Indole (BioDeep_00000002913)
Secondary id: BioDeep_00000400203, BioDeep_00000860852
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C8H7N (117.0578462)
中文名称: 吲哚
谱图信息:
最多检出来源 Viridiplantae(plant) 0.11%
Last reviewed on 2024-07-16.
Cite this Page
Indole. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/indole (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000002913). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(C=CC=C2)=C2NC=C1
InChI: InChI=1S/C8H7N/c1-2-4-8-7(3-1)5-6-9-8/h1-6,9H
描述信息
Indole is an aromatic heterocyclic organic compound. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered nitrogen-containing pyrrole ring. The participation of the nitrogen lone electron pair in the aromatic ring means that indole is not a base, and it does not behave like a simple amine. Indole is a microbial metabolite and it can be produced by bacteria as a degradation product of the amino acid tryptophan. It occurs naturally in human feces and has an intense fecal smell. At very low concentrations, however, indole has a flowery smell and is a constituent of many flower scents (such as orange blossoms) and perfumes. As a volatile organic compound, indole has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). Natural jasmine oil, used in the perfume industry, contains around 2.5\\\\\% of indole. Indole also occurs in coal tar. Indole has been found to be produced in a number of bacterial genera including Alcaligenes, Aspergillus, Escherichia, and Pseudomonas (PMID: 23194589, 2310183, 9680309). Indole plays a role in bacterial biofilm formation, bacterial motility, bacterial virulence, plasmid stability, and antibiotic resistance. It also functions as an intercellular signalling molecule (PMID: 26115989). Recently, it was determined that the bacterial membrane-bound histidine sensor kinase (HK) known as CpxA acts as a bacterial indole sensor to facilitate signalling (PMID: 31164470). It has been found that decreased indole concentrations in the gut promote bacterial pathogenesis, while increased levels of indole in the gut decrease bacterial virulence gene expression (PMID: 31164470). As a result, enteric pathogens sense a gradient of indole concentrations in the gut to migrate to different niches and successfully establish an infection.
Constituent of several flower oils, especies of Jasminum and Citrus subspecies (Oleaceae) production of bacterial dec. of proteins. Flavouring ingredientand is also present in crispbread, Swiss cheese, Camembert cheese, wine, cocoa, black and green tea, rum, roasted filbert, rice bran, clary sage, raw shrimp and other foodstuffs
Indole. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=120-72-9 (retrieved 2024-07-16) (CAS RN: 120-72-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Indole is an endogenous metabolite.
Indole is an endogenous metabolite.
同义名列表
11 个代谢物同义名
2,3-Benzopyrrole; Benzo[b]pyrrole; 1-Benzazole; 1-Azaindene; 1H-indole; Ketole; Indole; indol; Indole; Indole; Indole
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:16881
- KEGG: C00463
- PubChem: 798
- HMDB: HMDB0000738
- Metlin: METLIN286
- DrugBank: DB04532
- ChEMBL: CHEMBL15844
- Wikipedia: Indole
- MetaCyc: INDOLE
- KNApSAcK: C00001418
- foodb: FDB012008
- chemspider: 776
- CAS: 120-72-9
- MoNA: PR100053
- PMhub: MS000006921
- PDB-CCD: IND
- 3DMET: B01251
- NIKKAJI: J2.920C
- RefMet: Indole
- medchemexpress: HY-W001132
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-607
- PubChem: 3747
- KNApSAcK: 16881
- LOTUS: LTS0185357
分类词条
相关代谢途径
Reactome(5)
BioCyc(6)
代谢反应
775 个相关的代谢反应过程信息。
Reactome(65)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Miscellaneous substrates:
ARA + H+ + Oxygen + TPNH ⟶ 19HETE + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
BioCyc(98)
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indolin-2-one ⟶ 3-hydroxyindolin-2-one + H2O + an oxidized [NADPH-hemoprotein reductase]
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indolin-2-one ⟶ 3-hydroxyindolin-2-one + H2O + an oxidized [NADPH-hemoprotein reductase]
- IAA biosynthesis I:
acetate + indole ⟶ H+ + indole-3-acetate
- indole degradation to anthranil and anthranilate:
O2 + indole ⟶ 2-formylaminobenzaldehyde
- tryptophan degradation II (via pyruvate):
H2O + trp ⟶ ammonium + indole + pyruvate
- tryptophan degradation II (via pyruvate):
H2O + trp ⟶ ammonium + indole + pyruvate
- tryptophan degradation II (via pyruvate):
H2O + trp ⟶ ammonium + indole + pyruvate
- L-tryptophan degradation II (via pyruvate):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- indican biosynthesis:
cis-indole-2,3-dihydrodiol ⟶ H2O + indoxyl
- indigo biosynthesis:
O2 + indoxyl ⟶ H2O + indigo
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of aromatic amino acid biosynthesis:
3-deoxy-D-arabino-heptulosonate 7-phosphate ⟶ 3-dehydroquinate + phosphate
- superpathway of chorismate metabolism:
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of L-tryptophan biosynthesis:
3-deoxy-D-arabino-heptulosonate 7-phosphate ⟶ 3-dehydroquinate + phosphate
- superpathway of aromatic amino acid biosynthesis:
2-oxoglutarate + phe ⟶ 3-phenyl-2-oxopropanoate + glu
- L-tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + indole
- superpathway of chorismate metabolism:
2-oxoglutarate + phe ⟶ 3-phenyl-2-oxopropanoate + glu
- L-tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose 5'-phosphate + H+ ⟶ (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
pyruvate + tyr ⟶ 4-hydroxyphenylpyruvate + ala
- tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose 5'-phosphate + H+ ⟶ (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose 5'-phosphate + H+ ⟶ (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
- L-tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + indole
- superpathway of aromatic amino acid biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvoyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of L-tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose 5'-phosphate + H+ ⟶ (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
- tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose 5'-phosphate + H+ ⟶ (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxo-3-phenylpropanoate + glt ⟶ 2-oxoglutarate + phe
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose 5'-phosphate + H+ ⟶ (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
- tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + H+ + indole
