Acetic acid (BioDeep_00000003346)
Secondary id: BioDeep_00000405191, BioDeep_00000628668
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C2H4O2 (60.0211284)
中文名称: 乙酸-2-13C,2,2,2-d3, 乙酸, 冰乙酸
谱图信息:
最多检出来源 Macaca mulatta(otcml) 1.69%
分子结构信息
SMILES: CC(=O)O
InChI: InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
描述信息
Acetic acid is a two-carbon, straight-chain fatty acid. It is the smallest short-chain fatty acid (SCFA) and one of the simplest carboxylic acids. is an acidic, colourless liquid and is the main component in vinegar. Acetic acid has a sour taste and pungent smell. It is an important chemical reagent and industrial chemical that is used in the production of plastic soft drink bottles, photographic film; and polyvinyl acetate for wood glue, as well as many synthetic fibres and fabrics. In households diluted acetic acid is often used as a cleaning agent. In the food industry acetic acid is used as an acidity regulator. Acetic acid is found in all organisms, from bacteria to plants to humans. The acetyl group, derived from acetic acid, is fundamental to the biochemistry of virtually all forms of life. When bound to coenzyme A (to form acetylCoA) it is central to the metabolism of carbohydrates and fats. However, the concentration of free acetic acid in cells is kept at a low level to avoid disrupting the control of the pH of the cell contents. Acetic acid is produced and excreted in large amounts by certain acetic acid bacteria, notably the Acetobacter genus and Clostridium acetobutylicum. These bacteria are found universally in foodstuffs, water, and soil. Due to their widespread presence on fruit, acetic acid is produced naturally as fruits and many other sugar-rich foods spoil. Several species of anaerobic bacteria, including members of the genus Clostridium and Acetobacterium can convert sugars to acetic acid directly. However, Clostridium bacteria are less acid-tolerant than Acetobacter. Even the most acid-tolerant Clostridium strains can produce acetic acid in concentrations of only a few per cent, compared to Acetobacter strains that can produce acetic acid in concentrations up to 20\\%. Acetic acid is also a component of the vaginal lubrication of humans and other primates, where it appears to serve as a mild antibacterial agent. Acetic acid can be found in other biofluids such as urine at low concentrations. Urinary acetic acid is produced by bacteria such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus (PMID: 22292465). Acetic acid concentrations greater than 30 uM/mM creatinine in the urine can indicate a urinary tract infection, which typically suggests the presence of E. coli or Klebshiella pneumonia in the urinary tract. (PMID: 24909875) Acetic acid is also produced by other bacteria such as Akkermansia, Bacteroidetes, Bifidobacterium, Prevotella and Ruminococcus (PMID: 20444704; PMID: 22292465).
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids
S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
It is used for smoking meats and fish
C254 - Anti-Infective Agent
KEIO_ID A029
同义名列表
38 个代谢物同义名
Acetic acid-2-13C,2,2,2-d3; Methanecarboxylic acid; Glacial, acetic acid; Acid glacial, acetic; Acid, glacial acetic; Acetic acid, glacial; Glacial acetic acid; Acetic acid glacial; Methanecarboxylate; pyroligneous acid; Glacial acetate; Kyselina octova; Acide acetique; ethanoic acid; Vinegar acid; Acid, acetic; Ethylic acid; Essigsaeure; acetic acid; INS no. 260; Ethoic acid; Ethanoate; Acetasol; Ethylate; CH3-COOH; CH3CO2H; Ethoate; Acetate; Vinegar; MeCOOH; MeCO2h; e 260; e-260; AcOH; e260; HOAc; Acetate; Acetic acid
数据库引用编号
36 个数据库交叉引用编号
- ChEBI: CHEBI:15366
- KEGG: C00033
- KEGGdrug: D00010
- PubChem: 176
- HMDB: HMDB0000042
- Metlin: METLIN3206
- DrugBank: DB03166
- ChEMBL: CHEMBL539
- Wikipedia: Acetic_acid
- MeSH: Acetic Acid
- MetaCyc: ACET
- KNApSAcK: C00001176
- foodb: FDB019725
- chemspider: 171
- CAS: 285977-76-6
- CAS: 57745-60-5
- CAS: 79562-15-5
- CAS: 77671-22-8
- CAS: 63459-47-2
- CAS: 68475-71-8
- CAS: 64-19-7
- CAS: 546-67-8
- MoNA: KO000043
- MoNA: KO000044
- MoNA: KO000046
- MoNA: KO000042
- MoNA: KO000045
- PMhub: MS000009524
- PubChem: 3335
- LipidMAPS: LMFA01010002
- PDB-CCD: ACT
- PDB-CCD: ACY
- 3DMET: B00009
- NIKKAJI: J2.355H
- RefMet: Acetic acid
- KNApSAcK: 15366
分类词条
相关代谢途径
Reactome(28)
- Metabolism
- Biological oxidations
- Aflatoxin activation and detoxification
- Phase I - Functionalization of compounds
- Metabolism of proteins
- Post-translational protein modification
- Amino acid and derivative metabolism
- Metabolism of lipids
- Signaling Pathways
- Mycobacterium tuberculosis biological processes
- Mycothiol metabolism
- Fatty acid metabolism
- Amino acid synthesis and interconversion (transamination)
- Sulfur compound metabolism
- Signaling by Receptor Tyrosine Kinases
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- Carbohydrate metabolism
- Cysteine synthesis from O-acetylserine
- Aspartate and asparagine metabolism
- Hemostasis
- Glycosaminoglycan metabolism
- Heparan sulfate/heparin (HS-GAG) metabolism
- Mycothiol biosynthesis
- Platelet homeostasis
BioCyc(18)
- polyamine degradation (N-acetyl pathway)
- oxidative ethanol degradation
- acetate utilization
- N-acetylglucosamine , N-acetylmannosamine and N-acetylneuraminic acid dissimilation
- IAA biosynthesis I
- glycophosphatidylinositol (GPI) anchor biosynthesis
- lipophosphoglycan (LPG) biosynthesis
- glycoinositolphospholipid (GIPL) biosynthesis
- N-acetylglucosamine degradation
- cysteine and homocysteine interconversion
- acetyl-CoA degradation to acetate
- ethanol degradation II (cytosol)
- oxidative ethanol degradation III (microsomal)
- ethanol degradation IV (peroxisomal)
- arginine biosynthesis I
- lactate oxidation
- purine degradation II (anaerobic)
- ornithine biosynthesis
PlantCyc(10)
- morphine biosynthesis
- ajmaline and sarpagine biosynthesis
- superpathway of Allium flavor precursors
- vindoline, vindorosine and vinblastine biosynthesis
- ephedrine biosynthesis
- superpathway of seleno-compound metabolism
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis
- seleno-amino acid biosynthesis (plants)
- t-anethole biosynthesis
- Amaryllidacea alkaloids biosynthesis
代谢反应
1591 个相关的代谢反应过程信息。
Reactome(372)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Mycothiol metabolism:
GlcNAc-Ins + H2O ⟶ CH3COO- + GlcNI
- Mycothiol biosynthesis:
GlcNAc-Ins + H2O ⟶ CH3COO- + GlcNI
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of pristanoyl-CoA:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of pristanoyl-CoA:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Aflatoxin activation and detoxification:
AFXBO-NAC,AFNBO-NAC + H2O ⟶ AFXBO-C,AFNBO-C + CH3COO-
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin M1
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Sulfur compound metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine synthesis from O-acetylserine:
OAcSer + S(2-) ⟶ CH3COO- + L-Cys
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG biosynthesis:
H2O ⟶ CH3COO-
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Post-translational modification: synthesis of GPI-anchored proteins:
PI + UDP-GlcNAc ⟶ GlcNAc-PI + UDP
- Synthesis of glycosylphosphatidylinositol (GPI):
PI + UDP-GlcNAc ⟶ GlcNAc-PI + UDP
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional regulation by RUNX3:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RUNX3 regulates p14-ARF:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG biosynthesis:
H2O ⟶ CH3COO-
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Metabolism of proteins:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Post-translational protein modification:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Amyloid fiber formation:
BACE1_HUMAN + H2O ⟶ BACE1_HUMAN + CH3COO-
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional regulation by RUNX3:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RUNX3 regulates p14-ARF:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Epigenetic regulation of gene expression:
Chromatin (H4K5ac, H4K8ac, H4K16ac) + SAM ⟶ CH3COO- + Chromatin (H3K9me2) + SAH
- Negative epigenetic regulation of rRNA expression:
Chromatin (H4K5ac, H4K8ac, H4K16ac) + SAM ⟶ CH3COO- + Chromatin (H3K9me2) + SAH
- NoRC negatively regulates rRNA expression:
Chromatin (H4K5ac, H4K8ac, H4K16ac) + SAM ⟶ CH3COO- + Chromatin (H3K9me2) + SAH
