25-OHC (BioDeep_00000412691)
Main id: BioDeep_00000010756
PANOMIX_OTCML-2023 BioNovoGene_Lab2019
代谢物信息卡片
化学式: C27H46O2 (402.34976159999997)
中文名称: 25-羟基胆固醇, 25-羟基胆甾醇
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CC(C)(O)CCC[C@@H](C)[C@H]1CC[C@@]2([H])[C@]3([H])CC=C4C[C@@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C
InChI: InChI=1S/C27H46O2/c1-18(7-6-14-25(2,3)29)22-10-11-23-21-9-8-19-17-20(28)12-15-26(19,4)24(21)13-16-27(22,23)5/h8,18,20-24,28-29H,6-7,9-17H2,1-5H3/t18-,20+,21+,22-,23+,24+,26+,27-/m1/s1
描述信息
25-Hydroxycholesterol is a metabolite of cholesterol that is produced and secreted by macrophages in response to Toll-like receptor (TLR) activation. 25-hydroxycholesterol is a potent (EC50≈65 nM) and selective suppressor of IgA production by B cells.
同义名列表
数据库引用编号
13 个数据库交叉引用编号
- ChEBI: CHEBI:42977
- KEGG: C15519
- PubChem: 65094
- DrugBank: DB04705
- ChEMBL: CHEMBL169046
- LipidMAPS: LMST01010018
- CAS: 2140-46-7
- MoNA: MoNA016822
- PubChem: 17396511
- PDB-CCD: HC3
- NIKKAJI: J80.397I
- medchemexpress: HY-113134
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-623
分类词条
相关代谢途径
Reactome(12)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Disease
- Metabolism of lipids
- Metabolism of steroids
- Diseases of metabolism
- Cytochrome P450 - arranged by substrate type
- Bile acid and bile salt metabolism
- Synthesis of bile acids and bile salts
- Endogenous sterols
- Metabolic disorders of biological oxidation enzymes
BioCyc(0)
PlantCyc(0)
代谢反应
108 个相关的代谢反应过程信息。
Reactome(106)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Endogenous sterols:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Bile acid and bile salt metabolism:
CHOL + H+ + Oxygen + TPNH ⟶ 7alpha-hydroxycholesterol + H2O + TPN
- Synthesis of bile acids and bile salts:
CHOL + H+ + Oxygen + TPNH ⟶ 7alpha-hydroxycholesterol + H2O + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Endogenous sterols:
EST17b + H+ + Oxygen + TPNH ⟶ 4OH-EST17b + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Bile acid and bile salt metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Synthesis of bile acids and bile salts:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Bile acid and bile salt metabolism:
CHOL + H+ + Oxygen + TPNH ⟶ 25OH-CHOL + H2O + TPN
- Synthesis of bile acids and bile salts:
CHOL + H+ + Oxygen + TPNH ⟶ 25OH-CHOL + H2O + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bile acid and bile salt metabolism:
CHOL + H+ + Oxygen + TPNH ⟶ 25OH-CHOL + H2O + TPN
- Synthesis of bile acids and bile salts:
CHOL + H+ + Oxygen + TPNH ⟶ 25OH-CHOL + H2O + TPN
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bile acid and bile salt metabolism:
CHOL + H+ + Oxygen + TPNH ⟶ 25OH-CHOL + H2O + TPN
- Synthesis of bile acids and bile salts:
CHOL + H+ + Oxygen + TPNH ⟶ 25OH-CHOL + H2O + TPN
BioCyc(0)
WikiPathways(2)
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Oxysterols derived from cholesterol:
(25R)26-HC ⟶ 3 -HCA
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Julia G Odnoshivkina, Alexey M Petrov. 25-hydroxycholesterol triggers antioxidant signaling in mouse atria.
Prostaglandins & other lipid mediators.
2024 Jun; 172(?):106834. doi:
10.1016/j.prostaglandins.2024.106834
. [PMID: 38521490] - Jialiang Zhang, Hao Zhou, Fan Lei, Kexin Jiang, Yanbiao Liao, Fangyang Huang, Mao Chen. Cholesterol 25-hydroxylase prevents type 2 diabetes mellitus induced cardiomyopathy by alleviating cardiac lipotoxicity.
Biochimica et biophysica acta. Molecular basis of disease.
2024 Jun; 1870(5):167158. doi:
10.1016/j.bbadis.2024.167158
. [PMID: 38588780] - Mengting He, Wenbo Jiang, Xingkai Li, Hongjin Liu, Hongsheng Ren, Yanliang Lin. 25-hydroxycholesterol promotes proliferation and metastasis of lung adenocarcinoma cells by regulating ERβ/TNFRSF17 axis.
BMC cancer.
2024 Apr; 24(1):505. doi:
10.1186/s12885-024-12227-4
. [PMID: 38649856] - Tao Jiang, Yong Li. 25-hydroxycholesterol aggravates oxygen-glucose deprivation/reoxygenation-induced pyroptosis through promoting activation of NLRP3 inflammasome in H9C2 cardiomyocytes.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2024; 57(?):e13299. doi:
10.1590/1414-431x2024e13299
. [PMID: 38716981] - Cindy Nguyen, Julien Saint-Pol, Shiraz Dib, Caroline Pot, Fabien Gosselet. 25-Hydroxycholesterol in health and diseases.
Journal of lipid research.
2024 Jan; 65(1):100486. doi:
10.1016/j.jlr.2023.100486
. [PMID: 38104944] - Sarah R Leist, Jason R Mock. The Importance of 'Negative' Results: Lipid Lessons in Coronavirus Biology.
American journal of respiratory cell and molecular biology.
2023 12; 69(6):610-611. doi:
10.1165/rcmb.2023-0301ed
. [PMID: 37672661] - Michael B Fessler, Jennifer H Madenspacher, Paul J Baker, Kerry L Hilligan, Andrea C Bohrer, Ehydel Castro, Julie Meacham, Shih-Heng Chen, Reed F Johnson, Jeffrey G McDonald, Negin P Martin, C J Tucker, Debabrata Mahapatra, Mark Cesta, Katrin D Mayer-Barber. Endogenous and Therapeutic 25-hydroxycholesterols May Worsen Early SARS-CoV-2 Pathogenesis in Mice.