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- tryptophan biosynthesis:
1-(o-carboxyphenylamino)-1'-deoxyribulose-5'-phosphate + H+ ⟶ (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
- superpathway of chorismate:
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- superpathway of L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- superpathway of tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxo-3-phenylpropanoate + glt ⟶ 2-oxoglutarate + phe
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxo-3-phenylpropanoate + glt ⟶ 2-oxoglutarate + phe
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of aromatic amino acid biosynthesis:
2-oxo-3-phenylpropanoate + glt ⟶ 2-oxoglutarate + phe
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of aromatic amino acid biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of aromatic amino acid biosynthesis:
2-oxoglutarate + tyr ⟶ 3-(4-hydroxyphenyl)pyruvate + glu
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxo-3-phenylpropanoate + glt ⟶ 2-oxoglutarate + phe
- superpathway of aromatic amino acid biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ D-glyceraldehyde-3-phosphate + indole
- superpathway of L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- superpathway of tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of tryptophan biosynthesis:
ATP + shikimate ⟶ ADP + H+ + shikimate-3-phosphate
- tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- IAA biosynthesis I:
H2O + indole-3-acetamide ⟶ H+ + ammonia + indole-3-acetate
- tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + H+ + indole
- tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of aromatic amino acid biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- superpathway of L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
WikiPathways(0)
Plant Reactome(330)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA biosynthesis I:
CH3COO- + indole ⟶ IAA
INOH(0)
PlantCyc(278)
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
2-oxoglutarate + DIBOA-Glc + O2 ⟶ CO2 + TRIBOA-β-D-glucoside + succinate
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
2-oxoglutarate + DIBOA-Glc + O2 ⟶ CO2 + TRIBOA-β-D-glucoside + succinate
- superpathway of benzoxazinoid glucosides biosynthesis:
2-oxoglutarate + DIBOA-Glc + O2 ⟶ CO2 + TRIBOA-β-D-glucoside + succinate
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
H+ + NAD(P)H + O2 + indole ⟶ H2O + NAD(P)+ + indolin-2-one
- DIBOA-glucoside biosynthesis:
H+ + NAD(P)H + O2 + indole ⟶ H2O + NAD(P)+ + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
- superpathway of benzoxazinoid glucosides biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
H+ + NAD(P)H + O2 + indole ⟶ H2O + NAD(P)+ + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
- indole degradation to anthranil and anthranilate:
O2 + indole ⟶ 2-formylaminobenzaldehyde
- indole degradation to anthranil and anthranilate:
2-formylaminobenzaldehyde + H2O ⟶ H+ + O-aminobenzaldehyde + formate
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indigo biosynthesis:
cis-indole-2,3-dihydrodiol ⟶ H2O + indoxyl
- indican biosynthesis:
cis-indole-2,3-dihydrodiol ⟶ H2O + indoxyl
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
indole + ser ⟶ H2O + trp
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- L-tryptophan biosynthesis:
chorismate + gln ⟶ H+ + anthranilate + glu + pyruvate
- indican biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
- indigo biosynthesis:
H+ + NADH + O2 + indole ⟶ cis-indole-2,3-dihydrodiol + NAD+
COVID-19 Disease Map(0)
PathBank(4)
- Tryptophan Metabolism:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Tryptophan Metabolism II:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Tryptophan Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
PharmGKB(0)
178 个相关的物种来源信息
- 155619 - Agaricomycetes: LTS0185357
- 82206 - Agave amica: 10.1080/10412905.1994.9699364
- 4668 - Amaryllidaceae: LTS0185357
- 74663 - Amorphophallus: LTS0185357
- 175730 - Amorphophallus eichleri: 10.1016/S0031-9422(97)00221-5
- 175730 - Amorphophallus eichleri: LTS0185357
- 4294 - Aquifoliaceae: LTS0185357
- 4454 - Araceae: LTS0185357
- 6656 - Arthropoda: LTS0185357
- 40552 - Asparagaceae: LTS0185357
- 4210 - Asteraceae: LTS0185357
- 91061 - Bacilli: LTS0185357
- 2 - Bacteria: LTS0185357
- 5204 - Basidiomycota: LTS0185357
- 24079 - Bignoniaceae: LTS0185357
- 7091 - Bombyx Mori L.: -
- 3705 - Brassica: LTS0185357
- 3707 - Brassica juncea: 10.1016/0031-9422(88)83085-1
- 3707 - Brassica juncea: LTS0185357
- 3708 - Brassica napus: 10.1016/0031-9422(88)83085-1
- 3708 - Brassica napus: LTS0185357
- 3710 - Brassica nigra: 10.1016/0031-9422(88)83085-1
- 3710 - Brassica nigra: LTS0185357
- 3711 - Brassica rapa: 10.1016/0031-9422(88)83085-1
- 3711 - Brassica rapa: LTS0185357
- 145471 - Brassica rapa subsp. oleifera: 10.1016/0031-9422(88)83085-1
- 145471 - Brassica rapa subsp. oleifera: LTS0185357
- 3700 - Brassicaceae: LTS0185357
- 4200 - Caprifoliaceae: LTS0185357
- 7711 - Chordata: LTS0185357
- 2706 - Citrus: LTS0185357
- 159033 - Citrus aurantiifolia: 10.1016/J.PHYTOCHEM.2009.07.031
- 43166 - Citrus aurantium: 10.1016/J.PHYTOCHEM.2009.07.031
- 558547 - Citrus deliciosa: 10.1016/J.PHYTOCHEM.2009.07.031
- 170989 - Citrus hystrix: 10.1016/J.PHYTOCHEM.2009.07.031
- 170989 - Citrus hystrix: LTS0185357
- 76966 - Citrus japonica: 10.1016/J.PHYTOCHEM.2009.07.031
- 2708 - Citrus limon: 10.1016/J.PHYTOCHEM.2009.07.031
- 85571 - Citrus reticulata: 10.1016/J.PHYTOCHEM.2009.07.031
- 85571 - Citrus reticulata: LTS0185357
- 37656 - Citrus × paradisi: 10.1016/J.PHYTOCHEM.2009.07.031
- 184431 - Coprinopsis: LTS0185357
- 230786 - Coprinopsis picacea:
- 230786 - Coprinopsis picacea: 10.2307/3760261
- 230786 - Coprinopsis picacea: LTS0185357
- 3660 - Cucurbita: LTS0185357
- 3661 - Cucurbita maxima: 10.1021/JF00073A014
- 3661 - Cucurbita maxima: LTS0185357
- 3650 - Cucurbitaceae: LTS0185357
- 66679 - Daphne: LTS0185357
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 329675 - Daphne odora: LTS0185357
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: LTS0185357
- 37818 - Dendrobium: LTS0185357
- 543 - Enterobacteriaceae: LTS0185357
- 561 - Escherichia: LTS0185357
- 562 - Escherichia coli: LTS0185357
- 2759 - Eukaryota: LTS0185357
- 3803 - Fabaceae: LTS0185357
- 319807 - Ficidae: LTS0185357
- 3493 - Ficus: LTS0185357
- 3494 - Ficus carica: 10.1016/S0031-9422(97)00292-6