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Phase I - Functionalization of compounds:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Ethanol oxidation:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Fatty acid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Peroxisomal lipid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Beta-oxidation of pristanoyl-CoA:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Peroxisomal lipid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Beta-oxidation of pristanoyl-CoA:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG biosynthesis:
H2O ⟶ CH3COO-
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- RUNX3 regulates p14-ARF:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG biosynthesis:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational modification: synthesis of GPI-anchored proteins:
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Synthesis of glycosylphosphatidylinositol (GPI):
GlcNAc-PI + H2O ⟶ CH3COO- + GlcN-PI
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
Active ALK dimer + H2O ⟶ (PTN,MDK):ALK dimer + Pi
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by ALK:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- STAT3 nuclear events downstream of ALK signaling:
Ac-CoA + p-Y705,S727-STAT3 dimer ⟶ AcK685- p-Y705,S727-STAT3 dimer + CoA
BioCyc(50)
- oxidative ethanol degradation:
H2O + NAD+ + acetaldehyde ⟶ NADH + acetate
- acetate utilization:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + pyrophosphate
- homocysteine and cysteine interconversion:
O-acetyl-L-homoserine + cys ⟶ H+ + L-cystathionine + acetate
- N-acetylglucosamine degradation I:
N-acetyl-D-glucosamine-6-phosphate + H2O ⟶ D-glucosamine-6-phosphate + acetate
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation:
N-acetyl-D-glucosamine-6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- N-acetylglucosamine degradation I:
N-acetyl-D-glucosamine-6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- pyruvate fermentation to acetate VI:
acetyl-CoA + succinate ⟶ acetate + succinyl-CoA
- acetate formation from acetyl-CoA III (succinate):
acetyl-CoA + succinate ⟶ acetate + succinyl-CoA
- pyruvate fermentation to acetate V:
acetyl-CoA + succinate ⟶ acetate + succinyl-CoA
- superpathway of acetate utilization and formation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- oxidative ethanol degradation III (microsomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation IV (peroxisomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II (cytosol):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- mixed acid fermentation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- ethanol degradation II (cytosol):
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- putrescine degradation III:
N-acetyl-4-aminobutyrate + H2O ⟶ 4-aminobutyrate + acetate
- polyamine degradation (N-acetyl pathway):
N-acetyl-4-aminobutyrate + H2O ⟶ 4-aminobutyrate + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- methionine biosynthesis:
O-acetyl-L-homoserine + H2S ⟶ acetate + homocysteine
- glycophosphatidylinositol (GPI) anchor biosynthesis:
H2O + a 6-(N-acetyl-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol ⟶ 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H+ + acetate
- lipophosphoglycan (LPG) biosynthesis:
H2O + a 6-(N-acetyl-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol ⟶ 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H+ + acetate
- acetyl-CoA degradation to acetate:
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- IAA biosynthesis I:
acetate + indole ⟶ H+ + indole-3-acetate
- glycoinositolphospholipid (GIPL) biosynthesis:
H2O + a 6-(N-acetyl-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol ⟶ 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H+ + acetate
- lactate oxidation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- acetate formation from acetyl-CoA I:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- Bifidobacterium shunt:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ 1-(2-amino-2-deoxy-α-D-glucopyranoside)-1D-myo-inositol + acetate
- ornithine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- N-acetylglucosamine degradation:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- lysine fermentation to acetate and butyrate:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- purine degradation II (anaerobic):
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of sulfate assimilation and cysteine biosynthesis:
O-acetyl-L-serine + hydrogen sulfide ⟶ L-cysteine + acetate
- purine degradation III (anaerobic):
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ H+ + acetyl-CoA + adenosine-5'-phosphate + diphosphate
- ornithine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- oxidative ethanol degradation III:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- adenosylcobalamin biosynthesis II (late cobalt incorporation):
H2O + SAM + precorrin-5 ⟶ S-adenosyl-L-homocysteine + H+ + acetate + precorrin-6A
- oxidative ethanol degradation I:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ L-cysteine + acetate
- homocysteine biosynthesis:
O-acetyl-L-homoserine + hydrogen sulfide ⟶ L-homocysteine + acetate
- fermentation:
H2O + NAD+ + acetaldehyde ⟶ NADH + acetate
- N-acetylglucosamine degradation:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- cysteine and homocysteine interconversion:
H2O + cystathionine ⟶ 2-oxobutanoate + L-cysteine + ammonia
- N-acetylglucosamine , N-acetylmannosamine and N-acetylneuraminic acid dissimilation:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
WikiPathways(2)
- Acetylcholine synthesis:
Acetate ⟶ Acetyl-CoA
- Diet-dependent trimethylamine/trimethylamine N-oxide metabolism:
Choline ⟶ BETALD
Plant Reactome(337)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- Jasmonate biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Lysine biosynthesis II:
H2O + N-acetyl-L,L-2,6-diaminopimelate ⟶ CH3COO- + L,L-diaminopimelate
- Arginine biosynthesis I:
H2O + N-acetyl-L-ornithine ⟶ CH3COO- + L-Orn
- Homocysteine biosynthesis:
H2S + O-acetyl-L-homoserine ⟶ CH3COO- + LHCYS
- Ornithine biosynthesis:
H2O + N-acetyl-L-ornithine ⟶ CH3COO- + L-Orn
- IAA biosynthesis I:
CH3COO- + indole ⟶ IAA
- Fatty acid and lipid metabolism:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Lipid-A-precursor biosynthesis:
H2O + UDP-3-O-(3-hydroxymyristoyl)-N-acetylglucosamine ⟶ CH3COO- + UDP-3-O-(3-hydroxymyristoyl)glucosamine
INOH(3)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- NAD+ + Acetaldehyde + H2O = NADH + Acetic acid ( Pyruvate metabolism ):
Acetaldehyde + NAD+ ⟶ Acetic acid + NADH
PlantCyc(713)
- t-anethole biosynthesis:
trans-anol + SAM ⟶ t-anethole + H+ + SAH
- t-anethole biosynthesis:
trans-anol + SAM ⟶ t-anethole + H+ + SAH
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis:
2-methylbutanoate + pseudoisoeugenol ⟶ epoxypseudoisoeugenol-2-methylbutanoate
- t-anethole biosynthesis:
trans-anol + SAM ⟶ t-anethole + H+ + SAH
- t-anethole biosynthesis:
trans-anol + SAM ⟶ t-anethole + H+ + SAH
- t-anethole biosynthesis:
trans-anol + SAM ⟶ t-anethole + H+ + SAH
- t-anethole biosynthesis:
trans-anol + SAM ⟶ t-anethole + H+ + SAH
- t-anethole biosynthesis:
trans-anol + SAM ⟶ t-anethole + H+ + SAH
- mimosine biosynthesis:
3,4-dihydroxypyridin + O-acetyl-L-serine ⟶ H+ + L-mimosine + acetate
- lupinate biosynthesis:
O-acetyl-L-serine + trans-zeatin ⟶ H+ + acetate + lupinate
- lupinate biosynthesis:
O-acetyl-L-serine + trans-zeatin ⟶ H+ + acetate + lupinate
- morphine biosynthesis:
2-oxoglutarate + O2 + oripavine ⟶ CO2 + formaldehyde + morphinone + succinate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- willardiine and isowillardiine biosynthesis:
O-acetyl-L-serine + uracil ⟶ H+ + L-isowillardiine + acetate
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation II:
O-acetyl-L-homoserine + methanethiol ⟶ H+ + acetate + met
- S-methyl-5-thio-α-D-ribose 1-phosphate degradation II:
O-acetyl-L-homoserine + methanethiol ⟶ H+ + acetate + met
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-coumarate + H2O ⟶ 4-hydroxybenzaldehyde + acetate
- 4-hydroxybenzoate biosynthesis IV (plants):
4-coumarate + H2O ⟶ 4-hydroxybenzaldehyde + acetate
- 4-hydroxybenzoate biosynthesis IV (plants):
4-coumarate + H2O ⟶ 4-hydroxybenzaldehyde + acetate
