in vivo or in vitro. Phenylacetaldehyde could be formed by diverse thermal reactions during the cooking process together with C8 compounds is identified as a major aroma- active compound in cooked pine mushroom. Phenylacetaldehyde is readily oxidized to phenylacetic acid. Therefore will eventually be hydrolyzed and oxidized to yield phenylacetic acid that will be excreted primarily in the urine in conjugated form. (PMID: 16910727, 7818768, 15606130). Found in some essential oils, e.g. Citrus subspecies, Tagetes minuta (Mexican marigold) and in the mushroom Phallus impudicus (common stinkhorn). Flavouring ingredient COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Indole

2,3-Benzopyrrole

C8H7N (117.0578462)


Indole is an aromatic heterocyclic organic compound. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered nitrogen-containing pyrrole ring. The participation of the nitrogen lone electron pair in the aromatic ring means that indole is not a base, and it does not behave like a simple amine. Indole is a microbial metabolite and it can be produced by bacteria as a degradation product of the amino acid tryptophan. It occurs naturally in human feces and has an intense fecal smell. At very low concentrations, however, indole has a flowery smell and is a constituent of many flower scents (such as orange blossoms) and perfumes. As a volatile organic compound, indole has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). Natural jasmine oil, used in the perfume industry, contains around 2.5\\\\\% of indole. Indole also occurs in coal tar. Indole has been found to be produced in a number of bacterial genera including Alcaligenes, Aspergillus, Escherichia, and Pseudomonas (PMID: 23194589, 2310183, 9680309). Indole plays a role in bacterial biofilm formation, bacterial motility, bacterial virulence, plasmid stability, and antibiotic resistance. It also functions as an intercellular signalling molecule (PMID: 26115989). Recently, it was determined that the bacterial membrane-bound histidine sensor kinase (HK) known as CpxA acts as a bacterial indole sensor to facilitate signalling (PMID: 31164470). It has been found that decreased indole concentrations in the gut promote bacterial pathogenesis, while increased levels of indole in the gut decrease bacterial virulence gene expression (PMID: 31164470). As a result, enteric pathogens sense a gradient of indole concentrations in the gut to migrate to different niches and successfully establish an infection. Constituent of several flower oils, especies of Jasminum and Citrus subspecies (Oleaceae) production of bacterial dec. of proteins. Flavouring ingredientand is also present in crispbread, Swiss cheese, Camembert cheese, wine, cocoa, black and green tea, rum, roasted filbert, rice bran, clary sage, raw shrimp and other foodstuffs Indole. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=120-72-9 (retrieved 2024-07-16) (CAS RN: 120-72-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole is an endogenous metabolite. Indole is an endogenous metabolite.

   

6beta-Hydroxytestosterone

(1S,2R,8R,10R,11S,14S,15S)-8,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C19H28O3 (304.2038338)


Testosterone is reported to have an acute vasodilating action in vitro, an effect that may impart a favourable haemodynamic response in patients with chronic heart failure.

   

Trimethylamine N-oxide

Trimethylamine N-oxide dihydrate

C3H9NO (75.0684104)


Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine and a common metabolite in animals and humans. In particular, trimethylamine-N-oxide is biosynthesized endogenously from trimethylamine, which is derived from choline, which can be derived from dietary lecithin (phosphatidylcholines) or dietary carnitine. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood. TMAO is an osmolyte that the body will use to counteract the effects of increased concentrations of urea (due to kidney failure) and high levels can be used as a biomarker for kidney problems. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Fish odor syndrome or trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3) causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor. The concentration of TMAO in the blood increases after consuming foods containing carnitine or lecithin (phosphatidylcholines), if the bacteria that convert those substances to TMAO are present in the gut (PMID:23614584). High concentrations of carnitine are found in red meat, some energy drinks, and certain dietary supplements; lecithin is found in eggs and is commonly used as an ingredient in processed food. High levels of TMAO are found in many seafoods. Some types of normal gut bacteria (e.g. species of Acinetobacter) in the human gut convert dietary carnitine and dietary lecithin to TMAO (PMID:21475195). TMAO alters cholesterol metabolism in the intestines, in the liver and in arterial wall. When TMAO is present, cholesterol metabolism is altered and there is an increased deposition of cholesterol within, and decreased removal of cholesterol from, peripheral cells such as those in the artery wall (PMID:23563705). Urinary TMAO is a biomarker for the consumption of fish, especially cold-water fish. Trimethylamine N-oxide is found to be associated with maple syrup urine disease and propionic acidemia, which are inborn errors of metabolism. TMAO can also be found in Bacteroidetes, Ruminococcus (PMID:26687352). Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine and a common metabolite in animals and humans. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood. TMAO is an osmolyte that the body will use to counter-act the effects of increased concentrations of urea (due to kidney failure) and can be used as a biomarker for kidney problems. Fish odor syndrome or trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3) causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor.; Trimethylamine N-oxide, also known by several other names and acronyms, is the organic compound with the formula (CH3)3NO. This colorless solid is usually encountered as the dihydrate. It is an oxidation product of trimethylamine and a common metabolite in animals. It is an osmolyte found in saltwater fish, sharks and rays, molluscs, and crustaceans. Along with free amino acids, it reduces the 3\\\% salinity of seawater to about 1\\\% of dissolved solids inside cells. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood.; Trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3),, causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the persons sweat, urine, and breath, giving off a strong fishy odor. Urinary TMAO is a biomarker for the consumption of fish, especially cold-water fish. Acquisition and generation of the data is financially supported in part by CREST/JST. D009676 - Noxae > D016877 - Oxidants KEIO_ID T051 Trimethylamine N-oxide is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide induces inflammation by activating the ROS/NLRP3 inflammasome. Trimethylamine N-oxide also accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway[1][2][3].

   

Pyridine

Pyridine perbromate, 82BR-labeled

C5H5N (79.042197)


Pyridine is a clear liquid with an odor that is sour, putrid, and fish-like. It is a relatively simple heterocyclic aromatic organic compound that is structurally related to benzene, with one CH group in the six-membered ring replaced by a nitrogen atom. Pyridine is obtained from crude coal tar or is synthesized from acetaldehyde, formaldehyde and ammonia. Pyridine is often used as a denaturant for antifreeze mixtures, for ethyl alcohol, for fungicides, and as a dyeing aid for textiles. It is a harmful substance if inhaled, ingested or absorbed through the skin. In particular, it is known to reduce male fertility and is considered carcinogenic. Common symptoms of acute exposure to pyridine include: headache, coughing, asthmatic breathing, laryngitis, nausea and vomiting. -- Wikipedia. Flavouring ingredient. Pyridine is found in many foods, some of which are kohlrabi, red bell pepper, green bell pepper, and papaya. CONFIDENCE standard compound; INTERNAL_ID 8135 KEIO_ID P041

   

Cortexolone

(8R,9S,10R,13S,14S,17R)-17-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-3-one

C21H30O4 (346.214398)


Cortexolone, also known as cortodoxone or 11-deoxycortisol, belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, cortexolone is considered to be a steroid molecule. Cortexolone is an endogenous glucocorticoid steroid hormone, and a metabolic intermediate in the synthesis of cortisol. It was first described by Tadeusz Reichstein in 1938 and named as Substance S. It has also been referred to as Reichsteins Substance S or Compound S. Cortexolone acts as a glucocorticoid, though it is less potent than cortisol. Cortexolone is synthesized from 17α-hydroxyprogesterone by 21-hydroxylase and is converted to cortisol by 11β-hydroxylase. As a result, the level of cortexolone is often measured in patients to diagnose impaired cortisol synthesis, to identify any enzyme deficiency that may be causing impairment along the pathway to cortisol, and to differentiate adrenal disorders. Cortexolone in mammals has limited biological activity and mainly acts as metabolic intermediate within the glucocorticoid pathway, leading to cortisol. On the other hand, in sea lampreys, cortexolone is the major glucocorticoid, with mineralocorticoid activity. Cortexolone in sea lampreys binds to specific corticosteroid receptors and is involved in intestinal osmoregulation and in sea lamprey at metamorphosis, a process in which they develop seawater tolerance before downstream migration. Cortexolone is the precursor of cortisol. Accumulation of Cortexolone can happen in a defect known as congenital adrenal hyperplasia, which is due to 11-beta-hydroxylase deficiency, resulting in androgen excess, virilization, and hypertension. (PMID: 2022736) C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Cortodoxone is a glucocorticoid that can be oxidized to cortisone (Hydrocortisone).

   

7alpha-Hydroxycholesterol

(1S,2R,5S,9S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-ene-5,9-diol

C27H46O2 (402.34976159999997)


7alpha-Hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation (PMID: 17386651). Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery (PMID: 17364953). 7alpha-Hydroxycholesterol is a cholesterol oxide that has been described as a biomarker of oxidative stress in subjects with impaired glucose tolerance and diabetes (PMID: 16634125). 7alpha-Hydroxycholesterol has been identified in the human placenta (PMID: 32033212). 7alpha-hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation. (PMID: 17386651) Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery. (PMID: 17364953) 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].