- 3494 - Ficus carica: LTS0185357
- 36668 - Formicidae: LTS0185357
- 4751 - Fungi: LTS0185357
- 1236 - Gammaproteobacteria: LTS0185357
- 6448 - Gastropoda: LTS0185357
- 9893 - Giraffa: LTS0185357
- 9894 - Giraffa camelopardalis: 10.1016/S0305-1978(02)00037-6
- 9894 - Giraffa camelopardalis: LTS0185357
- 9892 - Giraffidae: LTS0185357
- 46347 - Glycyrrhiza: LTS0185357
- 49827 - Glycyrrhiza glabra: 10.1021/JF60214A042
- 49827 - Glycyrrhiza glabra: LTS0185357
- 3633 - Gossypium: LTS0185357
- 3635 - Gossypium hirsutum: 10.1021/JF60200A011
- 3635 - Gossypium hirsutum: LTS0185357
- 9606 - Homo sapiens: -
- 4512 - Hordeum: LTS0185357
- 4513 - Hordeum vulgare: 10.1515/ZNC-1998-9-1006
- 4513 - Hordeum vulgare: LTS0185357
- 4295 - Ilex: LTS0185357
- 185542 - Ilex paraguariensis: 10.1021/JF00025A023
- 185542 - Ilex paraguariensis: LTS0185357
- 50557 - Insecta: LTS0185357
- 161755 - Isatis: LTS0185357
- 161756 - Isatis tinctoria: 10.1055/S-2006-958019
- 161756 - Isatis tinctoria: LTS0185357
- 4147 - Jasminum: LTS0185357
- 389181 - Jasminum grandiflorum: 10.1002/FFJ.2730010305
- 389181 - Jasminum grandiflorum: LTS0185357
- 4136 - Lamiaceae: LTS0185357
- 19205 - Lepidium: LTS0185357
- 153348 - Lepidium meyenii: 10.1016/S0031-9422(02)00208-X
- 153348 - Lepidium meyenii: LTS0185357
- 4447 - Liliopsida: LTS0185357
- 49606 - Lonicera: LTS0185357
- 105884 - Lonicera japonica:
- 105884 - Lonicera japonica: 10.1021/JF950275B
- 105884 - Lonicera japonica: 10.1186/1471-2164-13-195
- 105884 - Lonicera japonica: LTS0185357
- 2849048 - Lucensosergia lucens: 10.1080/00021369.1984.10866348
- 3398 - Magnoliopsida: LTS0185357
- 6681 - Malacostraca: LTS0185357
- 3629 - Malvaceae: LTS0185357
- 40674 - Mammalia: LTS0185357
- 33208 - Metazoa: LTS0185357
- 6447 - Mollusca: LTS0185357
- 3487 - Moraceae: LTS0185357
- 4697 - Narcissus: LTS0185357
- 54860 - Narcissus tazetta: 10.3109/13880209409083015
- 54860 - Narcissus tazetta: LTS0185357
- 147888 - Nothomyrmecia: LTS0185357
- 147889 - Nothomyrmecia macrops: 10.1007/BF01959170
- 147889 - Nothomyrmecia macrops: LTS0185357
- 4144 - Oleaceae: LTS0185357
- 4747 - Orchidaceae: LTS0185357
- 186822 - Paenibacillaceae: LTS0185357
- 44249 - Paenibacillus: LTS0185357
- 1406 - Paenibacillus polymyxa: 10.1111/J.1574-6941.1997.TB00384.X
- 1406 - Paenibacillus polymyxa: LTS0185357
- 4479 - Poaceae: LTS0185357
- 39546 - Polianthes: LTS0185357
- 4275 - Polygala: LTS0185357
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 174549 - Polygala senega: LTS0185357
- 4274 - Polygalaceae: LTS0185357
- 3754 - Prunus: LTS0185357
- 97307 - Prunus padus: 10.1080/10412905.1990.9697889
- 184208 - Psathyrellaceae: LTS0185357
- 119083 - Psydrax: LTS0185357
- 2708958 - Psydrax subcordata: 10.1351/PAC198658050653
- 2708958 - Psydrax subcordata: LTS0185357
- 3745 - Rosaceae: LTS0185357
- 24966 - Rubiaceae: LTS0185357
- 23513 - Rutaceae: LTS0185357
- 21880 - Salvia: LTS0185357
- 28513 - Salvia divinorum: 10.1016/J.TETLET.2010.08.033
- 28513 - Salvia divinorum: LTS0185357
- 4462 - Sauromatum: LTS0185357
- 4463 - Sauromatum venosum: 10.1016/S0031-9422(00)94756-3
- 4463 - Sauromatum venosum: LTS0185357
- 4139 - Scutellaria: LTS0185357
- 65409 - Scutellaria baicalensis: 10.1271/BBB1961.51.1449
- 65409 - Scutellaria baicalensis: LTS0185357
- 18794 - Senecio: LTS0185357
- 462497 - Senecio adenotrichius: 10.1016/S0305-1978(00)00114-9
- 462497 - Senecio adenotrichius: LTS0185357
- 111522 - Sergestidae: LTS0185357
- 343321 - Sergia: LTS0185357
- 589641 - Sergia lucens: 10.1080/00021369.1984.10866348
- 589641 - Sergia lucens: LTS0185357
- 3727 - Sinapis: LTS0185357
- 3728 - Sinapis alba: 10.1016/0031-9422(88)83085-1
- 3728 - Sinapis alba: LTS0185357
- 35493 - Streptophyta: LTS0185357
- 99105 - Tanacetum: LTS0185357
- 127999 - Tanacetum parthenium: 10.1007/S004030050433
- 127999 - Tanacetum parthenium: LTS0185357
- 69903 - Tecoma: LTS0185357
- 69904 - Tecoma stans: 10.1016/S0031-9422(00)83513-X
- 69904 - Tecoma stans: LTS0185357
- 1006121 - Tetrastigma hemsleyanum: 10.3390/MOLECULES23061445
- 39987 - Thymelaeaceae: LTS0185357
- 58023 - Tracheophyta: LTS0185357
- 662 - Vibrio: LTS0185357
- 670 - Vibrio parahaemolyticus: LTS0185357
- 641 - Vibrionaceae: LTS0185357
- 33090 - Viridiplantae: LTS0185357
- 4575 - Zea: LTS0185357
- 4577 - Zea mays: 10.1039/CC9960001321
- 4577 - Zea mays: LTS0185357
- 4650 - Zingiber: LTS0185357
- 136225 - Zingiber mioga: 10.1271/BBB1961.55.1655
- 136225 - Zingiber mioga: LTS0185357
- 4642 - Zingiberaceae: LTS0185357
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ying Cheng, Xilin Lyu, Chen Liu, Xiancheng Wang, Jing Cheng, Daizhou Zhang, Xiangjing Meng, Yujun Zhao. Synthesis and Biological Evaluation of Sclareolide-Indole Conjugates and Their Derivatives.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041737
. [PMID: 36838727] - Yubo Sun, Hao Wu, Wenning Zhou, Zhichun Yuan, Jianjun Hao, Xili Liu, Lirong Han. Effects of indole derivatives from Purpureocillium lilacinum in controlling tobacco mosaic virus.
Pesticide biochemistry and physiology.
2022 May; 183(?):105077. doi:
10.1016/j.pestbp.2022.105077
. [PMID: 35430069] - Sasikarn Seetasang, Takashi Kaneta. Dip-and-Read, Organic Solvent-Compatible, Paper-Based Analytical Devices Equipped with Chromatographic Separation for Indole Analysis in Shrimp.
ACS sensors.
2022 04; 7(4):1194-1200. doi:
10.1021/acssensors.2c00300
. [PMID: 35404587] - Yujia Wang, Yali Mu, Xiatong Hu, Caixia Zhang, Yanqing Gao, Zhiqing Ma, Juntao Feng, Xili Liu, Peng Lei. Indole/Tetrahydroquinoline as Renewable Natural Resource-Inspired Scaffolds in the Devising and Preparation of Potential Fungicide Candidates.
Journal of agricultural and food chemistry.
2022 Apr; 70(15):4582-4590. doi:
10.1021/acs.jafc.1c07879
. [PMID: 35385275] - Inês Delgado, Sofia Cussotto, Andrea Anesi, Sandra Dexpert, Agnès Aubert, Bruno Aouizerate, Cédric Beau, Damien Forestier, Patrick Ledaguenel, Eric Magne, Fulvio Mattivi, Lucile Capuron. Association between the indole pathway of tryptophan metabolism and subclinical depressive symptoms in obesity: a preliminary study.
International journal of obesity (2005).
2022 04; 46(4):885-888. doi:
10.1038/s41366-021-01049-0
. [PMID: 35001078] - Kun Fan, Cai-Feng Ding, Shi-Yu Deng, Wen Gao, Bang-Yin Tan, Hao Wu, Ying Guo, Jing-Feng Song, Lan-Chun Zhang, Rong-Ping Zhang, Hao-Fei Yu. Monoterpene indole N-oxide alkaloids from Tabernaemontana corymbosa and their antimicrobial activity.
