(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate (BioDeep_00000897923)

   


代谢物信息卡片


(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoate

化学式: C24H39O3- (375.2899)
中文名称:
谱图信息: 最多检出来源 not specific(lipidomics) 50%

分子结构信息

SMILES: CC(CCC(=O)[O-])C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C
InChI: InChI=1S/C24H40O3/c1-15(4-9-22(26)27)19-7-8-20-18-6-5-16-14-17(25)10-12-23(16,2)21(18)11-13-24(19,20)3/h15-21,25H,4-14H2,1-3H3,(H,26,27)/p-1/t15-,16-,17-,18+,19-,20+,21+,23+,24-/m1/s1



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(7)

BioCyc(1)

PlantCyc(0)

代谢反应

74 个相关的代谢反应过程信息。

Reactome(74)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Song Chen, Zongren Hu, Jianbang Tang, Haipeng Zhu, Yuhua Zheng, Jiedong Xiao, Youhua Xu, Yao Wang, Yi Luo, Xiaoying Mo, Yalan Wu, Jianwen Guo, Yongliang Zhang, Huanhuan Luo. High temperature and humidity in the environment disrupt bile acid metabolism, the gut microbiome, and GLP-1 secretion in mice. Communications biology. 2024 Apr; 7(1):465. doi: 10.1038/s42003-024-06158-w. [PMID: 38632312]
  • Han-En Tsai, Chia-Ling Chen, Tzu-Ting Chang, Chih-Wei Fu, Wei-Chia Chen, Ser John Lynon P Perez, Pei-Wen Hsiao, Ming-Hong Tai, Wen-Shan Li. Development of a Novel, Potent, and Selective Sialyltransferase Inhibitor for Suppressing Cancer Metastasis. International journal of molecular sciences. 2024 Apr; 25(8):. doi: 10.3390/ijms25084283. [PMID: 38673867]
  • Anita Wnętrzak, Dawid Szymczuk, Anna Chachaj-Brekiesz, Patrycja Dynarowicz-Latka, Dawid Lupa, Ewelina W Lipiec, Paulina Laszuk, Aneta D Petelska, Karolina H Markiewicz, Agnieszka Z Wilczewska. Lithocholic acid-based oligomers as drug delivery candidates targeting model of lipid raft. Biochimica et biophysica acta. Biomembranes. 2024 Feb; ?(?):184294. doi: 10.1016/j.bbamem.2024.184294. [PMID: 38316379]
  • Ang Li, Fei Li, Wei Song, Zi-Li Lei, Qian-Qian Sha, Shao-Yuan Liu, Chang-Yin Zhou, Xue Zhang, Xiao-Zhen Li, Heide Schatten, Teng Zhang, Qing-Yuan Sun, Xiang-Hong Ou. Gut microbiota-bile acid-vitamin D axis plays an important role in determining oocyte quality and embryonic development. Clinical and translational medicine. 2023 10; 13(10):e1236. doi: 10.1002/ctm2.1236. [PMID: 37846137]
  • Yue Li, Qian Wang, Jingyi Jin, Bo Tan, Jie Ren, Guochao Song, Bin Zou, Fengyi Weng, Dongming Yan, Furong Qiu. 15,16-dihydrotanshinone I in Danshen ethanol extract aggravated cholestasis by inhibiting Cyp3a11 mediated bile acids hydroxylation. Toxicology letters. 2023 Feb; 377(?):62-70. doi: 10.1016/j.toxlet.2023.02.005. [PMID: 36804361]
  • Weijian Li, Zeyu Wang, Ruirong Lin, Shuai Huang, Huijie Miao, Lu Zou, Ke Liu, Xuya Cui, Ziyi Wang, Yijian Zhang, Chengkai Jiang, Shimei Qiu, Jiyao Ma, Wenguang Wu, Yingbin Liu. Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism. Biochemical pharmacology. 2022 11; 205(?):115253. doi: 10.1016/j.bcp.2022.115253. [PMID: 36176239]
  • Priyanka Verma, Amit Arora, Kajal Rana, Devashish Mehta, Raunak Kar, Vikas Verma, C V Srikanth, Veena S Patil, Avinash Bajaj. Gemini lipid nanoparticle (GLNP)-mediated oral delivery of TNF-α siRNA mitigates gut inflammation via inhibiting the differentiation of CD4+ T cells. Nanoscale. 2022 Oct; 14(39):14717-14731. doi: 10.1039/d1nr05644a. [PMID: 36169577]
  • Hajime Takei, Seiko Narushima, Mitsuyoshi Suzuki, Genta Kakiyama, Takahiro Sasaki, Tsuyoshi Murai, Yuichiro Yamashiro, Hiroshi Nittono. Characterization of long-chain fatty acid-linked bile acids: a major conjugation form of 3β-hydroxy bile acids in feces. Journal of lipid research. 2022 10; 63(10):100275. doi: 10.1016/j.jlr.2022.100275. [PMID: 36089004]
  • Jae Won Lee, Elise S Cowley, Patricia G Wolf, Heidi L Doden, Tsuyoshi Murai, Kelly Yovani Olivos Caicedo, Lindsey K Ly, Furong Sun, Hajime Takei, Hiroshi Nittono, Steven L Daniel, Isaac Cann, H Rex Gaskins, Karthik Anantharaman, João M P Alves, Jason M Ridlon. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut microbes. 2022 Jan; 14(1):2132903. doi: 10.1080/19490976.2022.2132903. [PMID: 36343662]