   

Leukotriene B4

5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

C20H32O4 (336.2300472)


A leukotriene composed of (6Z,8E,10E,14Z)-icosatetraenoic acid having (5S)- and (12R)-hydroxy substituents. It is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Chemical was purchased from CAY20110 (Lot 0439924-0).; Diagnostic ions: 335.1, 317.2, 195.1, 129.0, 115.0, 111.5

   

20-hydroxy LTB4

5S,12R,20-trihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

C20H32O5 (352.2249622)


   

Acetic acid

Acetic acid-2-13C,2,2,2-d3

C2H4O2 (60.0211284)


Acetic acid is a two-carbon, straight-chain fatty acid. It is the smallest short-chain fatty acid (SCFA) and one of the simplest carboxylic acids. is an acidic, colourless liquid and is the main component in vinegar. Acetic acid has a sour taste and pungent smell. It is an important chemical reagent and industrial chemical that is used in the production of plastic soft drink bottles, photographic film; and polyvinyl acetate for wood glue, as well as many synthetic fibres and fabrics. In households diluted acetic acid is often used as a cleaning agent. In the food industry acetic acid is used as an acidity regulator. Acetic acid is found in all organisms, from bacteria to plants to humans. The acetyl group, derived from acetic acid, is fundamental to the biochemistry of virtually all forms of life. When bound to coenzyme A (to form acetylCoA) it is central to the metabolism of carbohydrates and fats. However, the concentration of free acetic acid in cells is kept at a low level to avoid disrupting the control of the pH of the cell contents. Acetic acid is produced and excreted in large amounts by certain acetic acid bacteria, notably the Acetobacter genus and Clostridium acetobutylicum. These bacteria are found universally in foodstuffs, water, and soil. Due to their widespread presence on fruit, acetic acid is produced naturally as fruits and many other sugar-rich foods spoil. Several species of anaerobic bacteria, including members of the genus Clostridium and Acetobacterium can convert sugars to acetic acid directly. However, Clostridium bacteria are less acid-tolerant than Acetobacter. Even the most acid-tolerant Clostridium strains can produce acetic acid in concentrations of only a few per cent, compared to Acetobacter strains that can produce acetic acid in concentrations up to 20\\%. Acetic acid is also a component of the vaginal lubrication of humans and other primates, where it appears to serve as a mild antibacterial agent. Acetic acid can be found in other biofluids such as urine at low concentrations. Urinary acetic acid is produced by bacteria such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus (PMID: 22292465). Acetic acid concentrations greater than 30 uM/mM creatinine in the urine can indicate a urinary tract infection, which typically suggests the presence of E. coli or Klebshiella pneumonia in the urinary tract. (PMID: 24909875) Acetic acid is also produced by other bacteria such as Akkermansia, Bacteroidetes, Bifidobacterium, Prevotella and Ruminococcus (PMID: 20444704; PMID: 22292465). G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents It is used for smoking meats and fish C254 - Anti-Infective Agent KEIO_ID A029

   

Mercaptopurine

GlaxoSmithKline brand OF 6 mercaptopurine

C5H4N4S (152.0156664)


Mercaptopurine is only found in individuals that have used or taken this drug. It is an antimetabolite antineoplastic agent with immunosuppressant properties. It interferes with nucleic acid synthesis by inhibiting purine metabolism and is used, usually in combination with other drugs, in the treatment of or in remission maintenance programs for leukemia. [PubChem]Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

NADP+

beta-Nicotinamide adenine dinucleotide phosphate oxidized form sodium salt hydrate

[C21H29N7O17P3]+ (744.0832754)


[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Hydroquinone

Hydroquinone, lead (2+) salt (2:1)

C6H6O2 (110.0367776)


Hydroquinone, also benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component in most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. [HMDB]. Hydroquinone is found in many foods, some of which are kai-lan, agar, red bell pepper, and jostaberry. Hydroquinone, also known as benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin-containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component of most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals

   

Trimethylamine

Trimethylamine aqueous solution

C3H9N (59.0734954)


Trimethylamine, also known as NMe3, N(CH3)3, and TMA, is a colorless, hygroscopic, and flammable simple amine with a typical fishy odor in low concentrations and an ammonia like odor in higher concentrations. Trimethylamine has a boiling point of 2.9 degree centigrade and is a gas at room temperature. Trimethylamine usually comes in pressurized gas cylinders or as a 40\\% solution in water. Trimethylamine is a nitrogenous base and its positively charged cation is called trimethylammonium cation. A common salt of trimethylamine is trimethylammonium chloride, a hygroscopic colorless solid. Trimethylamine is a product of decomposition of plants and animals. It is the substance mainly responsible for the fishy odor often associated with fouling fish, bacterial vagina infections, and bad breath. It is also associated with taking large doses of choline. Trimethylaminuria is a genetic disorder in which the body is unable to metabolize trimethylamine from food sources. Patients develop a characteristic fish odour of their sweat, urine, and breath after the consumption of choline-rich foods. Trimethylaminuria is an autosomal recessive disorder involving a trimethylamine oxidase deficiency. Trimethylaminuria has also been observed in a certain breed of Rhode Island Red chicken that produces eggs with a fishy smell. Trimethylamine in the urine is a biomarker for the consumption of legumes. It has also been found to be a product of various types of bacteria, such as Achromobacter, Acinetobacter, Actinobacteria, Aeromonas, Alcaligenes, Alteromonas, Anaerococcus, Bacillus, Bacteroides, Bacteroidetes, Burkholderia, Campylobacter, Citrobacter, Clostridium, Desulfitobacterium, Desulfovibrio, Desulfuromonas, Edwardsiella, Enterobacter, Enterococcus, Escherichia, Eubacterium, Firmicutes, Flavobacterium, Gammaproteobacteria, Haloanaerobacter, Klebsiella, Micrococcus, Mobiluncus, Olsenella, Photobacterium, Proteobacteria, Proteus, Providencia, Pseudomonas, Rhodopseudomonas, Ruminococcus, Salmonella, Sarcina, Serratia, Shewanella, Shigella, Sinorhizobium, Sporomusa, Staphylococcus, Stigmatella, Streptococcus, Vibrio and Yokenella (PMID:26687352; PMID:25108210; PMID:24909875; PMID:28506279; PMID:27190056). Trimethylamine is a marker for urinary tract infection brought on by E. coli. (PMID:25108210; PMID:24909875). It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Trimethylamine, also known as NMe3 or TMA, is a nitrogenous base and can be readily protonated to give trimethylammonium cation. Trimethylammonium chloride is a hygroscopic colorless solid prepared from hydrochloric acid. Trimethylamine is a product of decomposition of plants and animals. It is the substance mainly responsible for the fishy odor often associated with fouling fish, bacterial vagina infections, and bad breath. It is also associated with taking large doses of choline (Wikipedia). Trimethylamine is an organic compound with the formula N(CH3)3. This colorless, hygroscopic, and flammable tertiary amine has a strong "fishy" odor in low concentrations and an ammonia-like odor at higher concentrations. It is a gas at room temperature but is usually sold in pressurized gas cylinders or as a 40\\% solution in water. Trimethylamine has a boiling point of 2.9 degree centigrade. Trimethylamine is a nitrogenous base and its positively charged cation is called trimethylammonium cation. A common salt of trimethylamine is trimethylammonium chloride, a hygroscopic colorless solid (Wikipedia). Trimethylaminuria is a genetic disorder in which the body is unable to metabolize trimethylamine from food sources. Patients develop a characteristic fish odour of their sweat, urine, and breath after the consumption of choline-rich foods. Trimethylaminuria is an autosomal recessive disorder involving a trimethylamine oxidase deficiency. Trimethylaminuria has also been observed in a certain breed of Rhode Island Red chicken that produces eggs with a fishy smell (Wikipedia). Trimethylamine in the urine is a biomarker for the consumption of legumes. Trimethylamine is found in many foods, some of which are fishes, alcoholic beverages, milk and milk products, and rice.

   

Prostaglandin I2

5-[(3aR,4R,5R,6aS)-5-hydroxy-4-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-hexahydro-2H-cyclopenta[b]furan-2-ylidene]pentanoic acid

C20H32O5 (352.2249622)


Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78568 - Prostaglandin Analogue Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Benzaldehyde

Phenylmethanal benzenecarboxaldehyde

C7H6O (106.0418626)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

Water

Sterile purified water in containers

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

ammonia

N-acetyl-α-D-glucosamine 1-phosphate

H3N (17.0265478)


An azane that consists of a single nitrogen atom covelently bonded to three hydrogen atoms. Ammonia, also known as nh3 or ammonia solution, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Ammonia can be found in a number of food items such as rose hip, yardlong bean, cereals and cereal products, and ceylon cinnamon, which makes ammonia a potential biomarker for the consumption of these food products. Ammonia can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Ammonia exists in all eukaryotes, ranging from yeast to humans. In humans, ammonia is involved in several metabolic pathways, some of which include glucose-alanine cycle, phenylalanine and tyrosine metabolism, homocysteine degradation, and d-arginine and d-ornithine metabolism. Ammonia is also involved in several metabolic disorders, some of which include ureidopropionase deficiency, hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], non ketotic hyperglycinemia, and beta-mercaptolactate-cysteine disulfiduria. Moreover, ammonia is found to be associated with 3-Hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-Methyl-crotonyl-glycinuria, citrullinemia type I, and short bowel syndrome. Ammonia is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ammonia or azane is a compound of nitrogen and hydrogen with the formula NH3. The simplest pnictogen hydride, ammonia is a colourless gas with a characteristic pungent smell. It is a common nitrogenous waste, particularly among aquatic organisms, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products . Acute Exposure: EYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration. (z)-n-coumaroyl-5-hydroxyanthranilic acid is a member of the class of compounds known as avenanthramides. Avenanthramides are a group of phenolic alkaloids consisting of conjugate of three phenylpropanoids (ferulic, caffeic, or p-coumaric acid) and anthranilic acid (z)-n-coumaroyl-5-hydroxyanthranilic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (z)-n-coumaroyl-5-hydroxyanthranilic acid can be found in cereals and cereal products and oat, which makes (z)-n-coumaroyl-5-hydroxyanthranilic acid a potential biomarker for the consumption of these food products.

