Salicylate (BioDeep_00000897182)
代谢物信息卡片
化学式: C7H5O3- (137.0239)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 75.47%
分子结构信息
SMILES: C1=CC=C(C(=C1)C(=O)O)[O-]
InChI: InChI=1S/C7H6O3/c8-6-4-2-1-3-5(6)7(9)10/h1-4,8H,(H,9,10)/p-1
描述信息
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
A monohydroxybenzoate that is the conjugate base of salicylic acid.
D002491 - Central Nervous System Agents > D000700 - Analgesics
D004791 - Enzyme Inhibitors
同义名列表
1 个代谢物同义名
数据库引用编号
5 个数据库交叉引用编号
- ChEBI: CHEBI:30762
- PubChem: 54675850
- MeSH: Salicylates
- CAS: 63-36-5
- MetaboLights: MTBLC30762
分类词条
相关代谢途径
Reactome(9)
BioCyc(7)
- salicylate degradation III
- volatile benzenoid biosynthesis I (ester formation)
- 4-hydroxymandelate degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- 2,2'-dihydroxybiphenyl degradation
- leucopelargonidin and leucocyanidin biosynthesis
代谢反应
422 个相关的代谢反应过程信息。
Reactome(67)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
L-Gln + phenylacetyl-CoA ⟶ CoA + phenylacetyl glutamine
- Conjugation of carboxylic acids:
L-Gln + phenylacetyl-CoA ⟶ CoA + phenylacetyl glutamine
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of salicylate with glycine:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
- Drug ADME:
AMP + abacavir ⟶ Ade-Rib + xenobiotic
- Aspirin ADME:
ASA + H2O ⟶ ASA- + H+ + H2O
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
- Drug ADME:
IMP + carbovir ⟶ Ino + xenobiotic
- Aspirin ADME:
ASA- (GI cell) + H2O ⟶ H+ + ST (GI cell) + acetate
BioCyc(11)
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- superpathway of salicylate degradation:
O2 + catechol ⟶ H+ + cis,cis-muconate
- naphthalene degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- naphthalene degradation (aerobic):
H2O + trans-O-hydroxybenzylidenepyruvate ⟶ pyruvate + salicylaldehyde
- naphthalene degradation (aerobic):
H2O + NAD+ + salicylaldehyde ⟶ H+ + NADH + salicylate
- naphthalene degradation (aerobic):
H2O + trans-O-hydroxybenzylidenepyruvate ⟶ pyruvate + salicylaldehyde
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- salicylate degradation III:
H+ + salicylate ⟶ CO2 + phenol
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
INOH(0)
PlantCyc(341)
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- superpathway of methylsalicylate metabolism:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
acetyl-CoA + benzyl alcohol ⟶ benzyl acetate + coenzyme A
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- methylsalicylate biosynthesis:
SAM + salicylate ⟶ SAH + methylsalicylate
- volatile benzenoid biosynthesis I (ester formation):
SAM + salicylate ⟶ SAH + methylsalicylate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Yexing Jing, Ziyi Yang, Zongju Yang, Wanqing Bai, Ruizhen Yang, Yanjun Zhang, Kewei Zhang, Yunwei Zhang, Jiaqiang Sun. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence.
The New phytologist.
2024 Jun; 242(6):2524-2540. doi:
10.1111/nph.19760
. [PMID: 38641854] - Ruimin Jia, Keyan Xing, Lin Tian, Xiaomin Dong, Ligang Yu, Xihui Shen, Yang Wang. Analysis of Methylesterase Gene Family in Fragaria vesca Unveils Novel Insights into the Role of FvMES2 in Methyl Salicylate-Mediated Resistance against Strawberry Gray Mold.
Journal of agricultural and food chemistry.
2024 May; 72(20):11392-11404. doi:
10.1021/acs.jafc.4c01447
. [PMID: 38717972] - Jingyu Lin, Weijiao Wang, Mitra Mazarei, Nan Zhao, Xinlu Chen, Vincent R Pantalone, Tarek Hewezi, Charles Neal Stewart, Feng Chen. GmSABP2-1 encodes methyl salicylate esterase and functions in soybean defense against soybean cyst nematode.
Plant cell reports.
2024 May; 43(6):138. doi:
10.1007/s00299-024-03224-9
. [PMID: 38733408] - Ana Fonseca, Sophia Kenney, Emily Van Syoc, Stephanie Bierly, Francisco Dini-Andreote, Justin Silverman, John Boney, Erika Ganda. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota.
Poultry science.
2024 May; 103(5):103604. doi:
10.1016/j.psj.2024.103604
. [PMID: 38484563] - Yong-Jun Huang, Yi-Peng Zang, Li-Jun Peng, Ming-Han Yang, Jing Lin, Wei-Min Chen. Cajaninstilbene acid derivatives conjugated with siderophores of 3-hydroxypyridin-4(1H)-ones as novel antibacterial agents against Gram-negative bacteria based on the Trojan horse strategy.
European journal of medicinal chemistry.
2024 Apr; 269(?):116339. doi:
10.1016/j.ejmech.2024.116339
. [PMID: 38537513] - Muhammad Arslan Mahmood, Muhammad Jawad Akbar Awan, Rubab Zahra Naqvi, Shahid Mansoor. Methyl-salicylate (MeSA)-mediated airborne defence.
Trends in plant science.
