Trimethylamine (BioDeep_00000003915)
Secondary id: BioDeep_00000405398, BioDeep_00000861184
human metabolite PANOMIX_OTCML-2023 blood metabolite Toxin
代谢物信息卡片
化学式: C3H9N (59.0734954)
中文名称: 三甲胺溶液, 三甲胺
谱图信息:
最多检出来源 Homo sapiens(blood) 2.41%
分子结构信息
SMILES: CN(C)C
InChI: InChI=1S/C3H9N/c1-4(2)3/h1-3H3
描述信息
Trimethylamine, also known as NMe3, N(CH3)3, and TMA, is a colorless, hygroscopic, and flammable simple amine with a typical fishy odor in low concentrations and an ammonia like odor in higher concentrations. Trimethylamine has a boiling point of 2.9 degree centigrade and is a gas at room temperature. Trimethylamine usually comes in pressurized gas cylinders or as a 40\\% solution in water. Trimethylamine is a nitrogenous base and its positively charged cation is called trimethylammonium cation. A common salt of trimethylamine is trimethylammonium chloride, a hygroscopic colorless solid. Trimethylamine is a product of decomposition of plants and animals. It is the substance mainly responsible for the fishy odor often associated with fouling fish, bacterial vagina infections, and bad breath. It is also associated with taking large doses of choline. Trimethylaminuria is a genetic disorder in which the body is unable to metabolize trimethylamine from food sources. Patients develop a characteristic fish odour of their sweat, urine, and breath after the consumption of choline-rich foods. Trimethylaminuria is an autosomal recessive disorder involving a trimethylamine oxidase deficiency. Trimethylaminuria has also been observed in a certain breed of Rhode Island Red chicken that produces eggs with a fishy smell. Trimethylamine in the urine is a biomarker for the consumption of legumes. It has also been found to be a product of various types of bacteria, such as Achromobacter, Acinetobacter, Actinobacteria, Aeromonas, Alcaligenes, Alteromonas, Anaerococcus, Bacillus, Bacteroides, Bacteroidetes, Burkholderia, Campylobacter, Citrobacter, Clostridium, Desulfitobacterium, Desulfovibrio, Desulfuromonas, Edwardsiella, Enterobacter, Enterococcus, Escherichia, Eubacterium, Firmicutes, Flavobacterium, Gammaproteobacteria, Haloanaerobacter, Klebsiella, Micrococcus, Mobiluncus, Olsenella, Photobacterium, Proteobacteria, Proteus, Providencia, Pseudomonas, Rhodopseudomonas, Ruminococcus, Salmonella, Sarcina, Serratia, Shewanella, Shigella, Sinorhizobium, Sporomusa, Staphylococcus, Stigmatella, Streptococcus, Vibrio and Yokenella (PMID:26687352; PMID:25108210; PMID:24909875; PMID:28506279; PMID:27190056). Trimethylamine is a marker for urinary tract infection brought on by E. coli. (PMID:25108210; PMID:24909875). It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821).
Trimethylamine, also known as NMe3 or TMA, is a nitrogenous base and can be readily protonated to give trimethylammonium cation. Trimethylammonium chloride is a hygroscopic colorless solid prepared from hydrochloric acid. Trimethylamine is a product of decomposition of plants and animals. It is the substance mainly responsible for the fishy odor often associated with fouling fish, bacterial vagina infections, and bad breath. It is also associated with taking large doses of choline (Wikipedia). Trimethylamine is an organic compound with the formula N(CH3)3. This colorless, hygroscopic, and flammable tertiary amine has a strong "fishy" odor in low concentrations and an ammonia-like odor at higher concentrations. It is a gas at room temperature but is usually sold in pressurized gas cylinders or as a 40\\% solution in water. Trimethylamine has a boiling point of 2.9 degree centigrade. Trimethylamine is a nitrogenous base and its positively charged cation is called trimethylammonium cation. A common salt of trimethylamine is trimethylammonium chloride, a hygroscopic colorless solid (Wikipedia). Trimethylaminuria is a genetic disorder in which the body is unable to metabolize trimethylamine from food sources. Patients develop a characteristic fish odour of their sweat, urine, and breath after the consumption of choline-rich foods. Trimethylaminuria is an autosomal recessive disorder involving a trimethylamine oxidase deficiency. Trimethylaminuria has also been observed in a certain breed of Rhode Island Red chicken that produces eggs with a fishy smell (Wikipedia). Trimethylamine in the urine is a biomarker for the consumption of legumes. Trimethylamine is found in many foods, some of which are fishes, alcoholic beverages, milk and milk products, and rice.
同义名列表
18 个代谢物同义名
Trimethylamine aqueous solution; N,N-Dimethyl-methanamine; Trimethylamine anhydrous; N,N-dimethylmethanamine; Tridimethylaminomethane; HCL OF Trimethylamine; HBR OF Trimethylamine; HI OF trimethylamine; Dimethylmethaneamine; N,N,N-Trimethylamine; N-Trimethylamine; trimethylamine; Trimethylamin; (CH3)3N; N(CH3)3; NMe3; TMA; Trimethylamine
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:18139
- KEGG: C00565
- PubChem: 1146
- HMDB: HMDB0000906
- Metlin: METLIN3772
- ChEMBL: CHEMBL439723
- Wikipedia: Trimethylamine
- MetaCyc: TRIMETHYLAMINE
- KNApSAcK: C00001433
- foodb: FDB011944
- chemspider: 1114
- CAS: 75-50-3
- PMhub: MS000013594
- PubChem: 3844
- PDB-CCD: KEN
- 3DMET: B00133
- NIKKAJI: J1.457E
- RefMet: Trimethylamine
分类词条
相关代谢途径
Reactome(8)
BioCyc(0)
PlantCyc(0)
代谢反应
57 个相关的代谢反应过程信息。
Reactome(54)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- FMO oxidises nucleophiles:
H+ + Oxygen + TMA + TPNH ⟶ H2O + TMAO + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- FMO oxidises nucleophiles:
H+ + MTZ + Oxygen + TPNH ⟶ H2O + MTZ-SOX + TPN
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(2)
- N-Oxide Electron Transfer:
Electron + Formic acid + Hydrogen Ion + menaquinone-8 ⟶ Carbon dioxide + Hydrogen Ion + Menaquinol 8
- N-Oxide Electron Transfer:
Electron + Hydrogen Ion + Menaquinol 8 + Trimethylamine N-oxide ⟶ Hydrogen Ion + Trimethylamine + Water + menaquinone-8
PharmGKB(0)
11 个相关的物种来源信息
- 1237728 - Amorphophallus brachyphyllus: 10.1016/S0031-9422(97)00221-5
- 4068 - Gymnema sylvestre: 10.2307/4117899
- 119431 - Hippospongia communis: 10.1515/BCHM2.1960.322.1.198
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-015-0840-5
- 2689076 - Ligusticum chuanxiong: 10.4268/CJCMM20111013
- 1508160 - Ligusticum striatum: 10.4268/CJCMM20111013
- 2849048 - Lucensosergia lucens: 10.1080/00021369.1984.10866348
- 589641 - Sergia lucens: 10.1080/00021369.1984.10866348
- 35002 - Thamnophis butleri: 10.1007/BF02036652
- 264060 - Velella velella: 10.1515/BCHM2.1926.161.4-6.300
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Muhammad Abrar Hasnat, Arkadiusz Zupok, Michal Gorka, Chantal Iobbi-Nivol, Aleksandra Skirycz, Cécile Jourlin-Castelli, Frank Bier, Saloni Agarwal, Ehizode Irefo, Silke Leimkühler. Iron limitation indirectly reduces the Escherichia coli torCAD operon expression by a reduction of molybdenum cofactor availability.