American journal of respiratory cell and molecular biology.
2023 Aug; ?(?):. doi:
10.1165/rcmb.2023-0007oc
. [PMID: 37578898] - Liang Zhang, Yanyan Yi, Tao Wang, Mengzhao Song, Kangkang Guo, Yanming Zhang. 25-hydroxycholesterol inhibits classical swine fever virus entry into porcine alveolar macrophages by depleting plasma membrane cholesterol.
Veterinary microbiology.
2023 Mar; 278(?):109668. doi:
10.1016/j.vetmic.2023.109668
. [PMID: 36709687] - AnilG Cashikar, DaniraToral Rios, David Timm, Johnathan Romero, Michael Strickland, JustinM Long, Xianlin Han, DavidM Holtzman, StevenM Paul. Regulation of astrocyte lipid metabolism and ApoE secretion by the microglial oxysterol, 25-hydroxycholesterol.
Journal of lipid research.
2023 Feb; ?(?):100350. doi:
10.1016/j.jlr.2023.100350
. [PMID: 36849076] - Alberto Canfrán-Duque, Noemi Rotllan, Xinbo Zhang, Irene Andrés-Blasco, Bonne M Thompson, Jonathan Sun, Nathan L Price, Marta Fernández-Fuertes, Joseph W Fowler, Diego Gómez-Coronado, William C Sessa, Chiara Giannarelli, Robert J Schneider, George Tellides, Jeffrey G McDonald, Carlos Fernández-Hernando, Yajaira Suárez. Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling.
Circulation.
2023 01; 147(5):388-408. doi:
10.1161/circulationaha.122.059062
. [PMID: 36416142] - Yo-Seob Seo, Kyeong-Rok Kang, Hyangi Lim, Jeong-Yeon Seo, DO Kyung Kim, Jae-Sung Kim. 25-Hydroxycholesterol-induced Osteoblast Oxiapoptophagy Is Involved in the Pathophysiological Process of Osteoporosis.
In vivo (Athens, Greece).
2023 Jan; 37(1):204-217. doi:
10.21873/invivo.13069
. [PMID: 36593033] - Jialu Zhang, Guanghui Yang, Xuefei Wang, Yaohong Zhu, Jiufeng Wang. 25-Hydroxycholesterol Mediates Cholesterol Metabolism to Restrict Porcine Deltacoronavirus Infection via Suppression of Transforming Growth Factor β1.
Microbiology spectrum.
2022 12; 10(6):e0219822. doi:
10.1128/spectrum.02198-22
. [PMID: 36314946] - Sura Salman Ejam, Raed Obaid Saleh, Maria Jade Catalan Opulencia, Mazin Aa Najm, Aziza Makhmudova, Abduladheem Turki Jalil, Walid Kamal Abdelbasset, Moaed E Al-Gazally, Ali Thaeer Hammid, Yasser Fakri Mustafa, Sergushina Elena Sergeevna, Sajad Karampoor, Rasoul Mirzaei. Pathogenic role of 25-hydroxycholesterol in cancer development and progression.
Future oncology (London, England).
2022 Dec; 18(39):4415-4442. doi:
10.2217/fon-2022-0819
. [PMID: 36651359] - Shijie Mao, Jie Ren, Ying Xu, Jidong Lin, Chuqiao Pan, Yu Meng, Ning Xu. Studies in the antiviral molecular mechanisms of 25-hydroxycholesterol: Disturbing cholesterol homeostasis and post-translational modification of proteins.
European journal of pharmacology.
2022 Jul; 926(?):175033. doi:
10.1016/j.ejphar.2022.175033
. [PMID: 35598845] - Ulia G Odnoshivkina, Eva A Kuznetsova, Alexey M Petrov. 25-Hydroxycholesterol as a Signaling Molecule of the Nervous System.
Biochemistry. Biokhimiia.
2022 Jun; 87(6):524-537. doi:
10.1134/s0006297922060049
. [PMID: 35790411] - Jee Hoon Lee, Ji-Hye Han, Joo Hong Woo, Ilo Jou. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes.
Free radical biology & medicine.
2022 02; 179(?):252-265. doi:
10.1016/j.freeradbiomed.2021.11.017
. [PMID: 34808332] - Qiaoshuai Lan, Chao Wang, Jie Zhou, Lijue Wang, Fanke Jiao, Yanbo Zhang, Yanxing Cai, Lu Lu, Shuai Xia, Shibo Jiang. 25-Hydroxycholesterol-Conjugated EK1 Peptide with Potent and Broad-Spectrum Inhibitory Activity against SARS-CoV-2, Its Variants of Concern, and Other Human Coronaviruses.
International journal of molecular sciences.
2021 Nov; 22(21):. doi:
10.3390/ijms222111869
. [PMID: 34769299] - Bruno C Trindade, Simona Ceglia, Alyssa Berthelette, Fiona Raso, Kelsey Howley, Jagan R Muppidi, Andrea Reboldi. The cholesterol metabolite 25-hydroxycholesterol restrains the transcriptional regulator SREBP2 and limits intestinal IgA plasma cell differentiation.
Immunity.
2021 10; 54(10):2273-2287.e6. doi:
10.1016/j.immuni.2021.09.004
. [PMID: 34644558] - Christopher J M Piper, Claudia Mauri. 25-hydroxycholesterol: Gatekeeper of intestinal IgA.
Immunity.
2021 10; 54(10):2182-2185. doi:
10.1016/j.immuni.2021.09.017
. [PMID: 34644552] - Feihong Lin, Xinyu Yao, Chang Kong, Xia Liu, Zhangfan Zhao, Suhuan Rao, Lu Wang, Shan Li, Junlu Wang, Qinxue Dai. 25-Hydroxycholesterol protecting from cerebral ischemia-reperfusion injury through the inhibition of STING activity.
