acetyl-CoA(4-) (BioDeep_00000897810)
代谢物信息卡片
化学式: C23H34N7O17P3S-4 (805.0945)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 100%
分子结构信息
SMILES: CC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)([O-])OP(=O)([O-])OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)([O-])[O-])O
InChI: InChI=1S/C23H38N7O17P3S/c1-12(31)51-7-6-25-14(32)4-5-26-21(35)18(34)23(2,3)9-44-50(41,42)47-49(39,40)43-8-13-17(46-48(36,37)38)16(33)22(45-13)30-11-29-15-19(24)27-10-28-20(15)30/h10-11,13,16-18,22,33-34H,4-9H2,1-3H3,(H,25,32)(H,26,35)(H,39,40)(H,41,42)(H2,24,27,28)(H2,36,37,38)/p-4/t13-,16-,17-,18+,22-/m1/s1
描述信息
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
相关代谢途径
Reactome(83)
- Metabolism
- Biological oxidations
- Aflatoxin activation and detoxification
- Phase I - Functionalization of compounds
- Metabolism of proteins
- Post-translational protein modification
- Disease
- Phase II - Conjugation of compounds
- Amino acid and derivative metabolism
- Drug ADME
- Asparagine N-linked glycosylation
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein
- Synthesis of substrates in N-glycan biosythesis
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Diseases of metabolism
- Transport of small molecules
- SLC-mediated transmembrane transport
- Metabolism of polyamines
- Urea cycle
- DNA Repair
- Signaling Pathways
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Chromatin organization
- Chromatin modifying enzymes
- Immune System
- Innate Immune System
- Disorders of transmembrane transporters
- SLC transporter disorders
- Fatty acid metabolism
- Mitochondrial Fatty Acid Beta-Oxidation
- mitochondrial fatty acid beta-oxidation of saturated fatty acids
- Beta oxidation of myristoyl-CoA to lauroyl-CoA
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA
- Signaling by Receptor Tyrosine Kinases
- Cellular responses to stimuli
- Cellular responses to stress
- Infectious disease
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Transcriptional Regulation by TP53
- Infection with Mycobacterium tuberculosis
- Cellular response to chemical stress
- Bacterial Infection Pathways
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- The tricarboxylic acid cycle
- Glycolysis
- Carbohydrate metabolism
- Glucose metabolism
- Fatty acyl-CoA biosynthesis
- Carnitine metabolism
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Diseases of carbohydrate metabolism
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Threonine catabolism
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Metabolism of RNA
- Aspartate and asparagine metabolism
- Viral Infection Pathways
- Gluconeogenesis
- Glycosaminoglycan metabolism
- Heparan sulfate/heparin (HS-GAG) metabolism
- Branched-chain amino acid catabolism
- APAP ADME
- Metabolism of amine-derived hormones
- Signaling by Nuclear Receptors
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA
- Interconversion of polyamines
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism
- alpha-linolenic acid (ALA) metabolism
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA
- Beta-oxidation of very long chain fatty acids
- Signaling by Retinoic Acid
BioCyc(163)
- chitin biosynthesis
- O-antigen building blocks biosynthesis (E. coli)
- patulin biosynthesis
- acetate and ATP formation from acetyl-CoA I
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of N-acetylneuraminate degradation
- UDP-N-acetyl-D-glucosamine biosynthesis I
- gallate degradation III (anaerobic)
- salvianin biosynthesis
- superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin 3-O-glucoside)
- shisonin biosynthesis
- superpathway of anthocyanin biosynthesis (from pelargonidin 3-O-glucoside)
- superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis
- methanogenesis from acetate
- p-cymene degradation
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- superpathway of tryptophan utilization
- superpathway of glycol metabolism and degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- glycogen degradation I
- glycolate and glyoxylate degradation II
- L-lysine biosynthesis II
- 2-methylpropene degradation
- superpathway of sterol biosynthesis
- superpathway of arginine and polyamine biosynthesis
- L-Nδ-acetylornithine biosynthesis
- superpathway of aromatic compound degradation
- morphine biosynthesis
- ectoine biosynthesis
- formaldehyde assimilation I (serine pathway)
- colchicine biosynthesis
- superpathway of pentose and pentitol degradation
- chitin degradation to ethanol
- anhydromuropeptides recycling I
- anhydromuropeptides recycling
- volatile esters biosynthesis (during fruit ripening)
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- TCA cycle I (prokaryotic)
- mixed acid fermentation
- superpathway of CMP-sialic acids biosynthesis
- superpathway of glyoxylate bypass and TCA
- vindoline and vinblastine biosynthesis
- superpathway of testosterone and androsterone degradation
- CMP-pseudaminate biosynthesis
- diadinoxanthin and fucoxanthin biosynthesis
- CMP-legionaminate biosynthesis I
- jasmonic acid biosynthesis
- superpathway of central carbon metabolism
- superpathway of L-lysine degradation
- L-lysine fermentation to acetate and butanoate
- isopropanol biosynthesis (engineered)
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- pyruvate fermentation to acetone
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- ketogenesis
- plumbagin biosynthesis
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- gluconeogenesis I
- L-arginine biosynthesis II (acetyl cycle)
- UDP-α-D-glucose biosynthesis I
- seleno-amino acid biosynthesis
- oleandomycin biosynthesis
- D-galactose degradation I (Leloir pathway)
- nivalenol biosynthesis
- T-2 toxin biosynthesis
- superpathway of trichothecene biosynthesis
- leucine degradation IV
- isoleucine degradation III
- ornithine degradation II (Stickland reaction)
- TCA cycle VI (obligate autotrophs)
- glutamine biosynthesis III
- reductive acetyl coenzyme A pathway II (autotrophic methanogens)
- gluconeogenesis II (Methanobacterium thermoautotrophicum)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- superpathway of ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- cholesterol degradation to androstenedione I (cholesterol oxidase)
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
- volatile benzenoid biosynthesis I (ester formation)
- L-lysine degradation III
- Spodoptera littoralis pheromone biosynthesis
- Ac/N-end rule pathway
- fumigaclavine biosynthesis
- L-homomethionine biosynthesis
- ethylmalonyl-CoA pathway
- methylaspartate cycle
- colanic acid building blocks biosynthesis
- pyruvate fermentation to acetate and lactate II
- (aminomethyl)phosphonate degradation
- pyruvate fermentation to acetate I
- crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
- superpathway of pyrimidine deoxyribonucleosides degradation
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
- Entner-Doudoroff pathway II (non-phosphorylative)
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- 2-oxobutanoate degradation I
- superpathway of purine deoxyribonucleosides degradation
- L-carnitine degradation III
- reductive TCA cycle I
- hexitol fermentation to lactate, formate, ethanol and acetate
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- ferrichrome biosynthesis
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation
- 2-hydroxypenta-2,4-dienoate degradation
- mevalonate degradation
- L-leucine degradation I
- superpathway of rifamycin B biosynthesis
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- myo-, chiro- and scyllo-inositol degradation
- myo-inositol degradation I
- UDP-N-acetyl-D-glucosamine biosynthesis II
- phosphinothricin tripeptide biosynthesis
- puromycin biosynthesis
- L-arginine biosynthesis I (via L-ornithine)
- L-threonine degradation II
- meta cleavage pathway of aromatic compounds
- CMP-N-acetyl-7-O-acetylneuraminate biosynthesis
- catechol degradation II (meta-cleavage pathway)
- catechol degradation I (meta-cleavage pathway)
- aromatic compounds degradation via β-ketoadipate
- catechol degradation III (ortho-cleavage pathway)
- L-ornithine biosynthesis I
- glycogen biosynthesis I (from ADP-D-Glucose)
- androstenedione degradation
- mandelate degradation to acetyl-CoA
- superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
- superpathway of L-threonine metabolism
- glucose and glucose-1-phosphate degradation
- 2'-deoxy-α-D-ribose 1-phosphate degradation
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- superpathway of L-methionine salvage and degradation
- L-isoleucine biosynthesis II
- superpathway of cholesterol biosynthesis
- acetyl-CoA degradation to acetate
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- ethanol degradation II (cytosol)
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis
- holomycin biosynthesis
- ethanol degradation I
- ethanolamine utilization
- L-threonine degradation IV
- pyruvate fermentation to ethanol I
- 1,2-propanediol biosynthesis from lactate (engineered)
- sitosterol degradation to androstenedione
- hyperxanthone E biosynthesis
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- benzoate biosynthesis I (CoA-dependent, β-oxidative)
- stipitatate biosynthesis
- calonectrin biosynthesis
- myo-, chiro- and scillo-inositol degradation
- myo-inositol degradation
- isoprene biosynthesis II (engineered)
- taxol biosynthesis
- L-glutamate degradation VII (to butanoate)
- superpathway of seleno-compound metabolism
- ajmaline and sarpagine biosynthesis
- fatty acid biosynthesis -- elongase pathway
- respiration (anaerobic)
PlantCyc(26)
- superpathway of anthocyanin biosynthesis (from pelargonidin 3-O-glucoside)
- salvianin biosynthesis
- shisonin biosynthesis
- superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin 3-O-glucoside)
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- L-Nδ-acetylornithine biosynthesis
- colchicine biosynthesis
- morphine biosynthesis
- ajmaline and sarpagine biosynthesis
- volatile esters biosynthesis (during fruit ripening)
- vindoline, vindorosine and vinblastine biosynthesis
- capsaicin biosynthesis
- ketogenesis
- plumbagin biosynthesis