Microbiology spectrum.
2024 Jan; ?(?):e0348023. doi:
10.1128/spectrum.03480-23
. [PMID: 38193660] - Lei Liu, Huifang Xu, Jian Wang, Haiyan Wang, Saisai Ren, Qian Huang, Mingyan Zhang, Hui Zhou, Chunyan Yang, Lu Jia, Yu Huang, Hao Zhang, Yanling Tao, Ying Li, Yanan Min. Trimethylamine-N-oxide (TMAO) and basic fibroblast growth factor (bFGF) are possibly involved in corticosteroid resistance in adult patients with immune thrombocytopenia.
Thrombosis research.
2024 Jan; 233(?):25-36. doi:
10.1016/j.thromres.2023.11.003
. [PMID: 37988847] - Shan Huang, Si Ying Lim, Sock Hwee Tan, Mark Y Chan, Wuzhong Ni, Sam Fong Yau Li. Targeted Plasma Metabolomics Reveals Association of Acute Myocardial Infarction Risk with the Dynamic Balance between Trimethylamine-N-oxide, Betaine, and Choline.
Journal of agricultural and food chemistry.
2023 Oct; ?(?):. doi:
10.1021/acs.jafc.2c08241
. [PMID: 37781984] - Qingmiao Ma, Masafumi Noda, Narandalai Danshiitsoodol, Masanori Sugiyama. Fermented Stevia Improves Alcohol Poisoning Symptoms Associated with Changes in Mouse Gut Microbiota.
Nutrients.
2023 Aug; 15(17):. doi:
10.3390/nu15173708
. [PMID: 37686739] - Hao Cheng, Dandan Zhang, Jing Wu, Juan Liu, Yaochuan Zhou, Yuzhu Tan, Wuwen Feng, Cheng Peng. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Jul; 119(?):154979. doi:
10.1016/j.phymed.2023.154979
. [PMID: 37552899] - Hui Ye, Xuemei Liu, Haozhou Huang, Lin Huang, Yang Bao, Hongyan Ma, Junzhi Lin, Xiaoming Bao, Dingkun Zhang, Runchun Xu. An Improved Technique for Trimethylamine Detection in Animal-Derived Medicine by Headspace Gas Chromatography-Tandem Quadrupole Mass Spectrometry.
Journal of visualized experiments : JoVE.
2023 03; ?(193):. doi:
10.3791/65291
. [PMID: 36971441] - Ateequr Rehman, Susan M Tyree, Sophie Fehlbaum, Gillian DunnGalvin, Charalampos G Panagos, Bertrand Guy, Shriram Patel, Timothy G Dinan, Asim K Duttaroy, Ruedi Duss, Robert E Steinert. A water-soluble tomato extract rich in secondary plant metabolites lowers trimethylamine-n-oxide and modulates gut microbiota: a randomized, double-blind, placebo-controlled cross-over study in overweight and obese adults.
The Journal of nutrition.
2023 01; 153(1):96-105. doi:
10.1016/j.tjnut.2022.11.009
. [PMID: 36913483] - Chen Yong, Guo-Shun Huang, Hong-Wei Ge, Qing-Min Sun, Kun Gao, En-Chao Zhou. [Effect of traditional Chinese medicine in attenuating chronic kidney disease and its complications by regulating gut microbiota-derived metabolite trimethylamine N-oxide: a review].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jan; 48(2):321-328. doi:
10.19540/j.cnki.cjcmm.20220726.501
. [PMID: 36725221] - Peng Zhou, Xiao-Ni Zhao, Yao-Yao Ma, Tong-Juan Tang, Shu-Shu Wang, Liang Wang, Jin-Ling Huang. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease.
Journal of food biochemistry.
2022 12; 46(12):e14376. doi:
10.1111/jfbc.14376
. [PMID: 35945702] - Laura Díez-Ricote, Paloma Ruiz-Valderrey, Víctor Micó, Ruth Blanco, Joao Tomé-Carneiro, Alberto Dávalos, José M Ordovás, Lidia Daimiel. TMAO Upregulates Members of the miR-17/92 Cluster and Impacts Targets Associated with Atherosclerosis.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012107
. [PMID: 36292963] - Jing Xue, Jie Xu, Mingming Zhao, Aoming Jin, Aichun Cheng, Xue Jiang, Ke Li, Jinxi Lin, Xia Meng, Hao Li, Lemin Zheng, Yongjun Wang. Residual Risk of Trimethylamine-N-Oxide and Choline for Stroke Recurrence in Patients With Intensive Secondary Therapy.
Journal of the American Heart Association.
