6-Methylmercaptopurine (BioDeep_00000001605)

   

human metabolite Endogenous blood metabolite Exogenous Chemicals and Drugs BioNovoGene_Lab2019


代谢物信息卡片


6-(methylsulfanyl)-9H-purine

化学式: C6H6N4S (166.0313)
中文名称: 6-(甲硫基)嘌呤, 6-甲巯基嘌呤, 6-甲基巯基嘌呤
谱图信息: 最多检出来源 Homo sapiens(blood) 38.18%

Reviewed

Last reviewed on 2024-07-29.

Cite this Page

6-Methylmercaptopurine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/6-methylmercaptopurine (retrieved 2024-12-26) (BioDeep RN: BioDeep_00000001605). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CSC1=NC=NC2=C1N=CN2
InChI: InChI=1S/C6H6N4S/c1-11-6-4-5(8-2-7-4)9-3-10-6/h2-3H,1H3,(H,7,8,9,10)

描述信息

6-Methylmercaptopurine is a metabolite of mercaptopurine. Mercaptopurine (also called 6-mercaptopurine, 6-MP or its brand name Purinethol) is an immunosuppressive drug. It is a thiopurine. (Wikipedia)
KEIO_ID M104

同义名列表

9 个代谢物同义名

6-(methylsulfanyl)-9H-purine; Thiopurine S-methylether; 6-Methylmercaptopurine; 6-(Methylthio)purine; Methylmercaptopurine; 6-Methylthiopurine; 6-Methylthiopurine; 6-Methylmercaptopurine; 6-Methylmercaptopurine



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(6)

BioCyc(0)

PlantCyc(0)

代谢反应

64 个相关的代谢反应过程信息。

Reactome(58)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(4)

PharmGKB(1)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ABCB1, ITPA, NFS1, NUDT1, TPMT, XDH
Peripheral membrane protein 1 RCC2
Endoplasmic reticulum membrane 1 SLC28A3
Nucleus 3 NFS1, NUDT1, RCC2
cytosol 10 GMPS, GPT, ITPA, MTHFR, NFS1, NUDT1, NUDT15, RCC2, TPMT, XDH
centrosome 1 NFS1
nucleoplasm 2 ITPA, NFS1
Cell membrane 6 ABCB1, PCDHGB7, RCC2, SLC28A2, SLC29A1, TNF
Cytoplasmic side 1 RCC2
Early endosome membrane 1 RCC2
Multi-pass membrane protein 6 ABCB1, ABCC4, SLC17A4, SLC28A2, SLC28A3, SLC29A1
cell surface 2 ABCB1, TNF
Golgi apparatus 1 ABCC4
neuronal cell body 1 TNF
postsynapse 1 SLC29A1
Cytoplasm, cytosol 1 GMPS
Lysosome 1 SGSH
Presynapse 1 SLC29A1
acrosomal vesicle 1 NUDT1
plasma membrane 9 ABCB1, ABCC4, PCDHGB7, RCC2, SLC17A4, SLC28A2, SLC28A3, SLC29A1, TNF
Membrane 5 ABCB1, ABCC4, SLC17A4, SLC28A2, SLC29A1
apical plasma membrane 4 ABCB1, ABCC4, SLC17A4, SLC29A1
basolateral plasma membrane 2 ABCC4, SLC29A1
extracellular exosome 3 ABCB1, GPT, SGSH
extracellular space 3 NUDT1, TNF, XDH
lysosomal lumen 1 SGSH
apicolateral plasma membrane 1 SLC28A2
mitochondrion 3 ENOSF1, NFS1, NUDT1
intracellular membrane-bounded organelle 1 ITPA
Single-pass type I membrane protein 1 PCDHGB7
extracellular region 1 TNF
Mitochondrion matrix 1 NUDT1
mitochondrial matrix 2 NFS1, NUDT1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NFS1
nuclear membrane 1 NUDT1
external side of plasma membrane 1 TNF
nucleolus 2 ABCC4, RCC2
midbody 1 RCC2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 4 ABCB1, ABCC4, SLC17A4, SLC29A1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 RCC2
Cytoplasm, cytoskeleton, spindle 1 RCC2
microtubule 1 RCC2
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
lateral plasma membrane 1 SLC29A1
phagocytic cup 1 TNF
Chromosome 1 RCC2
brush border membrane 3 SLC17A4, SLC28A2, SLC28A3
Nucleus, nucleolus 1 RCC2
Basolateral cell membrane 2 ABCC4, SLC29A1
Chromosome, centromere 1 RCC2
platelet dense granule membrane 1 ABCC4
mitotic spindle midzone 1 RCC2
iron-sulfur cluster assembly complex 1 NFS1
mitochondrial 1 NFS1
vesicle membrane 1 SLC28A2
external side of apical plasma membrane 2 ABCB1, ABCC4
[Isoform 1]: Cell membrane 1 SLC28A3
Apicolateral cell membrane 1 SLC28A2
coated vesicle 1 SLC28A2
[Isoform 2]: Endoplasmic reticulum membrane 1 SLC28A3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform Mitochondrial]: Mitochondrion 1 NFS1
[Isoform p18]: Cytoplasm, cytosol 1 NUDT1
[Isoform p26]: Mitochondrion matrix 1 NUDT1
[Isoform Cytoplasmic]: Cytoplasm 1 NFS1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
chromosome, centromeric core domain 1 RCC2