   

Hydrogen peroxide

Hydrogen peroxide (H2O2)

H2O2 (34.0054792)


Hydrogen peroxide (H2O2) is a very pale blue liquid that appears colourless in a dilute solution. H2O2 is slightly more viscous than water and is a weak acid. H2O2 is unstable and slowly decomposes in the presence of light. It has strong oxidizing properties and is, therefore, a powerful bleaching agent that is mostly used for bleaching paper. H2O2 has also found use as a disinfectant and as an oxidizer. H2O2 in the form of carbamide peroxide is widely used for tooth whitening (bleaching), both in professionally- and in self-administered products. H2O2 is a well-documented component of living cells and is a normal metabolite of oxygen in the aerobic metabolism of cells and tissues. A total of 31 human cellular H2O2 generating enzymes has been identified so far (PMID: 25843657). H2O2 plays important roles in host defence and oxidative biosynthetic reactions. At high levels (>100 nM) H2O2 is toxic to most cells due to its ability to non-specifically oxidize proteins, membranes and DNA, leading to general cellular damage and dysfunction. However, at low levels (<10 nM), H2O2 functions as a signalling agent, particularly in higher organisms. In plants, H2O2 plays a role in signalling to cause cell shape changes such as stomatal closure and root growth. As a messenger molecule in vertebrates, H2O2 diffuses through cells and tissues to initiate cell shape changes, to drive vascular remodelling, and to activate cell proliferation and recruitment of immune cells. H2O2 also plays a role in redox sensing, signalling, and redox regulation (PMID: 28110218). This is normally done through molecular redox “switches” such as thiol-containing proteins. The production and decomposition of H2O2 are tightly regulated (PMID: 17434122). In humans, H2O2 can be generated in response to various stimuli, including cytokines and growth factors. H2O2 is degraded by several enzymes including catalase and superoxide dismutase (SOD), both of which play important roles in keeping the amount of H2O2 in the body below toxic levels. H2O2 also appears to play a role in vitiligo. Vitiligo is a skin pigment disorder leading to patchy skin colour, especially among dark-skinned individuals. Patients with vitiligo have low catalase levels in their skin, leading to higher levels of H2O2. High levels of H2O2 damage the epidermal melanocytes, leading to a loss of pigment (PMID: 10393521). Accumulating evidence suggests that hydrogen peroxide H2O2 plays an important role in cancer development. Experimental data have shown that cancer cells produce high amounts of H2O2. An increase in the cellular levels of H2O2 has been linked to several key alterations in cancer, including DNA changes, cell proliferation, apoptosis resistance, metastasis, angiogenesis and hypoxia-inducible factor 1 (HIF-1) activation (PMID: 17150302, 17335854, 16677071, 16607324, 16514169). H2O2 is found in most cells, tissues, and biofluids. H2O2 levels in the urine can be significantly increased with the consumption of coffee and other polyphenolic-containing beverages (wine, tea) (PMID: 12419961). In particular, roasted coffee has high levels of 1,2,4-benzenetriol which can, on its own, lead to the production of H2O2. Normal levels of urinary H2O2 in non-coffee drinkers or fasted subjects are between 0.5-3 uM/mM creatinine whereas, for those who drink coffee, the levels are between 3-10 uM/mM creatinine (PMID: 12419961). It is thought that H2O2 in urine could act as an antibacterial agent and that H2O2 is involved in the regulation of glomerular function (PMID: 10766414). A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives It is used in foods as a bleaching agent, antimicrobial agent and oxidising agent C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides D000890 - Anti-Infective Agents

   

Formaldehyde

Methylene glycol

CH2O (30.0105642)


Formaldehyde is a highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) -- Pubchem; The chemical compound formaldehyde (also known as methanal), is a gas with a pungent smell. It is the simplest aldehyde. Its chemical formula is H2CO. Formaldehyde was first synthesized by the Russian chemist Aleksandr Butlerov in 1859 but was conclusively identified by August Wilhelm van Hofmann in 1867. Although formaldehyde is a gas at room temperature, it is readily soluble in water, and it is most commonly sold as a 37\\% solution in water called by trade names such as formalin or formol. In water, formaldehyde polymerizes, and formalin actually contains very little formaldehyde in the form of H2CO monomer. Usually, these solutions contain a few percent methanol to limit the extent of polymerization. Formaldehyde exhibits most of the general chemical properties of the aldehydes, except that is generally more reactive than other aldehydes. Formaldehyde is a potent electrophile. It can participate in electrophilic aromatic substitution reactions with aromatic compounds and can undergo electrophilic addition reactions with alkenes. In the presence of basic catalysts, formaldehyde undergoes a Cannizaro reaction to produce formic acid and methanol. Because formaldehyde resins are used in many construction materials, including plywood, carpet, and spray-on insulating foams, and because these resins slowly give off formaldehyde over time, formaldehyde is one of the more common indoor air pollutants. At concentrations above 0.1 mg/kg in air, inhaled formaldehyde can irritate the eyes and mucous membranes, resulting in watery eyes, headache, a burning sensation in the throat, and difficulty breathing. -- Wikipedia. A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. Formaldehyde is found in many foods, some of which are ginseng, lentils, coriander, and allspice. D000890 - Anti-Infective Agents D004202 - Disinfectants D005404 - Fixatives

   

Acetaldehyde

Acetic aldehyde

C2H4O (44.0262134)


Acetaldehyde, also known as ethanal, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Acetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, acetaldehyde participates in a number of enzymatic reactions. In particular, acetaldehyde can be biosynthesized from ethanol which is mediated by the enzyme alcohol dehydrogenase 1B. Acetaldehyde can also be converted to acetic acid by the enzyme aldehyde dehydrogenase (mitochondrial) and aldehyde dehydrogenase X (mitochondrial). The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2CH2 + O2 → 2 CH3CHO. In the 1970s, the world capacity of the Wacker-Hoechst direct oxidation process exceeded 2 million tonnes annually. In humans, acetaldehyde is involved in disulfiram action pathway. Acetaldehyde is an aldehydic, ethereal, and fruity tasting compound. Outside of the human body, acetaldehyde is found, on average, in the highest concentration in a few different foods, such as sweet oranges, pineapples, and mandarin orange (clementine, tangerine) and in a lower concentration in . acetaldehyde has also been detected, but not quantified in several different foods, such as malabar plums, malus (crab apple), rose hips, natal plums, and medlars. This could make acetaldehyde a potential biomarker for the consumption of these foods. In condensation reactions, acetaldehyde is prochiral. Acetaldehyde is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Acetaldehyde has been found to be associated with several diseases such as alcoholism, ulcerative colitis, nonalcoholic fatty liver disease, and crohns disease; also acetaldehyde has been linked to the inborn metabolic disorders including aldehyde dehydrogenase deficiency (III) sulfate is used to reoxidize the mercury back to the mercury. Acetaldehyde was first observed by the Swedish pharmacist/chemist Carl Wilhelm Scheele (1774); it was then investigated by the French chemists Antoine François, comte de Fourcroy and Louis Nicolas Vauquelin (1800), and the German chemists Johann Wolfgang Döbereiner (1821, 1822, 1832) and Justus von Liebig (1835). At room temperature, acetaldehyde (CH3CHO) is more stable than vinyl alcohol (CH2CHOH) by 42.7 kJ/mol: Overall the keto-enol tautomerization occurs slowly but is catalyzed by acids. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Acetaldehyde is also created by thermal degradation or ultraviolet photo-degradation of some thermoplastic polymers during or after manufacture. The water industry generally recognizes 20–40 ppb as the taste/odor threshold for acetaldehyde. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Flavouring agent and adjuvant used to impart orange, apple and butter flavours; component of food flavourings added to milk products, baked goods, fruit juices, candy, desserts and soft drinks [DFC]

   

Methanol

Methanol-water mixture

CH4O (32.0262134)


Methanol, also known as columbian spirit or CH3OH, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). The target of methanol in the eye is the retina, specifically the optic disk and optic nerve. Toxicity is due to the metabolic products of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. Methanol exists in all living organisms, ranging from bacteria to humans. Methanol is an alcoholic tasting compound. Outside of the human body, Methanol is found, on average, in the highest concentration within cow milk and sweet oranges. Methanol has also been detected, but not quantified in several different foods, such as prairie turnips, mountain yams, mentha (mint), watermelons, and pasta. Methanol is responsible for accidental, suicidal, and epidemic poisonings, resulting in death or permanent sequelae. Methanol is a potentially toxic compound. Visual disturbances develop between 18h to 48h after ingestion and range from mild photophobia and blurred vision to markedly reduced visual acuity and complete blindness. Methanol is metabolized to formaldehyde by alcohol dehydrogenase, then from that to formate by formaldehyde dehydrogenase, and then to carbon dioxide by limited H4 folate. It is the simplest alcohol, and is a light, volatile, colourless, flammable, poisonous liquid with a distinctive odor that is somewhat milder and sweeter than ethanol. Present in various wines and spirits. It is used as a solvent for the preparation of modified hop extracts and spice oleoresins D012997 - Solvents

   

Hydrogen

Molecular hydrogen

H2 (2.0156492)


Hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2. With an atomic weight of 1.00794, hydrogen is the lightest element. Besides the common H1 isotope, hydrogen exists as the stable isotope Deuterium and the unstable, radioactive isotope Tritium. Hydrogen is the most abundant of the chemical elements, constituting roughly 75\\% of the universes elemental mass. Hydrogen can form compounds with most elements and is present in water and most organic compounds. It plays a particularly important role in acid-base chemistry, in which many reactions involve the exchange of protons between soluble molecules. Oxidation of hydrogen, in the sense of removing its electron, formally gives H+, containing no electrons and a nucleus which is usually composed of one proton. That is why H+ is often called a proton. This species is central to discussion of acids. Under the Bronsted-Lowry theory, acids are proton donors, while bases are proton acceptors. A bare proton H+ cannot exist in solution because of its strong tendency to attach itself to atoms or molecules with electrons. However, the term proton is used loosely to refer to positively charged or cationic hydrogen, denoted H+. H2 is a product of some types of anaerobic metabolism and is produced by several microorganisms, usually via reactions catalyzed by iron- or nickel-containing enzymes called hydrogenases. These enzymes catalyze the reversible redox reaction between H2 and its component two protons and two electrons. Creation of hydrogen gas occurs in the transfer of reducing equivalents produced during pyruvate fermentation to water. Hydrogen has been found to be a metabolite of Citrobacter, Cyanobacteria, Enterobacter, Halobacterium and Rhodobacteraceae (PMID: 28042989; PMID: 16371161) (https://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol51B_1985_2_Art16.pdf) (https://www.researchgate.net/publication/222428793_High_Hydrogen_Yield_from_a_Two-step_Process_of_Dark-_and_Photo-fermentation_of_Sucrose) (Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose". International Journal of Hydrogen Energy. 32 (2): 200-206). It is used as a packaging gas [DFC]

   

Prostaglandin H2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O5 (352.2249622)