2024 Apr; 29(4):391-393. doi:
10.1016/j.tplants.2023.12.001
. [PMID: 38135604] - Bashir Chakar, Sarah Kabir, Chianna Dane, Nicholas Proschogo, Andrew Dawson. Paramao root oil: a novel culprit in salicylate poisoning.
Clinical toxicology (Philadelphia, Pa.).
2024 Mar; 62(3):202-203. doi:
10.1080/15563650.2024.2329347
. [PMID: 38577862] - Yuke Wan, Qicheng Xiao, Xiao Xiao, Yutian Huang, Shiqi Liu, Weiran Feng, Ting Liu, Zhong Ren, Wei Ren, Xubiao Luo, Shenglian Luo. Response of tomatoes to inactivated endophyte LSE01 under combined stress of high-temperature and drought.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108321. doi:
10.1016/j.plaphy.2023.108321
. [PMID: 38181639] - Christina Schmidt, Marco Aras, Oliver Kayser. Engineering cannabinoid production in Saccharomyces cerevisiae.
Biotechnology journal.
2024 Feb; 19(2):e2300507. doi:
10.1002/biot.202300507
. [PMID: 38403455] - Saumya Jaiswal, Durgesh Kumar Tripathi, Ravi Gupta, Jing He, Zhong-Hua Chen, Vijay Pratap Singh. Methyl-salicylate: A surveillance system for triggering immunity in neighboring plants.
Journal of integrative plant biology.
2024 Feb; 66(2):163-165. doi:
10.1111/jipb.13621
. [PMID: 38314644] - Jinchao Wei, Renjian Xu, Yuanyuan Zhang, Lingyu Zhao, Shumu Li, Zhenwen Zhao. Ultra-High-Performance Liquid Chromatography-Electrospray Ionization-High-Resolution Mass Spectrometry for Distinguishing the Origin of Ellagic Acid Extracts: Pomegranate Peels or Gallnuts.
Molecules (Basel, Switzerland).
2024 Jan; 29(3):. doi:
10.3390/molecules29030666
. [PMID: 38338410] - Shan Liu, Faisal Islam, Jianping Chen, Zongtao Sun, Jian Chen. Attention, neighbors: Methyl salicylate mediates plant airborne defense.
Plant communications.
2024 Jan; 5(1):100746. doi:
10.1016/j.xplc.2023.100746
. [PMID: 37950442] - Piotr Michel, Monika Anna Olszewska. Phytochemistry and Biological Profile of Gaultheria procumbens L. and Wintergreen Essential Oil: From Traditional Application to Molecular Mechanisms and Therapeutic Targets.
International journal of molecular sciences.
2024 Jan; 25(1):. doi:
10.3390/ijms25010565
. [PMID: 38203735] - Hesham Shamshoum, Kyle D Medak, Greg L McKie, Stewart Jeromson, Margaret K Hahn, David C Wright. Salsalate and/or metformin therapy confer beneficial metabolic effects in olanzapine treated female mice.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Dec; 168(?):115671. doi:
10.1016/j.biopha.2023.115671
. [PMID: 37839107] - Wasif Nouman, Tehseen Gull, Mehak Shaheen, Rehman Gul. Hormesis management of Moringa oleifera with exogenous application of plant growth regulators under saline conditions.
International journal of phytoremediation.
2023 Nov; ?(?):1-17. doi:
10.1080/15226514.2023.2285846
. [PMID: 38013429] - András Székely, Zsolt Gulyás, Eszter Balogh, Rocky Payet, Tamás Dalmay, Gábor Kocsy, Balázs Kalapos. Identification of ascorbate- and salicylate-responsive miRNAs and verification of the spectral control of miR395 in Arabidopsis.
Physiologia plantarum.
2023 Nov; 175(6):e14070. doi:
10.1111/ppl.14070
. [PMID: 38148221] - Gökhan Özokan, Derya Cansız, Abdulkerim Bilginer, İsmail Ünal, Merih Beler, A Ata Alturfan, Ebru Emekli-Alturfan. Synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos.
Toxicology mechanisms and methods.
2023 Oct; ?(?):1-11. doi:
10.1080/15376516.2023.2272184
. [PMID: 37849293] - Wael M Khamis, Said I Behiry, Samy A Marey, Abdulaziz A Al-Askar, Ghoname Amer, Ahmed A Heflish, Yiming Su, Ahmed Abdelkhalek, Mohamed K Gaber. Phytochemical analysis and insight into insecticidal and antifungal activities of Indian hawthorn leaf extract.
Scientific reports.
2023 Oct; 13(1):17194. doi:
10.1038/s41598-023-43749-9
. [PMID: 37821483] - Natalja P Nørskov, Marco Battelli, Mihai V Curtasu, Dana W Olijhoek, Élisabeth Chassé, Mette Olaf Nielsen. Methane reduction by quercetin, tannic and salicylic acids: influence of molecular structures on methane formation and fermentation in vitro.
Scientific reports.
2023 Sep; 13(1):16023. doi:
10.1038/s41598-023-43041-w
. [PMID: 37749362] - Saskia Spitzer, Jasmin Wloka, Joerg Pietruszka, Oliver Kayser. Generation of cannabigerolic acid derivatives and their precursors using the promiscuity of the aromatic prenyltransferase NphB.
Chembiochem : a European journal of chemical biology.