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- superpathway of glyoxylate cycle and fatty acid degradation
- volatile benzenoid biosynthesis I (ester formation)
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- superpathway of seleno-compound metabolism
- hypoglycin biosynthesis
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis
- seleno-amino acid biosynthesis (plants)
- hyperxanthone E biosynthesis
- jasmonic acid biosynthesis
- isoprene biosynthesis II (engineered)
- taxol biosynthesis
代谢反应
1961 个相关的代谢反应过程信息。
Reactome(560)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
FAD + Octanoyl-CoA ⟶ FADH2 + trans-Oct-2-enoyl-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
ATP + BUT ⟶ AMP + BT-CoA + PPi
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
L-Asp + L-Glu ⟶ Glu + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
H2O + NAA ⟶ CH3COO- + L-Asp
- Aspartate and asparagine metabolism:
2OG + L-Asp ⟶ Glu + OAA
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
CoA + FAD + H2O + LIN-CoA + NAD ⟶ (3Z,6Z)-dodecadienoyl-CoA + Ac-CoA + FADH2(2-) + H+ + NADH
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
HMG CoA ⟶ ACA + Ac-CoA
- Synthesis of Ketone Bodies:
HMG CoA ⟶ ACA + Ac-CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Ketone body metabolism:
HMG CoA ⟶ ACA + Ac-CoA
- Synthesis of Ketone Bodies:
HMG CoA ⟶ ACA + Ac-CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Ketone body metabolism:
ACA-CoA + Ac-CoA ⟶ CoA + HMG CoA
- Synthesis of Ketone Bodies:
ACA-CoA + Ac-CoA ⟶ CoA + HMG CoA
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Fatty acyl-CoA biosynthesis:
Mal-CoA + PALM-CoA ⟶ 3OOD-CoA + CoA-SH + carbon dioxide
- Carnitine metabolism:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Fatty acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Fatty acyl-CoA biosynthesis:
Mal-CoA + PALM-CoA ⟶ 3OOD-CoA + CoA-SH + carbon dioxide
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Fatty acyl-CoA biosynthesis:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acid metabolism:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- alpha-linolenic acid (ALA) metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
DHA-CoA + H2O ⟶ CoA-SH + DHA
- alpha-linolenic acid (ALA) metabolism:
DHA-CoA + H2O ⟶ CoA-SH + DHA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- alpha-linolenic acid (ALA) metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Beta-oxidation of pristanoyl-CoA:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Neuronal System:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Transmission across Chemical Synapses:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Neurotransmitter release cycle:
2OG + GABA ⟶ Glu + SUCCSA
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
2OG + GABA ⟶ Glu + SUCCSA
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Neuronal System:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Transmission across Chemical Synapses:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Neurotransmitter release cycle:
2OG + GABA ⟶ Glu + SUCCSA
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Phase I - Functionalization of compounds:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Ethanol oxidation:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Peroxisomal lipid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Beta-oxidation of pristanoyl-CoA:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
(S)-Hydroxydecanoyl-CoA + NAD ⟶ 3-Oxodecanoyl-CoA + H+ + NADH
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
(S)-Hydroxydecanoyl-CoA + NAD ⟶ 3-Oxodecanoyl-CoA + H+ + NADH
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Urea cycle:
H2O + L-Arg ⟶ L-Orn + Urea
- Urea cycle:
ATP + L-Asp + L-Cit ⟶ AMP + ARSUA + PPi
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Urea cycle:
H2O + L-Arg ⟶ L-Orn + Urea
- Urea cycle:
ATP + L-Asp + L-Cit ⟶ AMP + ARSUA + PPi
- Urea cycle:
ATP + L-Asp + L-Cit ⟶ AMP + ARSUA + PPi
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Urea cycle:
ATP + L-Asp + L-Cit ⟶ AMP + ARSUA + PPi
- Urea cycle:
H2O + L-Arg ⟶ L-Orn + Urea
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
3-Oxohexanoyl-CoA + CoA ⟶ Ac-CoA + BT-CoA
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
(S)-Hydroxyhexanoyl-CoA + NAD ⟶ 3-Oxohexanoyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
FAD + LAU-CoA ⟶ 2-trans-Dodecenoyl-CoA + FADH2
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
(S)-3-hydroxylauroyl-CoA + NAD ⟶ 3-oxolauroyl-CoA + H+ + NADH
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- The tricarboxylic acid cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism of polyamines:
AGM + H2O ⟶ Putrescine + Urea
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + Oxygen + SPN ⟶ 3APAL + H2O2 + SPM
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + Oxygen + SPN ⟶ 3APAL + H2O2 + SPM
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of UDP-N-acetyl-glucosamine:
AcGlcN1P + UTP ⟶ PPi + UDP-GlcNAc
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Post-translational protein modification:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of UDP-N-acetyl-glucosamine:
AcGlcN1P + UTP ⟶ PPi + UDP-GlcNAc
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of UDP-N-acetyl-glucosamine:
AcGlcN1P + UTP ⟶ PPi + UDP-GlcNAc
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of UDP-N-acetyl-glucosamine:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of UDP-N-acetyl-glucosamine:
AcGlcN1P + UTP ⟶ PPi + UDP-GlcNAc
BioCyc(373)
- diadinoxanthin and fucoxanthin biosynthesis:
acetyl-CoA + fucoxanthinol ⟶ coenzyme A + fucoxanthin
- calonectrin biosynthesis:
15-decalonectrin + acetyl-CoA ⟶ calonectrin + coenzyme A
- superpathway of trichothecene biosynthesis:
7,8-dihydroxycalonectrin ⟶ 3,15-acetyldeoxynivalenol
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- nivalenol biosynthesis:
3,15-acetyldeoxynivalenol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3,15-diacetylnivalenol + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- reductive acetyl coenzyme A pathway II (autotrophic methanogens):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- reductive acetyl coenzyme A pathway I (homoacetogenic bacteria):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- gluconeogenesis II (Methanobacterium thermoautotrophicum):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- Methanobacterium thermoautotrophicum biosynthetic metabolism:
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- methanogenesis from acetate:
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- Methanobacterium thermoautotrophicum biosynthetic metabolism:
2-oxoglutarate + ala ⟶ glt + pyruvate
- gluconeogenesis II (Methanobacterium thermoautotrophicum):
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
ATP + formate + tetrahydrofolate ⟶ 10-formyl-tetrahydrofolate + ADP + phosphate
- methanogenesis from acetate:
ATP + acetate ⟶ ADP + acetylphosphate
- reductive acetyl coenzyme A pathway I (homoacetogenic bacteria):
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- UDP-N-acetylglucosamine biosynthesis:
D-fructose-6-phosphate + gln ⟶ D-glucosamine-6-phosphate + glt
- lactate oxidation:
ATP + acetate ⟶ ADP + acetyl phosphate
- holomycin biosynthesis:
O2 + dithioholomycin ⟶ holomycin + hydrogen peroxide
- oleandomycin biosynthesis:
(S)-methylmalonyl-CoA + H+ + NADPH + acetyl-CoA ⟶ 8,8a-deoxyoleandolide + CO2 + H2O + NADP+ + coenzyme A
- mycothiol biosynthesis:
acetyl-CoA + deacetylmycothiol ⟶ H+ + coenzyme A + mycothiol
- mycothiol biosynthesis:
acetyl-CoA + deacetylmycothiol ⟶ H+ + coenzyme A + mycothiol
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ GlcN-Ins + acetate
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ GlcN-Ins + acetate
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ GlcN-Ins + acetate
- acetate and ATP formation from acetyl-CoA I:
acetyl-CoA + phosphate ⟶ acetyl phosphate + coenzyme A
- fatty acid β-oxidation II (peroxisome):
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation II (core pathway):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- fatty acid β-oxidation I:
NAD+ + a (3S)-3-hydroxyacyl-CoA ⟶ H+ + NADH + a 3-oxoacyl-CoA
- superpathway of sterol biosynthesis:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- leucine degradation I:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- taxol biosynthesis:
acetyl-CoA + taxa-4(20),11-dien-5α-ol ⟶ coenzyme A + taxa-4(20),11-dien-5-α-yl acetate
- volatile esters biosynthesis (during fruit ripening):
acetyl-CoA + butan-1-ol ⟶ butyl acetate + coenzyme A
- jadomycin biosynthesis:
dTDP-β-L-digitoxose + jadomycin A ⟶ H+ + dTDP + jadomycin B
- fatty acid biosynthesis -- elongase pathway:
an acyl-CoA + malonyl-CoA ⟶ CO2 + a 3-oxoacyl-CoA + coenzyme A
- 3-hydroxypropionate/4-hydroxybutyrate cycle:
ATP + bicarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- 3-hydroxypropionate cycle:
ATP + bicarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- plumbagin biosynthesis:
1,8-dihydroxy-3-methylnaphthalene ⟶ plumbagin
- carnitine shuttle:
L-carnitine + acetyl-CoA ⟶ O-acetyl-L-carnitine + coenzyme A
- pyruvate fermentation to propanoate II (acrylate pathway):
(R)-lactate + propanoyl-CoA ⟶ (R)-lactoyl-CoA + propanoate
- L-alanine fermentation to propanoate and acetate:
(R)-lactate + propanoyl-CoA ⟶ (R)-lactoyl-CoA + propanoate
- fermentation to 2-methylbutanoate:
acetyl-CoA + propanoate ⟶ acetate + propanoyl-CoA
- 2-methylbutanoate biosynthesis:
acetyl-CoA + propanoate ⟶ acetate + propanoyl-CoA
- 2-methylbutyrate biosynthesis:
acetyl-CoA + propionate ⟶ acetate + propanoyl-CoA
- pyruvate fermentation to propionate II (acrylate pathway):
acetyl-CoA + propanoate ⟶ acetate + propanoyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-aminoethylphosphonate degradation I:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanolamine utilization:
ethanolamine ⟶ acetaldehyde + ammonium
- triethylamine degradation:
H+ + diethylamine N-oxide ⟶ acetaldehyde + ethylamine
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- superpathway of Clostridium acetobutylicum solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- p-cymene degradation:
p-cymene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 4-isopropylbenzyl alcohol + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetylene degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- p-cumate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-hydroxypenta-2,4-dienoate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- naphthalene degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- superpathway of N-acetylneuraminate degradation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- meta cleavage pathway of aromatic compounds:
O2 + catechol ⟶ H+ + HMS
- catechol degradation II (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- catechol degradation I (meta-cleavage pathway):
O2 + catechol ⟶ H+ + HMS
- toluene degradation I (aerobic) (via o-cresol):
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- L-tryptophan degradation IX:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- toluene degradation IV (aerobic) (via catechol):
O2 + catechol ⟶ H+ + HMS
- mandelate degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- L-tryptophan degradation XII (Geobacillus):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- toluene degradation II (aerobic) (via 4-methylcatechol):
H+ + NADH + O2 + toluene ⟶ 4-methylphenol + H2O + NAD+
- toluene degradation V (aerobic) (via toluene-cis-diol):
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of L-threonine metabolism:
NAD+ + thr ⟶ H+ + L-2-amino-3-oxobutanoate + NADH
- superpathway of aerobic toluene degradation:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- acetoin degradation:
NAD+ + acetoin + coenzyme A ⟶ H+ + NADH + acetaldehyde + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
2-deoxy-D-ribose 5-phosphate ⟶ D-glyceraldehyde 3-phosphate + acetaldehyde
- pyruvate fermentation to ethanol III:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanolamine utilization:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of L-threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation:
3-(3-hydroxyphenyl)propanoate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-hydroxypenta-2,4-dienoate degradation:
(S)-4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- threonine degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- 2-aminoethylphosphonate degradation I:
(2-aminoethyl)phosphonate + pyruvate ⟶ ala + phosphonoacetaldehyde
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation I:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
2-deoxy-D-ribose 5-phosphate ⟶ D-glyceraldehyde 3-phosphate + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- acetoin degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- pyruvate fermentation to ethanol III:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- acetoin degradation:
NAD+ + acetoin + coenzyme A ⟶ H+ + NADH + acetaldehyde + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
2-deoxy-D-ribose 5-phosphate ⟶ D-glyceraldehyde 3-phosphate + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
oxaloacetate + phosphate ⟶ hydrogencarbonate + phosphoenolpyruvate
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol fermentation to acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- acetoin degradation:
NAD+ + acetoin + coenzyme A ⟶ H+ + NADH + acetaldehyde + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of N-acetylneuraminate degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- acetoin degradation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-oxopentenoate degradation:
4-hydroxy-2-oxopentanoate ⟶ acetaldehyde + pyruvate
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation:
3-(3-hydroxyphenyl)propionate + H+ + NADH + O2 ⟶ 2,3-DHP + H2O + NAD+
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of N-acetylneuraminate degradation:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose 6-phosphate + H+ + ammonia
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyrimidine deoxyribonucleosides degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2'-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of N-acetylneuraminate degradation:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose 6-phosphate + H+ + ammonia
- hexitol fermentation to lactate, formate, ethanol and acetate:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H2O ⟶ 2'-deoxyuridine + ammonia
- threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-aminoethylphosphonate degradation I:
2-aminoethylphosphonate + pyruvate ⟶ ala + phosphonoacetaldehyde
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2-aminoethylphosphonate degradation I:
(2-aminoethyl)phosphonate + pyruvate ⟶ ala + phosphonoacetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- pyruvate fermentation to ethanol III:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- L-threonine degradation IV:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- ethanolamine utilization:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 2'-deoxy-α-D-ribose 1-phosphate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- T-2 toxin biosynthesis:
3-acetylneosolaniol + isovaleryl-CoA ⟶ 3-acetyl T-2 toxin + coenzyme A
- succinate fermentation to butanoate:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- acetyl-CoA fermentation to butanoate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- L-glutamate degradation V (via hydroxyglutarate):
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- 4-aminobutanoate degradation V:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- gallate degradation III (anaerobic):
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- acetyl-CoA fermentation to butyrate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- acetyl-CoA fermentation to butanoate II:
ATP + acetate ⟶ ADP + acetyl phosphate
- acetyl-CoA fermentation to butyrate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + n-butanoate
- acetyl-CoA fermentation to butyrate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + n-butanoate
- acetyl-CoA fermentation to butanoate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- gallate degradation III (anaerobic):
3-hydroxy-5-oxohexanoate + acetyl-CoA ⟶ 3-hydroxy-5- oxohexanoyl-CoA + acetate
- gallate degradation III (anaerobic):
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- acetyl-CoA fermentation to butanoate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- acetyl-CoA fermentation to butyrate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + n-butanoate
- 4-aminobutyrate degradation V:
H2O + NAD+ + glt ⟶ 2-oxoglutarate + H+ + NADH + ammonia
- gallate degradation III (anaerobic):
3-hydroxy-5-oxohexanoate + acetyl-CoA ⟶ 3-hydroxy-5- oxohexanoyl-CoA + acetate
- acetyl-CoA fermentation to butyrate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + n-butanoate
- glutamate degradation V (via hydroxyglutarate):
H2O + NAD+ + glt ⟶ 2-oxoglutarate + H+ + NADH + ammonia
- 4-aminobutyrate degradation V:
H2O + NAD+ + glt ⟶ 2-oxoglutarate + H+ + NADH + ammonia
- 4-aminobutanoate degradation V:
Glu + H2O + NAD+ ⟶ 2-oxoglutarate + H+ + NADH + ammonium
- succinate fermentation to butanoate:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- gallate degradation III (anaerobic):
3-hydroxy-5- oxohexanoyl-CoA + acetate ⟶ 3-hydroxy-5-oxohexanoate + acetyl-CoA
- acetyl-CoA fermentation to butanoate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- succinate fermentation to butanoate:
acetate + succinyl-CoA ⟶ acetyl-CoA + succinate
- L-glutamate degradation V (via hydroxyglutarate):
(R)-2-hydroxyglutarate + NAD+ ⟶ 2-oxoglutarate + H+ + NADH
- 4-aminobutanoate degradation V:
Glu + H2O + NAD+ ⟶ 2-oxoglutarate + H+ + NADH + ammonium
- acetyl-CoA fermentation to butanoate II:
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- acetyl-CoA fermentation to butanoate II:
ATP + acetate ⟶ ADP + acetyl phosphate
- acetyl-CoA fermentation to butanoate II:
ATP + acetate ⟶ ADP + acetyl phosphate
- harzianum A and trichodermin biosynthesis:
2,4,6 octatrienedioyl-CoA + trichodermol ⟶ coenzyme A + harzianum A
- 4-coumarate degradation (aerobic):
4-hydroxybenzaldehyde + H2O + NAD(P)+ ⟶ 4-hydroxybenzoate + H+ + NAD(P)H
- dTDP-D-ravidosamine and dTDP-4-acetyl-D-ravidosamine biosynthesis:
acetyl-CoA + dTDP-D-ravidosamine ⟶ coenzyme A + dTDP-4-acetyl-D-ravidosamine
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis:
2-methylbutanoate + pseudoisoeugenol ⟶ epoxypseudoisoeugenol-2-methylbutanoate
- CMP-diacetamido-8-epilegionaminic acid biosynthesis:
5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-D-galacto-non-2-ulosonate + CTP ⟶ CMP-5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-D-galacto-non-2-ulosonate + diphosphate
- salinosporamide A biosynthesis:
5'-chloro-5'-deoxyadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- cysteine biosynthesis I:
O-acetyl-L-serine + hydrogen sulfide ⟶ H+ + acetate + cys
- putrescine degradation III:
N-acetylputrescine + H2O + O2 ⟶ 4-acetamidobutanal + ammonia + hydrogen peroxide
- acetyl-CoA degradation to acetate:
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- ethanol degradation II (cytosol):
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- 10-cis-heptadecenoyl-CoA degradation (yeast):
(3R)-hydroxy, 6-cis-tridecenoyl-CoA + NAD+ ⟶ 6-cis, 3-oxo-tridecenoyl-CoA + H+ + NADH
- 10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast):
(3R)-hydroxy-undecanoyl-CoA + H2O + NAD+ + O2 + coenzyme A ⟶ (3R)-hydroxy-nonanoyl-CoA + H+ + NADH + acetyl-CoA + hydrogen peroxide
- 10-trans-heptadecenoyl-CoA degradation (reductase-dependent):
4-trans-undecenoyl-CoA + O2 ⟶ 2-trans, 4-trans-undecadienoyl-CoA + hydrogen peroxide
- 10-cis-heptadecenoyl-CoA degradation:
3-hydroxy-heptanoyl-CoA + H2O + NAD+ + O2 + coenzyme A ⟶ 3-hydroxypentanoyl-CoA + H+ + NADH + acetyl-CoA + hydrogen peroxide
- 10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast):
(3R)-hydroxy-nonanoyl-CoA ⟶ 2-trans-nonenoyl-CoA + H2O
- 10-trans-heptadecenoyl-CoA degradation (MFE-dependent):
3-hydroxy-heptanoyl-CoA + H2O + NAD+ + O2 + coenzyme A ⟶ 3-hydroxypentanoyl-CoA + H+ + NADH + acetyl-CoA + hydrogen peroxide
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- 6-methoxymellein biosynthesis:
6-hydroxymellein + SAM ⟶ 6-methoxymellein + H+ + SAH
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- cocaine biosynthesis:
NADP+ + ecgonine methyl ester ⟶ H+ + NADPH + methyl ecgonone
- L-homomethionine biosynthesis:
4-(methylsulfanyl)-2-oxobutanoate + H2O + acetyl-CoA ⟶ 2-[(2'-methylsulfanyl)ethyl]malate + H+ + coenzyme A
- methylaspartate cycle:
ATP + hydrogencarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- reductive TCA cycle I:
oxaloacetate + phosphate ⟶ hydrogencarbonate + phosphoenolpyruvate
- mevalonate degradation:
HMG-CoA ⟶ acetoacetate + acetyl-CoA
- L-leucine degradation I:
3-methylcrotonyl-CoA + ATP + hydrogencarbonate ⟶ 3-methylglutaconyl-CoA + ADP + H+ + phosphate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- purine nucleobases degradation II (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- trans-caffeate degradation (aerobic):
3,4-dihydroxybenzaldehyde + H2O + NAD(P)+ ⟶ H+ + NAD(P)H + protocatechuate
- colchicine biosynthesis:
O-methylandrocymbine + O2 ⟶ H2O + N-formyldemecolcine
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(3R-hydroxyoctanoyl)-CoA + NAD+ ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(3-oxooctanoyl)-CoA + H+ + NADH
- FR-900098 and FR-33289 antibiotics biosynthesis:
(R)-2-(phosphomethyl)malate ⟶ 3-phosphonomethylmalate
- 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast):
(3R)-hydroxy- 5-cis, 7-trans-tetradecadienoyl-CoA + NAD+ ⟶ 5-cis, 7-trans-3-oxo-tetradecadienoyl-CoA + H+ + NADH
- oleate β-oxidation (isomerase-dependent, yeast):
(2E,5Z)-tetradecenoyl-CoA + H2O + O2 + coenzyme A ⟶ (3Z)-dodec-3-enoyl-CoA + acetyl-CoA + hydrogen peroxide
- 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent):
5-cis, 7-trans-tetradecadienoyl-CoA + O2 ⟶ 2-trans, 5-cis, 7-trans-tetradecatrienoyl-CoA + hydrogen peroxide
- oleate β-oxidation (isomerase-dependent):
(2E,5Z)-tetradecenoyl-CoA + H2O + O2 + coenzyme A ⟶ (3Z)-dodec-3-enoyl-CoA + acetyl-CoA + hydrogen peroxide
- vindoline and vinblastine biosynthesis:
O2 + vinblastine ⟶ H+ + H2O + vincristine
- Spodoptera littoralis pheromone biosynthesis:
acetyl-CoA + tetradecan-1-ol ⟶ coenzyme A + tetradecan-1-yl acetate
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- UDP-N-acetyl-D-galactosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
D-glucosamine 6-phosphate + acetyl-CoA ⟶ N-acetyl-D-glucosamine 6-phosphate + H+ + coenzyme A
- chitin biosynthesis:
UDP-N-acetyl-α-D-glucosamine + chitin ⟶ UDP + chitin
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-galactosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
D-glucosamine 6-phosphate + acetyl-CoA ⟶ N-acetyl-D-glucosamine 6-phosphate + H+ + coenzyme A
- UDP-N-acetylglucosamine biosynthesis:
D-glucosamine 6-phosphate + acetyl-CoA ⟶ N-acetyl-D-glucosamine 6-phosphate + H+ + coenzyme A
- chitin biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
D-glucosamine 6-phosphate + acetyl-CoA ⟶ N-acetyl-D-glucosamine 6-phosphate + H+ + coenzyme A
- UDP-N-acetyl-D-glucosamine biosynthesis II:
D-glucosamine 6-phosphate + acetyl-CoA ⟶ N-acetyl-D-glucosamine 6-phosphate + H+ + coenzyme A
- ferulate degradation:
4-hydroxy-3-methoxyphenyl-β-hydroxypropanoyl-CoA ⟶ acetyl-CoA + vanillin
- ferulate degradation:
4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA ⟶ acetyl-CoA + vanillin
- 4-coumarate degradation:
4-hydroxybenzoyl-acetyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + acetyl-CoA
Plant Reactome(15)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Homocysteine biosynthesis:
H2S + O-acetyl-L-homoserine ⟶ CH3COO- + LHCYS
- Homomethionine biosynthesis:
3-(2'-methylthio)ethylmalic-acid ⟶ 2-oxo-5-methylthiopentanoic acid + carbon dioxide
- Lysine biosynthesis II:
H2O + N-acetyl-L,L-2,6-diaminopimelate ⟶ CH3COO- + L,L-diaminopimelate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Arginine biosynthesis I:
H2O + N-acetyl-L-ornithine ⟶ CH3COO- + L-Orn
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
H2O + N-acetyl-L-ornithine ⟶ CH3COO- + L-Orn
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- UDP-N-acetylgalactosamine biosynthesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
INOH(0)
PlantCyc(1011)
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-octa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(3R-hydroxyhexanoyl)-CoA + NAD+ ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(3-oxohexanoyl)-CoA + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
9(S)-HPOTE ⟶ (2E,6Z)-non-2,6-dienal + 9-oxononanoate
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- colchicine biosynthesis:
(S)-isoandrocymbine + SAM ⟶ H+ + O-methylandrocymbine + SAH
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- noscapine biosynthesis:
(S)-reticuline + O2 ⟶ (S)-scoulerine + H+ + hydrogen peroxide
- noscapine biosynthesis:
(13S,14R)-13-O-acetyl-1-hydroxy-N-methylcanadine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (13S,14R)-13-O-acetyl-1,8-dihydroxy-N-methylcanadine + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a (2E)-alkan-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- fatty acid β-oxidation II (peroxisome):
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- taxol biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + taxa-4(20),11-dien-5α-ol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + taxa-4(20),11-dien-5α,13α-diol
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
butan-1-ol + propanoyl-CoA ⟶ butyl propanoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
benzoyl-CoA + butan-1-ol ⟶ butyl benzoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- volatile esters biosynthesis (during fruit ripening):
acetyl-CoA + propan-1-ol ⟶ coenzyme A + propyl acetate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoyl-CoA biosynthesis:
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoyl-CoA biosynthesis:
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoyl-CoA biosynthesis:
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoyl-CoA biosynthesis:
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- hyperxanthone E biosynthesis:
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoyl-CoA biosynthesis:
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoyl-CoA biosynthesis:
3-oxo-3-phenylpropanoyl-CoA + coenzyme A ⟶ acetyl-CoA + benzoyl-CoA
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- plumbagin biosynthesis:
1,8-dihydroxy-3-methylnaphthalene ⟶ plumbagin
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of fermentation (Chlamydomonas reinhardtii):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
acetyl-CoA + benzyl alcohol ⟶ benzyl acetate + coenzyme A
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + salicylate ⟶ SAH + methylsalicylate
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis:
2-methylbutanoate + pseudoisoeugenol ⟶ epoxypseudoisoeugenol-2-methylbutanoate
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetate formation from acetyl-CoA II:
ATP + acetate + coenzyme A ⟶ ADP + acetyl-CoA + phosphate
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- acetate and ATP formation from acetyl-CoA II:
ATP + acetate + coenzyme A ⟶ ADP + acetyl-CoA + phosphate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation IV:
ethanol + hydrogen peroxide ⟶ H2O + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- ethanol degradation II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
H2O + geranyl acetate ⟶ H+ + acetate + geraniol
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- geranyl acetate biosynthesis:
acetyl-CoA + geraniol ⟶ coenzyme A + geranyl acetate
- 6-methoxymellein biosynthesis:
6-hydroxymellein + SAM ⟶ 6-methoxymellein + H+ + SAH
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- phenylethyl acetate biosynthesis:
2-phenylethanol + acetyl-CoA ⟶ coenzyme A + phenylethyl acetate
- pyruvate fermentation to acetate IV:
ATP + acetate ⟶ ADP + acetyl phosphate
- pyruvate fermentation to acetate IV:
ATP + acetate ⟶ ADP + acetyl phosphate
- cocaine biosynthesis:
NADP+ + ecgonine methyl ester ⟶ H+ + NADPH + methyl ecgonone
- 4-hydroxybenzoate biosynthesis III (plants):
4-hydroxybenzoyl-CoA + acetyl-CoA ⟶ 3-(4-hydroxyphenyl)-3-oxo-propanoyl-CoA + coenzyme A
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-octa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-octa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
8-[(1R,2R)-3-oxo-2-{(Z)-pent-2-enyl}cyclopentyl]octanoate + ATP + coenzyme A ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + AMP + diphosphate
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
8-[(1R,2R)-3-oxo-2-{(Z)-pent-2-enyl}cyclopentyl]octanoate + NADP+ ⟶ H+ + NADPH + dinor-12-oxo-phytodienoate
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-octa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
8-[(1R,2R)-3-oxo-2-{(Z)-pent-2-enyl}cyclopentyl]octanoate + ATP + coenzyme A ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + AMP + diphosphate
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-octa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
- jasmonic acid biosynthesis:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
- vindoline, vindorosine and vinblastine biosynthesis:
catharanthine + hydrogen peroxide + vindoline ⟶ α-3',4'-anhydrovinblastine radical + H2O
- vindoline, vindorosine and vinblastine biosynthesis:
catharanthine + hydrogen peroxide + vindoline ⟶ α-3',4'-anhydrovinblastine radical + H2O
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
F6P + gln ⟶ D-glucosamine 6-phosphate + glu
- capsaicin biosynthesis:
H+ + NADPH + a malonyl-[acp] + isobutanoyl-CoA ⟶ 8-methyl-6-nonenoate + H2O + NADP+ + a holo-[acyl-carrier protein] + coenzyme A
- capsaicin biosynthesis:
8-methyl-6-nonenoate + vanillylamine ⟶ H2O + capsaicin
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Mary T Doan, Michael D Neinast, Erika L Varner, Kenneth C Bedi, David Bartee, Helen Jiang, Sophie Trefely, Peining Xu, Jay P Singh, Cholsoon Jang, J Eduardo Rame, Donita C Brady, Jordan L Meier, Kenneth B Marguiles, Zoltan Arany, Nathaniel W Snyder. Direct anabolic metabolism of three-carbon propionate to a six-carbon metabolite occurs in vivo across tissues and species.