  • Heidi L Doden, Patricia G Wolf, H Rex Gaskins, Karthik Anantharaman, João M P Alves, Jason M Ridlon. Completion of the gut microbial epi-bile acid pathway. Gut microbes. 2021 Jan; 13(1):1-20. doi: 10.1080/19490976.2021.1907271. [PMID: 33938389]
  • Ya-Ru Xue, Sheng Yao, Qian Liu, Zhao-Liang Peng, Qiang-Qiang Deng, Bo Liu, Zheng-Hua Ma, Le Wang, Hu Zhou, Yang Ye, Guo-Yu Pan. Dihydro-stilbene gigantol relieves CCl4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta pharmacologica Sinica. 2020 Nov; 41(11):1433-1445. doi: 10.1038/s41401-020-0406-6. [PMID: 32404983]
  • Qiong Li, Meng Li, Fenghua Li, Wenjun Zhou, Yanqi Dang, Li Zhang, Guang Ji. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice. Journal of ethnopharmacology. 2020 Aug; 258(?):112896. doi: 10.1016/j.jep.2020.112896. [PMID: 32325178]
  • Susbin Raj Wagle, Daniel Walker, Bozica Kovacevic, Ahmed Gedawy, Momir Mikov, Svetlana Golocorbin-Kon, Armin Mooranian, Hani Al-Salami. Micro-Nano formulation of bile-gut delivery: rheological, stability and cell survival, basal and maximum respiration studies. Scientific reports. 2020 05; 10(1):7715. doi: 10.1038/s41598-020-64355-z. [PMID: 32382021]
  • Dong-Shun Li, Quan-Fei Huang, Li-Huan Guan, Hui-Zhen Zhang, Xi Li, Kai-Li Fu, Yi-Xin Chen, Jian-Bo Wan, Min Huang, Hui-Chang Bi. Targeted bile acids and gut microbiome profiles reveal the hepato-protective effect of WZ tablet (Schisandra sphenanthera extract) against LCA-induced cholestasis. Chinese journal of natural medicines. 2020 Mar; 18(3):211-218. doi: 10.1016/s1875-5364(20)30023-6. [PMID: 32245591]
  • Shicheng Fan, Conghui Liu, Yiming Jiang, Yue Gao, Yixin Chen, Kaili Fu, Xinpeng Yao, Min Huang, Huichang Bi. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. Journal of ethnopharmacology. 2019 Dec; 245(?):112103. doi: 10.1016/j.jep.2019.112103. [PMID: 31336134]
  • Mari Takahara, Rie Wakabayashi, Naoki Fujimoto, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya. Enzymatic Cell-Surface Decoration with Proteins using Amphiphilic Lipid-Fused Peptide Substrates. Chemistry (Weinheim an der Bergstrasse, Germany). 2019 May; 25(30):7315-7321. doi: 10.1002/chem.201900370. [PMID: 30840777]
  • Bin Huang, Qiang Zhao, Jing-Hui Zhou, Gang Xu. Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production. Applied microbiology and biotechnology. 2019 Mar; 103(6):2665-2674. doi: 10.1007/s00253-019-09668-4. [PMID: 30734123]
  • Adel Qlayel Alkhedaide. Preventive effect of Juniperus procera extract on liver injury induced by lithocholic acid. Cellular and molecular biology (Noisy-le-Grand, France). 2018 Oct; 64(13):63-68. doi: . [PMID: 30403597]
  • Stefanie Staats, Gerald Rimbach, Axel Kuenstner, Simon Graspeuntner, Jan Rupp, Hauke Busch, Christian Sina, Ignacio R Ipharraguerre, Anika E Wagner. Lithocholic Acid Improves the Survival of Drosophila Melanogaster. Molecular nutrition & food research. 2018 10; 62(20):e1800424. doi: 10.1002/mnfr.201800424. [PMID: 30051966]
  • Dan Wang, Li Bie, Yanbin Su, Haoran Xu, Fengrong Zhang, Yanwen Su, Bo Zhang. Effect of lithocholic acid on biologically active α,β-unsaturated aldehydes induced by H2O2 in glioma mitochondria for use in glioma treatment. International journal of molecular medicine. 2018 Jun; 41(6):3195-3202. doi: 10.3892/ijmm.2018.3530. [PMID: 29512691]
  • Trang H Luu, Jean-Marie Bard, Delphine Carbonnelle, Chloé Chaillou, Jean-Michel Huvelin, Christine Bobin-Dubigeon, Hassan Nazih. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cellular oncology (Dordrecht). 2018 Feb; 41(1):13-24. doi: 10.1007/s13402-017-0353-5. [PMID: 28993998]