2023 Sep; ?(?):e202300441. doi:
10.1002/cbic.202300441
. [PMID: 37690998] - Zhouli Xie, Shuai Zhao, Ying Li, Yuhua Deng, Yabo Shi, Xiaoyuan Chen, Yue Li, Haiwei Li, Changtian Chen, Xingwei Wang, Enhui Liu, Yuchen Tu, Peng Shi, Jinjin Tong, Emilio Gutierrez-Beltran, Jiayu Li, Peter V Bozhkov, Weiqiang Qian, Mian Zhou, Wei Wang. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition.
Nature plants.
2023 09; 9(9):1481-1499. doi:
10.1038/s41477-023-01499-6
. [PMID: 37640933] - Guang Zhao, Meng Gao, Shujie Guo, Shumin Zeng, Chen Ye, Mengnan Wang, Zahid Anwar, Beijuan Hu, Yijiang Hong. UV filter ethylhexyl salicylate affects cardiovascular development by disrupting lipid metabolism in zebrafish embryos.
The Science of the total environment.
2023 Aug; 888(?):164073. doi:
10.1016/j.scitotenv.2023.164073
. [PMID: 37201812] - Baoping Cheng, Le Xu, Muhammad Saqib Bilal, Qing Huang, Dongdong Niu, Hongyu Ma, Shaoxia Zhou, Aitian Peng, Guo Wei, Feng Chen, Liang Zeng, Hong Lin, Ayesha Baig, Xuefeng Wang, Xiuping Zou, Hongwei Zhao. Small RNAs contribute to citrus Huanglongbing tolerance by manipulating methyl salicylate signaling and exogenous methyl salicylate primes citrus groves from emerging infection.
The Plant journal : for cell and molecular biology.
2023 Aug; ?(?):. doi:
10.1111/tpj.16426
. [PMID: 37614043] - Manoj Sapkota, Lara Pereira, Yanbing Wang, Lei Zhang, Yasin Topcu, Denise Tieman, Esther van der Knaap. Structural variation underlies functional diversity at methyl salicylate loci in tomato.
PLoS genetics.
2023 May; 19(5):e1010751. doi:
10.1371/journal.pgen.1010751
. [PMID: 37141297] - Tamara Savina, Valery Lisun, Pavel Feduraev, Liubov Skrypnik. Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.).
Molecules (Basel, Switzerland).
2023 Apr; 28(8):. doi:
10.3390/molecules28083512
. [PMID: 37110746] - Nan Guo, Hongye Qu, Yue Zhi, Yuyi Zhang, Shujing Cheng, Jinfang Chu, Zhengguang Zhang, Guohua Xu. Knockout of amino acid transporter gene OsLHT1 accelerates leaf senescence and enhances resistance to rice blast fungus.
Journal of experimental botany.
2023 Apr; ?(?):. doi:
10.1093/jxb/erad125
. [PMID: 37010326] - A M Ashrafi, Z Bytešníková, C Cané, L Richtera, S Vallejos. New trends in methyl salicylate sensing and their implications in agriculture.
Biosensors & bioelectronics.
2023 Mar; 223(?):115008. doi:
10.1016/j.bios.2022.115008
. [PMID: 36577177] - Zhao-Kai Yang, Cheng Qu, Shi-Xiang Pan, Yan Liu, Zhuo Shi, Chen Luo, Yao-Guo Qin, Xin-Ling Yang. Aphid-repellent, ladybug-attraction activities, and binding mechanism of methyl salicylate derivatives containing geraniol moiety.
Pest management science.
2023 Feb; 79(2):760-770. doi:
10.1002/ps.7245
. [PMID: 36259292] - Fiaz Alam, Muhammad Hanif, Asad Ur Rahman, Sayyad Ali, Saeed Jan. In vitro, in vivo and in silico evaluation of analgesic, anti-inflammatory, and anti-pyretic activity of salicylate rich fraction from Gaultheria trichophylla Royle (Ericaceae).
Journal of ethnopharmacology.
2023 Jan; 301(?):115828. doi:
10.1016/j.jep.2022.115828
. [PMID: 36240979] - Xiaoyu Zhang, Yuan Gao, Zhuangzhuang Liu, Wenjing Li, Yuan Kang, Ximeng Li, Zhenlu Xu, Cheng Peng, Yun Qi. Salicylate Sodium Suppresses Monocyte Chemoattractant Protein-1 Production by Directly Inhibiting Phosphodiesterase 3B in TNF-α-Stimulated Adipocytes.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010320
. [PMID: 36613764] - Michio Murakoshi, Yuhi Koike, Shin Koyama, Shinichi Usami, Kazusaku Kamiya, Katsuhisa Ikeda, Yoichi Haga, Kohei Tsumoto, Hiroyuki Nakamura, Noriyasu Hirasawa, Kenji Ishihara, Hiroshi Wada. Effects of salicylate derivatives on localization of p.H723R allele product of SLC26A4.
Auris, nasus, larynx.
2022 Dec; 49(6):928-937. doi:
10.1016/j.anl.2022.03.009
. [PMID: 35305848] - Jingbo Ma, Yang Gu, Peng Xu. Biosynthesis of cannabinoid precursor olivetolic acid in genetically engineered Yarrowia lipolytica.
Communications biology.
2022 11; 5(1):1239. doi:
10.1038/s42003-022-04202-1
. [PMID: 36371560] - Orsolya Kinga Gondor, Magda Pál, Tibor Janda, Gabriella Szalai. The role of methyl salicylate in plant growth under stress conditions.
Journal of plant physiology.