2022 10; 11(19):e027265. doi:
10.1161/jaha.122.027265
. [PMID: 36193936] - Nida Buawangpong, Kanokporn Pinyopornpanish, Arintaya Phrommintikul, Nathamol Chindapan, Sakamon Devahastin, Nipon Chattipakorn, Siriporn C Chattipakorn. Increased plasma trimethylamine-N-oxide levels are associated with mild cognitive impairment in high cardiovascular risk elderly population.
Food & function.
2022 Oct; 13(19):10013-10022. doi:
10.1039/d2fo02021a
. [PMID: 36069253] - Jiexin Zhang, Caiwen Ou, Minsheng Chen. Curcumin attenuates cadmium-induced atherosclerosis by regulating trimethylamine-N-oxide synthesis and macrophage polarization through remodeling the gut microbiota.
Ecotoxicology and environmental safety.
2022 Oct; 244(?):114057. doi:
10.1016/j.ecoenv.2022.114057
. [PMID: 36084504] - C M Florea, R Rosu, G Cismaru, R Moldovan, L Vlase, V Toma, N Decea, B Ancuta, G A Filip. Chronic oral trimethylamine-N-oxide administration induces experimental incipient atherosclerosis in non-genetically modified mice.
Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.
2022 Oct; 73(5):. doi:
10.26402/jpp.2022.5.07
. [PMID: 36942810] - Fabian Piskol, Kerstin Neubauer, Maurice Eggers, Lisa Margarete Bode, Jan Jasper, Alan Slusarenko, Edward Reijerse, Wolfgang Lubitz, Dieter Jahn, Jürgen Moser. Two-component carnitine monooxygenase from Escherichia coli: functional characterization, inhibition and mutagenesis of the molecular interface.
Bioscience reports.
2022 09; 42(9):. doi:
10.1042/bsr20221102
. [PMID: 36066069] - Doudou Li, Ying Lu, Shuai Yuan, Xiaxia Cai, Yuan He, Jie Chen, Qiong Wu, Di He, Aiping Fang, Yacong Bo, Peige Song, Debby Bogaert, Kostas Tsilidis, Susanna C Larsson, Huanling Yu, Huilian Zhu, Evropi Theodoratou, Yimin Zhu, Xue Li. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis.
The American journal of clinical nutrition.
2022 07; 116(1):230-243. doi:
10.1093/ajcn/nqac074
. [PMID: 35348578] - Fang Hua, Peng Zhou, Guan-Hu Bao, Tie-Jun Ling. Flavonoids in Lu'an GuaPian tea as potential inhibitors of TMA-lyase in acute myocardial infarction.
Journal of food biochemistry.
2022 07; 46(7):e14110. doi:
10.1111/jfbc.14110
. [PMID: 35156214] - Laura Bordoni, Anna M Malinowska, Irene Petracci, Artur Szwengiel, Rosita Gabbianelli, Agata Chmurzynska. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study.
Molecular nutrition & food research.
2022 07; 66(13):e2200003. doi:
10.1002/mnfr.202200003
. [PMID: 35490412] - Mohammad Moradzad, Mohammad Abdi, Farshad Sheikh Esmaeili, Dana Ghaderi, Khaled Rahmani, Mohammad Raman Moloudi, Zakaria Vahabzadeh. Possible correlation between high circulatory levels of trimethylamine-N-oxide and 2177G>C polymorphisms of hepatic flavin containing monooxygenase 3 in Kurdish Population with non-alcoholic fatty liver disease.
Molecular biology reports.
2022 Jul; 49(7):5927-5937. doi:
10.1007/s11033-022-07375-4
. [PMID: 35348964] - Hao-Hao Shi, Li-Pin Chen, Cheng-Cheng Wang, Ying-Cai Zhao, Yu-Ming Wang, Chang-Hu Xue, Tian-Tian Zhang. Docosahexaenoic acid-acylated curcumin diester alleviates cisplatin-induced acute kidney injury by regulating the effect of gut microbiota on the lipopolysaccharide- and trimethylamine-N-oxide-mediated PI3K/Akt/NF-κB signaling pathway in mice.
Food & function.
2022 Jun; 13(11):6103-6117. doi:
10.1039/d1fo04178a
. [PMID: 35575345] - Lamuel D Bean, Jeffrey J Wing, Randall E Harris, Suzanne M Smart, Subha V Raman, M Wesley Milks. Transferrin predicts trimethylamine-N-oxide levels and is a potential biomarker of cardiovascular disease.
BMC cardiovascular disorders.
2022 05; 22(1):209. doi:
10.1186/s12872-022-02644-3
. [PMID: 35538408] - Samitinjaya Dhakal, Zahra Moazzami, Cydne Perry, Moul Dey. Effects of Lean Pork on Microbiota and Microbial-Metabolite Trimethylamine-N-Oxide: A Randomized Controlled Non-Inferiority Feeding Trial Based on the Dietary Guidelines for Americans.
Molecular nutrition & food research.
2022 05; 66(9):e2101136. doi:
10.1002/mnfr.202101136
. [PMID: 35182101] - Shuai Zhao, Manman Xu, Ruixin Liu, Yonggan Xue, Jun Nie, Yincheng Chang. NIR-II Fluorescent Probe for Detecting Trimethylamine Based on Intermolecular Charge Transfer.
Chemistry (Weinheim an der Bergstrasse, Germany).
2022 Apr; 28(24):e202200113. doi:
10.1002/chem.202200113
. [PMID: 35324048] - Yuan-Yuan Cai, Feng-Qing Huang, Xingzhen Lao, Yawen Lu, Xuejiao Gao, Raphael N Alolga, Kunpeng Yin, Xingchen Zhou, Yun Wang, Baolin Liu, Jing Shang, Lian-Wen Qi, Jing Li. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis.
NPJ biofilms and microbiomes.
2022 03; 8(1):11. doi:
10.1038/s41522-022-00273-4
. [PMID: 35273169] - Ruey Leng Loo, Queenie Chan, Jeremy K Nicholson, Elaine Holmes. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine-N-oxide.
Journal of proteome research.
2022 03; 21(3):560-589. doi:
10.1021/acs.jproteome.1c00851
. [PMID: 35142516] - Mauro Lombardo, Giovanni Aulisa, Daniele Marcon, Gianluca Rizzo. The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans.
Current nutrition reports.