Prostaglandin H2 (PGH2) is the first intermediate in the biosynthesis of all prostaglandins. Prostaglandins are synthesized from arachidonic acid by the enzyme COX-1 and COX-2, which are also called PGH synthase 1 and 2. These enzymes generate a reactive intermediate PGH2 which has a reasonably long half-life (90-100 s) but is highly lipophilic. PGH2 is converted into the biologically active prostaglandins by prostaglandin isomerases, yielding PGE2, PGD2, and PGF2, or by thromboxane synthase to make TXA2 or by prostacyclin synthase to make PGI2. Most nonsteroidal anti-inflammatory drugs such as aspirin and indomethacin inhibit both PGH synthase 1 and 2. A key feature for eicosanoid transcellular biosynthesis is the export of PGH2 or LTA4 from the donor cell as well as the uptake of these reactive intermediates by the acceptor cell. Very little is known about either process despite the demonstrated importance of both events. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. When platelets form thromboxane A2 (TXA2) from endogenous arachidonic acid (AA), PGH2 reaches concentrations very similar to those of TXA2 and high enough to produce strong platelet activation. Therefore, platelet activation by TXA2 appears to go along with an activation by PGH2. The agonism of PGH2 is limited by the formation of inhibitory prostaglandins, especially PGD2 at higher concentrations. That is why thromboxane synthase inhibitors in PRP and at a physiological HSA concentration do not augment platelet activation (PMID: 2798452, 15650407, 16968946). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Prostaglandin h2, also known as pgh2 or 9s,11r-epidioxy-15s-hydroxy-5z,13e-prostadienoate, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, prostaglandin h2 is considered to be an eicosanoid lipid molecule. Prostaglandin h2 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin h2 can be found in a number of food items such as gooseberry, evergreen huckleberry, quince, and capers, which makes prostaglandin h2 a potential biomarker for the consumption of these food products. Prostaglandin h2 can be found primarily in human platelet tissue. In humans, prostaglandin h2 is involved in several metabolic pathways, some of which include magnesium salicylate action pathway, ketorolac action pathway, trisalicylate-choline action pathway, and salicylate-sodium action pathway. Prostaglandin h2 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Prostaglandin h2 is acted upon by: Prostacyclin synthase to create prostacyclin Thromboxane-A synthase to create thromboxane A2 and 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) (see 12-Hydroxyheptadecatrienoic acid) Prostaglandin D2 synthase to create prostaglandin D2 Prostaglandin E synthase to create prostaglandin E2 Prostaglandin h2 rearranges non-enzymatically to: A mixture of 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) and 12-(S)-hydroxy-5Z,8Z,10E-heptadecatrienoic acid (see 12-Hydroxyheptadecatrienoic acid) Use of Prostaglandin H2: regulating the constriction and dilation of blood vessels stimulating platelet aggregation Effects of Aspirin on Prostaglandin H2: Aspirin has been hypothesized to block the conversion of arachidonic acid to Prostaglandin . D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Ethanol

Ethyl alcohol in alcoholic beverages

C2H6O (46.0418626)


Ethanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4\\%. A blood level of 0.5\\% or more is commonly fatal. Levels of even less than 0.1\\% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 \\%. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system. Ethanol is a general biomarker for the consumption of alcohol. Ethanol is also a metabolite of Hansenula and Saccharomyces (PMID: 14613880) (https://ac.els-cdn.com/S0079635206800470/1-s2.0-S0079635206800470-main.pdf?_tid=4d340044-3230-4141-88dd-deec4d2e35bd&acdnat=1550288012_0c4a20fe963843426147979d376cf624). Intoxicating constituent of all alcoholic beverages. It is used as a solvent and vehicle for food dressings and flavourings. Antimicrobial agent, e.g for pizza crusts prior to baking. extraction solvent for foodstuffs. Widely distributed in fruits and other foods V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

Acetylphenol

Acetic acid,phenyl ester

C8H8O2 (136.0524268)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer Phenyl acetate is an endogenous metabolite.

   

Chloride ion

PLS216 Protein, nicotiana plumbaginifolia

Cl- (34.968853)


Under standard conditions, chlorine exists as a diatomic molecule. Chlorine is a highly toxic, pale yellow-green gas that has a specific strong smell. In nature, chlorine is most abundant as a chloride ion. Physiologically, it exists as an ion in the body. The chloride ion is an essential anion that the body needs for many critical functions. It also helps keep the bodys acid-base balance. The amount of chloride in the blood is carefully controlled by the kidneys. Chloride ions have important physiological roles. For instance, in the central nervous system, the inhibitory action of glycine and some of the action of GABA relies on the entry of Cl- into specific neurons. Also, the chloride-bicarbonate exchanger biological transport protein relies on the chloride ion to increase the bloods capacity of carbon dioxide, in the form of the bicarbonate ion. Chloride-transporting proteins (CLC) play fundamental roles in many tissues in the plasma membrane as well as in intracellular membranes. CLC proteins form a gene family that comprises nine members in mammals, at least four of which are involved in human genetic diseases. GABA(A) receptors are pentameric complexes that function as ligand-gated chloride ion channels. WNK kinases are a family of serine-threonine kinases that have been shown to play an essential role in the regulation of electrolyte homeostasis, and they are found in diverse epithelia throughout the body that are involved in chloride ion flux. Cystic fibrosis (CF) is caused by alterations in the CF transmembrane conductance regulator (CFTCR) gene that result in deranged sodium and chloride ion transport channels. (PMID: 17539703, 17729441, 17562499, 15300163) (For a complete review see Evans, Richard B. Chlorine: state of the art. Lung (2005), 183(3), 151-167. PMID: 16078037). The chloride ion is formed when the element chlorine picks up one electron to form the Cl- anion. The chloride ion is one of the most common anions in nature and is necessary to most forms of life. It is an essential electrolyte responsible for maintaining acid/base balance and regulating fluid in and out of cells. [Wikipedia]. Chloride is found in many foods, some of which are jute, grapefruit, lentils, and lime.

   

Phenol sulphate

Phenylsulfate, potassium salt

C6H6O4S (173.9986796)


Phenol sulphate, also known as phenylsulfate or aryl sulphate, belongs to the class of organic compounds known as phenylsulfates. Phenylsulfates are compounds containing a sulfate group conjugated to a phenyl group. In normal humans, phenol sulphate is primarily a gut-derived metabolite that arises from the activity of the bacterial enzyme tyrosine phenol-lyase, which is responsible for the synthesis of phenol from dietary tyrosine (PMID: 31015435). Phenol sulphate can also arise from the consumption of phenol or from phenol poisoning (PMID: 473790). Phenol sulphate is produced from the conjugation of phenol with sulphate in the liver. In particular, phenol sulphate can be biosynthesized from phenol and phosphoadenosine phosphosulfate through the action of the enzyme sulfotransferase 1A1 in the liver. Phenol sulphate can be found in most mammals (mice, rats, sheep, dogs, humans) and likely most animals. Phenol sulphate is a uremic toxin (PMID: 30068866). It is a protein-bound uremic solute that induces reactive oxygen species (ROS) production and decreases glutathione levels, rendering cells vulnerable to oxidative stress (PMID: 29474405). In experimental models of diabetes, phenol sulphate administration has been shown to induce albuminuria and podocyte damage. In a diabetic patient cohort, phenol sulphate levels were found to significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria (PMID: 31015435).

   

S-Formylglutathione

(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-(formylsulfanyl)ethyl]carbamoyl}butanoic acid

C11H17N3O7S (335.0787172)


S-Formylglutathione, also known as L-gamma-glutamyl-S-formyl-L-cysteinylglycine, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of three to ten alpha-amino acids joined by peptide bonds. S-Formylglutathione is a very strong basic compound (based on its pKa). S-Formylglutathione exists in all living species, ranging from bacteria to humans. Outside of the human body, S-formylglutathione has been detected, but not quantified in, several different foods, such as sweet marjorams, muscadine grapes, amaranths, lemon verbena, and garden tomato. This could make S-formylglutathione a potential biomarker for the consumption of these foods. S-Formylglutathione is formed from the oxidation of S-hydroxymethylglutathione by the enzyme formaldehyde dehydrogenase (FDH; EC 1.2.1.1) in the presence of NAD (PMID: 2806555). S-Formylglutathione is formed from the oxidation of S-hydroxymethylglutathione by the enzyme formaldehyde dehydrogenase (FDH; EC 1.2.1.1) in the presence of NAD (PubMed ID 2806555) [HMDB]. S-Formylglutathione is found in many foods, some of which are horseradish tree, wild carrot, japanese walnut, and red beetroot.

   

18-Hydroxycorticosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-15-(hydroxymethyl)-2-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O5 (362.209313)


18-Hydroxycorticosterone is a corticosteroid and a derivative of corticosterone. If it is present in sufficiently high concentrations, it can lead to serious electrolyte imbalances (an electrolyte toxin). 18-Hydroxycorticosterone serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. Chronically high levels of 18-hydroxycorticosterone are associated with at least three inborn errors of metabolism including adrenal hyperplasia type V, corticosterone methyl oxidase I deficiency, and corticosterone methyl oxidase II deficiency. Each of these conditions is characterized by excessive amounts of sodium being released in the urine (salt wasting), along with insufficient release of potassium in the urine, usually beginning in the first few weeks of life. This imbalance leads to low levels of sodium and high levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also have high levels of acid in the blood (metabolic acidosis). Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency can cause nausea, vomiting, dehydration, low blood pressure, extreme tiredness (fatigue), and muscle weakness. 11 beta,18,21-Trihydroxypregn-4-ene-3,20-dione. 18-Hydroxycorticosterone is a derivative of corticosterone. It serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Benzene

1,2,3,5-tetradeuteriobenzene

C6H6 (78.0469476)


Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon. Benzene, also known as benzol or [6]annulene, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. Benzene is a natural constituent of crude oil and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. It is sometimes abbreviated PhH. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma around petrol (gasoline) stations. It is used primarily as a precursor to the manufacture of chemicals with more complex structure, such as ethylbenzene and cumene, of which billions of kilograms are produced annually. Although a major industrial chemical, benzene finds limited use in consumer items because of its toxicity. Benzene is formally rated as a carcinogen (by IARC 1) and is also a potentially toxic compound. Benzene has been found to be associated with several diseases such as autism and pervasive developmental disorder not otherwise specified. It is used in processing of modified hop extract

   

Calcidiol

(1S,3Z)-3-{2-[(1R,3aS,4E,7aR)-1-[(2R)-6-hydroxy-6-methylheptan-2-yl]-7a-methyl-octahydro-1H-inden-4-ylidene]ethylidene}-4-methylidenecyclohexan-1-ol

C27H44O2 (400.3341124)


Calfcifediol is a prehormone that is produced in the liver by hydroxylation of vitamin D3 (cholecalciferol) by the enzyme cholecalciferol 25-hydroxylase. Calcifediol is then converted in the kidneys into calcitriol (1,25-(OH)2D3), a secosteroid hormone that is the active form of vitamin D. It can also be converted into 24-hydroxycalcidiol in the kidneys via 24-hydroxylation. [Wikipedia]. 25-Hydroxycholecalciferol is found in many foods, some of which are green zucchini, green bell pepper, red bell pepper, and other animal fat. The major circulating metabolite of vitamin D3 (calciferon). It is produced in the liver and is the best indicator of the bodys vitamin D stores. It is effective in the treatment of rickets and osteomalacia, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties. A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D050071 - Bone Density Conservation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888102)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