Aging.
2021 08; 13(16):20149-20163. doi:
10.18632/aging.203337
. [PMID: 34406977] - Lucio Boglione, Claudio Caccia, Andrea Civra, Jessica Cusato, Antonio D'Avolio, Fiorella Biasi, David Lembo, Giovanni Di Perri, Giuseppe Poli, Valerio Leoni. Trend of 25-hydroxycholesterol and 27-hydroxycholesterol plasma levels in patients affected by active chronic hepatitis B virus infection and inactive carriers.
The Journal of steroid biochemistry and molecular biology.
2021 06; 210(?):105854. doi:
10.1016/j.jsbmb.2021.105854
. [PMID: 33631373] - Guzel F Zakyrjanova, Arthur R Giniatullin, Kamilla A Mukhutdinova, Eva A Kuznetsova, Alexey M Petrov. Early differences in membrane properties at the neuromuscular junctions of ALS model mice: Effects of 25-hydroxycholesterol.
Life sciences.
2021 May; 273(?):119300. doi:
10.1016/j.lfs.2021.119300
. [PMID: 33662433] - Pauline Bottemanne, Adrien Paquot, Hafsa Ameraoui, Owein Guillemot-Legris, Mireille Alhouayek, Giulio G Muccioli. 25-Hydroxycholesterol metabolism is altered by lung inflammation, and its local administration modulates lung inflammation in mice.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2021 04; 35(4):e21514. doi:
10.1096/fj.202002555r
. [PMID: 33734509] - Marco M Domingues, Bárbara Gomes, Axel Hollmann, Nuno C Santos. 25-Hydroxycholesterol Effect on Membrane Structure and Mechanical Properties.
International journal of molecular sciences.
2021 Mar; 22(5):. doi:
10.3390/ijms22052574
. [PMID: 33806504] - Jan Kobierski, Anita Wnętrzak, Anna Chachaj-Brekiesz, Anna Filiczkowska, Aneta D Petelska, Patrycja Dynarowicz-Latka. How the replacement of cholesterol by 25-hydroxycholesterol affects the interactions with sphingolipids: The Langmuir Monolayer Study complemented with theoretical calculations.
Journal of the Royal Society, Interface.
2021 03; 18(176):20210050. doi:
10.1098/rsif.2021.0050
. [PMID: 33726539] - Swechha M Pokharel, Kim Chiok, Niraj K Shil, Indira Mohanty, Santanu Bose. Tumor Necrosis Factor-alpha utilizes MAPK/NFκB pathways to induce cholesterol-25 hydroxylase for amplifying pro-inflammatory response via 25-hydroxycholesterol-integrin-FAK pathway.
PloS one.
2021; 16(9):e0257576. doi:
10.1371/journal.pone.0257576
. [PMID: 34551004] - Ruochen Zang, James Brett Case, Eylan Yutuc, Xiucui Ma, Sheng Shen, Maria Florencia Gomez Castro, Zhuoming Liu, Qiru Zeng, Haiyan Zhao, Juhee Son, Paul W Rothlauf, Alex J B Kreutzberger, Gaopeng Hou, Hu Zhang, Sayantan Bose, Xin Wang, Michael D Vahey, Kartik Mani, William J Griffiths, Tom Kirchhausen, Daved H Fremont, Haitao Guo, Abhinav Diwan, Yuqin Wang, Michael S Diamond, Sean P J Whelan, Siyuan Ding. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion.
Proceedings of the National Academy of Sciences of the United States of America.
2020 12; 117(50):32105-32113. doi:
10.1073/pnas.2012197117
. [PMID: 33239446] - Vicente Galiano, José Villalaín. Aggregation of 25-hydroxycholesterol in a complex biomembrane. Differences with cholesterol.
Biochimica et biophysica acta. Biomembranes.
2020 11; 1862(11):183413. doi:
10.1016/j.bbamem.2020.183413
. [PMID: 32721397] - Shulong Zu, Yong-Qiang Deng, Chao Zhou, Jie Li, Lili Li, Qi Chen, Xiao-Feng Li, Hui Zhao, Sarah Gold, Jun He, Xiang Li, Changqing Zhang, Heng Yang, Genhong Cheng, Cheng-Feng Qin. 25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor.
Cell research.
2020 11; 30(11):1043-1045. doi:
10.1038/s41422-020-00398-1
. [PMID: 32811977] - Akira Abe, Miki Hiraoka, Fumiko Matsuzawa, Sei-Ichi Aikawa, Youichi Niimura. Esterification of side-chain oxysterols by lysosomal phospholipase A2.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2020 10; 1865(10):158787. doi:
10.1016/j.bbalip.2020.158787
. [PMID: 32777483] - Jin Zhao, Jiaoshan Chen, Minchao Li, Musha Chen, Caijun Sun. Multifaceted Functions of CH25H and 25HC to Modulate the Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities.
Viruses.
2020 07; 12(7):. doi:
10.3390/v12070727
. [PMID: 32640529] - Quan D Zhou, Xun Chi, Min Sub Lee, Wei Yuan Hsieh, Jonathan J Mkrtchyan, An-Chieh Feng, Cuiwen He, Autumn G York, Viet L Bui, Eliza B Kronenberger, Alessandra Ferrari, Xu Xiao, Allison E Daly, Elizabeth J Tarling, Robert Damoiseaux, Philip O Scumpia, Stephen T Smale, Kevin J Williams, Peter Tontonoz, Steven J Bensinger. Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins.
Nature immunology.
2020 07; 21(7):746-755. doi:
10.1038/s41590-020-0695-4
. [PMID: 32514064] - Man Ying Wong, Michael Lewis, James J Doherty, Yang Shi, Anil G Cashikar, Anna Amelianchik, Svitlana Tymchuk, Patrick M Sullivan, Mingxing Qian, Douglas F Covey, Gregory A Petsko, David M Holtzman, Steven M Paul, Wenjie Luo. 25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner.