2022 Oct; 277(?):153809. doi:
10.1016/j.jplph.2022.153809
. [PMID: 36099699] - Murtaza Khan, Sajid Ali, Hakim Manghwar, Saddam Saqib, Fazal Ullah, Asma Ayaz, Wajid Zaman. Melatonin Function and Crosstalk with Other Phytohormones under Normal and Stressful Conditions.
Genes.
2022 Sep; 13(10):. doi:
10.3390/genes13101699
. [PMID: 36292584] - Isaac Duah Boateng. A critical review of ginkgolic acids in Ginkgo biloba leaf extract (EGb): toxicity and technologies to remove ginkgolic acids and their promising bioactivities.
Food & function.
2022 Sep; 13(18):9226-9242. doi:
10.1039/d2fo01827f
. [PMID: 36065842] - Marina Antonacci, Jacopo Raffaele Dibenedetto, Fatima Maqoud, Gerardo Centoducati, Nicola Colonna, Francesco Leonetti, Domenico Tricarico. Counteractions of a Novel Hydroalcoholic Extract from Lens Culinaria against the Dexamethasone-Induced Osteoblast Loss of Native Murine Cells.
Cells.
2022 09; 11(19):. doi:
10.3390/cells11192936
. [PMID: 36230898] - Peizhou Xu, Tingkai Wu, Asif Ali, Jinhao Wang, Yongqiong Fang, Runrun Qiang, Yutong Liu, Yunfeng Tian, Su Liu, Hongyu Zhang, Yongxiang Liao, Xiaoqiong Chen, Farwa Shoaib, Changhui Sun, Zhengjun Xu, Duo Xia, Hao Zhou, Xianjun Wu. Rice β-Glucosidase 4 (Os1βGlu4) Regulates the Hull Pigmentation via Accumulation of Salicylic Acid.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810646
. [PMID: 36142555] - Joséphine Franceschi, Anne-Sophie Darrigade, Marie-Hélène Jegou, Brigitte Milpied. First report of allergic contact dermatitis caused by Gaultheria procumbens (wintergreen) essential oil.
Contact dermatitis.
2022 08; 87(2):193-195. doi:
10.1111/cod.14120
. [PMID: 35368095] - Sandro L Barbosa, David Lee Nelson, Milton de S Freitas, Wallans Torres Pio Dos Santos, Stanlei I Klein, Giuliano C Clososki, Franco J Caires, Alexandre P Wentz. Tandem Transesterification-Esterification Reactions Using a Hydrophilic Sulfonated Silica Catalyst for the Synthesis of Wintergreen Oil from Acetylsalicylic Acid Promoted by Microwave Irradiation.
Molecules (Basel, Switzerland).
2022 Jul; 27(15):. doi:
10.3390/molecules27154767
. [PMID: 35897943] - Isaac Duah Boateng. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5'-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed.
Food chemistry.
2022 Jul; 382(?):132408. doi:
10.1016/j.foodchem.2022.132408
. [PMID: 35176549] - David Gutierrez-Larruscain, Manuela Krüger, Oushadee A J Abeyawardana, Claudia Belz, Petre I Dobrev, Radomíra Vaňková, Kateřina Eliášová, Zuzana Vondráková, Miloslav Juříček, Helena Štorchová. The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in Chenopodium ficifolium 459.
Plant science : an international journal of experimental plant biology.
2022 Jul; 320(?):111279. doi:
10.1016/j.plantsci.2022.111279
. [PMID: 35643618] - Sylwester Mazurek, Maciej Włodarczyk, Sonia Pielorz, Piotr Okińczyc, Piotr M Kuś, Gabriela Długosz, Diana Vidal-Yañez, Roman Szostak. Quantification of Salicylates and Flavonoids in Poplar Bark and Leaves Based on IR, NIR, and Raman Spectra.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123954
. [PMID: 35745076] - Piotr Michel, Sebastian Granica, Karolina Rosińska, Małgorzata Glige, Jarosław Rojek, Łukasz Poraj, Monika Anna Olszewska. The Effect of Standardised Leaf Extracts of Gaultheria procumbens on Multiple Oxidants, Inflammation-Related Enzymes, and Pro-Oxidant and Pro-Inflammatory Functions of Human Neutrophils.
Molecules (Basel, Switzerland).
2022 May; 27(10):. doi:
10.3390/molecules27103357
. [PMID: 35630834] - Jody L Greaney, Erika F H Saunders, Lacy M Alexander. Short-term salicylate treatment improves microvascular endothelium-dependent dilation in young adults with major depressive disorder.
American journal of physiology. Heart and circulatory physiology.
2022 05; 322(5):H880-H889. doi:
10.1152/ajpheart.00643.2021
. [PMID: 35363580] - Yahui Gao, Jing Feng, Jiafa Wu, Kun Wang, Shuang Wu, Hongcun Liu, Mingguo Jiang. Transcriptome analysis of the growth-promoting effect of volatile organic compounds produced by Microbacterium aurantiacum GX14001 on tobacco (Nicotiana benthamiana).
BMC plant biology.
2022 Apr; 22(1):208. doi:
10.1186/s12870-022-03591-z
. [PMID: 35448945] - Zhong-Wei Zhang, Zong-Lin Deng, Qi Tao, Hong-Qian Peng, Fan Wu, Yu-Fan Fu, Xin-Yue Yang, Pei-Zhou Xu, Yun Li, Chang-Quan Wang, Yang-Er Chen, Ming Yuan, Ting Lan, Xiao-Yan Tang, Guang-Deng Chen, Jian Zeng, Shu Yuan. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea.
Chemosphere.