N-Methylpyridinium

1-Methylpyridinium mu-iodotetraiododimercurate (1-)

C6H8N+ (94.06567079999999)


   

Nicotinamide riboside

3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H15N2O5+ (255.098092)


Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside was originally identified as a nutrient in milk. It is a useful compound for the elevation of NAD+ levels in humans. Nicotinamide riboside has recently been discovered to be an NAD(+) precursor that is converted into nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. It has been shown that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends the lifespan of certain animal models without calorie restriction (PMID: 17482543). Supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities (PMID: 22682224). Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role in the phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID: 15137942). Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside has been identified as a nutrient in milk. It is a useful compound for elevation of NAD+ levels in humans. Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID 15137942). [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-hydroxy-4-aminobiphenyl

N-Hydroxy-4-aminobiphenyl

C12H11NO (185.0840596)


   

4-Hydroxyphenylacetaldehyde

2-(4-Hydroxyphenyl)acetaldehyde

C8H8O2 (136.0524268)


4-Hydroxyphenylacetaldehyde is a byproduct of tyrosine metabolism. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-Hydroxy-2-acetamidofluorene

N-(9H-fluoren-2-yl)-N-hydroxyacetamide

C15H13NO2 (239.09462380000002)


   

Imidazole-4-acetaldehyde

(1H-BENZOIMIDAZOL-5-YL)-CARBAMICACIDTERT-BUTYLESTER

C5H6N2O (110.0480106)


Imidazole-4-acetaldehyde is a naturally occurring aldehyde metabolite of histamine formed by the action of histaminase (E.C. 1.4.3.6), and can be synthesized by oxidation of histidine. Aldehyde dehydrogenase (EC 1.2.1.3) is the only enzyme in the human liver capable of catalyzing dehydrogenation of aldehydes arising via monoamine, diamine, and plasma amine oxidases. NAD-linked dehydrogenation of short chain aliphatic aldehydes has been found in virtually every organ of the mammalian body. Imidazole-4-acetaldehyde is a good substrate for all aldehyde dehydrogenase isozymes. Experimentally, the prebiotic formation of histidine has been accomplished by the reaction of erythrose with formamidine followed by a Strecker synthesis. Imidazole-4-acetaldehyde could have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions could convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde. (PMID: 2071588, 2957640, 11536478). Imidazole-4-acetaldehyde is a member of the class of compounds known as imidazoles. Imidazoles are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. Imidazole-4-acetaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Imidazole-4-acetaldehyde can be found in a number of food items such as wild celery, alaska wild rhubarb, orange bell pepper, and common beet, which makes imidazole-4-acetaldehyde a potential biomarker for the consumption of these food products. In humans, imidazole-4-acetaldehyde is involved in the histidine metabolism. Imidazole-4-acetaldehyde is also involved in histidinemia, which is a metabolic disorder. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

7a-Hydroxy-cholestene-3-one

(1S,2R,9R,10S,11S,14R,15R)-9-hydroxy-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C27H44O2 (400.3341124)


7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217) [HMDB] 7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217).

   

20a,22b-Dihydroxycholesterol

(2R,3R)-2-[(1S,2R,10S,11S,14S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl]-6-methylheptane-2,3-diol

C27H46O3 (418.34467659999996)


20alpha,22beta-Dihydroxycholesterol is an intermediate in C21-Steroid hormone metabolism. 20alpha,22beta-Dihydroxycholesterol is the 8th to last step in the synthesis of 3alpha,11beta,21-Trihydroxy-20-oxo-5beta-pregnan-18-al and is converted from 20alpha-Hydroxycholesterol via the enzyme cytochrome P450 (EC 1.14.15.6). It is then converted to Pregnenolone via the enzyme cytochrome P450 (EC 1.14.15.6). [HMDB] 20alpha,22beta-Dihydroxycholesterol is an intermediate in C21-Steroid hormone metabolism. 20alpha,22beta-Dihydroxycholesterol is the 8th to last step in the synthesis of 3alpha,11beta,21-Trihydroxy-20-oxo-5beta-pregnan-18-al and is converted from 20alpha-Hydroxycholesterol via the enzyme cytochrome P450 (EC 1.14.15.6). It is then converted to Pregnenolone via the enzyme cytochrome P450 (EC 1.14.15.6).

   

3-Aminopropionaldehyde

beta-Aminopropion aldehyde

C3H7NO (73.0527612)


3-aminopropionaldehyde is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-aminopropionaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-aminopropionaldehyde can be found in a number of food items such as lemon, natal plum, common wheat, and leek, which makes 3-aminopropionaldehyde a potential biomarker for the consumption of these food products. 3-aminopropionaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, 3-aminopropionaldehyde is involved in the beta-alanine metabolism. 3-aminopropionaldehyde is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency. 3-Aminopropanal is a reactive aldehyde that mediates progressive neuronal necrosis and glial apoptosis. (PMID 11943872). Increased activity of polyamine oxidase catabolizes polyamines (such as spermine, spermidine and putrescine) to produce 3-aminopropanal. (PMID 15246852).

   

Prostaglandin G2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroperoxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O6 (368.2198772)


Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. The COX site activity that catalyzes the conversion of arachidonic acid to PGG2 is the target for nonsteroidal antiinflammatory drugs (NSAIDs). The peroxidase site activity catalyzes the two-electron reduction of the hydroperoxide bond of PGG2 to yield the corresponding alcohol prostaglandin H2 (PGH2). The formation of a phenoxyl radical on Tyr385 couples the activities of the two sites. The Tyr385 radical is produced via oxidation by compound I, an oxoferryl porphyrin -cation radical, which is generated by reaction of the hemin resting state with PGG2 or other hydroperoxides. The tyrosyl radical homolytically abstracts the 13proS hydrogen atom of arachidonic acid which initiates a radical cascade that ends with the stereoselective formation of PGG2. PGG2 then migrates from the cyclooxygenase (COX) site to the peroxidase (POX) site where it reacts with the hemin group to generate PGH2 and compound I. The heterolytic oxygen-oxygen bond cleavage is assisted by the conserved distal residues His207 and Gln203, mutation of which has been shown to severely impair enzyme activity. Compound I, upon reaction with Tyr385, gives compound II, which in turn is reduced to the hemin resting state by one-electron oxidation of reducing cosubstrates or undergoes reactions that result in enzyme self-inactivation. Prostaglandin endoperoxide H synthase (PGHS) 1 is a bifunctional membrane enzyme of the endoplasmic reticulum that converts arachidonic acid into prostaglandin H2 (PGH2), the precursor of all prostaglandins, thromboxanes, and prostacyclins. These lipid mediators are intricately involved in normal physiology, namely, in mitogenesis, fever generation, pain response, lymphocyte chemotaxis, fertility, and contradictory stimuli such as vasoconstriction and vasodilatation, as well as platelet aggregation and quiescence. PGHS is implicated in numerous pathologies, including inflammation, cancers of the colon, lung, and breast, Alzheimers disease, Parkinsons disease, and numerous cardiovascular diseases including atherosclerosis, thrombosis, myocardial infarction, and stroke. (PMID: 14594816, 16552393, 16411757). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Chloroethylene

Chloroethylene

C2H3Cl (61.9923268)


D009676 - Noxae > D002273 - Carcinogens

   

Methylarsonite

Monomethylarsonous acid

CH5AsO2 (123.950549)


Methylarsonite is found in the arsenate detoxification I pathway. Two molecules of glutathione reacts with methylarsonate to produce glutathione disulfide and methylarsonite. Methylarsonate reductase catalyzes this reaction. Methylarsonite reacts with S-adenosyl-L-methionine to produce S-adenosyl-L-homocysteine and dimethylarsinate. Methylarsonite methyltransferase catalyzes this reaction. Methylarsonite is found in the arsenate detoxification I pathway.

   

Halothane

1,1,1-Trifluoro-2-bromo-2-chloroethane

C2HBrClF3 (195.89022319999998)


A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. nitrous oxide is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

2,3,7,8-Tetrachlorodibenzo-p-dioxin

2,3,7,8-Tetrachlorodibenzo-p-dioxin

C12H4Cl4O2 (319.8965404)


D009676 - Noxae > D013723 - Teratogens > D000072317 - Polychlorinated Dibenzodioxins D004785 - Environmental Pollutants

   

Carbon tetrachloride

Kohlenstofftetrachlorid

CCl4 (151.875412)


Grain fumigan

   

Reverse-triiodthyronine

2-amino-3-[4-(4-hydroxy-3,5-diiodophenoxy)-3-iodophenyl]propanoic acid

C15H12I3NO4 (650.7900602)


This compound belongs to the family of Phenylpropanoic Acids. These are compounds whose structure contain a benzene ring conjugated to a propanoic acid. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

4-Hydroxycyclophosphamide

Tetrahydro-2-(bis(2-chloroethyl)amino)-2H-1,3,2-oxazaphosphorin-4-ol 2-oxide

C7H15Cl2N2O3P (276.019731)


4-Hydroxycyclophosphamide is a primary activation metabolite of cyclophosphamide and of mafosfamide (an experimental drug) after they partially metabolized by cytochrome P450 (PMID: 12021633). Cyclophosphamide is a chemotherapeutic used to suppress the immune system and to treat several cancers including lymphoma, multiple myeloma, leukemia, ovarian cancer, breast cancer and small cell lung cancer. After cyclphosphamide is converted to 4-hydroxycyclophosphamide it is then partially tautomerized into aldophosphamide, which easily enters live cells whereupon it is partially detoxified into inactive carboxycyclophosphamide by the enzyme ALDH. 4-Hydroxycyclophosphamide is also an intermediate metabolite in the formation of phosphoramide mustard, the active metabolite, and acrolein, the metabolite responsible for much of the toxicity associated with cyclophosphamides (PMID: 7059981). 4-Hydroxycyclophosphamide is not cytotoxic at physiologic pH, readily diffuses into cells and spontaneously decomposes into the active phosphoramide mustard. In human liver microsomes, 4-Hydroxycyclophosphamide formation correlates with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. In addition, it is reported that the CYP2B6 genotype is not consistently related to 4-Hydroxycyclophosphamide formation in vitro or in vivo (PMID: 21976622). 4-Hydroxycyclophosphamide is only found in individuals who have consumed the drug cyclophosphamide. D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

17beta-Estradiol 3-sulfate

[(1S,10R,11S,14S,15S)-14-hydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2,4,6-trien-5-yl]oxidanesulfonic acid

C18H24O5S (352.1344374)


17beta-Estradiol 3-sulfate, also known as estradiol 3-sulfuric acid or estradiol-17beta 3-sulfate, belongs to the class of organic compounds known as sulfated steroids. These are sterol lipids containing a sulfate group attached to the steroid skeleton. 17beta-Estradiol 3-sulfate is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. The estrogen patch is a delivery system for estradiol used as hormone replacement therapy to treat the symptoms of menopause, such as hot flashes and vaginal dryness, and to prevent osteoporosis. Originally marketed as Vivelle(Novartis), it was discontinued in 2003 and reintroduced in a smaller form as Vivelle-Dot. Although estrogen is given transdermally rather than in the standard oral tablets, the estrogen patch carries similar risks and benefits as more conventional forms of estrogen-only hormone replacement therapy. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

24-Hydroxycholesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5S)-5-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.34976159999997)


24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622). 24-Hydroxycholesterol has been found to accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. 24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622) [HMDB] 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].