2022 03; 11(1):56-68. doi:
10.1007/s13668-021-00387-9
. [PMID: 34990005] - Archita Maiti, Snehasis Daschakraborty. Can Urea and Trimethylamine-N-oxide Prevent the Pressure-Induced Phase Transition of Lipid Membrane?.
The journal of physical chemistry. B.
2022 02; 126(7):1426-1440. doi:
10.1021/acs.jpcb.1c08891
. [PMID: 35139638] - Wanwen Kong, Junyi Ma, Ying Lin, Weiyu Chen. Positive Association of Plasma Trimethylamine-N-Oxide and Atherosclerosis in Patient with Acute Coronary Syndrome.
Cardiovascular therapeutics.
2022; 2022(?):2484018. doi:
10.1155/2022/2484018
. [PMID: 36420057] - Guixiu Chen, Lin He, Xiaotao Dou, Tao Liu. Association of Trimethylamine-N-Oxide Levels with Risk of Cardiovascular Disease and Mortality among Elderly Subjects: A Systematic Review and Meta-Analysis.
Cardiorenal medicine.
2022; 12(2):39-54. doi:
10.1159/000520910
. [PMID: 34915483] - Simona Alibrandi, Fabiana Nicita, Luigi Donato, Concetta Scimone, Carmela Rinaldi, Rosalia D'Angelo, Antonina Sidoti. Adaptive Modelling of Mutated FMO3 Enzyme Could Unveil Unexplored Scenarios Linking Variant Haplotypes to TMAU Phenotypes.
Molecules (Basel, Switzerland).
2021 Nov; 26(22):. doi:
10.3390/molecules26227045
. [PMID: 34834137] - Qiao Zhang, Xiaomin Guo, Cao Xie, Zhonglian Cao, Xin Wang, Li Liu, Ping Yang. Unraveling the metabolic pathway of choline-TMA-TMAO: Effects of gypenosides and implications for the therapy of TMAO related diseases.
Pharmacological research.
2021 11; 173(?):105884. doi:
10.1016/j.phrs.2021.105884
. [PMID: 34530121] - Qian Li, Tao Wu, Min Zhang, Haixia Chen, Rui Liu. Induction of the glycolysis product methylglyoxal on trimethylamine lyase synthesis in the intestinal microbiota from mice fed with choline and dietary fiber.
Food & function.
2021 Oct; 12(20):9880-9893. doi:
10.1039/d1fo01481a
. [PMID: 34664588] - Jinghui Tang, Manman Qin, Le Tang, Dan Shan, Cheng Zhang, Yifeng Zhang, Hua Wei, Liang Qiu, Jun Yu. Enterobacter aerogenes ZDY01 inhibits choline-induced atherosclerosis through CDCA-FXR-FGF15 axis.
Food & function.
2021 Oct; 12(20):9932-9946. doi:
10.1039/d1fo02021h
. [PMID: 34492674] - Priscilla Day-Walsh, Emad Shehata, Shikha Saha, George M Savva, Barbora Nemeckova, Jasmine Speranza, Lee Kellingray, Arjan Narbad, Paul A Kroon. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota.
European journal of nutrition.
2021 Oct; 60(7):3987-3999. doi:
10.1007/s00394-021-02572-6
. [PMID: 33934200] - Charlotte Veyrat-Durebex, Isabelle Benz-de-Bretagne, Victoria Clavier, Clément Bruno, Christian R Andres, Catherine Antar, Benjamin Hennart, François Maillot, Lydie Nadal-Desbarats, Hélène Blasco. Quality consideration for the validation of urine TMA and TMAO measurement by nuclear magnetic resonance spectroscopy in Fish Odor Syndrome.
Analytical biochemistry.
2021 10; 630(?):114330. doi:
10.1016/j.ab.2021.114330
. [PMID: 34364856] - Jose L Flores-Guerrero, Adrian Post, Peter R van Dijk, Margery A Connelly, Erwin Garcia, Gerjan Navis, Stephan J L Bakker, Robin P F Dullaart. Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease.
Liver international : official journal of the International Association for the Study of the Liver.
2021 10; 41(10):2371-2382. doi:
10.1111/liv.14963
. [PMID: 33993608] - Yu-Chun Chang, Yi-Hsuan Chu, Chien-Cheng Wang, Chih-Hsuan Wang, You-Lin Tain, Hung-Wei Yang. Rapid Detection of Gut Microbial Metabolite Trimethylamine N-Oxide for Chronic Kidney Disease Prevention.
Biosensors.
2021 Sep; 11(9):. doi:
10.3390/bios11090339
. [PMID: 34562929] - Mohammed E Hefni, Maria Bergström, Torbjörn Lennqvist, Cecilia Fagerström, Cornelia M Witthöft. Simultaneous quantification of trimethylamine N-oxide, trimethylamine, choline, betaine, creatinine, and propionyl-, acetyl-, and L-carnitine in clinical and food samples using HILIC-LC-MS.
Analytical and bioanalytical chemistry.
2021 Sep; 413(21):5349-5360. doi:
10.1007/s00216-021-03509-y
. [PMID: 34258650] - Takuo Emoto, Tomohiro Hayashi, Tokiko Tabata, Tomoya Yamashita, Hikaru Watanabe, Tomoya Takahashi, Yasuhiro Gotoh, Kenjiro Kami, Naofumi Yoshida, Yoshihiro Saito, Hidekazu Tanaka, Kensuke Matsumoto, Tetsuya Hayashi, Takuji Yamada, Ken-Ichi Hirata. Metagenomic analysis of gut microbiota reveals its role in trimethylamine metabolism in heart failure.
International journal of cardiology.
2021 09; 338(?):138-142. doi:
10.1016/j.ijcard.2021.06.003
. [PMID: 34102245] - Sijing Liu, Fangting He, Tianli Zheng, Siqi Wan, Jiayi Chen, Fei Yang, Xin Xu, Xiaofang Pei. Ligustrum robustum Alleviates Atherosclerosis by Decreasing Serum TMAO, Modulating Gut Microbiota, and Decreasing Bile Acid and Cholesterol Absorption in Mice.
Molecular nutrition & food research.