2022 Apr; 292(?):133466. doi:
10.1016/j.chemosphere.2021.133466
. [PMID: 34973246] - Boon Lim, Yutong Yin, Hua Ye, Zhanfeng Cui, Antonis Papachristodoulou, Wei E Huang. Reprogramming Synthetic Cells for Targeted Cancer Therapy.
ACS synthetic biology.
2022 03; 11(3):1349-1360. doi:
10.1021/acssynbio.1c00631
. [PMID: 35255684] - Zewen Wen, Yuxi Zhao, Zhengyang Gong, Yuanyuan Tang, Yanpeng Xiong, Junwen Chen, Chengchun Chen, Yufang Zhang, Shanghong Liu, Jinxin Zheng, Duoyun Li, Qiwen Deng, Zhijian Yu. The Mechanism of Action of Ginkgolic Acid (15:1) against Gram-Positive Bacteria Involves Cross Talk with Iron Homeostasis.
Microbiology spectrum.
2022 02; 10(1):e0099121. doi:
10.1128/spectrum.00991-21
. [PMID: 35019708] - Danuta Gajewska, Paula Gosa, Paulina Katarzyna Kęszycka. Dietary Intervention Effectiveness, Clinical Outcomes and Nutrient and Salicylate Intakes in Older Adults Living in Long-Term Care Homes: The Results from the Senior's Plate Project.
Nutrients.
2022 Feb; 14(4):. doi:
10.3390/nu14040871
. [PMID: 35215521] - Yanina Burgart, Evgeny Shchegolkov, Irina Shchur, Dmitry Kopchuk, Natalia Gerasimova, Sophia Borisevich, Natalia Evstigneeva, Grigory Zyryanov, Maria Savchuk, Maria Ulitko, Natalia Zilberberg, Nikolai Kungurov, Victor Saloutin, Valery Charushin, Oleg Chupakhin. Promising Antifungal and Antibacterial Agents Based on 5-Aryl-2,2'-bipyridines and Their Heteroligand Salicylate Metal Complexes: Synthesis, Bioevaluation, Molecular Docking.
ChemMedChem.
2022 02; 17(3):e202100577. doi:
10.1002/cmdc.202100577
. [PMID: 34783161] - Sarah A Doydora, Oliver Baars, James M Harrington, Owen W Duckworth. Salicylate coordination in metal-protochelin complexes.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2022 02; 35(1):87-98. doi:
10.1007/s10534-021-00352-7
. [PMID: 34837588] - Robert J Brosnan, Kimberly Ramos, Antonio Jose de Araujo Aguiar, Alessia Cenani, Heather K Knych. Anesthetic Pharmacology of the Mint Extracts L-Carvone and Methyl Salicylate.
Pharmacology.
2022; 107(3-4):167-178. doi:
10.1159/000520762
. [PMID: 35100605] - Wang Yinghao, Guan Qiaoli, Liu Guanfu, Wu Xiaoyun, Wang Xuanjun, Sheng Jun. 2'-O-Methylperlatolic Acid Enhances Insulin-Regulated Blood Glucose-Lowering Effect through Insulin Receptor Signaling Pathway.
Journal of diabetes research.
2022; 2022(?):2042273. doi:
10.1155/2022/2042273
. [PMID: 35502441] - Emily A Day, Rebecca J Ford, Brennan K Smith, Vanessa P Houde, Stephanie Stypa, Sonia Rehal, Sarka Lhotak, Bruce E Kemp, Bernardo L Trigatti, Geoff H Werstuck, Richard C Austin, Morgan D Fullerton, Gregory R Steinberg. Salsalate reduces atherosclerosis through AMPKβ1 in mice.
Molecular metabolism.
2021 11; 53(?):101321. doi:
10.1016/j.molmet.2021.101321
. [PMID: 34425254] - Hong-Mei Li, Hui Ma, Xiaolong Sun, Bohan Li, Chengjiang Cao, Yiqun Dai, Meilin Zhu, Cheng-Zhu Wu. Anti-Cancer Properties of Ginkgolic Acids in Human Nasopharyngeal Carcinoma CNE-2Z Cells via Inhibition of Heat Shock Protein 90.
Molecules (Basel, Switzerland).
2021 Oct; 26(21):. doi:
10.3390/molecules26216575
. [PMID: 34770993] - Xavier Poitou, Pascaline Redon, Alexandre Pons, Emilie Bruez, Laurent Delière, Axel Marchal, Céline Cholet, Laurence Geny-Denis, Philippe Darriet. Methyl salicylate, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases.
Food chemistry.
2021 Oct; 360(?):130120. doi:
10.1016/j.foodchem.2021.130120
. [PMID: 34034050] - Divya Kattupalli, Artur Pinski, Sweda Sreekumar, Aswathi Usha, Aiswarya Girija, Manfred Beckmann, Luis Alejandro Jose Mur, Soniya Eppurathu Vasudevan. Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111433
. [PMID: 34768864] - Kyriaki Antoniadou, Corinna Herz, Nguyen Phan Khoi Le, Verena Karolin Mittermeier-Kleßinger, Nadja Förster, Matthias Zander, Christian Ulrichs, Inga Mewis, Thomas Hofmann, Corinna Dawid, Evelyn Lamy. Identification of Salicylates in Willow Bark (Salix Cortex) for Targeting Peripheral Inflammation.
International journal of molecular sciences.