   

Dopamine 3-O-sulfate

4-(2-Aminoethyl)-1,2-benzenediol 2-(hydrogen sulphuric acid)

C8H11NO5S (233.0357916)


Dopamine 3-O-sulfate is a sulfonated form of dopamine. In human blood circulation endogenous dopamine exists predominantly in the sulfated form and dopamine sulfate accounts for more than 90\\% of all dopamine. Dopamine-3-O-sulfate predominates in human plasma, with concentrations about 10-fold higher than those of the regioisomer dopamine-4-O-sulfate. Sulfonation is the most important metabolic pathway that interferes with the binding of dopamine to its receptors. The origins of this preponderance for Dopamine-3-O-sulfate have not been determined, although there has been speculation about the contribution of the specificity of transport proteins and/or arylsulfatases. It has also been proposed to depend on the regiospecificity of the metabolizing enzyme(s) for the 3-hydroxy group of dopamine. It is believed that the vast majority of circulating dopamine sulfate originates in the upper gastrointestinal tract, and indeed that is the main site of expression of the enzyme responsible for its formation. Aryl sulfotransferase (SULT1A3, EC 2.8.2.1) is an enzyme that catalyzes the sulfonation of many endogenous and exogenous phenols and catechols; the most important endogenous substrate is dopamine. SULT1A3 strongly favors the 3-hydroxy group of dopamine over the 4-hydroxy group and may indeed be primarily responsible for the difference between the circulating levels of dopamine sulfates in human blood. (PMID: 17548063) [HMDB] Dopamine 3-O-sulfate is a sulfonated form of dopamine. In human blood circulation endogenous dopamine exists predominantly in the sulfated form and dopamine sulfate accounts for more than 90\\% of all dopamine. Dopamine-3-O-sulfate predominates in human plasma, with concentrations about 10-fold higher than those of the regioisomer dopamine-4-O-sulfate. Sulfonation is the most important metabolic pathway that interferes with the binding of dopamine to its receptors. The origins of this preponderance for Dopamine-3-O-sulfate have not been determined, although there has been speculation about the contribution of the specificity of transport proteins and/or arylsulfatases. It has also been proposed to depend on the regiospecificity of the metabolizing enzyme(s) for the 3-hydroxy group of dopamine. It is believed that the vast majority of circulating dopamine sulfate originates in the upper gastrointestinal tract, and indeed that is the main site of expression of the enzyme responsible for its formation. Aryl sulfotransferase (SULT1A3, EC 2.8.2.1) is an enzyme that catalyzes the sulfonation of many endogenous and exogenous phenols and catechols; the most important endogenous substrate is dopamine. SULT1A3 strongly favors the 3-hydroxy group of dopamine over the 4-hydroxy group and may indeed be primarily responsible for the difference between the circulating levels of dopamine sulfates in human blood. (PMID: 17548063).

   

S-Hydroxymethylglutathione

(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-[(hydroxymethyl)sulfanyl]ethyl]carbamoyl}butanoic acid

C11H19N3O7S (337.0943664)


S-Hydroxymethylglutathione is a critical component of the binding site for activating fatty acids in glutathione-dependent formaldehyde dehydrogenase activity (OMIM: 103710). Formaldehyde dehydrogenase (FDH; EC 1.2.1.1), a widely occurring enzyme, catalyzes the oxidation of S-hydroxymethylglutathione into S-formylglutathione in the presence of NAD (PMID: 2806555). S-Hydroxymethylglutathione is a critical component of the binding site for activating fatty acids in glutathione-dependent formaldehyde dehydrogenase activity. (OMIM 103710)

   

Reduced nicotinamide riboside

1-(beta-delta-Ribofuranosyl)-1,4-dihydronicotinamide

C11H16N2O5 (256.1059166)


   

(24S)-7alpha,24-Dihydroxycholesterol

(1S,2R,5S,9S,10S,11S,14R,15R)-14-[(2R,5S)-5-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,9-diol

C27H46O3 (418.34467659999996)


This compound belongs to the family of Trihydroxy Bile Acids, Alcohols and Derivatives. These are prenol lipids structurally characterized by a bile acid or alcohol which bears three hydroxyl groups.

   

7-a,25-Dihydroxycholesterol

3beta,7alpha,25-Trihydroxycholest-5-ene

C27H46O3 (418.34467659999996)


7α, 25-dihydroxycholesterol (7α,25-OHC) is a potent and selective agonist and endogenous ligand of the orphan GPCR receptor EBI2 (GPR183). 7α, 25-dihydroxycholesterol is highly potent at activating EBI2 (EC50=140 pM; Kd=450 pM). 7α, 25-dihydroxycholesterol can serve as a chemokine directing migration of B cells, T cells and dendritic cells[1][2].

   

ST 27:2;O3

3beta,5beta-Ketodiol; 2,22,25-Trideoxyecdysone; 3beta,14alpha-Dihydroxy-5beta-cholest-7-en-6-one

C27H44O3 (416.3290274)


   

Tamoxifen N-oxide

2-{4-[(1Z)-1,2-diphenylbut-1-en-1-yl]phenoxy}-N,N-dimethylethanamine oxide

C26H29NO2 (387.2198174)


Tamoxifen N-oxide is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)

   

4-Hydroxyretinoic acid

(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-3-hydroxy-1-cyclohexen-1-yl)-2,4,6,8-nonatetraenoic acid

C20H28O3 (316.2038338)


4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384) [HMDB] 4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

3beta-Hydroxypregn-5-en-20-one sulfate

[(1S,2R,5S,10S,11S,14S,15S)-14-acetyl-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-yl]oxidanesulfonic acid

C21H32O5S (396.1970342)


3beta-Hydroxypregn-5-en-20-one sulfate is a metabolite of pregnenolone. Pregnenolone, also known as 3α,5β-tetrahydroprogesterone (3α,5β-THP), is an endogenous steroid hormone involved in the steroidogenesis of progestogens, mineralocorticoids, glucocorticoids, androgens, and estrogens, as well as the neuroactive steroids. As such it is a prohormone, though it also has biological effects of its own, behaving namely as a neuroactive steroid in its own right with potent anxiolytic effects. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].

   

Aflatoxin Q1

14-hydroxy-11-methoxy-6,8,19-trioxapentacyclo[10.7.0.0²,⁹.0³,⁷.0¹³,¹⁷]nonadeca-1(12),2(9),4,10,13(17)-pentaene-16,18-dione

C17H12O7 (328.05830019999996)


Aflatoxin Q1 is a mycotoxin. It is a metabolite of Aflatoxin B. It can be found in Aspergillus flavus and Aspergillus parasiticus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins

   

2,3-Epoxyaflatoxin B1

(3R,4R,6S,8S)-12-methoxy-5,7,9,20-tetraoxahexacyclo[11.7.0.0^{2,10}.0^{3,8}.0^{4,6}.0^{14,18}]icosa-1(13),2(10),11,14(18)-tetraene-17,19-dione

C17H12O7 (328.05830019999996)


2,3-Epoxyaflatoxin B1 is formed due to the metabolism of aflatoxin B1 (AFB1) by CYP2A13, an enzyme predominantly expressed in the human respiratory tract. There is no detectable AFB1 epoxide formation by CYP2A6, which was also reported to be involved in the metabolic activation of AFB1 (PMID: 16385575). Aflatoxins are naturally occurring mycotoxins that are produced by many species of Aspergillus, a fungus. At least 13 different types of aflatoxin are produced in nature. Aflatoxin B1 is considered the most toxic and is produced by both Aspergillus flavus and Aspergillus parasiticus. The native habitat of Aspergillus is in soil, decaying vegetation, hay, and grains undergoing microbiological deterioration and it invades all types of organic substrates whenever conditions are favourable for its growth. Favourable conditions include high moisture content (at least 7\\%) and high temperature. Aflatoxins B1 (AFB1) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage (PMID: 17214555). Crops which are frequently affected by Aspergillus contamination include cereals (maize, sorghum, pearl millet, rice, wheat), oilseeds (peanut, soybean, sunflower, cotton), spices (chile peppers, black pepper, coriander, turmeric, ginger), and tree nuts (almond, pistachio, walnut, coconut, brazil nut). BioTransformer predicts that 2,3-epoxyaflatoxin B1 is a product of aflatoxin B1 metabolism via an epoxidation-of-vinyl-ether reaction catalyzed by CYP1A2 and CYP3A4 enzymes (PMID: 30612223). D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins Prob. ultimate carcinogen of Aflatoxin B1 D009676 - Noxae > D002273 - Carcinogens

   

Aflatoxin-M1-8,9-epoxide

Aflatoxin-M1-8,9-epoxide

C17H12O8 (344.0532152)


   

2-Chlorooxirane

2-Chlorooxirane

C2H3ClO (77.9872418)


   

Mycophenolic acid O-acyl-glucuronide

(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-{[(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoyl]oxy}oxane-2-carboxylic acid

C23H28O12 (496.1580688)


Mycophenolic acid O-acyl-glucuronide is a metabolite of mycophenolate mofetil. Mycophenolate mofetil (MMF) (brand names CellCept, Myfortic) is an immunosuppressant and prodrug of mycophenolic acid, used extensively in transplant medicine. It is a reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH) in purine biosynthesis which is necessary for the growth of T cells and B cells. Other cells are able to recover purines via a separate, scavenger, pathway and are, thus, able to escape the effect. MMF is a less toxic alternative to azathioprine. (Wikipedia)

   

Salicyloyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-[(2-{[2-(2-hydroxybenzoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C28H40N7O18P3S (887.136333)


Salicyl-coenzyme A is the intermediate product in the formation of salicyluric acid from salicylic acid. It has been shown to suppress LPS-induced PGE(2) production which effectively complements the action of salicylilc acid -- the major metabolite of aspirin (PMID: 10903918). Salicyl CoA is metabolized in the liver by mitochondrial acyl CoA:glycine N-acyl transferase (ACGNAT). This enzyme is important in the detoxification of various endogenous and xenobiotic acyl CoAs. [HMDB] Salicyloyl-CoA is the intermediate product in the formation of salicyluric acid from salicylic acid. It has been shown to suppress LPS-induced PGE(2) production which effectively complements the action of salicylic acid -- the major metabolite of aspirin (PMID: 10903918). Salicyloyl-CoA is metabolized in the liver by mitochondrial acyl CoA:glycine N-acyl transferase (ACGNAT). This enzyme is important in the detoxification of various endogenous and xenobiotic acyl-CoAs.