- vanillin biosynthesis I:
4-hydroxybenzaldehyde + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3,4-dihydroxybenzaldehyde + H2O + an oxidized [NADPH-hemoprotein reductase]
- Amaryllidacea alkaloids biosynthesis:
SAM + norbelladine ⟶ 4'-O-methylnorbelladine + H+ + SAH
- noscapine biosynthesis:
(S)-reticuline + O2 ⟶ (S)-scoulerine + H+ + hydrogen peroxide
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- L-arginine biosynthesis I (via L-ornithine):
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + glu + phosphate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- seleno-amino acid biosynthesis (plants):
5-methyltetrahydropteroyl tri-L-glutamate + seleno-L-homocysteine ⟶ SeMet + tetrahydropteroyl tri-L-glutamate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- acetate and ATP formation from acetyl-CoA I:
ATP + acetate ⟶ ADP + acetyl phosphate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- pyruvate fermentation to acetate IV:
ATP + acetate ⟶ ADP + acetyl phosphate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- acetate formation from acetyl-CoA II:
ATP + acetate + coenzyme A ⟶ ADP + acetyl-CoA + phosphate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- β-pyrazole-1-ylalanine biosynthesis:
O-acetyl-L-serine + pyrazole ⟶ 3-(pyrazol-1-yl)-L-alanine + H+ + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
L-arginino-succinate ⟶ arg + fumarate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of Allium flavor precursors:
(E) 1-propenylsulfenate ⟶ (Z)-propanethial S-oxide
- acetate and ATP formation from acetyl-CoA II:
ATP + acetate + coenzyme A ⟶ ADP + acetyl-CoA + phosphate
- ephedrine biosynthesis:
(+)-norpseudoephedrine + SAM ⟶ H+ + SAH + pseudoephedrine
- β-pyrazole-1-ylalanine biosynthesis:
O-acetyl-L-serine + pyrazole ⟶ 3-(pyrazol-1-yl)-L-alanine + H+ + acetate
- ethiin metabolism:
O-acetyl-L-serine + ethanethiol ⟶ S-ethyl-L-cysteine + H+ + acetate
- superpathway of seleno-compound metabolism:
H+ + glutathione + selenite ⟶ GSSG + H2O + selenodiglutathione
- L-arginine biosynthesis I (via L-ornithine):
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + glu + phosphate
- acetate and ATP formation from acetyl-CoA I:
ATP + acetate ⟶ ADP + acetyl phosphate
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- pyruvate fermentation to acetate IV:
ATP + acetate ⟶ ADP + acetyl phosphate
- noscapine biosynthesis:
(13S,14R)-13-O-acetyl-1-hydroxy-N-methylcanadine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (13S,14R)-13-O-acetyl-1,8-dihydroxy-N-methylcanadine + H2O + an oxidized [NADPH-hemoprotein reductase]
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- seleno-amino acid biosynthesis (plants):
5-methyltetrahydropteroyl tri-L-glutamate + seleno-L-homocysteine ⟶ SeMet + tetrahydropteroyl tri-L-glutamate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- seleno-amino acid biosynthesis (plants):
O-acetyl-L-serine + hydrogen selenide ⟶ H+ + L-selenocysteine + acetate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- pyruvate fermentation to acetate VII:
ATP + acetate ⟶ ADP + acetyl phosphate
- vindoline, vindorosine and vinblastine biosynthesis:
catharanthine + hydrogen peroxide + vindoline ⟶ α-3',4'-anhydrovinblastine radical + H2O
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- oxalate biosynthesis:
H2O + oxaloacetate ⟶ H+ + acetate + oxalate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- vindoline, vindorosine and vinblastine biosynthesis:
catharanthine + hydrogen peroxide + vindoline ⟶ α-3',4'-anhydrovinblastine radical + H2O
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + glu + phosphate
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- superpathway of seleno-compound metabolism:
H+ + glutathione + selenite ⟶ GSSG + H2O + selenodiglutathione
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- seleno-amino acid biosynthesis (plants):
5-methyltetrahydropteroyl tri-L-glutamate + seleno-L-homocysteine ⟶ SeMet + tetrahydropteroyl tri-L-glutamate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of seleno-compound metabolism:
H+ + glutathione + selenite ⟶ GSSG + H2O + selenodiglutathione
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- L-arginine biosynthesis I (via L-ornithine):
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-ornithine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- pyruvate fermentation to acetate VII:
ATP + acetate ⟶ ADP + acetyl phosphate
- superpathway of fermentation (Chlamydomonas reinhardtii):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- β-pyrazole-1-ylalanine biosynthesis:
O-acetyl-L-serine + pyrazole ⟶ 3-(pyrazol-1-yl)-L-alanine + H+ + acetate
- polyvinyl alcohol degradation:
H2O + oxidized polyvinyl alcohol(n) ⟶ acetate + oxidized polyvinyl alcohol(n)
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- L-arginine biosynthesis I (via L-ornithine):
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- L-ornithine biosynthesis I:
2-oxoglutarate + N-acetyl-L-ornithine ⟶ N-acetyl-L-glutamate 5-semialdehyde + glu
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- L-cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(113)
- Pyruvate to Cytochrome bd Terminal Oxidase Electron Transfer:
Pyruvic acid + Water ⟶ Acetic acid + Carbon dioxide + Electron + Hydrogen ion
- Pyruvate to Cytochrome bd Terminal Oxidase Electron Transfer:
Pyruvic acid + Water ⟶ Acetic acid + Carbon dioxide + Electron + Hydrogen ion
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism II:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- N-Acetylneuraminate, N-Acetylmannosamine, and N-Acetylglucosamine Degradation:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- 1,6-Anhydro-N-acetylmuramic Acid Recycling:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + D-glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- 1,6-Anhydro-N-acetylmuramic Acid Recycling:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + D-glucosamine 6-phosphate
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Acetate Metabolism:
Acetylphosphate + Adenosine diphosphate ⟶ Acetic acid + Adenosine triphosphate
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Acetate Metabolism:
Acetylphosphate + Adenosine diphosphate ⟶ Acetic acid + Adenosine triphosphate
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Heroin Metabolism Pathway:
Heroin + Water ⟶ 6-Acetylmorphine + Acetic acid
- Selenocompound Metabolism:
Selenomethionine + Water ⟶ 2-Ketobutyric acid + Ammonia + methylselenol
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Chitobiose Degradation:
Diacetylchitobiose-6-phosphate + Water ⟶ Acetic acid + N'-monoacetylchitobiose-6'-phosphate
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Citrate Lyase Activation:
Adenosine triphosphate + Dephospho-CoA + Hydrogen Ion ⟶ 2'-(5-Triphosphoribosyl)-3'-dephospho-CoA + Adenine
- Cysteine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Methionine Metabolism and Salvage:
2-Oxo-4-methylthiobutanoic acid + L-Phenylalanine ⟶ 2-Ketobutyric acid + L-Methionine
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Ether Lipid Metabolism:
2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine + Cytidine monophosphate ⟶ Acetic acid + Hydrogen Ion + Lyso-PAF C-16
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Proline Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Indole Alkaloid Biosynthesis:
17-O-Acetylnorajmaline + Water ⟶ Acetic acid + Norajmaline
- Ether Lipid Metabolism:
2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine + Water ⟶ 1-Organyl-2-lyso-sn-glycero-3-phosphocholine + Acetic acid
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yuki Inoue, Masamune Hayashi, Koumei Shirasuna, Hisataka Iwata. Acetic acid affects porcine oocyte metabolism and improves oocyte developmental ability.
Theriogenology.
2024 Aug; 224(?):174-182. doi:
10.1016/j.theriogenology.2024.05.014
. [PMID: 38781862] - Ricco Tindjau, Jian-Yong Chua, Shao-Quan Liu. Co-culturing Propionibacterium freudenreichii and Bifidobacterium animalis subsp. lactis improves short-chain fatty acids and vitamin B12 contents in soy whey.
Food microbiology.
2024 Aug; 121(?):104525. doi:
10.1016/j.fm.2024.104525
. [PMID: 38637087] - Håvard Hoel, Hugo J de Boer, Anneleen Kool, Helle Wangensteen. Analysis of bitter compounds in traditional preparations of Gentiana purpurea L.
Fitoterapia.