Journal of neuroinflammation.
2020 Jun; 17(1):192. doi:
10.1186/s12974-020-01869-3
. [PMID: 32552741] - Andrea Civra, Mara Colzani, Valeria Cagno, Rachele Francese, Valerio Leoni, Giancarlo Aldini, David Lembo, Giuseppe Poli. Modulation of cell proteome by 25-hydroxycholesterol and 27-hydroxycholesterol: A link between cholesterol metabolism and antiviral defense.
Free radical biology & medicine.
2020 03; 149(?):30-36. doi:
10.1016/j.freeradbiomed.2019.08.031
. [PMID: 31525455] - Hiroshi Takahashi, Tatsuya Hoshino. A comparative study of the effects of 7β-hydroxycholesterol, 25-hydroxycholesterol, and cholesterol on the structural and thermal phase behavior of multilamellar dipalmitoylphosphatidylcholine bilayer vesicles.
Chemistry and physics of lipids.
2020 03; 227(?):104872. doi:
10.1016/j.chemphyslip.2020.104872
. [PMID: 31926857] - Melissa Bello-Perez, Patricia Pereiro, Julio Coll, Beatriz Novoa, Luis Perez, Alberto Falco. Zebrafish C-reactive protein isoforms inhibit SVCV replication by blocking autophagy through interactions with cell membrane cholesterol.
Scientific reports.
2020 01; 10(1):566. doi:
10.1038/s41598-020-57501-0
. [PMID: 31953490] - Dorothy Moseti, Alemu Regassa, Chongxiao Chen, Karmin O, Woo Kyun Kim. 25-Hydroxycholesterol Inhibits Adipogenic Differentiation of C3H10T1/2 Pluripotent Stromal Cells.
International journal of molecular sciences.
2020 Jan; 21(2):. doi:
10.3390/ijms21020412
. [PMID: 31936485] - Paulina Gorzelak-Pabiś, Ewelina Wozniak, Katarzyna Wojdan, Maciej Chalubinski, Marlena Broncel. Single Triglyceride-Rich Meal Destabilizes Barrier Functions and Initiates Inflammatory Processes of Endothelial Cells.
Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.
2020 01; 40(1):43-53. doi:
10.1089/jir.2018.0173
. [PMID: 31460824] - Qin Cao, Zhongzhong Liu, Yan Xiong, Zibiao Zhong, Qifa Ye. Multiple Roles of 25-Hydroxycholesterol in Lipid Metabolism, Antivirus Process, Inflammatory Response, and Cell Survival.
Oxidative medicine and cellular longevity.
2020; 2020(?):8893305. doi:
10.1155/2020/8893305
. [PMID: 33274010] - Suying Lv, Chenhui Ju, Jiangtong Peng, Minglu Liang, Feng Zhu, Cheng Wang, Kai Huang, Min Cheng, Fengxiao Zhang. 25-Hydroxycholesterol protects against myocardial ischemia-reperfusion injury via inhibiting PARP activity.
International journal of biological sciences.
2020; 16(2):298-308. doi:
10.7150/ijbs.35075
. [PMID: 31929757] - Brett L Roberts, Zachary C Severance, Ryan C Bensen, Anh T Le-McClain, Cori A Malinky, Evan M Mettenbrink, Juan I Nuñez, William J Reddig, Earl L Blewett, Anthony W G Burgett. Differing activities of oxysterol-binding protein (OSBP) targeting anti-viral compounds.
Antiviral research.
2019 10; 170(?):104548. doi:
10.1016/j.antiviral.2019.104548
. [PMID: 31271764] - Mayu Kimura, Kanae Sasaki, Yosuke Fukutani, Hiderou Yoshida, Ikuroh Ohsawa, Masafumi Yohda, Kaori Sakurai. Anticancer saponin OSW-1 is a novel class of selective Golgi stress inducer.
Bioorganic & medicinal chemistry letters.
2019 07; 29(14):1732-1736. doi:
10.1016/j.bmcl.2019.05.022
. [PMID: 31126855] - Kelly Fellows Maxwell, Sonia Bhattacharya, Mary Lou Bodziak, Dejan Jakimovski, Jesper Hagemeier, Richard W Browne, Bianca Weinstock-Guttman, Robert Zivadinov, Murali Ramanathan. Oxysterols and apolipoproteins in multiple sclerosis: a 5 year follow-up study.
Journal of lipid research.
2019 07; 60(7):1190-1198. doi:
10.1194/jlr.m089664
. [PMID: 31085627] - Charlotte Lefort, Matthias Van Hul, Nathalie M Delzenne, Amandine Everard, Patrice D Cani. Hepatic MyD88 regulates liver inflammation by altering synthesis of oxysterols.
American journal of physiology. Endocrinology and metabolism.
2019 07; 317(1):E99-E108. doi:
10.1152/ajpendo.00082.2019
. [PMID: 31039009] - Tina Raselli, Tom Hearn, Annika Wyss, Kirstin Atrott, Alain Peter, Isabelle Frey-Wagner, Marianne R Spalinger, Ewerton M Maggio, Andreas W Sailer, Johannes Schmitt, Philipp Schreiner, Anja Moncsek, Joachim Mertens, Michael Scharl, William J Griffiths, Marco Bueter, Andreas Geier, Gerhard Rogler, Yuqin Wang, Benjamin Misselwitz. Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis.
Journal of lipid research.
2019 07; 60(7):1270-1283. doi:
10.1194/jlr.m093229
. [PMID: 31113816] - Bárbara Gomes, Giusepinna Sanna, Silvia Madeddu, Axel Hollmann, Nuno C Santos. Combining 25-Hydroxycholesterol with an HIV Fusion Inhibitor Peptide: Interaction with Biomembrane Model Systems and Human Blood Cells.
ACS infectious diseases.