Fitoterapia.
2022 Apr; 158(?):105178. doi:
10.1016/j.fitote.2022.105178
. [PMID: 35302006] - Ayako Kusakabe, Chen Wang, Ya-Ming Xu, István Molnár, S Patricia Stock. Selective Toxicity of Secondary Metabolites from the Entomopathogenic Bacterium Photorhabdus luminescens sonorensis against Selected Plant Parasitic Nematodes of the Tylenchina Suborder.
Microbiology spectrum.
2022 02; 10(1):e0257721. doi:
10.1128/spectrum.02577-21
. [PMID: 35138171] - Vladimír Skalický, Tereza Vojtková, Aleš Pěnčík, Jan Vrána, Katarzyna Juzoń, Veronika Koláčková, Michaela Sedlářová, Martin F Kubeš, Ondřej Novák. Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212369
. [PMID: 34830250] - Ángel Abellán, Raúl Domínguez-Perles, Cristina García-Viguera, Diego A Moreno. Evidence on the Bioaccessibility of Glucosinolates and Breakdown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion.
International journal of molecular sciences.
2021 Oct; 22(20):. doi:
10.3390/ijms222011046
. [PMID: 34681712] - Ayah Z Salem, Dalia Medhat, Shadia A Fathy, Mohamed R Mohamed, Zakaria El-Khayat, Sherien M El-Daly. Indole glucosinolates exhibit anti-inflammatory effects on Ehrlich ascites carcinoma cells through modulation of inflammatory markers and miRNAs.
Molecular biology reports.
2021 Oct; 48(10):6845-6855. doi:
10.1007/s11033-021-06683-5
. [PMID: 34476740] - Gui Chen, Zheng Cao, Zunji Shi, Hehua Lei, Chuan Chen, Peihong Yuan, Fang Wu, Caixiang Liu, Manyuan Dong, Yuchen Song, Jinlin Zhou, Yujing Lu, Limin Zhang. Microbiome analysis combined with targeted metabolomics reveal immunological anti-tumor activity of icariside I in a melanoma mouse model.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Aug; 140(?):111542. doi:
10.1016/j.biopha.2021.111542
. [PMID: 34088571] - Zhan Huang, Tessa Schoones, Jerry M Wells, Vincenzo Fogliano, Edoardo Capuano. Substrate-Driven Differences in Tryptophan Catabolism by Gut Microbiota and Aryl Hydrocarbon Receptor Activation.
Molecular nutrition & food research.
2021 07; 65(13):e2100092. doi:
10.1002/mnfr.202100092
. [PMID: 33964185] - Jiajia Yu, Mengqi Jia, Yongjun Feng. The cytidine repressor regulates the survival of Pantoea agglomerans YS19 under oxidative stress and sulfur starvation conditions.
The Journal of general and applied microbiology.
2021 Jun; 67(2):59-66. doi:
10.2323/jgam.2020.07.001
. [PMID: 33518552] - Zubeyir Elmazoglu, Marta Soltesova Prnova, Milan Stefek, Asli F Ceylan, Michael Aschner, Edgar Rangel-López, Abel Santamaria, Cimen Karasu. Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine.
Neurotoxicity research.
2021 Jun; 39(3):588-597. doi:
10.1007/s12640-021-00349-7
. [PMID: 33713301] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Liang Chang, Nathalie Fischer-Durand, Geoffrey Gontard, Benoît Bertrand, Serge Thorimbert, Luc Dechoux. A Solvent-free, Catalyst-free Formal [3+3] Cycloaddition Dearomatization Strategy: Towards New Fluorophores for Biomolecules Labelling.
ChemSusChem.
2021 Apr; 14(8):1821-1824. doi:
10.1002/cssc.202100301
. [PMID: 33651919] - Annett Richter, Adrian F Powell, Mahdieh Mirzaei, Lucy J Wang, Navid Movahed, Julia K Miller, Miguel A Piñeros, Georg Jander. Indole-3-glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize.
The Plant journal : for cell and molecular biology.
2021 04; 106(1):245-257. doi:
10.1111/tpj.15163
. [PMID: 33458870] - Meng Ye, Miaomiao Liu, Matthias Erb, Gaétan Glauser, Jin Zhang, Xiwang Li, Xiaoling Sun. Indole primes defence signalling and increases herbivore resistance in tea plants.
Plant, cell & environment.
2021 04; 44(4):1165-1177. doi:
10.1111/pce.13897
. [PMID: 32996129] - Suhail Razak, Tayyaba Afsar, Nousheen Bibi, Mahmoud Abulmeaty, Wajhul Qamar, Ali Almajwal, Anam Inam, Dara Al Disi, Maria Shabbir, Mashooq Ahmad Bhat. Molecular docking, pharmacokinetic studies, and in vivo pharmacological study of indole derivative 2-(5-methoxy-2-methyl-1H-indole-3-yl)-N'-[(E)-(3-nitrophenyl) methylidene] acetohydrazide as a promising chemoprotective agent against cisplatin induced organ damage.
Scientific reports.
2021 03; 11(1):6245. doi:
10.1038/s41598-021-84748-y
. [PMID: 33737575] - Linda Jahn, Uta Hofmann, Jutta Ludwig-Müller. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant.
International journal of molecular sciences.
2021 Mar; 22(5):. doi:
10.3390/ijms22052651
. [PMID: 33800748] - Chia-Shan Wu, Sai Deepak Venkata Muthyala, Cory Klemashevich, Arinzechukwu Uchenna Ufondu, Rani Menon, Zheng Chen, Sridevi Devaraj, Arul Jayaraman, Yuxiang Sun. Age-dependent remodeling of gut microbiome and host serum metabolome in mice.
Aging.
2021 02; 13(5):6330-6345. doi:
10.18632/aging.202525
. [PMID: 33612480] - Sascha K Manier, Christina Felske, Josef Zapp, Niels Eckstein, Markus R Meyer. Studies on the In Vitro and In Vivo Metabolic Fate of the New Psychoactive Substance N-Ethyl-N-Propyltryptamine for Analytical Purposes.
Journal of analytical toxicology.
2021 Feb; 45(2):195-202. doi:
10.1093/jat/bkaa060
. [PMID: 32507893] - Chih-Yu Yang, Ting-Wen Chen, Wan-Lun Lu, Shih-Shin Liang, Hsien-Da Huang, Ching-Ping Tseng, Der-Cherng Tarng. Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease.
Cells.
2021 01; 10(1):. doi:
10.3390/cells10010114
. [PMID: 33435396] - Shintaro Inoue, Rihito Morita, Yoshiko Minami. An indigo-producing plant, Polygonum tinctorium, possesses a flavin-containing monooxygenase capable of oxidizing indole.
Biochemical and biophysical research communications.
2021 01; 534(?):199-205. doi:
10.1016/j.bbrc.2020.11.112
. [PMID: 33303189] - Harriet Wall. Welcome to volume 13 of Future Medicinal Chemistry.
Future medicinal chemistry.