Journal of lipid research.
2022 06; 63(6):100224. doi:
10.1016/j.jlr.2022.100224
. [PMID: 35568254] - Chen Zhao, Youlin Wang, Hao Yang, Shupei Wang, Marie-Christine Tang, Denis Cyr, Fabienne Parente, Pierre Allard, Paula Waters, Alexandra Furtos, Gongshe Yang, Grant A Mitchell. Propionic acidemia in mice: Liver acyl-CoA levels and clinical course.
Molecular genetics and metabolism.
2022 01; 135(1):47-55. doi:
10.1016/j.ymgme.2021.11.011
. [PMID: 34896004] - Karine Mention, Marie Joncquel Chevalier Curt, Anne-Frédérique Dessein, Claire Douillard, Dries Dobbelaere, Joseph Vamecq. Citrin deficiency: Does the reactivation of liver aralar-1 come into play and promote HCC development?.
Biochimie.
2021 Nov; 190(?):20-23. doi:
10.1016/j.biochi.2021.06.018
. [PMID: 34228977] - Natalia Mast, Alexey M Petrov, Erin Prendergast, Ilya Bederman, Irina A Pikuleva. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux.
Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics.
2021 07; 18(3):2040-2060. doi:
10.1007/s13311-021-01079-6
. [PMID: 34235635] - Inca A Dieterich, Yusi Cui, Megan M Braun, Alexis J Lawton, Nicklaus H Robinson, Jennifer L Peotter, Qing Yu, Jason C Casler, Benjamin S Glick, Anjon Audhya, John M Denu, Lingjun Li, Luigi Puglielli. Acetyl-CoA flux from the cytosol to the ER regulates engagement and quality of the secretory pathway.
Scientific reports.
2021 01; 11(1):2013. doi:
10.1038/s41598-021-81447-6
. [PMID: 33479349] - Laurent Suissa, Pavel Kotchetkov, Jean-Marie Guigonis, Emilie Doche, Ophélie Osman, Thierry Pourcher, Sabine Lindenthal. Ingested Ketone Ester Leads to a Rapid Rise of Acetyl-CoA and Competes with Glucose Metabolism in the Brain of Non-Fasted Mice.
International journal of molecular sciences.
2021 Jan; 22(2):. doi:
10.3390/ijms22020524
. [PMID: 33430235] - Yevgeniya I Shurubor, Arthur J L Cooper, Andrey B Krasnikov, Elena P Isakova, Yulia I Deryabina, M Flint Beal, Boris F Krasnikov. Changes of Coenzyme A and Acetyl-Coenzyme A Concentrations in Rats after a Single-Dose Intraperitoneal Injection of Hepatotoxic Thioacetamide Are Not Consistent with Rapid Recovery.
International journal of molecular sciences.
2020 Nov; 21(23):. doi:
10.3390/ijms21238918
. [PMID: 33255464] - Bjorn T Tam, Jessica Murphy, Natalie Khor, Jose A Morais, Sylvia Santosa. Acetyl-CoA Regulation, OXPHOS Integrity and Leptin Levels Are Different in Females With Childhood vs Adulthood Onset of Obesity.
Endocrinology.
2020 11; 161(11):. doi:
10.1210/endocr/bqaa142
. [PMID: 32808657] - Edward R Smith, Timothy D Hewitson. TGF-β1 is a regulator of the pyruvate dehydrogenase complex in fibroblasts.
Scientific reports.
2020 10; 10(1):17914. doi:
10.1038/s41598-020-74919-8
. [PMID: 33087819] - Martina Musutova, Martin Weiszenstein, Michal Koc, Jan Polak. Intermittent Hypoxia Stimulates Lipolysis, But Inhibits Differentiation and De Novo Lipogenesis in 3T3-L1 Cells.
Metabolic syndrome and related disorders.
2020 04; 18(3):146-153. doi:
10.1089/met.2019.0112
. [PMID: 31928504] - Rachel J Perry, Dongyan Zhang, Mateus T Guerra, Allison L Brill, Leigh Goedeke, Ali R Nasiri, Aviva Rabin-Court, Yongliang Wang, Liang Peng, Sylvie Dufour, Ye Zhang, Xian-Man Zhang, Gina M Butrico, Keshia Toussaint, Yuichi Nozaki, Gary W Cline, Kitt Falk Petersen, Michael H Nathanson, Barbara E Ehrlich, Gerald I Shulman. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis.
Nature.
2020 03; 579(7798):279-283. doi:
10.1038/s41586-020-2074-6
. [PMID: 32132708] - Anna Michno, Katarzyna Grużewska, Hanna Bielarczyk, Marlena Zyśk, Andrzej Szutowicz. Inhibition of pyruvate dehydrogenase complex activity by 3-bromopyruvate affects blood platelets responses in type 2 diabetes.
Pharmacological reports : PR.
2020 Feb; 72(1):225-237. doi:
10.1007/s43440-019-00005-0
. [PMID: 32016856] - Cyril Corbet, Estelle Bastien, Joao Pedro Santiago de Jesus, Emeline Dierge, Ruben Martherus, Catherine Vander Linden, Bastien Doix, Charline Degavre, Céline Guilbaud, Laurenne Petit, Carine Michiels, Chantal Dessy, Yvan Larondelle, Olivier Feron. TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells.
Nature communications.
2020 01; 11(1):454. doi:
10.1038/s41467-019-14262-3
. [PMID: 31974393] - Gabriela Maldini, Katherine M Kennedy, Michael S Allen. Temporal effects of ruminal infusion of propionic acid on hepatic metabolism in cows in the postpartum period.
Journal of dairy science.
2019 Nov; 102(11):9781-9790. doi:
10.3168/jds.2019-16437
. [PMID: 31447167] - Joost Schalkwijk, Erik L Allman, Patrick A M Jansen, Laura E de Vries, Julie M J Verhoef, Suzanne Jackowski, Peter N M Botman, Christien A Beuckens-Schortinghuis, Karin M J Koolen, Judith M Bolscher, Martijn W Vos, Karen Miller, Stacy A Reeves, Helmi Pett, Graham Trevitt, Sergio Wittlin, Christian Scheurer, Sibylle Sax, Christoph Fischli, Iñigo Angulo-Barturen, Mariá Belén Jiménez-Diaz, Gabrielle Josling, Taco W A Kooij, Roger Bonnert, Brice Campo, Richard H Blaauw, Floris P J T Rutjes, Robert W Sauerwein, Manuel Llinás, Pedro H H Hermkens, Koen J Dechering. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum.
Science translational medicine.
2019 09; 11(510):. doi:
10.1126/scitranslmed.aas9917
. [PMID: 31534021] - Yinyin Chen, Dilip K Deb, Xiao Fu, Bin Yi, Yumei Liang, Jie Du, Lei He, Yan Chun Li. ATP-citrate lyase is an epigenetic regulator to promote obesity-related kidney injury.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2019 08; 33(8):9602-9615. doi:
10.1096/fj.201900213r
. [PMID: 31150280] - Justin A Fletcher, Stanisław Deja, Santhosh Satapati, Xiaorong Fu, Shawn C Burgess, Jeffrey D Browning. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver.
JCI insight.
2019 04; 5(?):. doi:
10.1172/jci.insight.127737
. [PMID: 31012869] - G A Nagana Gowda, Lauren Abell, Rong Tian. Extending the Scope of 1H NMR Spectroscopy for the Analysis of Cellular Coenzyme A and Acetyl Coenzyme A.
Analytical chemistry.
2019 02; 91(3):2464-2471. doi:
10.1021/acs.analchem.8b05286
. [PMID: 30608643] - Salah Mohamed El Sayed, Hussam Baghdadi, Nagwa Sayed Ahmed, Hamdi H Almaramhy, Ahmed Al-Amir Mahmoud, Samer Ahmed El-Sawy, Mongi Ayat, Momen Elshazley, Wafaa Abdel-Aziz, Haitham Mahmoud Abdel-Latif, Walaa Ibrahim, Moutasem Salih Aboonq. Dichloroacetate is an antimetabolite that antagonizes acetate and deprives cancer cells from its benefits: A novel evidence-based medical hypothesis.
Medical hypotheses.