   

9-cis-Retinoic acid

(2E,4E,6Z,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenoic acid

C20H28O2 (300.2089188)


9-cis-Retinoic acid is an active retinoid that regulates expression of retinoid responsive genes, serving as a ligand for two classes of ligand-dependent transcription factors: the retinoic acid receptors and retinoid X receptors. Retinoids (vitamin A and its analogs) are essential dietary substances that are needed by mammals for reproduction, normal embryogenesis, growth, vision, and maintaining normal cellular differentiation and the integrity of the immune system. Within cells, retinoids regulate gene transcription acting through ligand-dependent transcription factors, the retinoic acid receptors (RARs), and the retinoid X receptors (RXRs). all-trans-Retinoic acid binds only to RARs with high affinity, whereas its 9-cis isomer binds with high affinity to both RARs and RXRs. The actions of all-trans- and 9-cis-retinoic acid in regulating cellular responses are distinct and not interchangeable (PMID: 9115228). Isolated from pancreas of pig and cow. Digestive enzyme. It is used in replacement therapy. It is used to prepare protein hydrolysates for pre- and post-operative diets D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XF - Retinoids for cancer treatment C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D000970 - Antineoplastic Agents D003879 - Dermatologic Agents Same as: D02815

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

Cyclophosphamide monohydrate

Cyclophosphamide monohydrate

C7H17Cl2N2O3P (278.0353802)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens D018501 - Antirheumatic Agents

   

Benzo[a]pyrene-cis-7,8-dihydrodiol

Benzo[a]pyrene-cis-7,8-dihydrodiol

C20H14O2 (286.0993744)


   

Aflatoxin b1 epoxide

[6AS-(6aa,7ab,8ab,8ba)]-2,3,6a,7a,8a,8b-hexahydro-4-methoxy-cyclopent[c]oxireno[4,5]furo[3,2:4,5]furo[2,3-H][1]benzopyran-1,10-dione

C17H12O7 (328.05830019999996)


   
   

3,3'-Diiodothyronine

(2R)-2-amino-3-[4-(4-hydroxy-3-iodophenoxy)-3-iodophenyl]propanoic acid

C15H13I2NO4 (524.8934078000001)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 3,3-Diiodothyronine is a precursor of thyroid hormone. [HMDB] 3,3-Diiodothyronine is a precursor of thyroid hormone.

   

4-acetaminophen sulfate

Acetaminophen sulfate ester, monopotassium salt

C8H9NO5S (231.0201424)


Paracetamol sulfate, also known as paracetamol sulfuric acid or 4-acetaminophen sulfate, is classified as a phenylsulfate. Phenylsulfates are compounds containing a sulfuric acid group conjugated to a phenyl group. Paracetamol sulfate is considered a slightly soluble (in water), acidic compound. Paracetamol sulfate is a metabolite of paracetamol, a common drug used for the relief of pain as an antipyretic. After paracetamol is absorbed from the gastrointestinal tract, it forms paracetamol sulfate by conjugation with sulfuric acid. Paracetamol sulfate can be found in both plasma and urine (PMID: 15127815).

   

Doxorubicinol

(8S,10S)-10-{[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy}-8-[(1S)-1,2-dihydroxyethyl]-6,8,11-trihydroxy-1-methoxy-5,7,8,9,10,12-hexahydrotetracene-5,12-dione

C27H31NO11 (545.1897016)


Doxorubicinol belongs to the family of Anthracyclines. These are polyketides containing a tetracenequinone ring structure with a sugar attached by glycosidic linkage.

   

(R)-3-Hydroxy-hexadecanoic acid

3-Hydroxypalmitic acid, (+-)-isomer

C16H32O3 (272.2351322)


In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. (R)-3-Hydroxy-hexadecanoic acid is an intermediate in fatty acid biosynthesis. Specifically, (R)-3-Hydroxy-hexadecanoic acid is converted from 3-Oxo-tetradecanoic acid via fatty-acid Synthase and 3-oxoacyl- [acyl-carrier-protein] reductase. (EC: 2.3.1.85 and EC: 2.3.1.41) [HMDB] In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. (R)-3-Hydroxy-hexadecanoic acid is an intermediate in fatty acid biosynthesis. Specifically, (R)-3-Hydroxy-hexadecanoic acid is converted from 3-Oxo-tetradecanoic acid via fatty-acid Synthase and 3-oxoacyl- [acyl-carrier-protein] reductase. (EC: 2.3.1.85 and EC: 2.3.1.41).

   

Triiodothyronine sulfate

(2S)-2-Amino-3-{3,5-diiodo-4-[3-iodo-4-(sulphooxy)phenoxy]phenyl}propanoic acid

C15H12I3NO7S (730.7468772)


Triiodothyronine sulfate (T3S), also known as 3,5,3‘-triiodothyronine sulfate, is the sulfated conjugate of the thyroid hormone triiodothyronine (T3). T3, along with thyroxine (T4) are tyrosine-based hormones that are primarily responsible for regulation of metabolism. Both hormones are produced by the follicular cells of the thyroid gland and are regulated by TSH (thyroid-stimulating hormone) made by the thyrotropes of the anterior pituitary gland. The major form of thyroid hormone in the blood is thyroxine (T4), which has a longer half-life than T3. T4 is converted into the active T3 (three to four times more potent than T4) within cells by deiodinases (5-iodinase) (Wikipedia). Triiodothyronine sulfate is the dominant nondeiodinative product of T3 metabolism and its formation from T3 is catalyzed by phenolsulfotransferases primarily located in the liver and kidney (PMID: 8126143). Hormone: Sulfate salt of Triiodothyronine commonly refered to as T3. It is a derivative of Thyroxine T4 which is secreted by the Thyroid follicular cells into the blood stream. Involved in development. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

4-Hydroxydebrisoquine

4-hydroxy-1,2,3,4-tetrahydroisoquinoline-2-carboximidamide

C10H13N3O (191.1058568)


Debrisoquine is metabolized to 4-hydroxydebrisoquine by CYP2D6. Due to this, it has been used widely to determine the hydroxylation capacity of the enzyme.(PMID:15843230) [HMDB] Debrisoquine is metabolized to 4-hydroxydebrisoquine by CYP2D6. Due to this, it has been used widely to determine the hydroxylation capacity of the enzyme.(PMID:15843230).

   

4-Nitrophenyl sulfate

Sulphuric acid mono(4-nitrophenyl) ester

C6H5NO6S (218.983759)


4-Nitrophenyl sulfate is a minor metabolic byproduct of parathion metabolism that is excreted in the urine (PMID: 1956875). Parathion is an organophosphate compound developed in the 1940s. It is a potent insecticide and acaricide. It is highly toxic to non-target organisms, including humans. 4-Nitrophenyl sulfate is also used as a model substrate to investigate the influence of drug therapy, disease, nutrient deficiencies and other physiologically altered conditions on conjugative drug metabolism in animal studies.(PMID: 16844228) [HMDB] 4-Nitrophenyl sulfate is a minor metabolic byproduct of parathion metabolism that is excreted in the urine (PMID: 1956875). Parathion is an organophosphate compound developed in the 1940s. It is a potent insecticide and acaricide. It is highly toxic to non-target organisms, including humans. 4-Nitrophenyl sulfate is also used as a model substrate to investigate the influence of drug therapy, disease, nutrient deficiencies and other physiologically altered conditions on conjugative drug metabolism in animal studies.(PMID: 16844228).

   

3-Methylene-indolenine

3-Methyleneindolenine, conjugate acid

C9H7N (129.0578462)


3-Methylene-indolenine is an electrophilic molecule produced by the action of cytochrome P450 2F1 on 3-methylindole (3MI). 3-Methylindole (3MI) is a naturally occurring pulmonary toxin that requires metabolic activation. In particular, 3MI-induced pneumotoxicity arises from cytochrome P-450-catalyzed dehydrogenation of 3MI to an electrophilic methylene imine (3-methyleneindolenine), which covalently binds to cellular macromolecules. Members of the CYP2F gene subfamily are selectively expressed in lung tissues and have been implicated as important catalysts in the formation of reactive intermediates from several pneumotoxic chemicals. (PMID: 10383923) [HMDB] 3-Methylene-indolenine is an electrophilic molecule produced by the action of cytochrome P450 2F1 on 3-methylindole (3MI). 3-Methylindole (3MI) is a naturally occurring pulmonary toxin that requires metabolic activation. In particular, 3MI-induced pneumotoxicity arises from cytochrome P-450-catalyzed dehydrogenation of 3MI to an electrophilic methylene imine (3-methyleneindolenine), which covalently binds to cellular macromolecules. Members of the CYP2F gene subfamily are selectively expressed in lung tissues and have been implicated as important catalysts in the formation of reactive intermediates from several pneumotoxic chemicals. (PMID: 10383923).