2024 Jun; 175(?):105932. doi:
10.1016/j.fitote.2024.105932
. [PMID: 38565380] - Karam Devi, Anjana Bali, Pankaj Bhatia, Nirmal Singh, Amteshwar Singh Jaggi. Exploring the ameliorative potential of Bacopa monnieri in acetic acid induced ulcerative colitis in mice.
Natural product research.
2024 Jun; 38(12):2105-2110. doi:
10.1080/14786419.2023.2233047
. [PMID: 37427984] - Haifaa Laroui, Thoraya Guemmaz, Fatima Zerargui, Karima Saffidine, Sara Guenifi, Lekhmici Arrar, Seddik Khennouf, Gokhan Zengin, Abderrahmane Baghiani. Antioxidant and anti-inflammatory potentials of Ammodaucus leucotrichus Coss. & Durieu seeds' extracts: In vitro and in vivo studies.
Journal of ethnopharmacology.
2024 May; 326(?):117964. doi:
10.1016/j.jep.2024.117964
. [PMID: 38401663] - Sediqeh Afsharipour, Abdolmajid Mirzaalian Dastjerdi, Azam Seyedi. Optimizing Cucumis sativus seedling vigor: the role of pistachio wood vinegar and date palm compost in nutrient mobilization.
BMC plant biology.
2024 May; 24(1):407. doi:
10.1186/s12870-024-05128-y
. [PMID: 38755531] - Xingle Guo, Xiaojiao Zheng, Xu Guo, Junxue Wu, Xu Jing. Determination of chiral prothioconazole and its chiral metabolite in water, juice, tea, and vinegar using emulsive liquid-liquid microextraction combined with ultra-high performance liquid chromatography.
Food chemistry.
2024 May; 440(?):138314. doi:
10.1016/j.foodchem.2023.138314
. [PMID: 38160595] - Guiqin Fan, Jing Yu, Zhengzheng Tao, Xingjia Qian, Qinghong Qian, Jun Shu, Dongfang Shi, Luhong Shen, Bing Lu, Hong Lv. Synthesis of Ottonia anisum Extract Mediated ZnO NPs and Their Local Anesthetic, Analgesic and HCl‑induced Acute Lung Injury Activities.
Journal of oleo science.
2024 May; 73(5):683-693. doi:
10.5650/jos.ess23208
. [PMID: 38522941] - Ya Zhao, Ping Li, Xiaoshuang Wang, Yayun Wu, Lijuan Liu, Ruizhi Zhao. A novel pectin polysaccharide from vinegar-baked Radix Bupleuri absorbed by microfold cells in the form of nanoparticles.
International journal of biological macromolecules.
2024 May; 266(Pt 1):131096. doi:
10.1016/j.ijbiomac.2024.131096
. [PMID: 38522695] - O G G Almeida, M G Pereira, R L Bighetti-Trevisan, E S Santos, E G De Campos, G E Felis, L H S Guimarães, M L T M Polizeli, B S De Martinis, E C P De Martinis. Investigating luxS gene expression in lactobacilli along lab-scale cocoa fermentations.
Food microbiology.
2024 May; 119(?):104429. doi:
10.1016/j.fm.2023.104429
. [PMID: 38225038] - Nana Fan, Liantai Su, Aimin Lv, Wuwu Wen, Li Gao, Xiangkai You, Peng Zhou, Yuan An. PECTIN ACETYLESTERASE12 regulates shoot branching via acetic acid and auxin accumulation in alfalfa shoots.
Plant physiology.
2024 Apr; 195(1):518-533. doi:
10.1093/plphys/kiae071
. [PMID: 38365203] - N Perez-Esteban, J Vives-Egea, M Peces, J Dosta, S Astals. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics.
Waste management (New York, N.Y.).
2024 Apr; 178(?):176-185. doi:
10.1016/j.wasman.2024.02.026
. [PMID: 38401431] - Qian Zhang, Rong Xue, Lianlin Su, Xi Mei, Jinguo Xu, Chunqin Mao, Tulin Lu. Quality difference analysis of raw and vinegar-processed products of Qingpi based on color and component correlation.
Journal of pharmaceutical and biomedical analysis.
2024 Apr; 241(?):115968. doi:
10.1016/j.jpba.2024.115968
. [PMID: 38280238] - Osama M Alshehri, Madeeha Shabnam, Saeed Ahmed Asiri, Mater H Mahnashi, Abdul Sadiq, Muhammad Saeed Jan. Isolation, invitro, invivo anti-inflammatory, analgesic and antioxidant potential of Habenaria plantegania Lindl.
Inflammopharmacology.
2024 Apr; 32(2):1353-1369. doi:
10.1007/s10787-023-01425-4
. [PMID: 38334860] - Ricardo Andrade Furtado, Samir A Ross, Silvio de Almeida Junior, Rafael Paranhos de Mendonça, Cristiane Teixeira Vilhena Bernardes, Mauro Nogueira da Silva, Karina Furlani Zoccal, Lúcia Helena Faccioli, Jairo Kenupp Bastos. Evaluation of anti-inflammatory activity of kaurenol: Experimental evaluation and mechanistic insights.
Fundamental & clinical pharmacology.
2024 Apr; 38(2):252-261. doi:
10.1111/fcp.12957
. [PMID: 37735998] - Begümhan Ömeroğlu Gülada, Muhammet Emin Cam, Meral Yüksel, Dilek Akakın, Turgut Taşkın, Gizem Emre, Göksel Şener, Berna Karakoyun. Gilaburu (Viburnum opulus L.) fruit extract has potential therapeutic and prophylactic role in a rat model of acetic acid-induced oxidant colonic damage.
Journal of ethnopharmacology.
2024 Mar; 322(?):117624. doi:
10.1016/j.jep.2023.117624
. [PMID: 38128893] - Jiameng Zhang, Yanfang Wu, Chenyu Wang, Weidong Xu, Zichen Zhang, Suya Zhang, Xinyi Guan, Xinsheng Wang. The antioxidant, anti-inflammatory and analgesic activity effect of ethyl acetate extract from the flowers of Syringa pubescens Turcz.
Journal of ethnopharmacology.
2024 Mar; 322(?):117561. doi:
10.1016/j.jep.2023.117561
. [PMID: 38072290] - Jie Wu, Mayijie Cao, Zhuolin Jia, Xiaoli Zhu, Ye Zhou, Yidian Dong, Lingying Yu, Changjiang Hu, Yu Huang, Zhimin Chen. Synergistic mechanism of stir-baked curcumae radix with vinegar in dysmenorrhea rats based on UPLC-Q-TOF/MS metabolomics.
Journal of pharmaceutical and biomedical analysis.
2024 Mar; 240(?):115944. doi:
10.1016/j.jpba.2023.115944
. [PMID: 38183732] - Lamia Sakouhi, Muhammad Hussaan, Yoshiyuki Murata, Abdelilah Chaoui. Role of calcium signaling in cadmium stress mitigation by indol-3-acetic acid and gibberellin in chickpea seedlings.
Environmental science and pollution research international.
2024 Mar; 31(11):16972-16985. doi:
10.1007/s11356-024-32327-9
. [PMID: 38329668] - Yuan Wang, Na Li, Jinqiu Rao, Tianwang Wang, Wei Li, Xiaoliang Ren, Kai Wang, Feng Qiu. Chemometrics-based Chemical Analysis of Myrrh and Its Vinegar-processed Products by UPLC-MS/MS.
Chemistry & biodiversity.
2024 Mar; 21(3):e202301782. doi:
10.1002/cbdv.202301782
. [PMID: 38263671] - Mengqi Shi, Tianshi Li, Yan Zhao, Zhongmei He, Ying Zong, Weijia Chen, Rui Du. Comparative studies on the chemical composition and pharmacological effects of vinegar-processed antler glue modified from Lei Gong Pao Zhi Lun and traditional water-processed antler glue.
Journal of ethnopharmacology.
2024 Mar; 321(?):117508. doi:
10.1016/j.jep.2023.117508
. [PMID: 38065351] - Miao Zhang, Liba Xu, Long Chen, Huan Wu, Li Jia, Hua Zhu. Dendrobium officinale Polysaccharides as a Natural Functional Component for Acetic-Acid-Induced Gastric Ulcers in Rats.
Molecules (Basel, Switzerland).