2019 Jan; 122(?):206-209. doi:
10.1016/j.mehy.2018.11.012
. [PMID: 30593413] - Lewin Small, Amanda E Brandon, Lake-Ee Quek, James R Krycer, David E James, Nigel Turner, Gregory J Cooney. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake.
American journal of physiology. Endocrinology and metabolism.
2018 08; 315(2):E258-E266. doi:
10.1152/ajpendo.00386.2017
. [PMID: 29406780] - Guoyu Yu, Chien-Jui Cheng, Song-Chang Lin, Yu-Chen Lee, Daniel E Frigo, Li-Yuan Yu-Lee, Gary E Gallick, Mark A Titus, Leta K Nutt, Sue-Hwa Lin. Organelle-Derived Acetyl-CoA Promotes Prostate Cancer Cell Survival, Migration, and Metastasis via Activation of Calmodulin Kinase II.
Cancer research.
2018 05; 78(10):2490-2502. doi:
10.1158/0008-5472.can-17-2392
. [PMID: 29535221] - Federica Gevi, Giuseppina Fanelli, Lello Zolla. Metabolic patterns in insulin-resistant male hypogonadism.
Cell death & disease.
2018 04; 9(6):671. doi:
10.1038/s41419-018-0587-9
. [PMID: 29867095] - Rachel J Perry, Liang Peng, Gary W Cline, Yongliang Wang, Aviva Rabin-Court, Joongyu D Song, Dongyan Zhang, Xian-Man Zhang, Yuichi Nozaki, Sylvie Dufour, Kitt Falk Petersen, Gerald I Shulman. Mechanisms by which a Very-Low-Calorie Diet Reverses Hyperglycemia in a Rat Model of Type 2 Diabetes.
Cell metabolism.
2018 01; 27(1):210-217.e3. doi:
10.1016/j.cmet.2017.10.004
. [PMID: 29129786] - Yevgeniya I Shurubor, Marilena D'Aurelio, Joanne Clark-Matott, Elena P Isakova, Yulia I Deryabina, M Flint Beal, Arthur J L Cooper, Boris F Krasnikov. Determination of Coenzyme A and Acetyl-Coenzyme A in Biological Samples Using HPLC with UV Detection.
Molecules (Basel, Switzerland).
2017 Aug; 22(9):. doi:
10.3390/molecules22091388
. [PMID: 28832533] - Laura B Gualdrón-Duarte, Michael S Allen. Increased anaplerosis of the tricarboxylic acid cycle decreased meal size and energy intake of cows in the postpartum period.
Journal of dairy science.
2017 Jun; 100(6):4425-4434. doi:
10.3168/jds.2016-12104
. [PMID: 28342606] - Suman K Samanta, Anuradha Sehrawat, Su-Hyeong Kim, Eun-Ryeong Hahm, Yongli Shuai, Ruchi Roy, Subrata K Pore, Krishna B Singh, Susan M Christner, Jan H Beumer, Nancy E Davidson, Shivendra V Singh. Disease Subtype-Independent Biomarkers of Breast Cancer Chemoprevention by the Ayurvedic Medicine Phytochemical Withaferin A.
Journal of the National Cancer Institute.
2017 06; 109(6):. doi:
10.1093/jnci/djw293
. [PMID: 28040797] - Vinay Bulusu, Sergey Tumanov, Evdokia Michalopoulou, Niels J van den Broek, Gillian MacKay, Colin Nixon, Sandeep Dhayade, Zachary T Schug, Johan Vande Voorde, Karen Blyth, Eyal Gottlieb, Alexei Vazquez, Jurre J Kamphorst. Acetate Recapturing by Nuclear Acetyl-CoA Synthetase 2 Prevents Loss of Histone Acetylation during Oxygen and Serum Limitation.
Cell reports.
2017 01; 18(3):647-658. doi:
10.1016/j.celrep.2016.12.055
. [PMID: 28099844] - Yan S Xu, Jinyuan J Liang, Yumei Wang, Xiang-Zhong J Zhao, Li Xu, Ye-Yang Xu, Quanli C Zou, Junxun M Zhang, Cheng-E Tu, Yan-Ge Cui, Wei-Hong Sun, Chao Huang, Jing-Hua Yang, Y Eugene Chin. STAT3 Undergoes Acetylation-dependent Mitochondrial Translocation to Regulate Pyruvate Metabolism.
Scientific reports.
2016 12; 6(?):39517. doi:
10.1038/srep39517
. [PMID: 28004755] - Nikita Ikon, Robert O Ryan. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism.
Journal of inherited metabolic disease.
2016 09; 39(5):749-756. doi:
10.1007/s10545-016-9933-1
. [PMID: 27091556] - Shiu-Cheung Lung, Mee-Len Chye. Deciphering the roles of acyl-CoA-binding proteins in plant cells.
Protoplasma.
2016 Sep; 253(5):1177-95. doi:
10.1007/s00709-015-0882-6
. [PMID: 26340904] - Saori Kataoka, Yuuka Mukai, Mihoko Takebayashi, Megumi Kudo, Uson Rachael Acuram, Masaaki Kurasaki, Shin Sato. Melinjo (Gnetum gnemon) extract intake during lactation stimulates hepatic AMP-activated protein kinase in offspring of excessive fructose-fed pregnant rats.
Reproductive biology.
2016 Jun; 16(2):165-73. doi:
10.1016/j.repbio.2016.01.002
. [PMID: 27288341] - Kotaro Shirakawa, Lan Wang, Na Man, Jasna Maksimoska, Alexander W Sorum, Hyung W Lim, Intelly S Lee, Tadahiro Shimazu, John C Newman, Sebastian Schröder, Melanie Ott, Ronen Marmorstein, Jordan Meier, Stephen Nimer, Eric Verdin. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.
eLife.
2016 05; 5(?):. doi:
10.7554/elife.11156
. [PMID: 27244239] - P Piantoni, C M Ylioja, M S Allen. Feed intake is related to changes in plasma nonesterified fatty acid concentration and hepatic acetyl CoA content following feeding in lactating dairy cows.
Journal of dairy science.
2015 Oct; 98(10):6839-47. doi:
10.3168/jds.2014-9085
. [PMID: 26210272] - Rachel J Perry, Sangwon Lee, Lie Ma, Dongyan Zhang, Joseph Schlessinger, Gerald I Shulman. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis.
Nature communications.
2015 Apr; 6(?):6980. doi:
10.1038/ncomms7980
. [PMID: 25916467] - Satoru Yuzawa, Sachiko Kamakura, Junya Hayase, Hideki Sumimoto. Structural basis of cofactor-mediated stabilization and substrate recognition of the α-tubulin acetyltransferase αTAT1.
The Biochemical journal.
2015 Apr; 467(1):103-13. doi:
10.1042/bj20141193
. [PMID: 25602620] - E I Kalenikova, E V Kharitonova, E A Gorodetskaya, O G Tokareva, O S Medvedev. [Hplc estimation of coenzyme Q(10) redox status in plasma after intravenous coenzyme Q(10) administration].
Biomeditsinskaia khimiia.
2015 Jan; 61(1):125-31. doi:
10.18097/pbmc20156101125
. [PMID: 25762606] - Dai Hatakeyama, Masaki Shoji, Seiya Yamayoshi, Takenori Hirota, Monami Nagae, Shin Yanagisawa, Masahiro Nakano, Naho Ohmi, Takeshi Noda, Yoshihiro Kawaoka, Takashi Kuzuhara. A novel functional site in the PB2 subunit of influenza A virus essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication.
The Journal of biological chemistry.
2014 Sep; 289(36):24980-94. doi:
10.1074/jbc.m114.559708
. [PMID: 25063805] - Gopinath Sutendra, Adam Kinnaird, Peter Dromparis, Roxane Paulin, Trevor H Stenson, Alois Haromy, Kyoko Hashimoto, Nancy Zhang, Eric Flaim, Evangelos D Michelakis. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation.
Cell.
2014 Jul; 158(1):84-97. doi:
10.1016/j.cell.2014.04.046
. [PMID: 24995980] - Laura Strittmatter, Yang Li, Nathan J Nakatsuka, Sarah E Calvo, Zenon Grabarek, Vamsi K Mootha. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity.
Human molecular genetics.
2014 May; 23(9):2313-23. doi:
10.1093/hmg/ddt624
. [PMID: 24334609] - Betty Su, Robert O Ryan. Metabolic biology of 3-methylglutaconic acid-uria: a new perspective.
Journal of inherited metabolic disease.
2014 May; 37(3):359-68. doi:
10.1007/s10545-013-9669-0
. [PMID: 24407466] - T I Kotkina, V N Titov, R M Parkhimovich. [The different notions about beta-oxidation of fatty acids in peroxisomes, peroxisomes and ketonic bodies. The diabetic, acidotic coma as an acute deficiency of acetyl-CoA and ATP].
Klinicheskaia laboratornaia diagnostika.
2014 Mar; ?(3):14-23. doi:
. [PMID: 25080783]
- S E Stocks, M S Allen. Effects of lipid and propionic acid infusions on feed intake of lactating dairy cows.
Journal of dairy science.
2014; 97(4):2297-304. doi:
10.3168/jds.2013-7066
. [PMID: 24534511] - Isaac Marin-Valencia, Levi B Good, Qian Ma, Craig R Malloy, Juan M Pascual. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
2013 Feb; 33(2):175-82. doi:
10.1038/jcbfm.2012.151
. [PMID: 23072752] - Nicolas Gauthier, Jiang Wei Wu, Shu Pei Wang, Pierre Allard, Orval A Mamer, Lawrence Sweetman, Ann B Moser, Lisa Kratz, Fernando Alvarez, Yves Robitaille, François Lépine, Grant A Mitchell. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.