2019 04; 5(4):582-591. doi:
10.1021/acsinfecdis.8b00321
. [PMID: 30816690] - Swechha M Pokharel, Niraj K Shil, Jeevan B Gc, Zachary T Colburn, Su-Yu Tsai, Jesus A Segovia, Te-Hung Chang, Smarajit Bandyopadhyay, Senthil Natesan, Jonathan C R Jones, Santanu Bose. Integrin activation by the lipid molecule 25-hydroxycholesterol induces a proinflammatory response.
Nature communications.
2019 04; 10(1):1482. doi:
10.1038/s41467-019-09453-x
. [PMID: 30931941] - Quan Wang, Changsong Lin, Cui Zhang, Hongshun Wang, Yajie Lu, Jun Yao, Qinjun Wei, Guangqian Xing, Xin Cao. 25-hydroxycholesterol down-regulates oxysterol binding protein like 2 (OSBPL2) via the p53/SREBF2/NFYA signaling pathway.
The Journal of steroid biochemistry and molecular biology.
2019 03; 187(?):17-26. doi:
10.1016/j.jsbmb.2018.10.018
. [PMID: 30391516] - Inmaculada Galindo, Miguel Ángel Cuesta-Geijo, Ana Del Puerto, Eva Soriano, Covadonga Alonso. Lipid Exchange Factors at Membrane Contact Sites in African Swine Fever Virus Infection.
Viruses.
2019 02; 11(3):. doi:
10.3390/v11030199
. [PMID: 30813555] - Ying Liu, Zhuo Wei, Ye Zhang, Xingzhe Ma, Yuanli Chen, Miao Yu, Chuanrui Ma, Xiaoju Li, Youjia Cao, Jian Liu, Jihong Han, Xiaoxiao Yang, Yajun Duan. Activation of liver X receptor plays a central role in antiviral actions of 25-hydroxycholesterol.
Journal of lipid research.
2018 12; 59(12):2287-2296. doi:
10.1194/jlr.m084558
. [PMID: 30309895] - Parthajit Mukherjee, Hasam Madarati, Neale D Ridgway, Jeffrey Atkinson. Lipid and membrane recognition by the oxysterol binding protein and its phosphomimetic mutant using dual polarization interferometry.
Biochimica et biophysica acta. Biomembranes.
2018 11; 1860(11):2356-2365. doi:
10.1016/j.bbamem.2018.05.022
. [PMID: 29879417] - Antonietta Pietrangelo, Neale D Ridgway. Golgi localization of oxysterol binding protein-related protein 4L (ORP4L) is regulated by ligand binding.
Journal of cell science.
2018 07; 131(14):. doi:
10.1242/jcs.215335
. [PMID: 29930082] - Bárbara Gomes, Sónia Gonçalves, Anibal Disalvo, Axel Hollmann, Nuno C Santos. Effect of 25-hydroxycholesterol in viral membrane fusion: Insights on HIV inhibition.
Biochimica et biophysica acta. Biomembranes.
2018 May; 1860(5):1171-1178. doi:
10.1016/j.bbamem.2018.02.001
. [PMID: 29408450] - Shamaila Fraz, Abigail H Lee, Joanna Y Wilson. Gemfibrozil and carbamazepine decrease steroid production in zebrafish testes (Danio rerio).
Aquatic toxicology (Amsterdam, Netherlands).
2018 May; 198(?):1-9. doi:
10.1016/j.aquatox.2018.02.006
. [PMID: 29494825] - Shin-Ichiro Nitta, Mari Hashimoto, Yasuhiro Kazuki, Shoko Takehara, Hiraku Suzuki, Mitsuo Oshimura, Hidetaka Akita, Kan Chiba, Kaoru Kobayashi. Evaluation of 4β-Hydroxycholesterol and 25-Hydroxycholesterol as Endogenous Biomarkers of CYP3A4: Study with CYP3A-Humanized Mice.
The AAPS journal.
2018 04; 20(3):61. doi:
10.1208/s12248-018-0186-9
. [PMID: 29858698] - Ying Liu, Zhuo Wei, Xingzhe Ma, Xiaoxiao Yang, Yuanli Chen, Lei Sun, Chuanrui Ma, Qing R Miao, David P Hajjar, Jihong Han, Yajun Duan. 25-Hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism.
Journal of lipid research.
2018 03; 59(3):439-451. doi:
10.1194/jlr.m080440
. [PMID: 29298812] - Cecilia Marelli, Foudil Lamari, Dominique Rainteau, Alexandre Lafourcade, Guillaume Banneau, Lydie Humbert, Marie-Lorraine Monin, Elodie Petit, Rabab Debs, Giovanni Castelnovo, Elisabeth Ollagnon, Julie Lavie, Julie Pilliod, Isabelle Coupry, Patrick J Babin, Claire Guissart, Imen Benyounes, Urielle Ullmann, Gaetan Lesca, Christel Thauvin-Robinet, Pierre Labauge, Sylvie Odent, Claire Ewenczyk, Claude Wolf, Giovanni Stevanin, David Hajage, Alexandra Durr, Cyril Goizet, Fanny Mochel. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5.
Brain : a journal of neurology.
2018 01; 141(1):72-84. doi:
10.1093/brain/awx297
. [PMID: 29228183] - Peter J Crick, William J Griffiths, Juan Zhang, Martin Beibel, Jonas Abdel-Khalik, Jens Kuhle, Andreas W Sailer, Yuqin Wang. Reduced Plasma Levels of 25-Hydroxycholesterol and Increased Cerebrospinal Fluid Levels of Bile Acid Precursors in Multiple Sclerosis Patients.
Molecular neurobiology.
2017 12; 54(10):8009-8020. doi:
10.1007/s12035-016-0281-9
. [PMID: 27878760] - Ludger Schöls, Tim W Rattay, Peter Martus, Christoph Meisner, Jonathan Baets, Imma Fischer, Christine Jägle, Matthew J Fraidakis, Andrea Martinuzzi, Jonas Alex Saute, Marina Scarlato, Antonella Antenora, Claudia Stendel, Philip Höflinger, Charles Marques Lourenco, Lisa Abreu, Katrien Smets, Martin Paucar, Tine Deconinck, Dana M Bis, Sarah Wiethoff, Peter Bauer, Alessia Arnoldi, Wilson Marques, Laura Bannach Jardim, Stefan Hauser, Chiara Criscuolo, Alessandro Filla, Stephan Züchner, Maria Teresa Bassi, Thomas Klopstock, Peter De Jonghe, Ingemar Björkhem, Rebecca Schüle. Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial.