  • Takuya Kuno, Mio Hirayama-Kurogi, Shingo Ito, Sumio Ohtsuki. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Scientific reports. 2018 01; 8(1):1253. doi: 10.1038/s41598-018-19545-1. [PMID: 29352187]
  • Vedagopuram Sreekanth, Nihal Medatwal, Sanjay Pal, Sandeep Kumar, Sagar Sengupta, Avinash Bajaj. Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability. Molecular pharmaceutics. 2017 08; 14(8):2649-2659. doi: 10.1021/acs.molpharmaceut.7b00105. [PMID: 28665132]
  • Anna Leonov, Anthony Arlia-Ciommo, Simon D Bourque, Olivia Koupaki, Pavlo Kyryakov, Paméla Dakik, Mélissa McAuley, Younes Medkour, Karamat Mohammad, Tamara Di Maulo, Vladimir I Titorenko. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget. 2017 May; 8(19):30672-30691. doi: 10.18632/oncotarget.16766. [PMID: 28410198]
  • Runbin Sun, Na Yang, Bo Kong, Bei Cao, Dong Feng, Xiaoyi Yu, Chun Ge, Jingqiu Huang, Jianliang Shen, Pei Wang, Siqi Feng, Fei Fei, Jiahua Guo, Jun He, Nan Aa, Qiang Chen, Yang Pan, Justin D Schumacher, Chung S Yang, Grace L Guo, Jiye Aa, Guangji Wang. Orally Administered Berberine Modulates Hepatic Lipid Metabolism by Altering Microbial Bile Acid Metabolism and the Intestinal FXR Signaling Pathway. Molecular pharmacology. 2017 Feb; 91(2):110-122. doi: 10.1124/mol.116.106617. [PMID: 27932556]
  • Stefanie Baldofski, Holger Hoffmann, Andreas Lehmann, Stefan Breitfeld, Leif-Alexander Garbe, Rudolf J Schneider. Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water. Journal of environmental management. 2016 Nov; 182(?):612-619. doi: 10.1016/j.jenvman.2016.08.023. [PMID: 27544648]
  • Krzysztof Dziedzic, Artur Szwengiel, Danuta Górecka, Elżbieta Gujska, Joanna Kaczkowska, Agnieszka Drożdżyńska, Jarosław Walkowiak. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content. Plant foods for human nutrition (Dordrecht, Netherlands). 2016 Jun; 71(2):151-7. doi: 10.1007/s11130-016-0537-6. [PMID: 26924312]
  • Hang Zeng, Dongshun Li, Xiaoling Qin, Pan Chen, Huasen Tan, Xuezhen Zeng, Xi Li, Xiaomei Fan, Yiming Jiang, Yawen Zhou, Yixin Chen, Ying Wang, Min Huang, Huichang Bi. Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug metabolism and disposition: the biological fate of chemicals. 2016 Mar; 44(3):337-42. doi: 10.1124/dmd.115.066969. [PMID: 26658429]
  • F-Nora Vögtle, Michael Keller, Asli A Taskin, Susanne E Horvath, Xue Li Guan, Claudia Prinz, Magdalena Opalińska, Carina Zorzin, Martin van der Laan, Markus R Wenk, Rolf Schubert, Nils Wiedemann, Martin Holzer, Chris Meisinger. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. The Journal of cell biology. 2015 Sep; 210(6):951-60. doi: 10.1083/jcb.201506085. [PMID: 26347140]
  • Xianxie Zhang, Zengchun Ma, Qiande Liang, Xianglin Tang, Donghua Hu, Canglong Liu, Hongling Tan, Chengrong Xiao, Boli Zhang, Yuguang Wang, Yue Gao. Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor. Journal of ethnopharmacology. 2015 Apr; 164(?):357-67. doi: 10.1016/j.jep.2015.01.047. [PMID: 25660334]
  • Antoni Caimari, Francesc Puiggròs, Manuel Suárez, Anna Crescenti, Sirle Laos, Juan Antonio Ruiz, Virginia Alonso, Josep Moragas, Josep Maria Del Bas, Lluís Arola. The intake of a hazelnut skin extract improves the plasma lipid profile and reduces the lithocholic/deoxycholic bile acid faecal ratio, a risk factor for colon cancer, in hamsters fed a high-fat diet. Food chemistry. 2015 Jan; 167(?):138-44. doi: 10.1016/j.foodchem.2014.06.072. [PMID: 25148970]
  • Jing-Chun Han, Jian Yu, Ya-Jie Gao. Lipidomics investigation of reversal effect of glycyrrhizin (GL) towards lithocholic acid (LCA)-induced alteration of phospholipid profiles. Pharmaceutical biology. 2014 Dec; 52(12):1624-8. doi: 10.3109/13880209.2014.900810. [PMID: 25289528]
  • Anthony Arlia-Ciommo, Amanda Piano, Veronika Svistkova, Sadaf Mohtashami, Vladimir I Titorenko. Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid. International journal of molecular sciences. 2014 Sep; 15(9):16522-43. doi: 10.3390/ijms150916522. [PMID: 25238416]