PloS one.
2013; 8(7):e60581. doi:
10.1371/journal.pone.0060581
. [PMID: 23861731] - Derrick J E Groom, Louise Kuchel, Jeffrey G Richards. Metabolic responses of the South American ornate horned frog (Ceratophrys ornata) to estivation.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2013 Jan; 164(1):2-9. doi:
10.1016/j.cbpb.2012.08.001
. [PMID: 22902863] - Katsumi Shibata, Takumi Nakai, Tsutomu Fukuwatari. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats.
Analytical biochemistry.
2012 Nov; 430(2):151-5. doi:
10.1016/j.ab.2012.08.010
. [PMID: 22922385] - Yuka Tokutake, Wataru Iio, Naoki Onizawa, Yuta Ogata, Daisuke Kohari, Atsushi Toyoda, Shigeru Chohnan. Effect of diet composition on coenzyme A and its thioester pools in various rat tissues.
Biochemical and biophysical research communications.
2012 Jul; 423(4):781-4. doi:
10.1016/j.bbrc.2012.06.037
. [PMID: 22713453] - S E Stocks, M S Allen. Hypophagic effects of propionate increase with elevated hepatic acetyl coenzyme A concentration for cows in the early postpartum period.
Journal of dairy science.
2012 Jun; 95(6):3259-68. doi:
10.3168/jds.2011-4991
. [PMID: 22612960] - Wan Xin Tang, Wei Hua Wu, Xiao Xi Zeng, Hong Bo, Song Min Huang. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney.
Endocrine.
2012 Apr; 41(2):236-47. doi:
10.1007/s12020-011-9555-1
. [PMID: 22095488] - Paweł Burchardt, Agnieszka Zawada, Bogna Wierusz Wysocka. [Cardiovascular risk associated with abnormal metabolism of plasma lipoproteins in patients with diabetes mellitus].
Kardiologia polska.
2012; 70(6):618-21. doi:
NULL
. [PMID: 22718385] - Christian M Metallo, Paulo A Gameiro, Eric L Bell, Katherine R Mattaini, Juanjuan Yang, Karsten Hiller, Christopher M Jewell, Zachary R Johnson, Darrell J Irvine, Leonard Guarente, Joanne K Kelleher, Matthew G Vander Heiden, Othon Iliopoulos, Gregory Stephanopoulos. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature.
2011 Nov; 481(7381):380-4. doi:
10.1038/nature10602
. [PMID: 22101433] - Andrew R Mullen, William W Wheaton, Eunsook S Jin, Pei-Hsuan Chen, Lucas B Sullivan, Tzuling Cheng, Youfeng Yang, W Marston Linehan, Navdeep S Chandel, Ralph J DeBerardinis. Reductive carboxylation supports growth in tumour cells with defective mitochondria.
Nature.
2011 Nov; 481(7381):385-8. doi:
10.1038/nature10642
. [PMID: 22101431] - Wing-Hang Tong, Carole Sourbier, Gennady Kovtunovych, Suh Young Jeong, Manish Vira, Manik Ghosh, Vladimir Valera Romero, Rachid Sougrat, Sophie Vaulont, Benoit Viollet, Yeong-Sang Kim, Sunmin Lee, Jane Trepel, Ramaprasad Srinivasan, Gennady Bratslavsky, Youfeng Yang, W Marston Linehan, Tracey A Rouault. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels.
Cancer cell.
2011 Sep; 20(3):315-27. doi:
10.1016/j.ccr.2011.07.018
. [PMID: 21907923] - Li Yang, Bhavapriya Vaitheesvaran, Kirsten Hartil, Alan J Robinson, Michael R Hoopmann, Jimmy K Eng, Irwin J Kurland, James E Bruce. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.
Journal of proteome research.
2011 Sep; 10(9):4134-49. doi:
10.1021/pr200313x
. [PMID: 21728379] - Mohamed M Sayed-Ahmed. L-Carnitine attenuates ifosfamide-induced carnitine deficiency and decreased intramitochondrial CoA-SH in rat kidney tissues.
Journal of nephrology.
2011 Jul; 24(4):490-8. doi:
10.5301/jn.2011.6447
. [PMID: 21404227] - D C Simcock, L R Walker, K C Pedley, H V Simpson, S Brown. The tricarboxylic acid cycle in L₃ Teladorsagia circumcincta: metabolism of acetyl CoA to succinyl CoA.
Experimental parasitology.
2011 May; 128(1):68-75. doi:
10.1016/j.exppara.2011.02.008
. [PMID: 21320492] - Mohamed M Sayed-Ahmed. Progression of cyclophosphamide-induced acute renal metabolic damage in carnitine-depleted rat model.
Clinical and experimental nephrology.
2010 Oct; 14(5):418-26. doi:
10.1007/s10157-010-0321-0
. [PMID: 20652348] - Maria Veiga-da-Cunha, Donatienne Tyteca, Vincent Stroobant, Pierre J Courtoy, Fred R Opperdoes, Emile Van Schaftingen. Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids.
The Journal of biological chemistry.
2010 Jun; 285(24):18888-98. doi:
10.1074/jbc.m110.110924
. [PMID: 20392701] - Karlos X Moreno, Scott M Sabelhaus, Matthew E Merritt, A Dean Sherry, Craig R Malloy. Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate.
American journal of physiology. Heart and circulatory physiology.
2010 May; 298(5):H1556-64. doi:
10.1152/ajpheart.00656.2009
. [PMID: 20207817] - Amal G Fatani, Amal Q Darweesh, Lubna Rizwan, Abdulaziz M Aleisa, Othman A Al-Shabanah, Mohamed M Sayed-Ahmed. Carnitine deficiency aggravates cyclophosphamide-induced cardiotoxicity in rats.
Chemotherapy.
2010; 56(1):71-81. doi:
10.1159/000298822
. [PMID: 20299794] - Amanda P Waller, Raymond J Geor, Lawrence L Spriet, George J F Heigenhauser, Michael I Lindinger. Oral acetate supplementation after prolonged moderate intensity exercise enhances early muscle glycogen resynthesis in horses.
Experimental physiology.
2009 Aug; 94(8):888-98. doi:
10.1113/expphysiol.2009.047068
. [PMID: 19429643] - John G Jones, Paula Garcia, Cristina Barosa, Teresa C Delgado, Luisa Diogo. Hepatic anaplerotic outflow fluxes are redirected from gluconeogenesis to lactate synthesis in patients with Type 1a glycogen storage disease.
Metabolic engineering.
2009 May; 11(3):155-62. doi:
10.1016/j.ymben.2009.01.003
. [PMID: 19558966] - V F Sivuk, I M Rusina, A F Makarchikov. Purification and characteristics of functional properties of soluble nucleoside triphosphatase (apyrase) from bovine brain.
Biochemistry. Biokhimiia.
2008 Sep; 73(9):1047-52. doi:
10.1134/s0006297908090137
. [PMID: 18976223] - J Rawal, R Jones, A Payne, I Gardner. Strategies to prevent N-acetyltransferase-mediated metabolism in a series of piperazine-containing pyrazalopyrimidine compounds.
Xenobiotica; the fate of foreign compounds in biological systems.
2008 Sep; 38(9):1219-39. doi:
10.1080/00498250802334417
. [PMID: 18720282] - Mendel Tuchman, Ljubica Caldovic, Yevgeny Daikhin, Oksana Horyn, Ilana Nissim, Itzhak Nissim, Mark Korson, Barbara Burton, Marc Yudkoff. N-carbamylglutamate markedly enhances ureagenesis in N-acetylglutamate deficiency and propionic acidemia as measured by isotopic incorporation and blood biomarkers.
Pediatric research.
2008 Aug; 64(2):213-7. doi:
10.1203/pdr.0b013e318179454b
. [PMID: 18414145] - Zeinab Yaseen, Christian Michoudet, Gabriel Baverel, Laurence Dubourg. In vivo mesna and amifostine do not prevent chloroacetaldehyde nephrotoxicity in vitro.
Pediatric nephrology (Berlin, Germany).
2008 Apr; 23(4):611-8. doi:
10.1007/s00467-007-0689-6
. [PMID: 18204866] - Arzu Onay-Besikci, Nandakumar Sambandam. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply.
Canadian journal of physiology and pharmacology.
2006 Nov; 84(11):1215-22. doi:
10.1139/y06-062
. [PMID: 17218986] - Jinghua Qian, Ann H West, Paul F Cook. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae.
Biochemistry.
2006 Oct; 45(39):12136-43. doi:
10.1021/bi060889h
. [PMID: 17002313] - Shin-ichi Oka, Wenrui Liu, Hiroshi Masutani, Hiromi Hirata, Yoichi Shinkai, Shu-ichi Yamada, Toru Yoshida, Hajime Nakamura, Junji Yodoi. Impaired fatty acid utilization in thioredoxin binding protein-2 (TBP-2)-deficient mice: a unique animal model of Reye syndrome.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2006 Jan; 20(1):121-3. doi:
10.1096/fj.05-4439fje
. [PMID: 16254043] - Jørgen Olsen, Chunze Li, Inga Bjørnsdottir, Ulrik Sidenius, Steen Honoré Hansen, Leslie Z Benet. In vitro and in vivo studies on acyl-coenzyme A-dependent bioactivation of zomepirac in rats.
Chemical research in toxicology.