2021 07; 65(14):e2100014. doi:
10.1002/mnfr.202100014
. [PMID: 34005835] - Stavroula Argyridou, Melanie J Davies, Gregory J H Biddle, Dennis Bernieh, Toru Suzuki, Nathan P Dawkins, Alex V Rowlands, Kamlesh Khunti, Alice C Smith, Thomas Yates. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity.
The Journal of nutrition.
2021 07; 151(7):1844-1853. doi:
10.1093/jn/nxab046
. [PMID: 33784394] - Yang Zhou, Wei Jin, Fei Xie, Shengyong Mao, Yanfen Cheng, Weiyun Zhu. The role of Methanomassiliicoccales in trimethylamine metabolism in the rumen of dairy cows.
Animal : an international journal of animal bioscience.
2021 Jul; 15(7):100259. doi:
10.1016/j.animal.2021.100259
. [PMID: 34058595] - Danny Orabi, Lucas J Osborn, Kevin Fung, William Massey, Anthony J Horak, Federico Aucejo, Ibrahim Choucair, Beckey DeLucia, Zeneng Wang, Jan Claesen, J Mark Brown. A surgical method for continuous intraportal infusion of gut microbial metabolites in mice.
JCI insight.
2021 05; 6(9):. doi:
10.1172/jci.insight.145607
. [PMID: 33986195] - Navendu Paul, Rudra Sarkar, Sabyasachi Sarkar. Zinc protoporphyrin-trimethylamine-N-oxide complex involves cholesterol oxidation causing atherosclerosis.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
2021 05; 26(2-3):367-374. doi:
10.1007/s00775-021-01861-z
. [PMID: 33713182] - Lisard Iglesias-Carres, Lauren A Essenmacher, Kathryn C Racine, Andrew P Neilson. Development of a High-Throughput Method to Study the Inhibitory Effect of Phytochemicals on Trimethylamine Formation.
Nutrients.
2021 Apr; 13(5):. doi:
10.3390/nu13051466
. [PMID: 33925806] - Muhammad Zubair Israr, Dennis Bernieh, Andrea Salzano, Shabana Cassambai, Yoshiyuki Yazaki, Liam M Heaney, Donald J L Jones, Leong L Ng, Toru Suzuki. Association of gut-related metabolites with outcome in acute heart failure.
American heart journal.
2021 04; 234(?):71-80. doi:
10.1016/j.ahj.2021.01.006
. [PMID: 33454370] - Makiko Shimizu, Shotaro Uehara, Hiroshi Suemizu, Hiroshi Yamazaki. In vivo drug interactions of itopride and trimethylamine mediated by flavin-containing monooxygenase 3 in humanized-liver mice.
Drug metabolism and pharmacokinetics.
2021 Apr; 37(?):100369. doi:
10.1016/j.dmpk.2020.11.004
. [PMID: 33513464] - Concetta Scimone, Simona Alibrandi, Luigi Donato, Salvatore V Giofrè, Giacomo Rao, Antonina Sidoti, Rosalia D'Angelo. Antiretroviral treatment leading to secondary trimethylaminuria: Genetic associations and successful management with riboflavin.
Journal of clinical pharmacy and therapeutics.
2021 Apr; 46(2):304-309. doi:
10.1111/jcpt.13315
. [PMID: 33247860] - Si Chen, Ping-Ping Jiang, Danxia Yu, Gong-Cheng Liao, Shang-Ling Wu, Ai-Ping Fang, Pei-Yan Chen, Xiao-Yan Wang, Yun Luo, Jing-An Long, Rong-Huan Zhong, Zhao-Yan Liu, Chun-Lei Li, Dao-Ming Zhang, Hui-Lian Zhu. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial.
European journal of nutrition.
2021 Mar; 60(2):747-758. doi:
10.1007/s00394-020-02278-1
. [PMID: 32440731] - Xing Heng, Wugao Liu, Weihua Chu. Identification of choline-degrading bacteria from healthy human feces and used for screening of trimethylamine (TMA)-lyase inhibitors.
Microbial pathogenesis.
2021 Mar; 152(?):104658. doi:
10.1016/j.micpath.2020.104658
. [PMID: 33253857] - Wenru Liu, Jun Mei, Jing Xie. Effect of locust bean gum-sodium alginate coatings incorporated with daphnetin emulsions on the quality of Scophthalmus maximus at refrigerated condition.
International journal of biological macromolecules.
2021 Feb; 170(?):129-139. doi:
10.1016/j.ijbiomac.2020.12.089
. [PMID: 33338530] - Shin Yoshimoto, Eri Mitsuyama, Keisuke Yoshida, Toshitaka Odamaki, Jin-Zhong Xiao. Enriched metabolites that potentially promote age-associated diseases in subjects with an elderly-type gut microbiota.
Gut microbes.
2021 Jan; 13(1):1-11. doi:
10.1080/19490976.2020.1865705
. [PMID: 33430687] - Janusz Skrzypecki, J Izdebska, A Kamińska, J Badowska, J Przybek-Skrzypecka, J Bombuy, E Samborowska, J P Szaflik. Glaucoma patients have an increased level of trimethylamine, a toxic product of gut bacteria, in the aqueous humor: a pilot study.
International ophthalmology.
2021 Jan; 41(1):341-347. doi:
10.1007/s10792-020-01587-y
. [PMID: 32914277] - Moustafa Gabr, Katarzyna Świderek. Discovery of a Histidine-Based Scaffold as an Inhibitor of Gut Microbial Choline Trimethylamine-Lyase.
ChemMedChem.
2020 12; 15(23):2273-2279. doi:
10.1002/cmdc.202000571
. [PMID: 32827245] - Signe Abitz Winther, Peter Rossing. TMAO: Trimethylamine-N-Oxide or Time to Minimize Intake of Animal Products?.
The Journal of clinical endocrinology and metabolism.
2020 12; 105(12):. doi:
10.1210/clinem/dgaa428
. [PMID: 32701146] - Makiko Shimizu, Yasuhiro Uno, Masahiro Utoh, Hiroshi Yamazaki. Trimethylamine N-oxygenation in cynomolgus macaques genotyped for flavin-containing monooxygenase 3 (FMO3).
Drug metabolism and pharmacokinetics.