  • Jie Cheng, Zhong-Ze Fang, Jung-Hwan Kim, Kristopher W Krausz, Naoki Tanaka, John Y L Chiang, Frank J Gonzalez. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. Journal of lipid research. 2014 Mar; 55(3):455-65. doi: 10.1194/jlr.m044420. [PMID: 24343899]
  • Michelle T Burstein, Vladimir I Titorenko. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology. Redox biology. 2014; 2(?):305-7. doi: 10.1016/j.redox.2014.01.011. [PMID: 24563847]
  • Ja-Young Lee, Hisashi Arai, Yusuke Nakamura, Satoru Fukiya, Masaru Wada, Atsushi Yokota. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. Journal of lipid research. 2013 Nov; 54(11):3062-9. doi: 10.1194/jlr.m039834. [PMID: 23729502]
  • Carlos A Penno, Stuart A Morgan, Anna Vuorinen, Daniela Schuster, Gareth G Lavery, Alex Odermatt. Impaired oxidoreduction by 11β-hydroxysteroid dehydrogenase 1 results in the accumulation of 7-oxolithocholic acid. Journal of lipid research. 2013 Oct; 54(10):2874-83. doi: 10.1194/jlr.m042499. [PMID: 23933573]
  • Martin Perreault, Louis Gauthier-Landry, Jocelyn Trottier, Mélanie Verreault, Patrick Caron, Moshe Finel, Olivier Barbier. The Human UDP-glucuronosyltransferase UGT2A1 and UGT2A2 enzymes are highly active in bile acid glucuronidation. Drug metabolism and disposition: the biological fate of chemicals. 2013 Sep; 41(9):1616-20. doi: 10.1124/dmd.113.052613. [PMID: 23756265]
  • Hiroyuki Masuno, Teikichi Ikura, Daisuke Morizono, Isamu Orita, Sachiko Yamada, Masato Shimizu, Nobutoshi Ito. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives. Journal of lipid research. 2013 Aug; 54(8):2206-2213. doi: 10.1194/jlr.m038307. [PMID: 23723390]
  • Manish Singh, Ashima Singh, Somanath Kundu, Sandhya Bansal, Avinash Bajaj. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles. Biochimica et biophysica acta. 2013 Aug; 1828(8):1926-37. doi: 10.1016/j.bbamem.2013.04.003. [PMID: 23590996]
  • Adam Beach, Vincent R Richard, Anna Leonov, Michelle T Burstein, Simon D Bourque, Olivia Koupaki, Mylène Juneau, Rachel Feldman, Tatiana Iouk, Vladimir I Titorenko. Mitochondrial membrane lipidome defines yeast longevity. Aging. 2013 Jul; 5(7):551-74. doi: 10.18632/aging.100578. [PMID: 23924582]
  • Zaki Utama, Yukako Okazaki, Hiroyuki Tomotake, Norihisa Kato. Tempe consumption modulates fecal secondary bile acids, mucins, immunoglobulin A, enzyme activities, and cecal microflora and organic acids in rats. Plant foods for human nutrition (Dordrecht, Netherlands). 2013 Jun; 68(2):177-83. doi: 10.1007/s11130-013-0357-x. [PMID: 23645422]
  • Kazuaki Yoneno, Tadakazu Hisamatsu, Katsuyoshi Shimamura, Nobuhiko Kamada, Riko Ichikawa, Mina T Kitazume, Maiko Mori, Michihide Uo, Yuka Namikawa, Katsuyoshi Matsuoka, Toshiro Sato, Kazutaka Koganei, Akira Sugita, Takanori Kanai, Toshifumi Hibi. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology. 2013 May; 139(1):19-29. doi: 10.1111/imm.12045. [PMID: 23566200]
  • Tsutomu Matsubara, Naoki Tanaka, Misako Sato, Dong Wook Kang, Kristopher W Krausz, Kathleen C Flanders, Kazuo Ikeda, Hans Luecke, Lalage M Wakefield, Frank J Gonzalez. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. Journal of lipid research. 2012 Dec; 53(12):2698-707. doi: 10.1194/jlr.m031773. [PMID: 23034213]
  • Yu-Guang Wang, Jian-Ming Zhou, Zeng-Chun Ma, Hua Li, Qian-De Liang, Hong-Ling Tan, Cheng-Rong Xiao, Bo-Li Zhang, Yue Gao. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin: a possible mechanism for its hepatoprotective property against lithocholic acid-induced injury. Chemico-biological interactions. 2012 Oct; 200(1):11-20. doi: 10.1016/j.cbi.2012.08.023. [PMID: 22982774]