2024 Feb; 29(4):. doi:
10.3390/molecules29040880
. [PMID: 38398633] - Wendy A Stirk, Péter Bálint, Jitka Široká, Ondřej Novák, Tamás Rétfalvi, Zoltán Berzsenyi, Jácint Notterpek, Zoltán Varga, Gergely Maróti, Johannes van Staden, Miroslav Strnad, Vince Ördög. Comparison of plant biostimulating properties of Chlorella sorokiniana biomass produced in batch and semi-continuous systems supplemented with pig manure or acetate.
Journal of biotechnology.
2024 Feb; 381(?):27-35. doi:
10.1016/j.jbiotec.2024.01.002
. [PMID: 38190851] - Di-Zao Li, Zhao-Di Fu, Hong-Yan Liu, Xian-Dao Pan. Facile synthesis and cytotoxicity of substituted uracil-1'(N)-acetic acid and 4-pyridone-1'(N)-acetic acid esters of 20(S)-camptothecins.
Journal of Asian natural products research.
2024 Feb; 26(2):259-268. doi:
10.1080/10286020.2023.2300374
. [PMID: 38347748] - Érica Benjamim da Silva, Stephanie A Polukis, Megan L Smith, Rebecca S Voshell, Mark J Leggett, Philip B Jones, Limin Kung. The use of Lentilactobacillus buchneri PJB1 and Lactiplantibacillus plantarum MTD1 on the ensiling of whole-plant corn silage, snaplage, and high-moisture corn.
Journal of dairy science.
2024 Feb; 107(2):883-901. doi:
10.3168/jds.2023-23672
. [PMID: 37730174] - Gourab Ghosh, Sushrunsha Bhimrao Daile, Saikat Chakraborty, Arnab Atta. Influence of super-optimal light intensity on the acetic acid uptake and microalgal growth in mixotrophic culture of Chlorella sorokiniana in bubble-column photobioreactors.
Bioresource technology.
2024 Feb; 393(?):130152. doi:
10.1016/j.biortech.2023.130152
. [PMID: 38049018] - Jae-Hyun Yoon, Young-Min Bae, Yooncheol Shin, Sun-Young Lee. Escherichia coli O157:H7 had a high degree of acid resistance in the presence of osmolytes (glycerol, glycine or fructose) by altering its lipid membrane composition.
Food microbiology.
2024 Feb; 117(?):104388. doi:
10.1016/j.fm.2023.104388
. [PMID: 37919012] - Reinier A Egas, Diana X Sahonero-Canavesi, Nicole J Bale, Michel Koenen, Çağlar Yildiz, Laura Villanueva, Diana Z Sousa, Irene Sánchez-Andrea. Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans.
Environmental microbiology.
2024 Feb; 26(2):e16565. doi:
10.1111/1462-2920.16565
. [PMID: 38356112] - Sultan Pekacar, Burçin Özüpek, Esra Küpeli Akkol, Hakkı Taştan, Halil Ersan, Didem Deliorman Orhan. Identification of bioactive components on antihemorrhoidal activity of Cistus laurifolius L. using RP-HPLC and LC-QTOF-MS.
Journal of ethnopharmacology.
2024 Jan; 319(Pt 1):117122. doi:
10.1016/j.jep.2023.117122
. [PMID: 37660958] - Wiwan Samakkarn, Paul Vandecruys, Maria Remedios Foulquié Moreno, Johan Thevelein, Khanok Ratanakhanokchai, Nitnipa Soontorngun. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
Applied microbiology and biotechnology.
2024 Jan; 108(1):153. doi:
10.1007/s00253-023-12946-x
. [PMID: 38240846] - Guijuan Zheng, Lang Huang, Yuanyuan Feng, Hanqi Zhang, Biao Gao, Xiaomin Ma, Yenan Sun, Adila Abudurexiti, Guangmin Yao. Discovery of highly functionalized grayanane diterpenoids from the flowers of Rhododendron molle as potent analgesics.
Bioorganic chemistry.
2024 01; 142(?):106928. doi:
10.1016/j.bioorg.2023.106928
. [PMID: 37922768] - Yiming Ni, Liangyin Cai, Xiaojun Gou, Wenjie Li, Mingmei Zhou, Ying Huang. Therapeutic effect of Sanhua decoction on rats with middle cerebral artery occlusion and the associated changes in gut microbiota and short-chain fatty acids.
PloS one.
2024; 19(2):e0298148. doi:
10.1371/journal.pone.0298148
. [PMID: 38363776] - He Deng, Yuying Zhang, Kangping Liu, Qiaozhi Mao, Evgenios Agathokleous. Allelopathic effects of Eucalyptus extract and wood vinegar on germination and sprouting of rapeseed (Brassica rapa L.).
Environmental science and pollution research international.
2024 Jan; 31(3):4280-4289. doi:
10.1007/s11356-023-31481-w
. [PMID: 38100025] - Aziz Zouhri, Toufik Bouddine, Naoual El Menyiy, Rabie Kachkoul, Yahya El-Mernissi, Farhan Siddique, Rania Moubachir, Farid Khallouki, Ahmad Mohammad Salamatullah, Gezahign Fentahun Wondmie, Mohammed Bourhia, Lhoussain Hajji. Ionomic analysis, polyphenols characterization, analgesic, antiinflammatory and antioxidant capacities of Cistus laurifolius leaves: in vitro, in vivo, and in silico investigations.
Scientific reports.
2023 12; 13(1):22890. doi:
10.1038/s41598-023-50031-5
. [PMID: 38129637] - Yuhao Han, Xinyan Qu, Haoyuan Geng, Lei Wang, Zihan Zhu, Yaqi Zhang, Xiaoqing Cui, Heng Lu, Xiao Wang, Panpan Chen, Quanbo Wang, Chenglong Sun. Isotope-Coded On-Tissue Derivatization for Quantitative Mass Spectrometry Imaging of Short-Chain Fatty Acids in Biological Tissues.
Analytical chemistry.
2023 12; 95(48):17622-17628. doi:
10.1021/acs.analchem.3c03308
. [PMID: 37997359] - Shiyong Li, Chaodong Song, Hongyan Zhang, Yan Qin, Mingguo Jiang, Naikun Shen. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO3 in Actinobacillus succinogenes GXAS137.
Polish journal of microbiology.
2023 Dec; 72(4):399-411. doi:
10.33073/pjm-2023-036
. [PMID: 38000010] - Yani Pan, Helin Lv, Fuyuan Zhang, Shuxi Chen, Yan Cheng, Shicheng Ma, Hao Hu, Xiyu Liu, Xiaoyong Cai, Fangyuan Fan, Shuying Gong, Ping Chen, Qiang Chu. Green tea extracts alleviate acetic acid-induced oral inflammation and reconstruct oral microbial balance in mice.
Journal of food science.
2023 Dec; 88(12):5291-5308. doi:
10.1111/1750-3841.16818
. [PMID: 37889079] - Raúl Robles-Iglesias, María C Veiga, Christian Kennes. Sequential bioconversion of C1-gases (CO, CO2, syngas) into lipids, through the carboxylic acid platform, with Clostridium aceticum and Rhodosporidium toruloides.
Journal of environmental management.
2023 Dec; 347(?):119097. doi:
10.1016/j.jenvman.2023.119097
. [PMID: 37776787] - Ratchaneewan Khiaosa-Ard, Matteo Ottoboni, Stefanie Verstringe, Theresa Gruber, Thomas Hartinger, Elke Humer, Geert Bruggeman, Qendrim Zebeli. Magnesium in dairy cattle nutrition: A meta-analysis on magnesium absorption in dairy cattle and assessment of simple solubility tests to predict magnesium availability from supplemental sources.
Journal of dairy science.
2023 Dec; 106(12):8758-8773. doi:
10.3168/jds.2023-23560
. [PMID: 37678776] - Bi-Xian Zhen, Qian Cai, Feng Li. Chemical components and protective effects of Atractylodes japonica Koidz. ex Kitam against acetic acid-induced gastric ulcer in rats.
World journal of gastroenterology.
2023 Nov; 29(43):5848-5864. doi:
10.3748/wjg.v29.i43.5848
. [PMID: 38074916] - Sucheta Mandal, Narayan Chandra Mandal. Formulation of food grade Limosilactobacillus fermentum for antifungal properties isolated from home-made curd.
Scientific reports.
2023 11; 13(1):20371. doi:
10.1038/s41598-023-45487-4
. [PMID: 37990131] - Elena Papadopoulou, Fotiοs Bekris, Sotirios Vasileiadis, Afroditi Krokida, Theodora Rouvali, Aristidis S Veskoukis, Kalliopi Liadaki, Demetrios Kouretas, Dimitrios G Karpouzas. Vineyard-mediated factors are still operative in spontaneous and commercial fermentations shaping the vinification microbial community and affecting the antioxidant and anticancer properties of wines.