2020 Dec; 35(6):571-573. doi:
10.1016/j.dmpk.2020.07.001
. [PMID: 32967780] - Cheryl A M Anderson, Ryan Bradley. The potential of novel plant protein foods to improve dietary patterns and markers of cardiovascular health.
The American journal of clinical nutrition.
2020 11; 112(5):1151-1152. doi:
10.1093/ajcn/nqaa253
. [PMID: 33022696] - Kay Diederen, Jia V Li, Gillian E Donachie, Tim G de Meij, Dirk R de Waart, Theodorus B M Hakvoort, Angelika Kindermann, Josef Wagner, Victoria Auyeung, Anje A Te Velde, Sigrid E M Heinsbroek, Marc A Benninga, James Kinross, Alan W Walker, Wouter J de Jonge, Jurgen Seppen. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn's disease.
Scientific reports.
2020 11; 10(1):18879. doi:
10.1038/s41598-020-75306-z
. [PMID: 33144591] - Xi Liang, Zhe Zhang, Youyou Lv, Linjun Tong, Tongjie Liu, Huaxi Yi, Xiaohong Zhou, Zhuang Yu, Xiaoying Tian, Qingyu Cui, Jiebing Yang, Pimin Gong, Lanwei Zhang. Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis.
Nutrition (Burbank, Los Angeles County, Calif.).
2020 Nov; 79-80(?):110941. doi:
10.1016/j.nut.2020.110941
. [PMID: 32858376] - Dalene De Beer, Catharina Mc Mels, Aletta E Schutte, Roan Louw, Christian Delles, Ruan Kruger. Left ventricular mass and urinary metabolomics in young black and white adults: The African-PREDICT study.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2020 10; 30(11):2051-2062. doi:
10.1016/j.numecd.2020.06.004
. [PMID: 32669241] - Janis Kuka, Melita Videja, Marina Makrecka-Kuka, Janis Liepins, Solveiga Grinberga, Eduards Sevostjanovs, Karlis Vilks, Edgars Liepinsh, Maija Dambrova. Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice.
Scientific reports.
2020 09; 10(1):14555. doi:
10.1038/s41598-020-71470-4
. [PMID: 32884086] - Aaron C Schmidt, Jean-Christophe Leroux. Treatments of trimethylaminuria: where we are and where we might be heading.
Drug discovery today.
2020 09; 25(9):1710-1717. doi:
10.1016/j.drudis.2020.06.026
. [PMID: 32615074] - Dietmar Enko, Sieglinde Zelzer, Andreas Baranyi, Markus Herrmann, Andreas Meinitzer. Determination of Trimethylamine-N-oxide by a Simple Isocratic High-Throughput Liquid-Chromatography Tandem Mass-Spectrometry Method.
Clinical laboratory.
2020 Sep; 66(9):. doi:
10.7754/clin.lab.2020.200122
. [PMID: 32902221] - Adrian Drapala, Mateusz Szudzik, Dawid Chabowski, Izabella Mogilnicka, Kinga Jaworska, Katarzyna Kraszewska, Emilia Samborowska, Marcin Ufnal. Heart Failure Disturbs Gut-Blood Barrier and Increases Plasma Trimethylamine, a Toxic Bacterial Metabolite.
International journal of molecular sciences.
2020 Aug; 21(17):. doi:
10.3390/ijms21176161
. [PMID: 32859047] - Taehwan Lim, Juhee Ryu, Kiuk Lee, Sun Young Park, Keum Taek Hwang. Protective Effects of Black Raspberry (Rubus occidentalis) Extract against Hypercholesterolemia and Hepatic Inflammation in Rats Fed High-Fat and High-Choline Diets.
Nutrients.
2020 Aug; 12(8):. doi:
10.3390/nu12082448
. [PMID: 32824008] - Natalia Arias, Silvia Arboleya, Joseph Allison, Aleksandra Kaliszewska, Sara G Higarza, Miguel Gueimonde, Jorge L Arias. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases.
Nutrients.
2020 Aug; 12(8):. doi:
10.3390/nu12082340
. [PMID: 32764281] - Leonardo Dionisio, Makiko Shimizu, Sofia Stupniki, Saki Oyama, Eugenio Aztiria, Maximiliano Alda, Hiroshi Yamazaki, Guillermo Spitzmaul. Novel variants in outer protein surface of flavin-containing monooxygenase 3 found in an Argentinian case with impaired capacity for trimethylamine N-oxygenation.
Drug metabolism and pharmacokinetics.
2020 Aug; 35(4):383-388. doi:
10.1016/j.dmpk.2020.05.003
. [PMID: 32653296] - Kinga Jaworska, Marek Konop, Tomasz Hutsch, Karol Perlejewski, Marek Radkowski, Marta Grochowska, Anna Bielak-Zmijewska, Grażyna Mosieniak, Ewa Sikora, Marcin Ufnal. Trimethylamine But Not Trimethylamine Oxide Increases With Age in Rat Plasma and Affects Smooth Muscle Cells Viability.
The journals of gerontology. Series A, Biological sciences and medical sciences.
2020 06; 75(7):1276-1283. doi:
10.1093/gerona/glz181
. [PMID: 31411319] - Scarlett Puebla-Barragan, Justin Renaud, Mark Sumarah, Gregor Reid. Malodorous biogenic amines in Escherichia coli-caused urinary tract infections in women-a metabolomics approach.
Scientific reports.
2020 06; 10(1):9703. doi:
10.1038/s41598-020-66662-x
. [PMID: 32546787] - Khaled Fadhlaoui, Marie-Edith Arnal, Matthieu Martineau, Paméla Camponova, Bernard Ollivier, Paul W O'Toole, Jean-François Brugère. Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics.
Applied microbiology and biotechnology.
2020 Jun; 104(11):4705-4716. doi:
10.1007/s00253-020-10599-8
. [PMID: 32281023] - Wendy J Dahl, Wei-Lun Hung, Amanda L Ford, Joon Hyuk Suh, Jerémié Auger, Varuni Nagulesapillai, Yu Wang. In older women, a high-protein diet including animal-sourced foods did not impact serum levels and urinary excretion of trimethylamine-N-oxide.
Nutrition research (New York, N.Y.).