2021 Oct; 22(20):. doi:
10.3390/ijms222011138
. [PMID: 34681798] - Shima Eldurini, Bothaina M Abd El-Hady, Medhat W Shafaa, Abdul Aziz M Gad, Emad Tolba. A multicompartment vascular implant of electrospun wintergreen oil/ polycaprolactone fibers coated with poly(ethylene oxide).
Biomedical journal.
2021 10; 44(5):589-597. doi:
10.1016/j.bj.2020.04.008
. [PMID: 32389823] - Ikechukwu C Okorafor, Mengbin Chen, Yi Tang. High-Titer Production of Olivetolic Acid and Analogs in Engineered Fungal Host Using a Nonplant Biosynthetic Pathway.
ACS synthetic biology.
2021 09; 10(9):2159-2166. doi:
10.1021/acssynbio.1c00309
. [PMID: 34415146] - Muhammad Aamir Manzoor, Muhammad Mudassar Manzoor, Guohui Li, Muhammad Abdullah, Wang Han, Han Wenlong, Awais Shakoor, Muhammad Waheed Riaz, Shamsur Rehman, Yongping Cai. Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri).
BMC plant biology.
2021 Sep; 21(1):413. doi:
10.1186/s12870-021-03191-3
. [PMID: 34503442] - Zeenia Aga, Nicola Matthews, Sarah Delaney, Natalie Wong, Rachel Poley, Jeffrey Perl. Finding the source of intoxication: better salicylate than never.
Kidney international.
2021 09; 100(3):711-712. doi:
10.1016/j.kint.2021.05.020
. [PMID: 34420669] - Peiguo Yuan, Kiwamu Tanaka, B W Poovaiah. Calmodulin-binding transcription activator AtSR1/CAMTA3 fine-tunes plant immune response by transcriptional regulation of the salicylate receptor NPR1.
Plant, cell & environment.
2021 09; 44(9):3140-3154. doi:
10.1111/pce.14123
. [PMID: 34096631] - Jessica P Yactayo-Chang, Jorrel Mendoza, Steven D Willms, Caitlin C Rering, John J Beck, Anna K Block. Zea mays Volatiles that Influence Oviposition and Feeding Behaviors of Spodoptera frugiperda.
Journal of chemical ecology.
2021 Sep; 47(8-9):799-809. doi:
10.1007/s10886-021-01302-w
. [PMID: 34347233] - Katharina E Ebert, Vladimir N Belov, Tobias Weiss, Thomas Brüning, Heiko Hayen, Holger M Koch, Daniel Bury. Determination of urinary metabolites of the UV filter homosalate by online-SPE-LC-MS/MS.
Analytica chimica acta.
2021 Sep; 1176(?):338754. doi:
10.1016/j.aca.2021.338754
. [PMID: 34399889] - Abdou Madjid Olatounde Amoussa, Lixia Zhang, Camel Lagnika, Asad Riaz, Liuquan Zhang, Xianjin Liu, Trust Beta. Effects of preheating and drying methods on pyridoxine, phenolic compounds, ginkgolic acids, and antioxidant capacity of Ginkgo biloba nuts.
Journal of food science.
2021 Sep; 86(9):4197-4208. doi:
10.1111/1750-3841.15864
. [PMID: 34370293] - Hamid Reza Kalhor, Elham Taghikhani. Probe into the Molecular Mechanism of Ibuprofen Interaction with Warfarin Bound to Human Serum Albumin in Comparison to Ascorbic and Salicylic Acids: Allosteric Inhibition of Anticoagulant Release.
Journal of chemical information and modeling.
2021 08; 61(8):4045-4057. doi:
10.1021/acs.jcim.1c00352
. [PMID: 34292735] - Münteha Özsoy, Vesen Atiroğlu, Gamze Guney Eskiler, Atheer Atiroğlu, Asuman Deveci Ozkan, Mahmut Özacar. A protein-sulfosalicylic acid/boswellic acids @metal-organic framework nanocomposite as anticancer drug delivery system.
Colloids and surfaces. B, Biointerfaces.
2021 Aug; 204(?):111788. doi:
10.1016/j.colsurfb.2021.111788
. [PMID: 33932885] - H-S Wei, J-H Qin, Y-Z Cao, K-B Li, J Yin. Two classic OBPs modulate the responses of female Holotrichia oblita to three major ester host plant volatiles.
Insect molecular biology.
2021 08; 30(4):390-399. doi:
10.1111/imb.12703
. [PMID: 33822423] - Marouf Alhalabi, Mohammed Waleed Alassi, Kamal Alaa Eddin, Khaled Cheha. Efficacy of two-week therapy with doxycycline-based quadruple regimen versus levofloxacin concomitant regimen for helicobacter pylori infection: a prospective single-center randomized controlled trial.
BMC infectious diseases.
2021 Jul; 21(1):642. doi:
10.1186/s12879-021-06356-5
. [PMID: 34218802] - Jiahui Liu, Xiaojing Zhao, Yidi Zhan, Kang Wang, Frederic Francis, Yong Liu. New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem.
Pest management science.
2021 Jul; 77(7):3341-3348. doi:
10.1002/ps.6378
. [PMID: 33773020] - Eric M Desjardins, Brennan K Smith, Gregory R Steinberg, Russell E Brown. Sevoflurane-induced hyperglycemia is attenuated by salsalate in obese insulin-resistant mice.
Canadian journal of anaesthesia = Journal canadien d'anesthesie.