  • Biao Nie, Hyo Min Park, Melissa Kazantzis, Min Lin, Amy Henkin, Stephanie Ng, Sujin Song, Yuli Chen, Heather Tran, Robin Lai, Chris Her, Jacquelyn J Maher, Barry M Forman, Andreas Stahl. Specific bile acids inhibit hepatic fatty acid uptake in mice. Hepatology (Baltimore, Md.). 2012 Oct; 56(4):1300-10. doi: 10.1002/hep.25797. [PMID: 22531947]
  • Nathalie Ménard, Nicolas Tsapis, Cécile Poirier, Thomas Arnauld, Laurence Moine, Claire Gignoux, François Lefoulon, Jean-Manuel Péan, Elias Fattal. Novel surfactants with diglutamic acid polar head group: drug solubilization and toxicity studies. Pharmaceutical research. 2012 Jul; 29(7):1882-96. doi: 10.1007/s11095-012-0714-8. [PMID: 22451248]
  • Satoshi Fukuoka, Walter Richter, Jörg Howe, Jörg Andrä, Manfred Rössle, Christian Alexander, Thomas Gutsmann, Klaus Brandenburg. Biophysical investigations into the interactions of endotoxins with bile acids. Innate immunity. 2012 Apr; 18(2):307-17. doi: 10.1177/1753425911404093. [PMID: 21954318]
  • Xian Yang, Bo-Chu Wang, Xue Zhang, Wei-Qi Liu, Jun-Zhen Qian, Wei Li, Jia Deng, Gurinder K Singh, Hui Su. Evaluation of Lysimachia christinae Hance extracts as anticholecystitis and cholagogic agents in animals. Journal of ethnopharmacology. 2011 Sep; 137(1):57-63. doi: 10.1016/j.jep.2011.04.029. [PMID: 21524697]
  • K P Tan, G A Wood, M Yang, S Ito. Participation of nuclear factor (erythroid 2-related), factor 2 in ameliorating lithocholic acid-induced cholestatic liver injury in mice. British journal of pharmacology. 2010 Nov; 161(5):1111-21. doi: 10.1111/j.1476-5381.2010.00953.x. [PMID: 20977460]
  • Alexander A Goldberg, Vincent R Richard, Pavlo Kyryakov, Simon D Bourque, Adam Beach, Michelle T Burstein, Anastasia Glebov, Olivia Koupaki, Tatiana Boukh-Viner, Christopher Gregg, Mylène Juneau, Ann M English, David Y Thomas, Vladimir I Titorenko. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging. 2010 Jul; 2(7):393-414. doi: 10.18632/aging.100168. [PMID: 20622262]
  • Masaaki Miyata, Masahiro Nomoto, Fumiaki Sotodate, Tomohiro Mizuki, Wataru Hori, Miho Nagayasu, Shinya Yokokawa, Shin-ichi Ninomiya, Yasushi Yamazoe. Possible protective role of pregnenolone-16 alpha-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis. European journal of pharmacology. 2010 Jun; 636(1-3):145-54. doi: 10.1016/j.ejphar.2010.03.022. [PMID: 20359477]
  • Shigeo Ikegawa, Tetsushi Yamamoto, Hiromi Ito, Shunji Ishiwata, Toshihiro Sakai, Kuniko Mitamura, Masako Maeda. Immunoprecipitation and MALDI-MS identification of lithocholic acid-tagged proteins in liver of bile duct-ligated rats. Journal of lipid research. 2008 Nov; 49(11):2463-73. doi: 10.1194/jlr.m800350-jlr200. [PMID: 18641422]
  • Anna N Bukiya, Jacob McMillan, Abby L Parrill, Alejandro M Dopico. Structural determinants of monohydroxylated bile acids to activate beta 1 subunit-containing BK channels. Journal of lipid research. 2008 Nov; 49(11):2441-51. doi: 10.1194/jlr.m800286-jlr200. [PMID: 18650555]
  • Michiyasu Ishizawa, Manabu Matsunawa, Ryutaro Adachi, Shigeyuki Uno, Kazumasa Ikeda, Hiroyuki Masuno, Masato Shimizu, Ken-ichi Iwasaki, Sachiko Yamada, Makoto Makishima. Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. Journal of lipid research. 2008 Apr; 49(4):763-72. doi: 10.1194/jlr.m700293-jlr200. [PMID: 18180267]
  • Ling Ma, Monica Melegari, Marco Colombini, Jeffery T Davis. Large and stable transmembrane pores from guanosine-bile acid conjugates. Journal of the American Chemical Society. 2008 Mar; 130(10):2938-9. doi: 10.1021/ja7110702. [PMID: 18275199]
  • Anna N Bukiya, Thirumalini Vaithianathan, Ligia Toro, Alejandro M Dopico. The second transmembrane domain of the large conductance, voltage- and calcium-gated potassium channel beta(1) subunit is a lithocholate sensor. FEBS letters. 2008 Mar; 582(5):673-8. doi: 10.1016/j.febslet.2008.01.036. [PMID: 18242174]