2020 06; 78(?):72-81. doi:
10.1016/j.nutres.2020.05.004
. [PMID: 32544852] - Izabella Mogilnicka, Pawel Bogucki, Marcin Ufnal. Microbiota and Malodor-Etiology and Management.
International journal of molecular sciences.
2020 Apr; 21(8):. doi:
10.3390/ijms21082886
. [PMID: 32326126] - Jianfeng Liu, Tianhua Zhang, Yingying Wang, Chengqing Si, Xudong Wang, Rui-Tao Wang, Zhonghua Lv. Baicalin ameliorates neuropathology in repeated cerebral ischemia-reperfusion injury model mice by remodeling the gut microbiota.
Aging.
2020 02; 12(4):3791-3806. doi:
10.18632/aging.102846
. [PMID: 32084011] - Aven Lee, Buddhika Jayakody Arachchige, Sarah Reed, Robert Henderson, James Aylward, Pamela Ann McCombe. Plasma from some patients with amyotrophic lateral sclerosis exhibits elevated formaldehyde levels.
Journal of the neurological sciences.
2020 Feb; 409(?):116589. doi:
10.1016/j.jns.2019.116589
. [PMID: 31786407] - Laura Bordoni, Angelika K Sawicka, Arkadiusz Szarmach, Pawel J Winklewski, Robert A Olek, Rosita Gabbianelli. A Pilot Study on the Effects of l-Carnitine and Trimethylamine-N-Oxide on Platelet Mitochondrial DNA Methylation and CVD Biomarkers in Aged Women.
International journal of molecular sciences.
2020 Feb; 21(3):. doi:
10.3390/ijms21031047
. [PMID: 32033285] - Peter Neyer, Luca Bernasconi, Jens A Fuchs, Martina D Allenspach, Christian Steuer. Derivatization-free determination of short-chain volatile amines in human plasma and urine by headspace gas chromatography-mass spectrometry.
Journal of clinical laboratory analysis.
2020 Feb; 34(2):e23062. doi:
10.1002/jcla.23062
. [PMID: 31595561] - Takayuki Matsumoto, Mihoka Kojima, Keisuke Takayanagi, Kumiko Taguchi, Tsuneo Kobayashi. Trimethylamine-N-oxide Specifically Impairs Endothelium-Derived Hyperpolarizing Factor-Type Relaxation in Rat Femoral Artery.
Biological & pharmaceutical bulletin.
2020; 43(3):569-573. doi:
10.1248/bpb.b19-00957
. [PMID: 32115516] - R A Nagy, I Homminga, C Jia, F Liu, J L C Anderson, A Hoek, U J F Tietge. Trimethylamine-N-oxide is present in human follicular fluid and is a negative predictor of embryo quality.
Human reproduction (Oxford, England).
2020 01; 35(1):81-88. doi:
10.1093/humrep/dez224
. [PMID: 31916569] - Magnhild E Macpherson, Johannes R Hov, Thor Ueland, Tuva B Dahl, Martin Kummen, Kari Otterdal, Kristian Holm, Rolf K Berge, Tom E Mollnes, Marius Trøseid, Bente Halvorsen, Pål Aukrust, Børre Fevang, Silje F Jørgensen. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency.
Frontiers in immunology.
2020; 11(?):574500. doi:
10.3389/fimmu.2020.574500
. [PMID: 33042155] - Shigeo Wakabayashi, Hirofumi Morihara, Shunichi Yokoe, Takatoshi Nakagawa, Kazumasa Moriwaki, Kiichiro Tomoda, Michio Asahi. Overexpression of Na+/H+ exchanger 1 specifically induces cell death in human iPS cells via sustained activation of the Rho kinase ROCK.
The Journal of biological chemistry.
2019 12; 294(51):19577-19588. doi:
10.1074/jbc.ra119.010329
. [PMID: 31723030] - Marc Schoeler, Robert Caesar. Dietary lipids, gut microbiota and lipid metabolism.
Reviews in endocrine & metabolic disorders.
2019 12; 20(4):461-472. doi:
10.1007/s11154-019-09512-0
. [PMID: 31707624] - Qing Dai, Hao Zhang, Yan Liu. [Trimethylamine-N-oxide and cardiovascular events in chronic kidney disease].
Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences.
2019 Nov; 44(11):1294-1299. doi:
10.11817/j.issn.1672-7347.2019.180406
. [PMID: 31919326] - Xiangnan Zhang, Qiu Wu, Yan Zhao, Xingbin Yang. Decaisnea insignis Seed Oil Inhibits Trimethylamine-N-oxide Formation and Remodels Intestinal Microbiota to Alleviate Liver Dysfunction in l-Carnitine Feeding Mice.
Journal of agricultural and food chemistry.
2019 Nov; 67(47):13082-13092. doi:
10.1021/acs.jafc.9b05383
. [PMID: 31671940] - Alexander J Prokopienko, Raymond E West, Daniel P Schrum, Jason R Stubbs, François A Leblond, Vincent Pichette, Thomas D Nolin. Metabolic Activation of Flavin Monooxygenase-mediated Trimethylamine-N-Oxide Formation in Experimental Kidney Disease.
Scientific reports.
2019 11; 9(1):15901. doi:
10.1038/s41598-019-52032-9
. [PMID: 31685846] - Caroline C Pelletier, Mikael Croyal, Lavinia Ene, Audrey Aguesse, Stephanie Billon-Crossouard, Michel Krempf, Sandrine Lemoine, Fitsum Guebre-Egziabher, Laurent Juillard, Christophe O Soulage. Elevation of Trimethylamine-N-Oxide in Chronic Kidney Disease: Contribution of Decreased Glomerular Filtration Rate.
Toxins.
2019 11; 11(11):. doi:
10.3390/toxins11110635
. [PMID: 31683880] - Qiu Wu, Yan Zhao, Xiangnan Zhang, Xingbin Yang. A faster and simpler UPLC-MS/MS method for the simultaneous determination of trimethylamine N-oxide, trimethylamine and dimethylamine in different types of biological samples.
Food & function.
2019 Oct; 10(10):6484-6491. doi:
10.1039/c9fo00954j
. [PMID: 31532423] - Makiko Shimizu, Hiromi Yoda, Narumi Igarashi, Miki Makino, Emi Tokuyama, Hiroshi Yamazaki. Novel variants and haplotypes of human flavin-containing monooxygenase 3 gene associated with Japanese subjects suffering from trimethylaminuria.