Food research international (Ottawa, Ont.).
2023 11; 173(Pt 2):113359. doi:
10.1016/j.foodres.2023.113359
. [PMID: 37803700] - Wanjun Long, Guanghua Lei, Yuting Guan, Hengye Chen, Zikang Hu, Yuanbin She, Haiyan Fu. Classification of Chinese traditional cereal vinegars and antioxidant property predication by fluorescence spectroscopy.
Food chemistry.
2023 Oct; 424(?):136406. doi:
10.1016/j.foodchem.2023.136406
. [PMID: 37216781] - Xingle Guo, Haijuan Jiang, Yuqi Guo, Liyan Jia, Xu Jing, Junxue Wu. Subzero-temperature homogeneous liquid-liquid extraction for the stereoselective determination of chiral triadimefon and its metabolite in water, fruit juice, vinegar, and fermented liquor by HPLC.
Analytical methods : advancing methods and applications.
2023 10; 15(41):5492-5499. doi:
10.1039/d3ay01061a
. [PMID: 37842813] - Maryam Ranjbar Bushehri, Nahid Babaei, Hadi Esmaeili Gouvarchin Ghaleh, Gholamreza Khamisipour, Gholamreza Farnoosh. Anti-inflammatory activity of peiminine in acetic acid-induced ulcerative colitis model.
Inflammopharmacology.
2023 Oct; ?(?):. doi:
10.1007/s10787-023-01360-4
. [PMID: 37855980] - Chao Wang, Shengyu Jiang, Haoyu Zheng, Yiming An, Wenxue Zheng, Jiaqi Zhang, Jianming Liu, Hongqiang Lin, Guoqiang Wang, Fang Wang. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 3):117294. doi:
10.1016/j.jep.2023.117294
. [PMID: 37839771] - Tianhui Gao, Liting Lin, Qingsong Yang, Zongping Zhu, Shuyi Wang, Tian Xie, Wan Liao. The raw and vinegar-processed Curcuma phaeocaulis Val. ameliorate TAA-induced zebrafish liver injury by inhibiting TLR4/MyD88/NF-κB signaling pathway.
Journal of ethnopharmacology.
2023 Sep; 319(Pt 2):117246. doi:
10.1016/j.jep.2023.117246
. [PMID: 37778523] - Nayantara T Joseph, Trever Schwichtenberg, Dunping Cao, Gerrad D Jones, Alix E Rodowa, Morton A Barlaz, Joseph A Charbonnet, Christopher P Higgins, Jennifer A Field, Damian E Helbling. Target and Suspect Screening Integrated with Machine Learning to Discover Per- and Polyfluoroalkyl Substance Source Fingerprints.
Environmental science & technology.
2023 09; 57(38):14351-14362. doi:
10.1021/acs.est.3c03770
. [PMID: 37696050] - Qian Yu, Yu Zhao, Xinyue Zhang, Wenjie Li, Hongyin Zhang, Songlan Piao, Guangzhe Li, Mingming Yan. The beneficial effect of Sanhuang ointment and its active constituents on experimental hemorrhoids in rats.
Journal of ethnopharmacology.
2023 Sep; 319(Pt 2):117173. doi:
10.1016/j.jep.2023.117173
. [PMID: 37741471] - Matthias Renz, Lars Andernach, Martin Kaufmann, Sascha Rohn, Franziska S Hanschen. Degradation of glucosinolates and formation of isothiocyanates, nitriles, amines, and N,N'-dialk(en)yl thioureas during domestic boiling of red cabbage.
Food chemistry.
2023 Sep; 435(?):137550. doi:
10.1016/j.foodchem.2023.137550
. [PMID: 37783130] - Zhaomei Lu, Sheng He, Muhammad Kashif, Zufan Zhang, Shuming Mo, Guijiao Su, Linfang Du, Chengjian Jiang. Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis.
BMC genomics.
2023 Sep; 24(1):550. doi:
10.1186/s12864-023-09559-z
. [PMID: 37723472] - Derya Cansiz, Ismail Unal, Merih Beler, Unsal Veli Ustundag, Esin Ak, Ebru Emekli-Alturfan, Ahmet Ata Alturfan. The Effect of Acetic Acid-Induced Pain in Parkinson's Disease Model in Zebrafish.
Neurotoxicology.
2023 Sep; ?(?):. doi:
10.1016/j.neuro.2023.09.004
. [PMID: 37683694] - Jung-Kuei Ker, Ching-Sung Lee, Yen-Cheng Chen, Ming-Chen Chiang. Exploring Taiwanese Consumer Dietary Preferences for Various Vinegar Condiments: Novel Dietary Patterns across Diverse Cultural Contexts.
Nutrients.
2023 Sep; 15(17):. doi:
10.3390/nu15173845
. [PMID: 37686877] - Ya-Bo Shi, Rao Fu, Ming-Xuan Li, Yu Li, Jiu-Ba Zhang, De Ji, Lian-Lin Su, Chun-Qin Mao, Tu-Lin Lu, Xi Mei. [Discrimination of different processing degrees and quantitative study of processing end point of vinegar-processing Cyperi Rhizoma pieces based on electronic sensory technology].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Sep; 48(18):5003-5013. doi:
10.19540/j.cnki.cjcmm.20230506.301
. [PMID: 37802842] - Hong Hu, Yong Wang, Xuanxuan Lu. In vitro gastrointestinal digestion and colonic fermentation of media-milled black rice particle-stabilized Pickering emulsion: Phenolic release, bioactivity and prebiotic potential.
Food chemistry.
2023 Aug; 432(?):137174. doi:
10.1016/j.foodchem.2023.137174
. [PMID: 37625305] - Lukman La Basy, Triana Hertiani, Retno Murwanti, Ema Damayanti. Investigation of Cox-2 inhibition of Laportea decumana (Roxb). Wedd extract to support its analgesic potential.
Journal of ethnopharmacology.
2023 Jul; ?(?):116857. doi:
10.1016/j.jep.2023.116857
. [PMID: 37453622] - Roni Roy, Jony Roy, Israt Jahan Liya, Mohammad Anwarul Basher, Muhammed Yusuf Miah. Antipyretic and antinociceptive effects of methanolic extract of C. iria L. tuber.
Journal of ethnopharmacology.
2023 Jul; 318(Pt A):116860. doi:
10.1016/j.jep.2023.116860
. [PMID: 37419227] - Yukun Wang, Zhiyu Jin, Zijun Zhang, Changkai Zhou, Zhe Sun, Feng Yan. pH-Responsive Polymer Films Based on Click Polymerization for Food Freshness Monitoring: Non-Toxic, Non-Leaking, and Antibacterial.
ACS applied materials & interfaces.
2023 Jul; ?(?):. doi:
10.1021/acsami.3c04050
. [PMID: 37403437] - - Ufelle Silas Anayo, - Onyekwelu Kenechukwu, - Chikwendu Chiedozie Kenechi. Analysis of haematological effects of Picralima nitida.
Pakistan journal of pharmaceutical sciences.
2023 Jul; 36(4):1121-1126. doi:
. [PMID: 37599487]
- Jie Wu, Ma-Yi-Jie Cao, Ying Peng, Bao-Hua Dong, Yun-Xiu Jiang, Peng-Jin Zhu, Chang-Jiang Hu, Run-Chun Xu, Zhi-Min Chen. [Effect of processing with vinegar on efficacy of Curcuma longa in treatment of dysmenorrhea in rats with syndrome of liver depression and Qi stagnation].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jul; 48(13):3498-3507. doi:
10.19540/j.cnki.cjcmm.20230403.302
. [PMID: 37475002] - Omolaso Blessing Oluwagbamila, Adeoti Adeniran, Kayode Adeniran, Alfred Abioye, Esther Nathaniel-Ukwa. Morphological, Biochemical and Molecular Docking Evaluation of the Anti-inflammatory Effects of Methanolic Extract of Bridelia ferruginea stem bark on Acetic acid-induced Ulcerative Colitis in Rats.
Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria.