  • Anand K Deo, Stelvio M Bandiera. Biotransformation of lithocholic acid by rat hepatic microsomes: metabolite analysis by liquid chromatography/mass spectrometry. Drug metabolism and disposition: the biological fate of chemicals. 2008 Feb; 36(2):442-51. doi: 10.1124/dmd.107.017533. [PMID: 18039809]
  • Winston A Morgan, Thanh Nk, Yinuo Ding. The use of High Performance Thin-Layer Chromatography to determine the role of membrane lipid composition in bile salt-induced kidney cell damage. Journal of pharmacological and toxicological methods. 2008 Jan; 57(1):70-3. doi: 10.1016/j.vascn.2007.08.003. [PMID: 17962048]
  • Genta Kakiyama, Hideyuki Tamegai, Takashi Iida, Kuniko Mitamura, Shigeo Ikegawa, Takaaki Goto, Nariyasu Mano, Junichi Goto, Peter Holz, Lee R Hagey, Alan F Hofmann. Isolation and chemical synthesis of a major, novel biliary bile acid in the common wombat (Vombatus ursinus): 15alpha-hydroxylithocholic acid. Journal of lipid research. 2007 Dec; 48(12):2682-92. doi: 10.1194/jlr.m700340-jlr200. [PMID: 17785716]
  • Hirdesh Uppal, Simrat P S Saini, Antonio Moschetta, Ying Mu, Jie Zhou, Haibiao Gong, Yonggong Zhai, Songrong Ren, George K Michalopoulos, David J Mangelsdorf, Wen Xie. Activation of LXRs prevents bile acid toxicity and cholestasis in female mice. Hepatology (Baltimore, Md.). 2007 Feb; 45(2):422-32. doi: 10.1002/hep.21494. [PMID: 17256725]
  • Kouji Kuramochi, Tetsuya Haruyama, Ryo Takeuchi, Takashi Sunoki, Madoka Watanabe, Masahiko Oshige, Susumu Kobayashi, Kengo Sakaguchi, Fumio Sugawara. Affinity capture of a mammalian DNA polymerase beta by inhibitors immobilized to resins used in solid-phase organic synthesis. Bioconjugate chemistry. 2005 Jan; 16(1):97-104. doi: 10.1021/bc0497970. [PMID: 15656580]
  • Hirdesh Uppal, David Toma, Simrat P S Saini, Songrong Ren, Thomas J Jones, Wen Xie. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology (Baltimore, Md.). 2005 Jan; 41(1):168-76. doi: 10.1002/hep.20512. [PMID: 15619241]
  • Ryutaro Adachi, Yoshio Honma, Hiroyuki Masuno, Katsuyoshi Kawana, Iichiro Shimomura, Sachiko Yamada, Makoto Makishima. Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. Journal of lipid research. 2005 Jan; 46(1):46-57. doi: 10.1194/jlr.m400294-jlr200. [PMID: 15489543]
  • Christina Lorenz, Philipp Hadwiger, Matthias John, Hans-Peter Vornlocher, Carlo Unverzagt. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorganic & medicinal chemistry letters. 2004 Oct; 14(19):4975-7. doi: 10.1016/j.bmcl.2004.07.018. [PMID: 15341962]
  • Kunrong Cheng, Sandeep Khurana, Ying Chen, Richard H Kennedy, Piotr Zimniak, Jean-Pierre Raufman. Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. The Journal of pharmacology and experimental therapeutics. 2002 Oct; 303(1):29-35. doi: 10.1124/jpet.102.036376. [PMID: 12235229]
  • M R Leonard, M A Bogle, M C Carey, J M Donovan. Spread monomolecular films of monohydroxy bile acids and their salts: influence of hydroxyl position, bulk pH, and association with phosphatidylcholine. Biochemistry. 2000 Dec; 39(51):16064-74. doi: 10.1021/bi001316m. [PMID: 11123934]
  • R L de Vrueh, E T Rump, E van De Bilt, R van Veghel, J Balzarini, E A Biessen, T J van Berkel, M K Bijsterbosch. Carrier-mediated delivery of 9-(2-phosphonylmethoxyethyl)adenine to parenchymal liver cells: a novel therapeutic approach for hepatitis B. Antimicrobial agents and chemotherapy. 2000 Mar; 44(3):477-83. doi: 10.1128/aac.44.3.477-483.2000. [PMID: 10681306]
  • M Hofmann, D Zgouras, P Samaras, C Schumann, K Henzel, G Zimmer, U Leuschner. Small and large unilamellar vesicle membranes as model system for bile acid diffusion in hepatocytes. Archives of biochemistry and biophysics. 1999 Aug; 368(1):198-206. doi: 10.1006/abbi.1999.1295. [PMID: 10415128]
  • A K Batta, G Salen, K R Rapole, M Batta, P Batta, D Alberts, D Earnest. Highly simplified method for gas-liquid chromatographic quantitation of bile acids and sterols in human stool. Journal of lipid research. 1999 Jun; 40(6):1148-54. doi: 10.1016/s0022-2275(20)33519-7. [PMID: 10357847]