Brain : a journal of neurology.
2017 Dec; 140(12):3112-3127. doi:
10.1093/brain/awx273
. [PMID: 29126212] - Eric V Dang, Jeffrey G McDonald, David W Russell, Jason G Cyster. Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation.
Cell.
2017 Nov; 171(5):1057-1071.e11. doi:
10.1016/j.cell.2017.09.029
. [PMID: 29033131] - Zhongbao Song, Qiaoya Zhang, Xuewei Liu, Juan Bai, Yongxiang Zhao, Xianwei Wang, Ping Jiang. Cholesterol 25-hydroxylase is an interferon-inducible factor that protects against porcine reproductive and respiratory syndrome virus infection.
Veterinary microbiology.
2017 Oct; 210(?):153-161. doi:
10.1016/j.vetmic.2017.09.011
. [PMID: 29103685] - Mark Charman, Asako Goto, Neale D Ridgway. Oxysterol-binding protein recruitment and activity at the endoplasmic reticulum-Golgi interface are independent of Sac1.
Traffic (Copenhagen, Denmark).
2017 08; 18(8):519-529. doi:
10.1111/tra.12491
. [PMID: 28471037] - Saikou Y Bah, Paul Dickinson, Thorsten Forster, Beate Kampmann, Peter Ghazal. Immune oxysterols: Role in mycobacterial infection and inflammation.
The Journal of steroid biochemistry and molecular biology.
2017 05; 169(?):152-163. doi:
10.1016/j.jsbmb.2016.04.015
. [PMID: 27155346] - Elodie Olivier, Mélody Dutot, Anne Regazzetti, Delphine Dargère, Nicolas Auzeil, Olivier Laprévote, Patrice Rat. Lipid deregulation in UV irradiated skin cells: Role of 25-hydroxycholesterol in keratinocyte differentiation during photoaging.
The Journal of steroid biochemistry and molecular biology.
2017 05; 169(?):189-197. doi:
10.1016/j.jsbmb.2016.05.015
. [PMID: 27208628] - Lishan Zhang, Yinping Lv, Guozhe Xian, Yanliang Lin. 25-hydroxycholesterol promotes RANKL-induced osteoclastogenesis through coordinating NFATc1 and Sp1 complex in the transcription of miR-139-5p.
Biochemical and biophysical research communications.
2017 Apr; 485(4):736-741. doi:
10.1016/j.bbrc.2017.02.118
. [PMID: 28257846] - Chiara Zerbinati, Luisa Caponecchia, Rosa Puca, Marco Ciacciarelli, Pietro Salacone, Annalisa Sebastianelli, Antonio Pastore, Giovanni Palleschi, Vincenzo Petrozza, Natale Porta, Rocco Rago, Antonio Carbone, Luigi Iuliano. Mass spectrometry profiling of oxysterols in human sperm identifies 25-hydroxycholesterol as a marker of sperm function.
Redox biology.
2017 04; 11(?):111-117. doi:
10.1016/j.redox.2016.11.008
. [PMID: 27912195] - Chunfeng Li, Yong-Qiang Deng, Shuo Wang, Feng Ma, Roghiyh Aliyari, Xing-Yao Huang, Na-Na Zhang, Momoko Watanabe, Hao-Long Dong, Ping Liu, Xiao-Feng Li, Qing Ye, Min Tian, Shuai Hong, Junwan Fan, Hui Zhao, Lili Li, Neda Vishlaghi, Jessie E Buth, Connie Au, Ying Liu, Ning Lu, Peishuang Du, F Xiao-Feng Qin, Bo Zhang, Danyang Gong, Xinghong Dai, Ren Sun, Bennett G Novitch, Zhiheng Xu, Cheng-Feng Qin, Genhong Cheng. 25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model.
Immunity.
2017 03; 46(3):446-456. doi:
10.1016/j.immuni.2017.02.012
. [PMID: 28314593] - Li Chen, Lishan Zhang, Guozhe Xian, Yinping Lv, Yanliang Lin, Yibing Wang. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells.
Biochemical and biophysical research communications.
2017 03; 484(4):857-863. doi:
10.1016/j.bbrc.2017.02.003
. [PMID: 28167281] - Sung-Min Kim, Min-Young Noh, Heejaung Kim, So-Young Cheon, Kang Mi Lee, Jaeick Lee, Eunju Cha, Kyung Seok Park, Kwang-Woo Lee, Jung-Joon Sung, Seung Hyun Kim. 25-Hydroxycholesterol is involved in the pathogenesis of amyotrophic lateral sclerosis.
Oncotarget.
2017 Feb; 8(7):11855-11867. doi:
10.18632/oncotarget.14416
. [PMID: 28060747] - Zhengyang Wang, Xiaoming Yang, Liang Chen, Xiuling Zhi, Hanyu Lu, Yanxia Ning, Joe Yeong, Sifeng Chen, Lianhua Yin, Xinhong Wang, Xiaobo Li. Upregulation of hydroxysteroid sulfotransferase 2B1b promotes hepatic oval cell proliferation by modulating oxysterol-induced LXR activation in a mouse model of liver injury.
Archives of toxicology.
2017 Jan; 91(1):271-287. doi:
10.1007/s00204-016-1693-z
. [PMID: 27052460] - Carlo Barnaba, Maria Teresa Rodríguez-Estrada, Giovanni Lercker, Hugo Sergio García, Ilce Gabriela Medina-Meza. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.
Steroids.