2023 Jun; 38(1):79-89. doi:
10.54548/njps.v38i1.12
. [PMID: 38243362] - Xiao-Pan Ning, Qian Yao, Zhong-Xiang Xu, Yao Yin, Han Liu, Xiao-Yan Zhang, Tao Ding, Yong Zhang, Yu Hou, Meng-Ru Wang, Li-Na Wu, Qi-Ting Tang. [Determination of seven paraben preservatives in aquatic seasoning using solid-phase extraction coupled with high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
2023 Jun; 41(6):513-519. doi:
10.3724/sp.j.1123.2022.10004
. [PMID: 37259876] - Han-Xiang Liu, Yu-Song Zhang, Shi-Kang Zhou, Yi Zhang, Li Zhang. [Optimization of parameters for stir-frying of Kansui Radix with vinegar based on conversion of toxic components].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jun; 48(11):2958-2967. doi:
10.19540/j.cnki.cjcmm.20230303.301
. [PMID: 37381956] - Chu Chu, Hong Zong, Bin Zhuge, Xinyao Lu. Effect and application of proline metabolism-related gene CgMCUR1 on stress tolerance of Candida glycerinogenes and Saccharomyces cerevisiae.
Journal of applied microbiology.
2023 Jun; 134(6):. doi:
10.1093/jambio/lxad108
. [PMID: 37307223] - N M Dilek, A S Babaoğlu, K Unal, C Ozbek, L Pırlak, M Karakaya. Marination with aronia, grape and hawthorn vinegars affects the technological, textural, microstructural and sensory properties of spent chicken meat.
British poultry science.
2023 Jun; 64(3):357-363. doi:
10.1080/00071668.2022.2163616
. [PMID: 36607340] - Ruiling Gao, Hairong Zhang, Bo Li, Haijun Guo, Hailong Li, Lian Xiong, Xinde Chen. Extraction of Eucommia ulmoides gum and microbial lipid from Eucommia ulmoides Oliver leaves by dilute acid hydrolysis.
Biotechnology letters.
2023 Jun; 45(5-6):619-628. doi:
10.1007/s10529-023-03377-9
. [PMID: 37071384] - Jianhao Yang, Xiaoxiao Liu, Caiyun Fei, Hongjuan Lu, Youhua Ma, Zhongwen Ma, Wenling Ye. Chemical-microbial effects of acetic acid, oxalic acid and citric acid on arsenic transformation and migration in the rhizosphere of paddy soil.
Ecotoxicology and environmental safety.
2023 May; 259(?):115046. doi:
10.1016/j.ecoenv.2023.115046
. [PMID: 37235901] - Saber Jedidi, Kais Rtibi, Houcine Selmi, Foued Aloui, Nourhène Dhawefi, Hichem Sebai. Hepato-Nephroprotective Actions of Salvia officinalis Decoction Extract Against Extraintestinal Alterations Induced with Acetic Acid-Colitis Model in Rats.
Journal of medicinal food.
2023 May; ?(?):. doi:
10.1089/jmf.2023.0006
. [PMID: 37192446] - Hongying Mi, Ping Zhang, Lingwen Yao, Huiyuan Gao, Feng Wei, Tulin Lu, Shuangcheng Ma. Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28103990
. [PMID: 37241730] - Gabrielle Caroline Peiter, Thayene Kamyli Moesch Queiroz, Edson Luiz Michalkiewicz, Raphael Henrique Chappuis, Jennefer Sousa Luz, Luiz Henrique Casagrande Piovezani, Cleison Ferreira Silva, Matheus Nozomi Tsutumi, Augusto Fernandes Chaves, Rafael Messias Luiz, Cinthia Façanha Wendel, Ana Carla Zarpelon-Schutz, Kádima Nayara Teixeira. Lafoensia pacari alleviates intestinal damage by modulating cyclooxygenase-2: In silico and in vivo evaluation in a colitis model.
World journal of gastroenterology.
2023 May; 29(17):2628-2641. doi:
10.3748/wjg.v29.i17.2628
. [PMID: 37213402] - Sarah A Otu-Boakye, Kofi O Yeboah, Eric Boakye-Gyasi, James Oppong-Kyekyeku, Prince D Okyere, Newman Osafo. Acetic acid-induced colitis modulating potential of total crude alkaloidal extract of Picralima nitida seeds in rats.
Immunity, inflammation and disease.
2023 05; 11(5):e855. doi:
10.1002/iid3.855
. [PMID: 37249276] - Martin Bimmer, Martin Reimer, Andreas Klingl, Christina Ludwig, Cordt Zollfrank, Wolfgang Liebl, Armin Ehrenreich. Analysis of cellulose synthesis in a high-producing acetic acid bacterium Komagataeibacter hansenii.
Applied microbiology and biotechnology.
2023 May; 107(9):2947-2967. doi:
10.1007/s00253-023-12461-z
. [PMID: 36930278] - Mustafa Cellat, İbrahim Ozan Tekeli, Erdinç Türk, Tuba Aydin, Ahmet Uyar, Cafer Tayer İşler, İshak Gökçek, Muhammed Etyemez, Mehmet Güvenç. Inula viscosa ameliorates acetic acid induced ulcerative colitis in rats.
Biotechnic & histochemistry : official publication of the Biological Stain Commission.
2023 May; 98(4):255-266. doi:
10.1080/10520295.2023.2176923
. [PMID: 37165766] - Sahand Jorfi, Halime Almasi, Afshin Takdastan, Nematollah Jaafarzadeh, Yaser Tahmasebi, Aliakbar Babaei. Spatiotemporal variations of 2,4-dichlorophenoxy acetic acid with the role of sugarcane industry and related human health risk assessments in the Shadegan International Wetland.
Environmental geochemistry and health.
2023 Apr; ?(?):. doi:
10.1007/s10653-023-01573-0
. [PMID: 37118618] - Micaela Paula Del Gaudio, Scheila Iria Kraus, Tayza Martins Melzer, Pamela Soledad Bustos, María Gabriela Ortega. Antinociceptive effect and identification of berberine alkaloid in Berberis ruscifolia extracts.
Journal of ethnopharmacology.
2023 Apr; 305(?):116066. doi:
10.1016/j.jep.2022.116066
. [PMID: 36577491] - Esraa Mohsen, Mohamed A El-Metwally, Amira A Ibrahim, Magda I Soliman. Impact of green antioxidants on decreasing the aflatoxins percentage in peanut oil seed (Arachis hypogaea L.) during storage.
Science progress.
2023 Apr; 106(2):368504231176165. doi:
10.1177/00368504231176165
. [PMID: 37226455] - Yabo Shi, Xi Mei, Yu Li, Mingxuan Li, De Ji, Lianlin Su, Chunqin Mao, Tulin Lu. Study on the quality difference of Cyperus rotundus before and after vinegar processing based on ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry and molecular network combined with color parameters.
Journal of separation science.
2023 Apr; 46(8):e2200990. doi:
10.1002/jssc.202200990
. [PMID: 36827079] - Ali Şen, Büşra Ertaş, Özge Çevik, Aybeniz Yıldırım, Damla Gökçeoğlu Kayalı, Dilek Akakın, Leyla Bitiş, Göksel Şener. Cotinus coggygria Scop. Attenuates Acetic Acid-Induced Colitis in Rats by Regulation of Inflammatory Mediators.
Applied biochemistry and biotechnology.
2023 Mar; ?(?):. doi:
10.1007/s12010-023-04474-1
. [PMID: 36976506] - Maicon Matos Leitão, Saulo Euclides Silva-Filho, Arielle Cristina Arena, Silvia Cristina Heredia-Vieira, Cláudia Andrea Lima Cardoso, Cândida Aparecida Leite Kassuya. Antinociceptive and anti-inflammatory properties of aqueous extract obtained from Serjania marginata Casar leaves.
Journal of ethnopharmacology.
2023 Mar; 304(?):116018. doi:
10.1016/j.jep.2022.116018
. [PMID: 36496043] - Yuwen Qin, Mingxuan Li, Jiuba Zhang, Yu Li, Xiaoyan Xiao, Wei Zhang, Lianlin Su, Chunqin Mao, De Ji, Tulin Lu. Characterization and intrinsic quality correlation of raw and vinegar-processed Curcumae Radix.
Journal of pharmaceutical and biomedical analysis.
2023 Mar; 232(?):115329. doi:
10.1016/j.jpba.2023.115329
. [PMID: 37172530] - Jin Wang, Jiaying Shan, Yaosheng Zhang, Yu Shi, Dongdong Lu, Yichao Wu, Xi Ping Guo, Han Liu, Jie Wang, Naidong Hu. Targeted metabolomics analysis for serum Helicobacter pylori -positive based on LC-MS/MS.