2021 01; 13(1):1-3. doi:
10.4155/fmc-2020-0338
. [PMID: 33319591] - Sami A Al-Hussain, Thoraya A Farghaly, Magdi E A Zaki, Hanan G Abdulwahab, Nadia T Al-Qurashi, Zeinab A Muhammad. Discovery of novel indolyl-1,2,4-triazole hybrids as potent vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors with potential anti-renal cancer activity.
Bioorganic chemistry.
2020 12; 105(?):104330. doi:
10.1016/j.bioorg.2020.104330
. [PMID: 33038552] - Fangcong Dong, Fuhua Hao, Iain A Murray, Philip B Smith, Imhoi Koo, Alyssa M Tindall, Penny M Kris-Etherton, Krishne Gowda, Shantu G Amin, Andrew D Patterson, Gary H Perdew. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity.
Gut microbes.
2020 11; 12(1):1-24. doi:
10.1080/19490976.2020.1788899
. [PMID: 32783770] - Linqiang Ma, Honggui Li, Jinbo Hu, Juan Zheng, Jing Zhou, Rachel Botchlett, Destiny Matthews, Tianshu Zeng, Lulu Chen, Xiaoqiu Xiao, Giri Athrey, David W Threadgill, Qingsheng Li, Shannon Glaser, Heather Francis, Fanyin Meng, Qifu Li, Gianfranco Alpini, Chaodong Wu. Indole Alleviates Diet-Induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3.
Hepatology (Baltimore, Md.).
2020 10; 72(4):1191-1203. doi:
10.1002/hep.31115
. [PMID: 31953865] - Hayatte-Dounia Mir, Alexandre Milman, Magali Monnoye, Véronique Douard, Catherine Philippe, Agnès Aubert, Nathalie Castanon, Sylvie Vancassel, Nathalie C Guérineau, Laurent Naudon, Sylvie Rabot. The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice.
Psychoneuroendocrinology.
2020 09; 119(?):104750. doi:
10.1016/j.psyneuen.2020.104750
. [PMID: 32569990] - Cem Varan, Anastasia Anceschi, Serhat Sevli, Natascia Bruni, Leonardo Giraudo, Elif Bilgiç, Petek Korkusuz, Alper B İskit, Francesco Trotta, Erem Bilensoy. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal.
International journal of pharmaceutics.
2020 Jul; 585(?):119485. doi:
10.1016/j.ijpharm.2020.119485
. [PMID: 32497732] - Hayat Kherkhache, Imane Benabdelaziz, Artur M S Silva, Mokhtar Boualem Lahrech, Mokhtar Benalia, Hamada Haba. A new indole alkaloid, antioxidant and antibacterial activities of crude extracts from Saccocalyx satureioides.
Natural product research.
2020 Jun; 34(11):1528-1534. doi:
10.1080/14786419.2018.1519817
. [PMID: 30445859] - Sónia S Ferreira, Filipa Monteiro, Cláudia P Passos, Artur M S Silva, Dulcineia Ferreira Wessel, Manuel A Coimbra, Susana M Cardoso. Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products.
Food research international (Ottawa, Ont.).
2020 06; 132(?):109055. doi:
10.1016/j.foodres.2020.109055
. [PMID: 32331656] - Emiko Sato, Koji Hosomi, Akiyo Sekimoto, Eikan Mishima, Yuji Oe, Daisuke Saigusa, Sadayoshi Ito, Takaaki Abe, Hiroshi Sato, Jun Kunisawa, Toshimitsu Niwa, Nobuyuki Takahashi. Effects of the oral adsorbent AST-120 on fecal p-cresol and indole levels and on the gut microbiota composition.
Biochemical and biophysical research communications.
2020 05; 525(3):773-779. doi:
10.1016/j.bbrc.2020.02.141
. [PMID: 32147096] - Xia Wei, Chan Feng, Si-Yu Wang, Dong-Mei Zhang, Xiao-Hui Li, Cui-Xian Zhang. New Indole Diketopiperazine Alkaloids from Soft Coral-Associated Epiphytic Fungus Aspergillus sp. EGF 15-0-3.
Chemistry & biodiversity.
2020 May; 17(5):e2000106. doi:
10.1002/cbdv.202000106
. [PMID: 32212241] - Li Li, Qingqing Xiong, Jing Zhao, Xuechun Lin, Shuiqin He, Nannan Wu, Ying Yao, Wangqun Liang, Xuezhi Zuo, Chenjiang Ying. Inulin-type fructan intervention restricts the increase in gut microbiome-generated indole in patients with peritoneal dialysis: a randomized crossover study.
The American journal of clinical nutrition.
2020 05; 111(5):1087-1099. doi:
10.1093/ajcn/nqz337
. [PMID: 31942927] - Nadine Schaefer, Ann-Katrin Kröll, Christina Körbel, Matthias W Laschke, Michael D Menger, Hans H Maurer, Markus R Meyer, Peter H Schmidt. Time- and temperature-dependent postmortem concentration changes of the (synthetic) cannabinoids JWH-210, RCS-4, as well as ∆9-tetrahydrocannabinol following pulmonary administration to pigs.
Archives of toxicology.
2020 05; 94(5):1585-1599. doi:
10.1007/s00204-020-02707-4
. [PMID: 32189036] - Jianghao Sun, Craig S Charron, Janet A Novotny, Bing Peng, Liangli Yu, Pei Chen. Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses.
Food chemistry.
2020 Mar; 309(?):125660. doi:
10.1016/j.foodchem.2019.125660
. [PMID: 31670121] - Jie Zeng, Zhijun Zhang, Qi Zhu, Zhiyan Jiang, Guohua Zhong. Simplification of Natural β-Carboline Alkaloids to Obtain Indole Derivatives as Potent Fungicides against Rice Sheath Blight.
Molecules (Basel, Switzerland).
2020 Mar; 25(5):. doi:
10.3390/molecules25051189
. [PMID: 32155800] - H Oberti, M Dalla Rizza, R Reyno, S Murchio, N Altier, E Abreo. Diversity of Claviceps paspali reveals unknown lineages and unique alkaloid genotypes.
Mycologia.
2020 Mar; 112(2):230-243. doi:
10.1080/00275514.2019.1694827
. [PMID: 31910144] - Anna Wlazło, Magdalena Święcicka, Marek D Koter, Tomasz Krępski, Leszek Bolibok, Anna Stochmal, Mariusz Kowalczyk, Monika Rakoczy-Trojanowska. Genes ScBx1 and ScIgl-Competitors or Cooperators?.
Genes.
2020 02; 11(2):. doi:
10.3390/genes11020223
. [PMID: 32093268] - Xun Sun, Ning Wang, Ping Li, Zhiyan Jiang, Xiaoyu Liu, Mengcen Wang, Zhenzhu Su, Chulong Zhang, Fucheng Lin, Yan Liang. Endophytic fungus Falciphora oryzae promotes lateral root growth by producing indole derivatives after sensing plant signals.
Plant, cell & environment.
2020 02; 43(2):358-373. doi:
10.1111/pce.13667
. [PMID: 31675439] - Shuhei Tsutsumi, Yuki Tokunaga, Shunsuke Shimizu, Hideki Kinoshita, Masateru Ono, Katsuhisa Kurogi, Yoichi Sakakibara, Masahito Suiko, Ming-Cheh Liu, Shin Yasuda. Effects of indole and indoxyl on the intracellular oxidation level and phagocytic activity of differentiated HL-60 human macrophage cells.
The Journal of toxicological sciences.