   

Dextrorphan

(1S,9S,10S)-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5-trien-4-ol

C17H23NO (257.1779548)


Dextrorphan is a metabolite of Dextromethorphan. Dextrorphan (DXO) is a psychoactive drug of the morphinan chemical class which acts as an antitussive or cough suppressant and dissociative hallucinogen. It is the dextro-stereoisomer of racemorphan, the levo-half being levorphanol. Dextrorphan is produced by O-demethylation of dextromethorphan by CYP2D6. Dextrorphan is an NMDA antagonist and contributes to the psychoactive effects of dextromethorphan. (Wikipedia) D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D020011 - Protective Agents

   

NAPQI

N-Acetyl-4-benzoquinoneimine, 3,5-(14)C-labeled CPD

C8H7NO2 (149.0476762)


NAPQI is a metabolite of acetaminophen. NAPQI (N-acetyl-p-benzoquinone imine) is a toxic byproduct produced during the xenobiotic metabolism of the analgesic paracetamol (acetaminophen). It is normally produced only in small amounts, and then almost immediately detoxified in the liver. However, under some conditions in which NAPQI is not effectively detoxified (usually in case of paracetamol overdose), it causes severe damage to the liver. (Wikipedia)

   

7alpha,12alpha,26-trihydroxycholest-4-en-3-one

(1S,2R,9R,10R,11S,14R,15R,16S)-9,16-dihydroxy-14-[(2R)-7-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C27H44O4 (432.3239424)


7alpha,12alpha,26-trihydroxycholest-4-en-3-one is also known as 4-Cholesten-7alpha,12alpha,26-triol-3-one. 7alpha,12alpha,26-trihydroxycholest-4-en-3-one is considered to be practically insoluble (in water) and relatively neutral. 7alpha,12alpha,26-trihydroxycholest-4-en-3-one is a bile acid lipid molecule

   

4-Nitrophenyl butyrate

Para-nitrophenyl butyric acid

C10H11NO4 (209.0688046)


   

formate

Formic acid, cromium (+3), sodium (4:1:1) salt

CHO2- (44.997654600000004)


Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO‚àí or HCOO‚àí or HCO2‚àí. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid . Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO− or HCOO− or HCO2−. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid .

   

Olmesartan medoxomil

Olmesartan medoxomil

C29H30N6O6 (558.222672)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Olmesartan medoxomil is a potent and selective angiotensin AT1 receptor inhibitor with IC50 of 66.2 μM.

   

Benzoylecgonine

(3S,4R)-3-benzoyloxy-8-methyl-8-azabicyclo[3.2.1]octane-4-carboxylic acid

C16H19NO4 (289.1314014)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 2823

   

25-OHC

Cholest-5-ene-3beta,25-diol

C27H46O2 (402.34976159999997)


25-Hydroxycholesterol is a metabolite of cholesterol that is produced and secreted by macrophages in response to Toll-like receptor (TLR) activation. 25-hydroxycholesterol is a potent (EC50≈65 nM) and selective suppressor of IgA production by B cells.

   

9-cis-4-hydroxyretinoic acid

9-cis-4-hydroxyretinoic acid

C20H28O3 (316.2038338)


   

hydrobromic acid

hydrobromic acid

BrH (79.9261606)


   

Sulfate Ion

Sulfate Ion

O4S-2 (95.951732)


   

Acetate

Acetate

C2H3O2- (59.0133038)


A monocarboxylic acid anion resulting from the removal of a proton from the carboxy group of acetic acid. Acetate, also known as acetic acid or ethanoate, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Acetate is soluble (in water) and a weakly acidic compound (based on its pKa). Acetate can be found in a number of food items such as pitanga, soursop, green bean, and beech nut, which makes acetate a potential biomarker for the consumption of these food products. Acetate is a non-carcinogenic (not listed by IARC) potentially toxic compound. An acetate is a salt formed by the combination of acetic acid with an alkaline, earthy, or metallic base. "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C2H3O2−. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminum, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH3CO2−, or CH3COO− . In cases of skin or eye exposure, the area should be flushed with water and burns covered with dry, sterile dressings after decontamination. If ingested, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution. Watch for signs of respiratory insufficiency and assist respiration if necessary (A569) (T3DB).

   

S-Adenosyl-L-methionine

S-Adenosyl-L-methionine

C15H23N6O5S+ (399.1450568)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide

C21H26N7O14P2- (662.1012936000001)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Butyrate

Butyrate

C4H7O2- (87.0446022)


A short-chain fatty acid anion that is the conjugate base of butyric acid, obtained by deprotonation of the carboxy group.

   

Coenzyme II

Coenzyme II

C21H25N7O17P3-3 (740.051977)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

[3H]dehydroepiandrosterone sulfate

[3H]dehydroepiandrosterone sulfate

C19H27O5S- (367.1579112)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

[Hydroxy(oxido)phosphoryl] phosphate

[Hydroxy(oxido)phosphoryl] phosphate

HO7P2-3 (174.9197556)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

12-Hydroxy-5,8,10,14-eicosatetraenoic acid

12-Hydroxy-5,8,10,14-eicosatetraenoic acid

C20H32O3 (320.23513219999995)


   

Benzo[a]pyrene-7,8-dione

Benzo[a]pyrene-7,8-dione

C20H10O2 (282.068076)


An o-quinone resulting from the formal oxidation of both of the hydroxy groups of benzo[a]pyrene-cis-7,8-dihydrodiol. Benzo[a]pyrene-7,8-dione is a metabolite of the widespread carcinogen benzo[a]pyrene.

   

2-Acetylaminofluorene-N-sulfate

2-Acetylaminofluorene-N-sulfate

C15H13NO5S (319.0514408)


   

3,3-Diiodothyronine-4-sulfate

3,3-Diiodothyronine-4-sulfate

C15H13I2NO7S (604.8502248000001)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   
   

3alpha-(Sulfonatooxy)-5beta-cholan-24-oate

3alpha-(Sulfonatooxy)-5beta-cholan-24-oate

C24H38O6S-2 (454.2388968)


   

2-Azaniumylacetate

2-Azaniumylacetate

C2H5NO2 (75.032027)


   

(2S)-2-ammonio-4-(methylsulfanyl)butanoate

(2S)-2-ammonio-4-(methylsulfanyl)butanoate

C5H11NO2S (149.0510466)


   

D,L-Cysteine

(2R)-2-ammonio-3-mercaptopropanoate

C3H7NO2S (121.0197482)


   

Salicylate

Salicylate

C7H5O3- (137.023868)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents A monohydroxybenzoate that is the conjugate base of salicylic acid. D002491 - Central Nervous System Agents > D000700 - Analgesics D004791 - Enzyme Inhibitors

   

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

C14H20N6O5S (384.12158300000004)


   

Intropin

Intropin

C8H12NO2+ (154.0867992)


D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents COVID info from COVID-19 Disease Map D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-cysteinylglycine zwitterion

L-cysteinylglycine zwitterion

C5H10N2O3S (178.041211)


The zwitterion of L-cysteinylglycine resulting from the transfer of a proton from the hydroxy group of glycine to the amino group of cysteine. Major microspecies at pH 7.3. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Histaminium

Histaminium

C5H10N3+ (112.087468)


An ammonium ion that is the conjugate acid of histamine protonated on the side-chain nitrogen. D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Spermidine(3+)

Spermidine(3+)

C7H22N3+3 (148.1813632)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644492)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

coenzyme A(4-)

coenzyme A(4-)

C21H32N7O16P3S-4 (763.0839062)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Spermine (fully protonated form)

Spermine (fully protonated form)

C10H30N4+4 (206.24703399999999)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-NADH

beta-NADH

C21H27N7O14P2-2 (663.1091182000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-5-monophosphate(2-)

Adenosine-5-monophosphate(2-)

C10H12N5O7P-2 (345.0474332)


   

Benzylaminium

Benzylaminium

C7H10N+ (108.08132)


The conjugate acid of benzylamine; major product at pH 7.3.

   

acetyl-CoA(4-)

acetyl-CoA(4-)

C23H34N7O17P3S-4 (805.0944704000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-Adenylyl sulfate(2-)

5-Adenylyl sulfate(2-)

C10H12N5O10PS-2 (425.00425020000006)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoate

(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoate

C20H31O2- (303.23239259999997)


   

(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate

(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate

C24H39O3- (375.28990439999995)


   

3-phosphonato-5-adenylyl Sulfate(4-)

3-phosphonato-5-adenylyl Sulfate(4-)

C10H11N5O13P2S-4 (502.9549336)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine 3,5-bismonophosphate(4-)

Adenosine 3,5-bismonophosphate(4-)

C10H11N5O10P2-4 (422.99811659999995)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-[(3alpha-Hydroxy-24-oxo-5beta-cholan-24-yl)amino]ethanesulfonate

2-[(3alpha-Hydroxy-24-oxo-5beta-cholan-24-yl)amino]ethanesulfonate

C26H44NO5S- (482.29400340000007)


   

(3-beta)-Cholest-5-en-3-ol-3-(hydrogen sulfate)

(3-beta)-Cholest-5-en-3-ol-3-(hydrogen sulfate)

C27H45O4S- (465.30383900000004)


   

(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoate

(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoate

C17H19O6- (319.1181574)


   

Trifluoroacetyl chloride

Trifluoroacetyl chloride

C2ClF3O (131.9589776)


   

2-Ammonio-4-sulfanylbutanoate

2-Ammonio-4-sulfanylbutanoate

C4H9NO2S (135.0353974)


   

3-Hydroxy-4-methoxybenzoate

3-Hydroxy-4-methoxybenzoate

C8H7O4- (167.0344322)


A monohydroxybenzoate that is the conjugate base of 3-hydroxy-4-methoxybenzoic acid, arising from deprotonation of the carboxy group.

   

19-Hydroxyprostaglandin H2

19-Hydroxyprostaglandin H2

C20H32O6 (368.2198772)


A prostaglandin H that consists of prostaglandin H2 bearing an additional hydroxy substituent at position 19.

   

3,16-Dihydroxypalmitate

3,16-Dihydroxypalmitate

C16H31O4- (287.2222226)


A hydroxy fatty acid anion that is the conjugate base of 3,16-dihydroxypalmitic acid, arising from deprotonation of the carboxy group; major species at pH 7.3.

   

18-Hydroxyarachidonate

18-Hydroxyarachidonate

C20H31O3- (319.2273076)


   

N-hydroxy-4-aminobiphenyl O-sulfate

N-hydroxy-4-aminobiphenyl O-sulfate

C12H11NO4S (265.0408766)


   

methimazole S-oxide

methimazole S-oxide

C4H6N2OS (130.0200826)