2016 12; 116(?):52-59. doi:
10.1016/j.steroids.2016.10.004
. [PMID: 27756542] - Jiwei Li, Xiuting Zheng, Ning Lou, Wenbin Zhong, Daoguang Yan. Oxysterol binding protein-related protein 8 mediates the cytotoxicity of 25-hydroxycholesterol.
Journal of lipid research.
2016 10; 57(10):1845-1853. doi:
10.1194/jlr.m069906
. [PMID: 27530118] - Zhi-Jun Ou, Jing Chen, Wei-Ping Dai, Xiang Liu, Yin-Ke Yang, Yan Li, Ze-Bang Lin, Tian-Tian Wang, Ying-Ying Wu, Dan-Hong Su, Tian-Pu Cheng, Zhi-Ping Wang, Jun Tao, Jing-Song Ou. 25-Hydroxycholesterol impairs endothelial function and vasodilation by uncoupling and inhibiting endothelial nitric oxide synthase.
American journal of physiology. Endocrinology and metabolism.
2016 10; 311(4):E781-E790. doi:
10.1152/ajpendo.00218.2016
. [PMID: 27600825] - Jiajin Li, Hui Yan, Li Zhao, Wenzhi Jia, Hao Yang, Liu Liu, Xiang Zhou, Ping Miao, Xiaoguang Sun, Shaoli Song, Xiaoping Zhao, Jianjun Liu, Gang Huang. Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells.
Oncotarget.
2016 Aug; 7(32):52392-52403. doi:
10.18632/oncotarget.10721
. [PMID: 27447558] - Wei Shao, Carolyn E Machamer, Peter J Espenshade. Fatostatin blocks ER exit of SCAP but inhibits cell growth in a SCAP-independent manner.
Journal of lipid research.
2016 08; 57(8):1564-73. doi:
10.1194/jlr.m069583
. [PMID: 27324795] - Zoltán Pataj, Gerhard Liebisch, Gerd Schmitz, Silke Matysik. Quantification of oxysterols in human plasma and red blood cells by liquid chromatography high-resolution tandem mass spectrometry.
Journal of chromatography. A.
2016 Mar; 1439(?):82-88. doi:
10.1016/j.chroma.2015.11.015
. [PMID: 26607314] - Asako Goto, Mark Charman, Neale D Ridgway. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools.
The Journal of biological chemistry.
2016 Jan; 291(3):1336-47. doi:
10.1074/jbc.m115.682997
. [PMID: 26601944] - Zewen Kelvin Tuong, Patrick Lau, Ximing Du, Nicholas D Condon, Joel M Goode, Tae Gyu Oh, Jeremy C Yeo, George E O Muscat, Jennifer L Stow. RORα and 25-Hydroxycholesterol Crosstalk Regulates Lipid Droplet Homeostasis in Macrophages.
PloS one.
2016; 11(1):e0147179. doi:
10.1371/journal.pone.0147179
. [PMID: 26812621] - David B Iaea, Sarah E Gale, Agata A Bielska, Kathiresan Krishnan, Hideji Fujiwara, Hui Jiang, Frederick R Maxfield, Paul H Schlesinger, Douglas F Covey, Jean E Schaffer, Daniel S Ory. A novel intrinsically fluorescent probe for study of uptake and trafficking of 25-hydroxycholesterol.
Journal of lipid research.
2015 Dec; 56(12):2408-19. doi:
10.1194/jlr.d064287
. [PMID: 26497473] - Ragunath Singaravelu, Shifawn O'Hara, Daniel M Jones, Ran Chen, Nathan G Taylor, Prashanth Srinivasan, Curtis Quan, Dominic G Roy, Rineke H Steenbergen, Anil Kumar, Rodney K Lyn, Dennis Özcelik, Yanouchka Rouleau, My-Anh Nguyen, Katey J Rayner, Tom C Hobman, David Lorne Tyrrell, Rodney S Russell, John Paul Pezacki. MicroRNAs regulate the immunometabolic response to viral infection in the liver.
Nature chemical biology.
2015 Dec; 11(12):988-93. doi:
10.1038/nchembio.1940
. [PMID: 26479438] - Yu Xiang, Jing-Jie Tang, Wanyin Tao, Xuezhi Cao, Bao-Liang Song, Jin Zhong. Identification of Cholesterol 25-Hydroxylase as a Novel Host Restriction Factor and a Part of the Primary Innate Immune Responses against Hepatitis C Virus Infection.
Journal of virology.
2015 Jul; 89(13):6805-16. doi:
10.1128/jvi.00587-15
. [PMID: 25903345] - Henriikka Kentala, Simon G Pfisterer, Vesa M Olkkonen, Marion Weber-Boyvat. Sterol liganding of OSBP-related proteins (ORPs) regulates the subcellular distribution of ORP-VAPA complexes and their impacts on organelle structure.
Steroids.
2015 Jul; 99(Pt B):248-58. doi:
10.1016/j.steroids.2015.01.027
. [PMID: 25681634] - Delphine Meffre, Ghjuvan'Ghjacumu Shackleford, Mehdi Hichor, Victor Gorgievski, Eleni T Tzavara, Amalia Trousson, Abdel M Ghoumari, Cyrille Deboux, Brahim Nait Oumesmar, Philippe Liere, Michael Schumacher, Etienne-Emile Baulieu, Frédéric Charbonnier, Julien Grenier, Charbel Massaad. Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum.
Proceedings of the National Academy of Sciences of the United States of America.
2015 Jun; 112(24):7587-92. doi:
10.1073/pnas.1424951112
. [PMID: 26023184] - Yalong Wang, Han Jiang, Huizhi Huang, Yanqi Xie, Yunshi Zhao, Xiuhua You, Lipeng Tang, Youqiong Wang, Wei Yin, Pengxin Qiu, Guangmei Yan, Haiyan Hu. Determination of neuroprotective oxysterols in Calculus bovis, human gallstones, and traditional Chinese medicine preparations by liquid chromatography with mass spectrometry.
Journal of separation science.