2020; 45(9):569-579. doi:
10.2131/jts.45.569
. [PMID: 32879256] - Gökçe Cihan-Üstündağ, Muhammet Zopun, Evelien Vanderlinden, Elif Ozkirimli, Leentje Persoons, Gültaze Çapan, Lieve Naesens. Superior inhibition of influenza virus hemagglutinin-mediated fusion by indole-substituted spirothiazolidinones.
Bioorganic & medicinal chemistry.
2020 01; 28(1):115130. doi:
10.1016/j.bmc.2019.115130
. [PMID: 31753804] - Chunle Wei, Jian Zhang, Jing Shi, Xiuhai Gan, Deyu Hu, Baoan Song. Synthesis, Antiviral Activity, and Induction of Plant Resistance of Indole Analogues Bearing Dithioacetal Moiety.
Journal of agricultural and food chemistry.
2019 Dec; 67(50):13882-13891. doi:
10.1021/acs.jafc.9b05357
. [PMID: 31721582] - Yan-Qiu Wang, Hong-Xiang Li, Xiao-Chun Liu, Jin-Shuang Zhao, Rong-Qiang Liu, Wen-Ying Huai, Wei-Jun Ding, Tian-E Zhang, Yun Deng. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment.
Natural product research.
2019 Dec; 33(23):3459-3463. doi:
10.1080/14786419.2018.1480623
. [PMID: 29852800] - Nan Zhang, Shijie Cao, Weixing Huang, Pan Li, Ning Kang, Liqin Ding, Feng Qiu. New Indole Glycosides from Aesculus chinensis var. chekiangensis and Their Neuroprotective Activities.
Molecules (Basel, Switzerland).
2019 Nov; 24(22):. doi:
10.3390/molecules24224063
. [PMID: 31717579] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Tzyy-Bin Tsay, Pei-Hsuan Chen, Lee-Wei Chen. Aryl hydrocarbon receptor ligands enhance lung immunity through intestinal IKKβ pathways.
Journal of translational medicine.
2019 09; 17(1):304. doi:
10.1186/s12967-019-2043-8
. [PMID: 31488203] - Tanveer A Wani, Ahmed H Bakheit, Seema Zargar, Mashooq A Bhat, Abdulrahman A Al-Majed. Molecular docking and experimental investigation of new indole derivative cyclooxygenase inhibitor to probe its binding mechanism with bovine serum albumin.
Bioorganic chemistry.
2019 08; 89(?):103010. doi:
10.1016/j.bioorg.2019.103010
. [PMID: 31132602] - Suely Ribeiro Bampi, Angela Maria Casaril, Fernanda S Sabedra Sousa, Ana Paula Pesarico, Beatriz Vieira, Eder João Lenardão, Lucielli Savegnago. Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice.
Pharmacology, biochemistry, and behavior.
2019 08; 183(?):46-55. doi:
10.1016/j.pbb.2019.06.006
. [PMID: 31207269] - Jonas Henrique Costa, Jaqueline Moraes Bazioli, Eder de Vilhena Araújo, Pedro Henrique Vendramini, Mariana Cristina de Freitas Porto, Marcos Nogueira Eberlin, Jayme A Souza-Neto, Taícia Pacheco Fill. Monitoring indole alkaloid production by Penicillium digitatum during infection process in citrus by Mass Spectrometry Imaging and molecular networking.
Fungal biology.
2019 08; 123(8):594-600. doi:
10.1016/j.funbio.2019.03.002
. [PMID: 31345413] - Jing Zheng, Qi Liu, Yifan Xia, Lijuan Bai, Yongjun Feng. Pantoea agglomerans YS19 poly(A) polymerase I gene possesses the indole-sensing sequence in the promoter region.
FEMS microbiology letters.
2019 07; 366(14):. doi:
10.1093/femsle/fnz166
. [PMID: 31344226] - Ajit Kumar Ngangbam, Peter Mouatt, Joshua Smith, Daniel L E Waters, Kirsten Benkendorff. Bromoperoxidase Producing Bacillus spp. Isolated from the Hypobranchial Glands of a Muricid Mollusc Are Capable of Tyrian Purple Precursor Biogenesis.
Marine drugs.
2019 May; 17(5):. doi:
10.3390/md17050264
. [PMID: 31058830] - Anna Okishima, Hiroyuki Koide, Yu Hoshino, Hiromichi Egami, Yoshitaka Hamashima, Naoto Oku, Tomohiro Asai. Design of Synthetic Polymer Nanoparticles Specifically Capturing Indole, a Small Toxic Molecule.
Biomacromolecules.
2019 04; 20(4):1644-1654. doi:
10.1021/acs.biomac.8b01820
. [PMID: 30848887] - J Hibbard, Z-D Jiang, H L DuPont. Fecal calprotectin and fecal indole predict outcome of fecal microbiota transplantation in subjects with recurrent Clostridium difficile infection.
Anaerobe.
2019 Apr; 56(?):102-105. doi:
10.1016/j.anaerobe.2019.03.006
. [PMID: 30851429] - Lingyu Li, Liyan Ma, Dongchun Wang, Hongmei Jia, Meng Yu, Yucheng Gu, Hai Shang, Zhongmei Zou. Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway.
Molecules (Basel, Switzerland).
2019 Mar; 24(6):. doi:
10.3390/molecules24061108
. [PMID: 30897818] - Meng Ye, Gaétan Glauser, Yonggen Lou, Matthias Erb, Lingfei Hu. Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice.
The Plant cell.
2019 03; 31(3):687-698. doi:
10.1105/tpc.18.00569
. [PMID: 30760558] - Florencia Ceppa, Andrea Mancini, Kieran Tuohy. Current evidence linking diet to gut microbiota and brain development and function.
International journal of food sciences and nutrition.
2019 Feb; 70(1):1-19. doi:
10.1080/09637486.2018.1462309
. [PMID: 29671359] - Laila Gasmi, María Martínez-Solís, Ada Frattini, Meng Ye, María Carmen Collado, Ted C J Turlings, Matthias Erb, Salvador Herrero. Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores' Susceptibility to Natural Pathogens?.
Applied and environmental microbiology.
2019 01; 85(1):. doi:
10.1128/aem.01468-18
. [PMID: 30366995] - Wei Dai, Xiangting Ge, Tingting Xu, Chun Lu, Wangfeng Zhou, Dandan Sun, Yuqiang Gong, Yuanrong Dai. Two indole-2-carboxamide derivatives attenuate lipopolysaccharide-induced acute lung injury by inhibiting inflammatory response.
Canadian journal of physiology and pharmacology.
2018 Dec; 96(12):1261-1267. doi:
10.1139/cjpp-2018-0027
. [PMID: 30326195] - Yuhong Yang, Haohao Wu, Shiyuan Dong, Weiya Jin, Kaining Han, Yanmei Ren, Mingyong Zeng. Glycation of fish protein impacts its fermentation metabolites and gut microbiota during in vitro human colonic fermentation.
Food research international (Ottawa, Ont.).
2018 11; 113(?):189-196. doi:
10.1016/j.foodres.2018.07.015
. [PMID: 30195513] - Wentao Liu, Wenfang Qin, Xiaobei Wang, Fei Xue, Xiao-Yu Liu, Yong Qin. Bioinspired Synthesis of (+)-Cinchonidine Using Cascade Reactions.
Angewandte Chemie (International ed. in English).