Biomedical chromatography : BMC.
2023 Mar; ?(?):e5622. doi:
10.1002/bmc.5622
. [PMID: 36898359] - Naikun Shen, Shiyong Li, Shuyan Li, Yibing Wang, Hongyan Zhang, Mingguo Jiang. Reduced acetic acid formation using NaHSO3 as a steering agent by Actinobacillus succinogenes GXAS137.
Journal of bioscience and bioengineering.
2023 Mar; 135(3):203-209. doi:
10.1016/j.jbiosc.2022.12.007
. [PMID: 36628842] - Jiawei Li, Dongbo Ma, Jiahui Tian, Tongyu Sun, Qingwei Meng, Jianping Li, Anshan Shan. The responses of organic acid production and microbial community to different carbon source additions during the anaerobic fermentation of Chinese cabbage waste.
Bioresource technology.
2023 Mar; 371(?):128624. doi:
10.1016/j.biortech.2023.128624
. [PMID: 36642203] - Linchao Xia, Yuan Yao, Yi Zeng, Zian Guo, Sheng Zhang. Acetic acid enhances drought tolerance more in female than in male willows.
Physiologia plantarum.
2023 Mar; 175(2):e13890. doi:
10.1111/ppl.13890
. [PMID: 36917073] - Junli Ma, Zekun Liu, Xinxin Gao, Yiyang Bao, Ying Hong, Xiaofang He, Weize Zhu, Yan Li, Wenjin Huang, Ningning Zheng, Lili Sheng, Ben Zhou, Hongzhuan Chen, Houkai Li. Gut microbiota remodeling improves natural aging-related disorders through Akkermansia muciniphila and its derived acetic acid.
Pharmacological research.
2023 03; 189(?):106687. doi:
10.1016/j.phrs.2023.106687
. [PMID: 36746362] - Qian-Qian Wang, Qin-Rong Sun, Xin-Ye Ji, Yun Tang, Ke Zhang, Xiao-Qin Wang, Hong-Rui Li, Xiang-Zhong Huang, Bo Zhang. The combined analgesic, sedative, and anti-gastric cancer mechanisms of Tinospora sagittata var. yunnanensis (S. Y. Hu) H. S. Lo based on integrated ethnopharmacological data.
Journal of ethnopharmacology.
2023 Mar; 303(?):115990. doi:
10.1016/j.jep.2022.115990
. [PMID: 36509262] - Hui Ni, Jinjun Hou, Linlin Zhang, Xingdong Wu, Wenyong Wu, Haoran Yin, Zijia Zhang, Huali Long, Min Lei, Wanying Wu, De-An Guo. Dissecting chemical markers for controlling "Paozhi" method of traditional Chinese medicine with untargeted metabolomics: vinegar-baked Euphorbia kansui as a case study.
Journal of separation science.
2023 Feb; ?(?):e2200792. doi:
10.1002/jssc.202200792
. [PMID: 36779441] - Eman M Elbaz, Reham M Essam, Kawkab A Ahmed, Maheera H Safwat. Donepezil halts acetic acid-induced experimental colitis in rats and its associated cognitive impairment through regulating inflammatory/oxidative/apoptotic cascades: An add-on to its anti-dementia activity.
International immunopharmacology.
2023 Feb; 116(?):109841. doi:
10.1016/j.intimp.2023.109841
. [PMID: 36764270] - Yi Shi, Xuhui He, Bingke Bai, Hongrui Wang, Chang Liu, Liming Xue, Jinzhong Wu, Yanbin Wu, Chengjian Zheng. Structural characterization and antinociceptive activity of polysaccharides from Anoectochilus elatus.
International journal of biological macromolecules.
2023 Feb; 233(?):123542. doi:
10.1016/j.ijbiomac.2023.123542
. [PMID: 36740119] - Cong-Jian Li, Zhen Zhang, Peng-Chao Zhan, Ai-Ping Lv, Pan-Pan Li, Lan Liu, Wen-Jun Li, Ling-Ling Yang, Xiao-Yang Zhi. Comparative genomic analysis and proposal of Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov., three novel Clostridium sensu stricto endophytes with diverse capabilities of acetic acid and ethanol production.
Anaerobe.
2023 Feb; 79(?):102686. doi:
10.1016/j.anaerobe.2022.102686
. [PMID: 36535584] - Ying Peng, Bao-Hua Dong, Yun-Xiu Jiang, Jie Wu, Ma-Yi-Jie Cao, Chang-Jiang Hu, Run-Chun Xu, Zhi-Min Chen. [Material basis and mechanism of Curcuma longa tuberous roots with and without vinegar processing in treating primary dysmenorrhea].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Feb; 48(3):649-659. doi:
10.19540/j.cnki.cjcmm.20221101.302
. [PMID: 36872228] - Lúcia S Boeira, Sandra V Cád, Jaqueline A Bezerra, César T Benavente, Maria Terezinha S L Neta, Rafael Donizete Dutra Sandes, Narendra Narain. Development of alcohol vinegars macerated with ACAI (Euterpe precatoria Mart.) berries and their quality evaluations with emphasis on color, antioxidant capacity, and volatiles profile.
Journal of food science.
2023 Feb; 88(2):666-680. doi:
10.1111/1750-3841.16429
. [PMID: 36617682] - Hamdoon A Mohammed, Amr S Abouzied, Salman A A Mohammed, Riaz A Khan. In Vivo and In Silico Analgesic Activity of Ficus populifolia Extract Containing 2-O-β-D-(3',4',6'-Tri-acetyl)-glucopyranosyl-3-methyl Pentanoic Acid.
International journal of molecular sciences.
2023 Jan; 24(3):. doi:
10.3390/ijms24032270
. [PMID: 36768593] - Tomas Cajka, Jiri Hricko, Lucie Rudl Kulhava, Michaela Paucova, Michaela Novakova, Ondrej Kuda. Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics.
International journal of molecular sciences.
2023 Jan; 24(3):. doi:
10.3390/ijms24031987
. [PMID: 36768308] - Donghui Peng, Yuchan Chen, Yanping Sun, Zhihong Zhang, Na Cui, Wensen Zhang, Ying Qi, Yuanning Zeng, Bin Hu, Bingyou Yang, Qiuhong Wang, Haixue Kuang. Saikosaponin A and Its Epimers Alleviate LPS-Induced Acute Lung Injury in Mice.
Molecules (Basel, Switzerland).
2023 Jan; 28(3):. doi:
10.3390/molecules28030967
. [PMID: 36770631] - Ikram Es-Sbata, Remedios Castro, Rachid Zouhair, Enrique Durán-Guerrero. Effect of the type of acetic fermentation process on the chemical composition of prickly pear vinegar (Opuntia ficus-indica).
Journal of the science of food and agriculture.
2023 Jan; 103(1):264-272. doi:
10.1002/jsfa.12138
. [PMID: 35866440] - Sevil Arabacı Tamer, Selin Akbulut, Ömer Erdoğan, Özge Çevik, Feriha Ercan, Berrak Ç Yeğen. Neuropeptide W Exhibits Preventive and Therapeutic Effects on Acetic Acid-Induced Colitis via Modulation of the Cyclooxygenase Enzyme System.
Digestive diseases and sciences.
2023 Jan; ?(?):. doi:
10.1007/s10620-022-07811-2
. [PMID: 36631709] - Rubaet Sharmin Ema, S M Neamul Kabir Zihad, Md Naharul Islam, Nazifa Sifat, Razina Rouf, Jamil A Shilpi, Shaikh Jamal Uddin. Analgesic, anti-inflammatory activity and metabolite profiling of the methanolic extract of Callicarpa arborea Roxb. leaves.
Journal of ethnopharmacology.
2023 Jan; 300(?):115757. doi:
10.1016/j.jep.2022.115757
. [PMID: 36167233] - Ali Şen, Dilek Özbeyli, Kerem Teralı, Fatih Göger, Aybeniz Yıldırım, Büşra Ertaş, Ahmet Doğan, Leyla Bitiş, Göksel Şener. Protective effects of Rubus tereticaulis leaves ethanol extract on rats with ulcerative colitis and bio-guided isolation of its active compounds: A combined in silico, in vitro and in vivo study.
Chemico-biological interactions.
2023 Jan; 369(?):110263. doi:
10.1016/j.cbi.2022.110263
. [PMID: 36375516]