2015 Mar; 38(5):796-803. doi:
10.1002/jssc.201400850
. [PMID: 25545614] - Corina Rosales, Daming Tang, Yong-Jian Geng. CD1d serves as a surface receptor for oxidized cholesterol induction of peroxisome proliferator-activated receptor-γ.
Atherosclerosis.
2015 Mar; 239(1):224-31. doi:
10.1016/j.atherosclerosis.2015.01.004
. [PMID: 25618030] - V W M Virginio, V S Nunes, F A Moura, F H Menezes, N A Andreollo, F Rogerio, D Z Scherrer, E C R Quintão, E Nakandakare, O Petrucci, W Nadruz-Junior, E C de Faria, A C Sposito. Arterial tissue and plasma concentration of enzymatic-driven oxysterols are associated with severe peripheral atherosclerotic disease and systemic inflammatory activity.
Free radical research.
2015 Feb; 49(2):199-203. doi:
10.3109/10715762.2014.992894
. [PMID: 25465091] - Zelal Adiguzel, Nazli Arda, Omer Kacar, Muge Serhatli, Serpil Gezer Tas, Ahmet Tarik Baykal, Kemal Baysal, Ceyda Acilan. Evaluation of apoptotic molecular pathways for smooth muscle cells isolated from thoracic aortic aneurysms in response to oxidized sterols.
Molecular biology reports.
2014 Dec; 41(12):7875-84. doi:
10.1007/s11033-014-3681-9
. [PMID: 25266234] - J C Larkin, S B Sears, Y Sadovsky. The influence of ligand-activated LXR on primary human trophoblasts.
Placenta.
2014 Nov; 35(11):919-24. doi:
10.1016/j.placenta.2014.09.002
. [PMID: 25255963] - Motohiro Sekiya, Daisuke Yamamuro, Taichi Ohshiro, Akira Honda, Manabu Takahashi, Masayoshi Kumagai, Kent Sakai, Shuichi Nagashima, Hiroshi Tomoda, Masaki Igarashi, Hiroaki Okazaki, Hiroaki Yagyu, Jun-ichi Osuga, Shun Ishibashi. Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages.
Journal of lipid research.
2014 Oct; 55(10):2082-92. doi:
10.1194/jlr.m050864
. [PMID: 24891333] - Andrew J Linsenbardt, Amanda Taylor, Christine M Emnett, James J Doherty, Kathiresan Krishnan, Douglas F Covey, Steven M Paul, Charles F Zorumski, Steven Mennerick. Different oxysterols have opposing actions at N-methyl-D-aspartate receptors.
Neuropharmacology.
2014 Oct; 85(?):232-42. doi:
10.1016/j.neuropharm.2014.05.027
. [PMID: 24878244] - Benjamin L Stottrup, Luis H Hernandez-Balderrama, Joan C Kunz, Andrew H Nguyen, Benjamin J Sonquist. Comparison of cholesterol and 25-hydroxycholesterol in phase-separated langmuir monolayers at the air-water interface.
The journal of physical chemistry. B.
2014 Sep; 118(38):11231-7. doi:
10.1021/jp506592k
. [PMID: 25188894] - Elizabeth S Gold, Alan H Diercks, Irina Podolsky, Rebecca L Podyminogin, Peter S Askovich, Piper M Treuting, Alan Aderem. 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling.
Proceedings of the National Academy of Sciences of the United States of America.
2014 Jul; 111(29):10666-71. doi:
10.1073/pnas.1404271111
. [PMID: 24994901] - Mark Charman, Terry R Colbourne, Antonietta Pietrangelo, Laurent Kreplak, Neale D Ridgway. Oxysterol-binding protein (OSBP)-related protein 4 (ORP4) is essential for cell proliferation and survival.
The Journal of biological chemistry.
2014 May; 289(22):15705-17. doi:
10.1074/jbc.m114.571216
. [PMID: 24742681] - Agata A Bielska, Brett N Olsen, Sarah E Gale, Laurel Mydock-McGrane, Kathiresan Krishnan, Nathan A Baker, Paul H Schlesinger, Douglas F Covey, Daniel S Ory. Side-chain oxysterols modulate cholesterol accessibility through membrane remodeling.
Biochemistry.
2014 May; 53(18):3042-51. doi:
10.1021/bi5000096
. [PMID: 24758724] - Tadashi Ikegami, Akira Honda, Teruo Miyazaki, Motoyuki Kohjima, Makoto Nakamuta, Yasushi Matsuzaki. Increased serum oxysterol concentrations in patients with chronic hepatitis C virus infection.
Biochemical and biophysical research communications.
2014 Apr; 446(3):736-40. doi:
10.1016/j.bbrc.2014.01.176
. [PMID: 24525121] - Wenbin Zhong, You Zhou, Jiwei Li, Raghavendra Mysore, Wei Luo, Shiqian Li, Mau-Sun Chang, Vesa M Olkkonen, Daoguang Yan. OSBP-related protein 8 (ORP8) interacts with Homo sapiens sperm associated antigen 5 (SPAG5) and mediates oxysterol interference of HepG2 cell cycle.
Experimental cell research.
2014 Apr; 322(2):227-35. doi:
10.1016/j.yexcr.2014.01.002
. [PMID: 24424245] - Richard Lathe, Alexandra Sapronova, Yuri Kotelevtsev. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature.
BMC geriatrics.
2014 Mar; 14(?):36. doi:
10.1186/1471-2318-14-36
. [PMID: 24656052] - Shunlin Ren, Yanxia Ning. Sulfation of 25-hydroxycholesterol regulates lipid metabolism, inflammatory responses, and cell proliferation.
American journal of physiology. Endocrinology and metabolism.
2014 Jan; 306(2):E123-30. doi:
10.1152/ajpendo.00552.2013
. [PMID: 24302009] - Christine Rauer, Robert Ringseis, Susanne Rothe, Gaiping Wen, Klaus Eder. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells.
PloS one.
2014; 9(3):e91265. doi:
10.1371/journal.pone.0091265
. [PMID: 24625548]