文献列表

  • Kristyna Pospisilova, Jitka Siroka, Eva Karaskova, Ondrej Hradsky, Tereza Lerchova, Kristyna Zarubova, Ivana Copova, Lucie Gonsorcikova, Maria Velganova-Veghova, Irena Francova, Lubor Urbanek, Milos Geryk, Vladimir Mihal, Jiri Bronsky. Is It Useful to Monitor Thiopurine Metabolites in Pediatric Patients with Crohn's Disease on Combination Therapy? A Multicenter Prospective Observational Study. Paediatric drugs. 2021 Mar; 23(2):183-194. doi: 10.1007/s40272-021-00439-1. [PMID: 33709340]
  • Rafael Martín-Masot, María Pilar Ortiz Pérez, Natalia Ramos Rueda, Juliana Serrano Nieto, Javier Blasco-Alonso, Víctor Manuel Navas-López. [Laboratory determination of thiopurine levels in paediatric patients with inflammatory bowel disease]. Anales de pediatria. 2020 Jul; 93(1):34-40. doi: 10.1016/j.anpedi.2019.10.005. [PMID: 31784325]
  • Sandra Bohn Thomsen, Kristine Højgaard Allin, Johan Burisch, Camilla Bjørn Jensen, Susanne Hansen, Lise Lotte Gluud, Klaus Theede, Marianne Kiszka-Kanowitz, Anette Mertz Nielsen, Tine Jess. Outcome of concomitant treatment with thiopurines and allopurinol in patients with inflammatory bowel disease: A nationwide Danish cohort study. United European gastroenterology journal. 2020 02; 8(1):68-76. doi: 10.1177/2050640619868387. [PMID: 32213059]
  • Jiaqi Han, Shenghui Mei, Jiamin Xu, Dongjie Zhang, Siyao Jin, Zhigang Zhao, Libo Zhao. Simultaneous UPLC-MS/MS Determination of 6-mercaptopurine, 6-methylmercaptopurine and 6-thioguanine in Plasma: Application to the Pharmacokinetic Evaluation of Novel Dosage forms in Beagle Dogs. Current pharmaceutical design. 2020; 26(46):6013-6020. doi: 10.2174/1381612826999200820161343. [PMID: 32867649]
  • Xindi Li, Shenghui Mei, Xiaoqing Gong, Heng Zhou, Li Yang, Anna Zhou, Yonghong Liu, Xingang Li, Zhigang Zhao, Xinghu Zhang. Relationship between Azathioprine metabolites and therapeutic efficacy in Chinese patients with neuromyelitis optica spectrum disorders. BMC neurology. 2017 Jul; 17(1):130. doi: 10.1186/s12883-017-0903-5. [PMID: 28679367]
  • D Zochowska, J Zegarska, E Hryniewiecka, E Samborowska, R Jazwiec, W Tszyrsznic, A Borowiec, M Dadlez, L Paczek. Determination of Concentrations of Azathioprine Metabolites 6-Thioguanine and 6-Methylmercaptopurine in Whole Blood With the Use of Liquid Chromatography Combined With Mass Spectrometry. Transplantation proceedings. 2016 Jun; 48(5):1836-9. doi: 10.1016/j.transproceed.2016.01.084. [PMID: 27496503]