Xenobiotica; the fate of foreign compounds in biological systems.
2019 Oct; 49(10):1244-1250. doi:
10.1080/00498254.2018.1539279
. [PMID: 30351217] - Yaoyao Chen, Zhenkun Weng, Qian Liu, Wentao Shao, Wenhui Guo, Chaobo Chen, Long Jiao, Qihan Wang, Qifan Lu, Haidong Sun, Aihua Gu, Hai Hu, Zhaoyan Jiang. FMO3 and its metabolite TMAO contribute to the formation of gallstones.
Biochimica et biophysica acta. Molecular basis of disease.
2019 10; 1865(10):2576-2585. doi:
10.1016/j.bbadis.2019.06.016
. [PMID: 31251986] - Chien-Ning Hsu, Guo-Ping Chang-Chien, Sufan Lin, Chih-Yao Hou, You-Lin Tain. Targeting on Gut Microbial Metabolite Trimethylamine-N-Oxide and Short-Chain Fatty Acid to Prevent Maternal High-Fructose-Diet-Induced Developmental Programming of Hypertension in Adult Male Offspring.
Molecular nutrition & food research.
2019 09; 63(18):e1900073. doi:
10.1002/mnfr.201900073
. [PMID: 31295767] - Kinga Jaworska, Dagmara Hering, Grażyna Mosieniak, Anna Bielak-Zmijewska, Marta Pilz, Michał Konwerski, Aleksandra Gasecka, Agnieszka Kapłon-Cieślicka, Krzysztof Filipiak, Ewa Sikora, Robert Hołyst, Marcin Ufnal. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology.
Toxins.
2019 08; 11(9):. doi:
10.3390/toxins11090490
. [PMID: 31454905] - Pei-Yu Chen, Shiming Li, Yen-Chun Koh, Jia-Ching Wu, Meei-Ju Yang, Chi-Tang Ho, Min-Hsiung Pan. Oolong Tea Extract and Citrus Peel Polymethoxyflavones Reduce Transformation of l-Carnitine to Trimethylamine-N-Oxide and Decrease Vascular Inflammation in l-Carnitine Feeding Mice.
Journal of agricultural and food chemistry.
2019 Jul; 67(28):7869-7879. doi:
10.1021/acs.jafc.9b03092
. [PMID: 31287296] - Diana M Shih, Weifei Zhu, Rebecca C Schugar, Yonghong Meng, Xun Jia, Aika Miikeda, Zeneng Wang, Marina Zieger, Richard Lee, Mark Graham, Hooman Allayee, Rita M Cantor, Christian Mueller, J Mark Brown, Stanley L Hazen, Aldons J Lusis. Genetic Deficiency of Flavin-Containing Monooxygenase 3 ( Fmo3) Protects Against Thrombosis but Has Only a Minor Effect on Plasma Lipid Levels-Brief Report.
Arteriosclerosis, thrombosis, and vascular biology.
2019 06; 39(6):1045-1054. doi:
10.1161/atvbaha.119.312592
. [PMID: 31070450] - Natália A Borges, P Stenvinkel, P Bergman, A R Qureshi, B Lindholm, C Moraes, M B Stockler-Pinto, D Mafra. Effects of Probiotic Supplementation on Trimethylamine-N-Oxide Plasma Levels in Hemodialysis Patients: a Pilot Study.
Probiotics and antimicrobial proteins.
2019 06; 11(2):648-654. doi:
10.1007/s12602-018-9411-1
. [PMID: 29651635] - Nuttapong Santawee, Chairat Treesubsuntorn, Paitip Thiravetyan. Lignin and holocellulose from coir pith involved in trimethylamine (fishy odor) adsorption.
Journal of environmental sciences (China).
2019 May; 79(?):43-53. doi:
10.1016/j.jes.2018.10.009
. [PMID: 30784463] - A Gautam, Y N Paudel, Saz Abidin, U Bhandari. Guggulsterone, a farnesoid X receptor antagonist lowers plasma trimethylamine-N-oxide levels: An evidence from in vitro and in vivo studies.
Human & experimental toxicology.
2019 Mar; 38(3):356-370. doi:
10.1177/0960327118817862
. [PMID: 30526076] - B Grabowska-Polanowska, P Miarka, M Skowron, G Chmiel, A Pietrzycka, I Śliwka. Breath analysis as promising indicator of hemodialysis efficiency.
Clinical and experimental nephrology.
2019 Feb; 23(2):251-257. doi:
10.1007/s10157-018-1625-8
. [PMID: 30121801] - Robert A Koeth, Betzabe Rachel Lam-Galvez, Jennifer Kirsop, Zeneng Wang, Bruce S Levison, Xiaodong Gu, Matthew F Copeland, David Bartlett, David B Cody, Hong J Dai, Miranda K Culley, Xinmin S Li, Xiaoming Fu, Yuping Wu, Lin Li, Joseph A DiDonato, W H Wilson Tang, Jose Carlos Garcia-Garcia, Stanley L Hazen. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans.
The Journal of clinical investigation.
2019 01; 129(1):373-387. doi:
10.1172/jci94601
. [PMID: 30530985] - Carina L Chittim, Ana Martínez Del Campo, Emily P Balskus. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline.
Nature microbiology.
2019 01; 4(1):155-163. doi:
10.1038/s41564-018-0294-4
. [PMID: 30455469] - Mette Schmedes, Asker Daniel Brejnrod, Eli Kristin Aadland, Pia Kiilerich, Karsten Kristiansen, Hélène Jacques, Charles Lavigne, Ingvild Eide Graff, Øyvin Eng, Asle Holthe, Gunnar Mellgren, Jette Feveile Young, Ulrik Kraemer Sundekilde, Bjørn Liaset, Hanne Christine Bertram. The Effect of Lean-Seafood and Non-Seafood Diets on Fecal Metabolites and Gut Microbiome: Results from a Randomized Crossover Intervention Study.
Molecular nutrition & food research.
2019 01; 63(1):e1700976. doi:
10.1002/mnfr.201700976
. [PMID: 29509315]