2021 07; 68(7):972-979. doi:
10.1007/s12630-021-01935-1
. [PMID: 33580878] - Yuan Xiong, Guang-Hao Zhu, Hao-Nan Wang, Qing Hu, Li-Li Chen, Xiao-Qing Guan, Hui-Liang Li, Hong-Zhuan Chen, Hui Tang, Guang-Bo Ge. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening.
Fitoterapia.
2021 Jul; 152(?):104909. doi:
10.1016/j.fitote.2021.104909
. [PMID: 33894315] - S Trifilio, L Gordon, H Rubin, N Grosshans, J Mehta. The non-steroidal anti-inflammatory drug salsalate provides safe and effective control of mucositis-unrelated pain during autologous and allogeneic hematopoietic stem cell transplantation.
Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer.
2021 Jul; 29(7):3643-3648. doi:
10.1007/s00520-020-05664-x
. [PMID: 33179136] - Seon-Mi Seo, Jae-Woo Lee, Jonghyun Shin, Jun-Hyung Tak, Jinho Hyun, Il-Kwon Park. Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus.
Scientific reports.
2021 06; 11(1):12038. doi:
10.1038/s41598-021-91442-6
. [PMID: 34103581] - Eunwoo Kim, Jun Gi Hwang, Su Jun Park, Ji Young Han, Young-Sim Choi, Se-Rin Park, Kyung-Sang Yu, Min Kyu Park, SeungHwan Lee. Pharmacokinetic comparison between tablet of varenicline tartrate and orally disintegrating film of varenicline salicylate in healthy subjects.
International journal of clinical pharmacology and therapeutics.
2021 Jun; 59(6):478-484. doi:
10.5414/cp203953
. [PMID: 33704052] - Jun-Nan Yang, Jia-Ning Wei, Le Kang. Feeding of pea leafminer larvae simultaneously activates jasmonic and salicylic acid pathways in plants to release a terpenoid for indirect defense.
Insect science.
2021 Jun; 28(3):811-824. doi:
10.1111/1744-7917.12820
. [PMID: 32432392] - Mohsen Vaez, Seyed Javad Davarpanah. New Insights into the Biological Activity of Lichens: Bioavailable Secondary Metabolites of Umbilicaria decussata as Potential Anticoagulants.
Chemistry & biodiversity.
2021 May; 18(5):e2100080. doi:
10.1002/cbdv.202100080
. [PMID: 33773025] - Kyungjin Lee, Geun-Hee Choi, Kyoungwhan Back. Inhibition of Rice Serotonin N-Acetyltransferases by MG149 Decreased Melatonin Synthesis in Rice Seedlings.
Biomolecules.
2021 04; 11(5):. doi:
10.3390/biom11050658
. [PMID: 33946959] - Steven E Naranjo, James R Hagler, John A Byers. Methyl Salicylate Fails to Enhance Arthropod Predator Abundance or Predator to Pest Ratios in Cotton.
Environmental entomology.
2021 04; 50(2):293-305. doi:
10.1093/ee/nvaa175
. [PMID: 33399185] - Leigh J Sowerby, Krupal B Patel, Crystal Schmerk, Brian W Rotenberg, Taciano Rocha, Doron D Sommer. Effect of low salicylate diet on clinical and inflammatory markers in patients with aspirin exacerbated respiratory disease - a randomized crossover trial.
Journal of otolaryngology - head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale.
2021 Apr; 50(1):27. doi:
10.1186/s40463-021-00502-4
. [PMID: 33892819] - Binsheng Luo, Ertan Kastrat, Taylan Morcol, Haiping Cheng, Edward Kennelly, Chunlin Long. Gaultheria longibracteolata, an alternative source of wintergreen oil.
Food chemistry.
2021 Apr; 342(?):128244. doi:
10.1016/j.foodchem.2020.128244
. [PMID: 33097325] - Hem C Joshi, Liudmil Antonov. Excited-State Intramolecular Proton Transfer: A Short Introductory Review.
Molecules (Basel, Switzerland).
2021 Mar; 26(5):. doi:
10.3390/molecules26051475
. [PMID: 33803102] - Hung-Yueh Chen, Yuwen Ting, Hsing-Chun Kuo, Chang-Wei Hsieh, Hsien-Yi Hsu, Chun-Nan Wu, Kuan-Chen Cheng. Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe3O4/nylon composite nanoparticles using novel coaxial electrospraying process.
International journal of biological macromolecules.
2021 Mar; 172(?):270-280. doi:
10.1016/j.ijbiomac.2021.01.004
. [PMID: 33418049] - Suguru Komatsuzaki, Narisara Piyasaengthong, Shigeru Matsuyama, Yooichi Kainoh. Effect of Leaf Maturity on Host Habitat Location by the Egg-Larval Parasitoid Ascogaster reticulata.
Journal of chemical ecology.
2021 Mar; 47(3):294-302. doi:
10.1007/s10886-021-01250-5
. [PMID: 33523390] - Ai Huey Tan, Chun Wie Chong, Shen-Yang Lim, Ivan Kok Seng Yap, Cindy Shuan Ju Teh, Mun Fai Loke, Sze-Looi Song, Jiun Yan Tan, Ban Hong Ang, Yong Qi Tan, Mee Teck Kho, Jeff Bowman, Sanjiv Mahadeva, Hoi Sen Yong, Anthony E Lang. Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi-Omics.
Annals of neurology.