2018 09; 57(38):12299-12302. doi:
10.1002/anie.201804848
. [PMID: 30084528] - Abhishek Sharma, Priyanka Verma, Archana Mathur, Ajay Kumar Mathur. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus.
Protoplasma.
2018 Sep; 255(5):1281-1294. doi:
10.1007/s00709-018-1233-1
. [PMID: 29508069] - Ma Florencia Peralta, Hannah Smith, Diamond Moody, Stephanie Tristram-Nagle, Dolores C Carrer. Effect of Anti-Leishmania Drugs on the Structural and Elastic Properties of Ultradeformable Lipid Membranes.
The journal of physical chemistry. B.
2018 07; 122(29):7332-7339. doi:
10.1021/acs.jpcb.8b04001
. [PMID: 29972641] - Sebastian J Nintemann, Pascal Hunziker, Tonni G Andersen, Alexander Schulz, Meike Burow, Barbara A Halkier. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates.
Physiologia plantarum.
2018 Jun; 163(2):138-154. doi:
10.1111/ppl.12672
. [PMID: 29194649] - Ni-Ping Li, Miao Liu, Xiao-Jun Huang, Xue-Ying Gong, Wei Zhang, Min-Jing Cheng, Wen-Cai Ye, Lei Wang. Gelsecorydines A-E, Five Gelsedine-Corynanthe-Type Bisindole Alkaloids from the Fruits of Gelsemium elegans.
The Journal of organic chemistry.
2018 05; 83(10):5707-5714. doi:
10.1021/acs.joc.8b00736
. [PMID: 29719959] - Cai-Juan Zheng, Meng Bai, Xue-Ming Zhou, Guo-Lei Huang, Tai-Ming Shao, You-Ping Luo, Zhi-Gang Niu, Yan-Yan Niu, Guang-Ying Chen, Chang-Ri Han. Penicilindoles A-C, Cytotoxic Indole Diterpenes from the Mangrove-Derived Fungus Eupenicillium sp. HJ002.
Journal of natural products.
2018 04; 81(4):1045-1049. doi:
10.1021/acs.jnatprod.7b00673
. [PMID: 29489361] - Chintam Nagendra Reddy, Hussam Alhamza, Shishir Chourey, Qiuji Ye, Vivek Gore, Chantal Cossette, Sylvie Gravel, Irina Slobodchikova, Dajana Vuckovic, Joshua Rokach, William S Powell. Metabolism and pharmacokinetics of a potent N-acylindole antagonist of the OXE receptor for the eosinophil chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) in rats and monkeys.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2018 Mar; 115(?):88-99. doi:
10.1016/j.ejps.2018.01.021
. [PMID: 29339225] - Liping Zhao, Feng Zhang, Xiaoying Ding, Guojun Wu, Yan Y Lam, Xuejiao Wang, Huaqing Fu, Xinhe Xue, Chunhua Lu, Jilin Ma, Lihua Yu, Chengmei Xu, Zhongying Ren, Ying Xu, Songmei Xu, Hongli Shen, Xiuli Zhu, Yu Shi, Qingyun Shen, Weiping Dong, Rui Liu, Yunxia Ling, Yue Zeng, Xingpeng Wang, Qianpeng Zhang, Jing Wang, Linghua Wang, Yanqiu Wu, Benhua Zeng, Hong Wei, Menghui Zhang, Yongde Peng, Chenhong Zhang. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
Science (New York, N.Y.).
2018 03; 359(6380):1151-1156. doi:
10.1126/science.aao5774
. [PMID: 29590046] - Yang Liu, Jianping Li, Jingao Yu, Yingyi Wang, Jingbo Lu, Er-Xin Shang, Zhenhua Zhu, Jianming Guo, Jinao Duan. Disorder of gut amino acids metabolism during CKD progression is related with gut microbiota dysbiosis and metagenome change.
Journal of pharmaceutical and biomedical analysis.
2018 Feb; 149(?):425-435. doi:
10.1016/j.jpba.2017.11.040
. [PMID: 29169110] - Mariola Piślewska-Bednarek, Ryohei Thomas Nakano, Kei Hiruma, Marta Pastorczyk, Andrea Sanchez-Vallet, Suthitar Singkaravanit-Ogawa, Danuta Ciesiołka, Yoshitaka Takano, Antonio Molina, Paul Schulze-Lefert, Paweł Bednarek. Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism.
Plant physiology.
2018 01; 176(1):538-551. doi:
10.1104/pp.17.01455
. [PMID: 29122987] - Mingchao Jin, Xiaoqing Zhang, Qianna Zhen, Yifan He, Xiao Chen, Wenjing Lyu, Runchuan Han, Min Ding. An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode.
Biosensors & bioelectronics.
2017 Dec; 98(?):392-397. doi:
10.1016/j.bios.2017.07.018
. [PMID: 28709089] - Moustafa T Gabr, F Christopher Pigge. Rhenium tricarbonyl complexes of AIE active tetraarylethylene ligands: tuning luminescence properties and HSA-specific binding.
Dalton transactions (Cambridge, England : 2003).
2017 Nov; 46(43):15040-15047. doi:
10.1039/c7dt03380j
. [PMID: 29063077] - Gao Chen, Wei-Chang Gong, Jia Ge, Johann Schinnerl, Bin Wang, Wei-Bang Sun. Variation in floral characters, particularly floral scent, in sapromyophilous Stemona species.
Journal of integrative plant biology.
2017 Nov; 59(11):825-839. doi:
10.1111/jipb.12580
. [PMID: 28836349] - Laura A Jowett, Ethan N W Howe, Vanessa Soto-Cerrato, Wim Van Rossom, Ricardo Pérez-Tomás, Philip A Gale. Indole-based perenosins as highly potent HCl transporters and potential anti-cancer agents.
Scientific reports.
2017 08; 7(1):9397. doi:
10.1038/s41598-017-09645-9
. [PMID: 28839192] - Valentina Lazazzara, Michele Perazzolli, Ilaria Pertot, Franco Biasioli, Gerardo Puopolo, Luca Cappellin. Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains.
Microbiological research.
2017 Aug; 201(?):52-62. doi:
10.1016/j.micres.2017.04.015
. [PMID: 28602402] - Linlin Deng, Qianna Zhen, Jieying Gao, Mingchao Jin, Min Ding, Biao Xu. [Simultaneous determination of plasma indole and skatole in pregnant women with hepatitis B virus infection by high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
2017 Jul; 35(7):735-740. doi:
10.3724/sp.j.1123.2017.03025
. [PMID: 29048838] - Jing Zheng, Jiajia Yu, Mengqi Jia, Liping Zheng, Yongjun Feng. Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions.
Journal of basic microbiology.
2017 Jul; 57(7):633-639. doi:
10.1002/jobm.201700027
. [PMID: 28485502] - Jebiti Haribabu, Kumaramangalam Jeyalakshmi, Yuvaraj Arun, Nattamai S P Bhuvanesh, Paramasivan Thirumalai Perumal, Ramasamy Karvembu. Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
2017 Jun; 22(4):461-480. doi:
10.1007/s00775-016-1424-1
. [PMID: 27995332] - Souhaila Al Khodor, Ibrahim F Shatat. Gut microbiome and kidney disease: a bidirectional relationship.
Pediatric nephrology (Berlin, Germany).