  • D E Cohen, G M Thurston, R A Chamberlin, G B Benedek, M C Carey. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Biochemistry. 1998 Oct; 37(42):14798-814. doi: 10.1021/bi980182y. [PMID: 9778354]
  • H Takikawa, Y Wako, N Sano, M Yamanaka. Changes in biliary excretory mechanisms in bile duct-ligated rat. Digestive diseases and sciences. 1996 Feb; 41(2):256-62. doi: 10.1007/bf02093813. [PMID: 8601367]
  • G Galatola, M Fracchia, R P Jazrawi. Effect of colectomy with ileo-anal anastomosis on the biliary lipids. European journal of clinical investigation. 1995 Jul; 25(7):534-8. doi: 10.1111/j.1365-2362.1995.tb01741.x. [PMID: 7556373]
  • H Yamashita, K D Setchell. Metabolism and effect of 7-oxo-lithocholic acid 3-sulfate on bile flow and biliary lipid secretion in rats. Hepatology (Baltimore, Md.). 1994 Sep; 20(3):663-71. doi: 10.1002/hep.1840200318. [PMID: 8076924]
  • P P Nair, G Kessie, R Patnaik, C Guidry. Isolation and HPLC of N-epsilon-lithocholyl lysine as its fluorescamine and dimethylaminoazobenzene isothiocyanate derivatives. Steroids. 1994 Mar; 59(3):212-6. doi: 10.1016/0039-128x(94)90030-2. [PMID: 8048154]
  • S Banerjee, G K Trivedi, S Srivastava, R S Phadke. Proxyl nitroxide of lithocholic acid: a potential spin probe for model membranes. Bioorganic & medicinal chemistry. 1993 Nov; 1(5):341-7. doi: 10.1016/s0968-0896(00)82140-9. [PMID: 8081864]
  • S Ceryak, B Bouscarel, H Fromm. Comparative binding of bile acids to serum lipoproteins and albumin. Journal of lipid research. 1993 Oct; 34(10):1661-74. doi: 10.1016/s0022-2275(20)35729-1. [PMID: 8245717]
  • J A Poorman, R A Buck, S A Smith, M L Overturf, D S Loose-Mitchell. Bile acid excretion and cholesterol 7 alpha-hydroxylase expression in hypercholesterolemia-resistant rabbits. Journal of lipid research. 1993 Oct; 34(10):1675-85. doi: 10.1016/s0022-2275(20)35730-8. [PMID: 8245718]
  • T Mikami, K Kihira, S Ikawa, M Yoshii, S Miki, E H Mosbach, T Hoshita. Metabolism of sulfonate analogs of ursodeoxycholic acid and their effects on biliary bile acid composition in hamsters. Journal of lipid research. 1993 Mar; 34(3):429-35. doi: 10.1016/s0022-2275(20)40734-5. [PMID: 8468526]
  • A Roda, C Cerrè, P Simoni, C Polimeni, C Vaccari, A Pistillo. Determination of free and amidated bile acids by high-performance liquid chromatography with evaporative light-scattering mass detection. Journal of lipid research. 1992 Sep; 33(9):1393-402. doi: NULL. [PMID: 1402406]
  • L Villalon, B Tuchweber, I M Yousef. Low protein diets potentiate lithocholic acid-induced cholestasis in rats. The Journal of nutrition. 1992 Jul; 122(7):1587-96. doi: 10.1093/jn/122.7.1587. [PMID: 1619484]
  • N M Delzenne, P B Calderon, H S Taper, M B Roberfroid. Comparative hepatotoxicity of cholic acid, deoxycholic acid and lithocholic acid in the rat: in vivo and in vitro studies. Toxicology letters. 1992 Jul; 61(2-3):291-304. doi: 10.1016/0378-4274(92)90156-e. [PMID: 1641875]
  • G Loo, G Kessie, E Berlin, P P Nair. Effect of lithocholic acid feeding on plasma lipoproteins and binding of radioiodinated human lipoproteins to hepatic membranes in rats. Comparative biochemistry and physiology. Comparative physiology. 1992 Jun; 102(2):379-83. doi: 10.1016/0300-9629(92)90150-o. [PMID: 1354585]
  • G S Tint, G R Xu, A K Batta, S Shefer, W Niemann, G Salen. Ursodeoxycholic acid, chenodeoxycholic acid, and 7-ketolithocholic acid are primary bile acids of the guinea pig. Journal of lipid research. 1990 Jul; 31(7):1301-6. doi: . [PMID: 2401860]
  • V Vandeweerd, S J Black. Selective inhibition of the uptake by bloodstream form Trypanosoma brucei brucei of serum lipoprotein-associated phospholipid and cholesteryl ester. Molecular and biochemical parasitology. 1990 Jun; 41(2):197-206. doi: 10.1016/0166-6851(90)90182-l. [PMID: 2169029]