2021 03; 89(3):546-559. doi:
10.1002/ana.25982
. [PMID: 33274480] - Charat Thongprayoon, Tananchai Petnak, Wisit Kaewput, Fawad Qureshi, Michael A Mao, Aleksandra I Pivovarova, Boonphiphop Boonpheng, Tarun Bathini, Saraschandra Vallabhajosyula, Juan Medaura, Wisit Cheungpasitporn. Acute kidney injury among salicylate intoxication hospitalisations in the United States.
International journal of clinical practice.
2021 Mar; 75(3):e13745. doi:
10.1111/ijcp.13745
. [PMID: 32991024] - Md Mahi Imam Mollah, Shabbir Ahmed, Yonggyun Kim. Immune mediation of HMG-like DSP1 via Toll-Spätzle pathway and its specific inhibition by salicylic acid analogs.
PLoS pathogens.
2021 03; 17(3):e1009467. doi:
10.1371/journal.ppat.1009467
. [PMID: 33765093] - Lisha Wang, Zhi Wang, Tianji Xia, Fangrui Cao, Linhu Ye, Ruile Pan, Suwei Jin, Mingzhu Yan, Qi Chang. Absorption, Metabolism, and Excretion of Cajaninstilbene Acid.
Journal of agricultural and food chemistry.
2021 Feb; 69(7):2129-2137. doi:
10.1021/acs.jafc.0c06954
. [PMID: 33560125] - Xu'an Fang, Yuan-Jun Tong, Nan Li, Lu-Dan Yu, Gangfeng Ouyang, Fang Zhu. In vivo tracing of endogenous salicylic acids as the biomarkers for evaluating the toxicity of nano-TiO2 to plants.
Analytica chimica acta.
2021 Feb; 1145(?):79-86. doi:
10.1016/j.aca.2020.10.063
. [PMID: 33453883] - Dong Liang, Jing Ma, Bo Wei. Oral absorption and drug interaction kinetics of moxifloxacin in an animal model of weightlessness.
Scientific reports.
2021 01; 11(1):2605. doi:
10.1038/s41598-021-82044-3
. [PMID: 33510326] - Laura Pérez-Martín, Silvia Busoms, Roser Tolrà, Charlotte Poschenrieder. Transcriptomics Reveals Fast Changes in Salicylate and Jasmonate Signaling Pathways in Shoots of Carbonate-Tolerant Arabidopsis thaliana under Bicarbonate Exposure.
International journal of molecular sciences.
2021 Jan; 22(3):. doi:
10.3390/ijms22031226
. [PMID: 33513755] - Tiffany Chien, Drew R Jones, Tal Danino. Engineered Bacterial Production of Volatile Methyl Salicylate.
ACS synthetic biology.
2021 01; 10(1):204-208. doi:
10.1021/acssynbio.0c00497
. [PMID: 33331760] - Chao Zeng, Weiya Zhang, Michael Doherty, Monica S M Persson, Christian Mallen, Subhashisa Swain, Xiaoxiao Li, Jie Wei, Guanghua Lei, Yuqing Zhang. Initial analgesic prescriptions for osteoarthritis in the United Kingdom, 2000-2016.
Rheumatology (Oxford, England).
2021 01; 60(1):147-159. doi:
10.1093/rheumatology/keaa244
. [PMID: 32594175] - Gregory E Bigford, Angela Szeto, John Kimball, Edward E Herderick, Armando J Mendez, Mark S Nash. Cardiometabolic risks and atherosclerotic disease in ApoE knockout mice: Effect of spinal cord injury and Salsalate anti-inflammatory pharmacotherapy.
PloS one.
2021; 16(2):e0246601. doi:
10.1371/journal.pone.0246601
. [PMID: 33626069] - Christopher Stathis, Nikolas Victoria, Kristin Loomis, Shaun A Nguyen, Maren Eggers, Edward Septimus, Nasia Safdar. Review of the use of nasal and oral antiseptics during a global pandemic.
Future microbiology.
2021 01; 16(?):119-130. doi:
10.2217/fmb-2020-0286
. [PMID: 33464122] - Jishma Panichikkal, Gopika Prathap, Remakanthan Appukuttan Nair, Radhakrishnan Edayileveetil Krishnankutty. Evaluation of plant probiotic performance of Pseudomonas sp. encapsulated in alginate supplemented with salicylic acid and zinc oxide nanoparticles.
International journal of biological macromolecules.
2021 Jan; 166(?):138-143. doi:
10.1016/j.ijbiomac.2020.10.110
. [PMID: 33096173] - Hui Huang, Qinhui Liu, Ting Zhang, Jinhang Zhang, Jian Zhou, Xiandan Jing, Qin Tang, Cuiyuan Huang, Zijing Zhang, Yingnan Zhao, Guorong Zhang, Jiamin Yan, Yan Xia, Ying Xu, Jiahui Li, Yanping Li, Jinhan He. Farnesylthiosalicylic Acid-Loaded Albumin Nanoparticle Alleviates Renal Fibrosis by Inhibiting Ras/Raf1/p38 Signaling Pathway.
International journal of nanomedicine.
2021; 16(?):6441-6453. doi:
10.2147/ijn.s318124
. [PMID: 34584410] - Kandasamy Kalaivani, Marimuthu Maruthi-Kalaiselvi, Sengottayan Senthil-Nathan. Seed treatment and foliar application of methyl salicylate (MeSA) as a defense mechanism in rice plants against the pathogenic bacterium, Xanthomonas oryzae pv. oryzae.
Pesticide biochemistry and physiology.
2021 Jan; 171(?):104718. doi:
10.1016/j.pestbp.2020.104718
. [PMID: 33357540]