2017 06; 32(6):921-931. doi:
10.1007/s00467-016-3392-7
. [PMID: 27129691] - Bárbara González-Fernández, Diana I Sánchez, Irene Crespo, Beatriz San-Miguel, Marcelino Álvarez, María J Tuñón, Javier González-Gallego. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells.
BioFactors (Oxford, England).
2017 Mar; 43(2):272-282. doi:
10.1002/biof.1342
. [PMID: 27801960] - Zihua Li, Jing Jiang, Xuemei Yu, Cunxiang Wu, Delong Shen, Yongjun Feng. Poly(A) polymerase I participates in the indole regulatory pathway of Pantoea agglomerans YS19.
Microbiology (Reading, England).
2017 02; 163(2):197-206. doi:
10.1099/mic.0.000415
. [PMID: 27995867] - A Sloan Devlin, Angela Marcobal, Dylan Dodd, Stephen Nayfach, Natalie Plummer, Tim Meyer, Katherine S Pollard, Justin L Sonnenburg, Michael A Fischbach. Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota.
Cell host & microbe.
2016 Dec; 20(6):709-715. doi:
10.1016/j.chom.2016.10.021
. [PMID: 27916477] - Zhehao Jin, Jin-Hee Kim, Sang Un Park, Soo-Un Kim. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.
Plant cell reports.
2016 Dec; 35(12):2449-2459. doi:
10.1007/s00299-016-2046-3
. [PMID: 27585574] - Martina Chripkova, Frantisek Zigo, Jan Mojzis. Antiproliferative Effect of Indole Phytoalexins.
Molecules (Basel, Switzerland).
2016 Nov; 21(12):. doi:
10.3390/molecules21121626
. [PMID: 27898039] - Nikita A Durandin, Vladimir B Tsvetkov, Evgeny E Bykov, Dmitry N Kaluzhny, Sergey N Lavrenov, Anna N Tevyashova, Maria N Preobrazhenskaya. Quantitative parameters of complexes of tris(1-alkylindol-3-yl)methylium salts with serum albumin: Relevance for the design of drug candidates.
Journal of photochemistry and photobiology. B, Biology.
2016 Sep; 162(?):570-576. doi:
10.1016/j.jphotobiol.2016.07.017
. [PMID: 27475780] - Cynthia L Chappell, Charles Darkoh, Lawrence Shimmin, Naveed Farhana, Do-Kyun Kim, Pablo C Okhuysen, James Hixson. Fecal Indole as a Biomarker of Susceptibility to Cryptosporidium Infection.
Infection and immunity.
2016 08; 84(8):2299-306. doi:
10.1128/iai.00336-16
. [PMID: 27245413] - Abdul Baten, Ajit Kumar Ngangbam, Daniel L E Waters, Kirsten Benkendorff. Transcriptome of the Australian Mollusc Dicathais orbita Provides Insights into the Biosynthesis of Indoles and Choline Esters.
Marine drugs.
2016 Jul; 14(7):. doi:
10.3390/md14070135
. [PMID: 27447649] - Hironori Tsuchiya. Anesthetic effects changeable in habitual drinkers: Mechanistic drug interactions with neuro-active indoleamine-aldehyde condensation products associated with alcoholic beverage consumption.
Medical hypotheses.
2016 Jul; 92(?):62-6. doi:
10.1016/j.mehy.2016.04.038
. [PMID: 27241259] - Lanting Zeng, Ying Zhou, Jiadong Gui, Xiumin Fu, Xin Mei, Yunpeng Zhen, Tingxiang Ye, Bing Du, Fang Dong, Naoharu Watanabe, Ziyin Yang. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process.
Journal of agricultural and food chemistry.
2016 Jun; 64(24):5011-9. doi:
10.1021/acs.jafc.6b01742
. [PMID: 27263428] - Toru Nakata, Daisuke Kyoui, Hajime Takahashi, Bon Kimura, Takashi Kuda. Inhibitory effects of laminaran and alginate on production of putrefactive compounds from soy protein by intestinal microbiota in vitro and in rats.
Carbohydrate polymers.
2016 Jun; 143(?):61-9. doi:
10.1016/j.carbpol.2016.01.064
. [PMID: 27083344] - Veit Rothhammer, Ivan D Mascanfroni, Lukas Bunse, Maisa C Takenaka, Jessica E Kenison, Lior Mayo, Chun-Cheih Chao, Bonny Patel, Raymond Yan, Manon Blain, Jorge I Alvarez, Hania Kébir, Niroshana Anandasabapathy, Guillermo Izquierdo, Steffen Jung, Nikolaus Obholzer, Nathalie Pochet, Clary B Clish, Marco Prinz, Alexandre Prat, Jack Antel, Francisco J Quintana. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor.
Nature medicine.
2016 06; 22(6):586-97. doi:
10.1038/nm.4106
. [PMID: 27158906] - Canaan M Whitfield-Cargile, Noah D Cohen, Robert S Chapkin, Brad R Weeks, Laurie A Davidson, Jennifer S Goldsby, Carrie L Hunt, Shelby H Steinmeyer, Rani Menon, Jan S Suchodolski, Arul Jayaraman, Robert C Alaniz. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy.
Gut microbes.
2016 05; 7(3):246-61. doi:
10.1080/19490976.2016.1156827
. [PMID: 27007819] - Ran Zuo, Yi Zhang, Jose C Huguet-Tapia, Mishal Mehta, Evelina Dedic, Steven D Bruner, Rosemary Loria, Yousong Ding. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity.
Biotechnology journal.
2016 May; 11(5):624-32. doi:
10.1002/biot.201500416
. [PMID: 26743860] - Makoto Anraku, Daisuke Iohara, Koki Wada, Kazuaki Taguchi, Toru Maruyama, Masaki Otagiri, Kaneto Uekama, Fumitoshi Hirayama. Antioxidant and renoprotective activity of 2-hydroxypropyl-β-cyclodextrin in nephrectomized rats.
The Journal of pharmacy and pharmacology.
2016 May; 68(5):608-14. doi:
10.1111/jphp.12446
. [PMID: 26058311] - Melissa S Hillwig, Mariana Chiozza, Clare L Casteel, Siau Ting Lau, Jessica Hohenstein, Enrique Hernández, Georg Jander, Gustavo C MacIntosh. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.
Molecular plant pathology.
2016 Feb; 17(2):225-35. doi:
10.1111/mpp.12274
. [PMID: 25943308] - Gökçe Cihan-Üstündağ, Elif Gürsoy, Lieve Naesens, Nuray Ulusoy-Güzeldemirci, Gültaze Çapan. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones.
Bioorganic & medicinal chemistry.
2016 Jan; 24(2):240-6. doi:
10.1016/j.bmc.2015.12.008
. [PMID: 26707844] - Raffael Wesoly, Volker Stefanski, Ulrike Weiler. Influence of sampling procedure, sampling location and skin contamination on skatole and indole concentrations in adipose tissue of pigs.
Meat science.
2016 Jan; 111(?):85-91. doi:
10.1016/j.meatsci.2015.08.015
. [PMID: 26348413] - Bekka S Brodie, Tamara Babcock, Regine Gries, Arlan Benn, Gerhard Gries. Acquired Smell? Mature Females of the Common Green Bottle Fly Shift Semiochemical Preferences from Feces Feeding Sites to Carrion Oviposition Sites.
Journal of chemical ecology.
2016 Jan; 42(1):40-50. doi:
10.1007/s10886-015-0658-7
. [PMID: 26637207]