  • Greetje J Tack, Petra Waayenberg, Nanne K H de Boer. Beneficial pharmacological interaction between thiopurine and mesalazine—never change a winning team. Journal of Crohn's & colitis. 2014 Dec; 8(12):1743-4. doi: 10.1016/j.crohns.2014.08.003. [PMID: 25175784]
  • Julienne Brackett, Eric S Schafer, Daniel H Leung, M Brooke Bernhardt. Use of allopurinol in children with acute lymphoblastic leukemia to reduce skewed thiopurine metabolism. Pediatric blood & cancer. 2014 Jun; 61(6):1114-7. doi: 10.1002/pbc.24913. [PMID: 24376133]
  • P A Blaker, M Arenas-Hernandez, M A Smith, E A Shobowale-Bakre, L Fairbanks, P M Irving, J D Sanderson, A M Marinaki. Mechanism of allopurinol induced TPMT inhibition. Biochemical pharmacology. 2013 Aug; 86(4):539-47. doi: 10.1016/j.bcp.2013.06.002. [PMID: 23770457]
  • Chun-Chi Wang, Shyh-Shin Chiou, Shou-Mei Wu. Determination of mercaptopurine and its four metabolites by large-volume sample stacking with polarity switching in capillary electrophoresis. Electrophoresis. 2005 Jun; 26(13):2637-42. doi: 10.1002/elps.200500003. [PMID: 15934057]
  • M Chrzanowska, M Krzymański. Determination of 6-thioguanine and 6-methylmercaptopurine metabolites in renal transplantation recipients and patients with glomerulonephritis treated with azathioprine. Therapeutic drug monitoring. 1999 Apr; 21(2):231-7. doi: 10.1097/00007691-199904000-00015. [PMID: 10217345]
  • J Welch, L Lennard, G C Morton, J S Lilleyman. Pharmacokinetics of mercaptopurine: plasma drug and red cell metabolite concentrations after an oral dose. Therapeutic drug monitoring. 1997 Aug; 19(4):382-5. doi: 10.1097/00007691-199708000-00003. [PMID: 9263376]
  • S Bergan, H E Rugstad, O Bentdal, G Sødal, A Hartmann, B Klemetsdal, J Aarbakke, O Stokke. Optimization of azathioprine therapy by measuring 6-thioguanine nucleotides and methylated mercaptopurine in renal allograft recipients. Transplantation proceedings. 1995 Dec; 27(6):3426. doi: NULL. [PMID: 8540033]
  • A A Elfarra, I Y Hwang. Targeting of 6-mercaptopurine to the kidneys. Metabolism and kidney-selectivity of S-(6-purinyl)-L-cysteine analogs in rats. Drug metabolism and disposition: the biological fate of chemicals. 1993 Sep; 21(5):841-5. doi: . [PMID: 7902246]
  • I Y Hwang, A A Elfarra. Detection and mechanisms of formation of S-(6-purinyl)glutathione and 6-mercaptopurine in rats given 6-chloropurine. The Journal of pharmacology and experimental therapeutics. 1993 Jan; 264(1):41-6. doi: . [PMID: 8423540]
  • L A Barness. Safety considerations with high ascorbic acid dosage. Annals of the New York Academy of Sciences. 1975 Sep; 258(?):523-8. doi: 10.1111/j.1749-6632.1975.tb29311.x. [PMID: 946]