2005 Nov; 18(11):1729-36. doi:
10.1021/tx0501785
. [PMID: 16300382] - Tetsuya Yamamoto, Yuji Moriwaki, Sumio Takahashi. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).
Clinica chimica acta; international journal of clinical chemistry.
2005 Jun; 356(1-2):35-57. doi:
10.1016/j.cccn.2005.01.024
. [PMID: 15936302] - Meral Gunay-Aygun. 3-Methylglutaconic aciduria: a common biochemical marker in various syndromes with diverse clinical features.
Molecular genetics and metabolism.
2005 Jan; 84(1):1-3. doi:
10.1016/j.ymgme.2004.12.003
. [PMID: 15719488] - Asensio A Gonzalez, Reetu Kumar, Jacob D Mulligan, Ashley J Davis, Richard Weindruch, Kurt W Saupe. Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity.
American journal of physiology. Endocrinology and metabolism.
2004 Nov; 287(5):E1032-7. doi:
10.1152/ajpendo.00172.2004
. [PMID: 15251868] - Ilya R Bederman, Aneta E Reszko, Takhar Kasumov, France David, David H Wasserman, Joanne K Kelleher, Henri Brunengraber. Zonation of labeling of lipogenic acetyl-CoA across the liver: implications for studies of lipogenesis by mass isotopomer analysis.
The Journal of biological chemistry.
2004 Oct; 279(41):43207-16. doi:
10.1074/jbc.m403838200
. [PMID: 15284242] - Georgina Meneses-Lorente, Paul C Guest, Jeffrey Lawrence, Nagaraja Muniappa, Michael R Knowles, Heather A Skynner, Kamran Salim, Ileana Cristea, Russell Mortishire-Smith, Simon J Gaskell, Alan Watt. A proteomic investigation of drug-induced steatosis in rat liver.
Chemical research in toxicology.
2004 May; 17(5):605-12. doi:
10.1021/tx034203n
. [PMID: 15144217] - Anna Skibowska, Anna Raszeja-Specht, Andrzej Szutowicz. Platelet function and acetyl-coenzyme A metabolism in type 1 diabetes mellitus.
Clinical chemistry and laboratory medicine.
2003 Sep; 41(9):1136-43. doi:
10.1515/cclm.2003.176
. [PMID: 14598862] - Tzortzis N Nomikos, Christos Iatrou, Constantine A Demopoulos. Acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT) activity in cortical and medullary human renal tissue.
European journal of biochemistry.
2003 Jul; 270(14):2992-3000. doi:
10.1046/j.1432-1033.2003.03676.x
. [PMID: 12846832] - Rui Perdigoto, Tiago B Rodrigues, Alexandre L Furtado, Armando Porto, Carlos F G C Geraldes, John G Jones. Integration of [U-13C]glucose and 2H2O for quantification of hepatic glucose production and gluconeogenesis.
NMR in biomedicine.
2003 Jun; 16(4):189-98. doi:
10.1002/nbm.826
. [PMID: 14558117] - Matthew J Watt, G J F Heigenhauser, Trent Stellingwerff, Mark Hargreaves, Lawrence L Spriet. Carbohydrate ingestion reduces skeletal muscle acetylcarnitine availability but has no effect on substrate phosphorylation at the onset of exercise in man.
The Journal of physiology.
2002 11; 544(3):949-56. doi:
10.1113/jphysiol.2002.026757
. [PMID: 12411537] - Jullie W Pan, Robin A de Graaf, Kitt F Petersen, Gerald I Shulman, Hoby P Hetherington, Douglas L Rothman. [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
2002 Jul; 22(7):890-8. doi:
10.1097/00004647-200207000-00014
. [PMID: 12142574] - Matthew J Watt, George J F Heigenhauser, David J Dyck, Lawrence L Spriet. Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man.
The Journal of physiology.
2002 Jun; 541(Pt 3):969-78. doi:
10.1113/jphysiol.2002.018820
. [PMID: 12068055] - B Lindenthal, T A Aldaghlas, A L Holleran, T Sudhop, H K Berthold, K Von Bergmann, J K Kelleher. Isotopomer spectral analysis of intermediates of cholesterol synthesis in human subjects and hepatic cells.
American journal of physiology. Endocrinology and metabolism.
2002 Jun; 282(6):E1222-30. doi:
10.1152/ajpendo.00324.2001
. [PMID: 12006351] - Maria Cíntia Siqueira, Fernando Morgado. [Determination of carnitine levels in plasma: importance in the study of patients with neuromuscular diseases].
Acta medica portuguesa.
2002 Jan; 15(1):11-5. doi:
NULL
. [PMID: 12025446] - J F Ma, P R Ryan, E Delhaize. Aluminium tolerance in plants and the complexing role of organic acids.
Trends in plant science.
2001 Jun; 6(6):273-8. doi:
10.1016/s1360-1385(01)01961-6
. [PMID: 11378470] - F Greer, D Friars, T E Graham. Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance.
Journal of applied physiology (Bethesda, Md. : 1985).
2000 Nov; 89(5):1837-44. doi:
10.1152/jappl.2000.89.5.1837
. [PMID: 11053334] - H Qu, A Håberg, O Haraldseth, G Unsgård, U Sonnewald. (13)C MR spectroscopy study of lactate as substrate for rat brain.
Developmental neuroscience.
2000 Sep; 22(5-6):429-36. doi:
10.1159/000017472
. [PMID: 11111159] - F Dyda, D C Klein, A B Hickman. GCN5-related N-acetyltransferases: a structural overview.
Annual review of biophysics and biomolecular structure.
2000; 29(?):81-103. doi:
10.1146/annurev.biophys.29.1.81
. [PMID: 10940244] - S M Bradberry, B E Watt, A T Proudfoot, J A Vale. Mechanisms of toxicity, clinical features, and management of acute chlorophenoxy herbicide poisoning: a review.
Journal of toxicology. Clinical toxicology.
2000; 38(2):111-22. doi:
10.1081/clt-100100925
. [PMID: 10778907] - C W van Roermund, E H Hettema, M van den Berg, H F Tabak, R J Wanders. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p.
The EMBO journal.
1999 Nov; 18(21):5843-52. doi:
10.1093/emboj/18.21.5843
. [PMID: 10545096] - M Moriyama, M Nishisako, J Ueda, Y Kannan, M Ohta, T Sugano. Changes in fructose-induced production of glucose in the rat liver following partial hepatectomy.
Archives of biochemistry and biophysics.
1999 Nov; 371(1):53-62. doi:
10.1006/abbi.1999.1422
. [PMID: 10525289] - T Aureli, C Puccetti, M E Di Cocco, A Arduini, R Ricciolini, M Scalibastri, C Manetti, F Conti. Entry of [(1,2-13C2)acetyl]-L-carnitine in liver tricarboxylic acid cycle and lipogenesis: a study by 13C NMR spectroscopy in conscious, freely moving rats.
European journal of biochemistry.
1999 Jul; 263(1):287-93. doi:
10.1046/j.1432-1327.1999.00524.x
. [PMID: 10429215] - J A Martínez, A Martí. [Lipid metabolism and lipogenesis: application of stable isotopes].
Revista de medicina de la Universidad de Navarra.
1998 Apr; 42(2):91-8. doi:
NULL
. [PMID: 10420945] - F Dupuis, S Levasseur, F Jean-Louis, C Dulery, V Praloran, Y Denizot, L Michel. Production, metabolism and effect of platelet-activating factor on the growth of the human K562 erythroid cell line.
Biochimica et biophysica acta.
1997 Dec; 1359(3):241-9. doi:
10.1016/s0167-4889(97)00106-7
. [PMID: 9434130] - T Guray, T Guvenc. Sheep tissue acetyl coenzyme A-dependent arylamine N-acetyltransferases.
Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.
1997 Nov; 118(3):305-10. doi:
10.1016/s0742-8413(97)00175-8
. [PMID: 9467883] - A al-Shurbaji, L Berglund, R K Berge, G Cederblad, E Humble. On the interrelationship between hepatic carnitine, fatty acid oxidation, and triglyceride biosynthesis in nephrosis.
Lipids.
1997 Aug; 32(8):847-52. doi:
10.1007/s11745-997-0108-y
. [PMID: 9270976] - G B Jacobson, Y Watanabe, S Valind, H Kuratsune, B Långström. Synthesis of O-[11C]Acetyl CoA, O-[11C]Acetyl-L-carnitine, and L-[11C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey.
Nuclear medicine and biology.
1997 Jul; 24(5):471-8. doi:
10.1016/s0969-8051(97)00015-2
. [PMID: 9290085] - A T Davis. The use of isoflurane anaesthesia in studies of carnitine metabolism in the laboratory rat.
Laboratory animals.
1996 Oct; 30(4):377-82. doi:
10.1258/002367796780739934
. [PMID: 8938626] - F Diraison, C Pachiaudi, M Beylot. In vivo measurement of plasma cholesterol and fatty acid synthesis with deuterated water: determination of the average number of deuterium atoms incorporated.
Metabolism: clinical and experimental.
1996 Jul; 45(7):817-21. doi:
10.1016/s0026-0495(96)90152-3
. [PMID: 8692014] - J A Ware, P Divakaruni, C K Svensson. Comparison of acetyl coenzyme A:arylamine N-acetyltransferase activity in the liver, kidney, and intestine of male and female rats from three strains.
Drug metabolism and disposition: the biological fate of chemicals.
1995 Feb; 23(2):295-7. doi:
NULL
. [PMID: 7736928]