  • J M Little, P Zimniak, K E Shattuck, R Lester, A Radominska. Metabolism of lithocholic acid in the rat: formation of lithocholic acid 3-O-glucuronide in vivo. Journal of lipid research. 1990 Apr; 31(4):615-22. doi: . [PMID: 2351869]
  • F Kuipers, A Radominska, P Zimniak, J M Little, R Havinga, R J Vonk, R Lester. Defective biliary secretion of bile acid 3-O-glucuronides in rats with hereditary conjugated hyperbilirubinemia. Journal of lipid research. 1989 Dec; 30(12):1835-45. doi: NULL. [PMID: 2516110]
  • P Zimniak, E J Holsztynska, R Lester, D J Waxman, A Radominska. Detoxification of lithocholic acid. Elucidation of the pathways of oxidative metabolism in rat liver microsomes. Journal of lipid research. 1989 Jun; 30(6):907-18. doi: . [PMID: 2794781]
  • H Takikawa, N Kaplowitz. Comparison of the binding sites of GSH S-transferases of the Ya- and Yb-subunit classes: effect of glutathione on the binding of bile acids. Journal of lipid research. 1988 Mar; 29(3):279-86. doi: 10.1016/s0022-2275(20)38534-5. [PMID: 3379340]
  • D G Oelberg, L B Wang, J W Sackman, E W Adcock, R Lester, W P Dubinsky. Bile salt-induced calcium fluxes in artificial phospholipid vesicles. Biochimica et biophysica acta. 1988 Jan; 937(2):289-99. doi: 10.1016/0005-2736(88)90251-9. [PMID: 2827771]
  • F Kuipers, J P Derksen, A Gerding, G L Scherphof, R J Vonk. Biliary lipid secretion in the rat. The uncoupling of biliary cholesterol and phospholipid secretion from bile acid secretion by sulfated glycolithocholic acid. Biochimica et biophysica acta. 1987 Nov; 922(2):136-44. doi: 10.1016/0005-2760(87)90147-0. [PMID: 3676338]
  • S S Rossi, J L Converse, A F Hofmann. High pressure liquid chromatographic analysis of conjugated bile acids in human bile: simultaneous resolution of sulfated and unsulfated lithocholyl amidates and the common conjugated bile acids. Journal of lipid research. 1987 May; 28(5):589-95. doi: . [PMID: 3598401]
  • R W Owen, M Dodo, M H Thompson, M J Hill. Fecal steroids and colorectal cancer. Nutrition and cancer. 1987; 9(2-3):73-80. doi: 10.1080/01635588709513914. [PMID: 3562296]
  • S Barnes, R Waldrop, J Crenshaw, R J King, K B Taylor. Evidence for an ordered reaction mechanism for bile salt: 3'phosphoadenosine-5'-phosphosulfate: sulfotransferase from rhesus monkey liver that catalyzes the sulfation of the hepatotoxin glycolithocholate. Journal of lipid research. 1986 Nov; 27(11):1111-23. doi: . [PMID: 3470420]
  • H Takikawa, Y Sugiyama, N Kaplowitz. Binding of bile acids by glutathione S-transferases from rat liver. Journal of lipid research. 1986 Sep; 27(9):955-66. doi: ". [PMID: 3783048]
  • P P Nair, G Kessie, V P Flanagan. Reaffirmation of the validity of enzymatic cleavage of lithocholic acid from N-epsilon-lithocholyl-L-lysine and N-alpha-CBZ-N-epsilon-lithocholyl-L-lysine. Journal of lipid research. 1986 Aug; 27(8):905-9. doi: 10.1016/s0022-2275(20)38779-4. [PMID: 2877042]
  • A Radomińska-Pyrek, T Huynh, R Lester, J St Pyrek. Preparation and characterization of 3-monohydroxylated bile acids of different side chain length and configuration at C-3. Novel approach to the synthesis of 24-norlithocholic acid. Journal of lipid research. 1986 Jan; 27(1):102-13. doi: ". [PMID: 3958607]
  • D V Waterhous, S Barnes, D D Muccio. Nuclear magnetic resonance spectroscopy of bile acids. Development of two-dimensional NMR methods for the elucidation of proton resonance assignments for five common hydroxylated bile acids, and their parent bile acid, 5 beta-cholanoic acid. Journal of lipid research. 1985 Sep; 26(9):1068-78. doi: ". [PMID: 4067429]
  • T Iida, T Tamura, T Matsumoto, F C Chang. Potential bile acid metabolites. 9. 3,12-Dihydroxy- and 12 beta-hydroxy-5 alpha-cholanoic acids. Journal of lipid research. 1985 Jul; 26(7):874-81. doi: 10.1016/s0022-2275(20)34318-2. [PMID: 4031665]