(R)-3-Hydroxy-hexadecanoic acid (BioDeep_00000025417)
human metabolite Endogenous
代谢物信息卡片
化学式: C16H32O3 (272.2351322)
中文名称: 3-羟基十六烷酸, 3-羟基十六酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CCCCCCCCCCCCCC(CC(=O)O)O
InChI: InChI=1S/C16H32O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-15(17)14-16(18)19/h15,17H,2-14H2,1H3,(H,18,19)
描述信息
In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. (R)-3-Hydroxy-hexadecanoic acid is an intermediate in fatty acid biosynthesis. Specifically, (R)-3-Hydroxy-hexadecanoic acid is converted from 3-Oxo-tetradecanoic acid via fatty-acid Synthase and 3-oxoacyl- [acyl-carrier-protein] reductase. (EC: 2.3.1.85 and EC: 2.3.1.41) [HMDB]
In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. (R)-3-Hydroxy-hexadecanoic acid is an intermediate in fatty acid biosynthesis. Specifically, (R)-3-Hydroxy-hexadecanoic acid is converted from 3-Oxo-tetradecanoic acid via fatty-acid Synthase and 3-oxoacyl- [acyl-carrier-protein] reductase. (EC: 2.3.1.85 and EC: 2.3.1.41).
同义名列表
15 个代谢物同义名
3-Hydroxypalmitic acid, (+-)-isomer; (R)-3-Hydroxy-hexadecanoic acid; (3R)-3-hydroxyhexadecanoic acid; (R)-beta-hydroxypalmitic acid; (R)-3-Hydroxy-hexadecanoate; (R)-β-hydroxypalmitic acid; (R)-3-hydroxypalmitic acid; (R)-b-Hydroxypalmitic acid; 3-hydroxyhexadecanoic acid; (R)-beta-Hydroxypalmitate; beta-Hydroxypalmitic acid; (R)-b-Hydroxypalmitate; 3-Hydroxypalmitic acid; (R)-β-hydroxypalmitate; beta-Hydroxypalmitate
数据库引用编号
11 个数据库交叉引用编号
- ChEBI: CHEBI:38247
- ChEBI: CHEBI:37248
- PubChem: 15569776
- PubChem: 301590
- HMDB: HMDB0010734
- ChEMBL: CHEMBL2207728
- foodb: FDB027881
- CAS: 20595-04-4
- CAS: 2398-34-7
- CAS: 928-17-6
- PMhub: MS000186597
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
62 个相关的代谢反应过程信息。
Reactome(55)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(7)
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
PharmGKB(0)
6 个相关的物种来源信息
- 41507 - Centaurea aspera: 10.1021/NP50031A033
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 65561 - Hypericum perforatum: 10.1186/1743-422X-6-101
- 283540 - Pseudosuberites: 10.1021/NP50102A012
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yumeto Ujita, Megumi Sakata, Ayaka Yoshihara, Yasufumi Hikichi, Kenji Kai. Signal Production and Response Specificity in the phc Quorum Sensing Systems of Ralstonia solanacearum Species Complex.
ACS chemical biology.
2019 10; 14(10):2243-2251. doi:
10.1021/acschembio.9b00553
. [PMID: 31513382] - Myung Hwan Lee, Raees Khan, Weixin Tao, Kihyuck Choi, Seung Yeup Lee, Jae Wook Lee, Eul Chul Hwang, Seon-Woo Lee. Soil metagenome-derived 3-hydroxypalmitic acid methyl ester hydrolases suppress extracellular polysaccharide production in Ralstonia solanacearum.
Journal of biotechnology.
2018 Mar; 270(?):30-38. doi:
10.1016/j.jbiotec.2018.01.023
. [PMID: 29407418] - Cristiane Cecatto, Kálita Dos Santos Godoy, Janaína Camacho da Silva, Alexandre Umpierrez Amaral, Moacir Wajner. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.
Toxicology in vitro : an international journal published in association with BIBRA.
2016 Oct; 36(?):1-9. doi:
10.1016/j.tiv.2016.06.007
. [PMID: 27371118] - Cristiane Cecatto, Fernanda H Hickmann, Marília D N Rodrigues, Alexandre U Amaral, Moacir Wajner. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.
The FEBS journal.
2015 Dec; 282(24):4714-26. doi:
10.1111/febs.13526
. [PMID: 26408230] - Kenji Kai, Hideyuki Ohnishi, Mika Shimatani, Shiho Ishikawa, Yuka Mori, Akinori Kiba, Kouhei Ohnishi, Mitsuaki Tabuchi, Yasufumi Hikichi. Methyl 3-Hydroxymyristate, a Diffusible Signal Mediating phc Quorum Sensing in Ralstonia solanacearum.
Chembiochem : a European journal of chemical biology.
2015 Nov; 16(16):2309-18. doi:
10.1002/cbic.201500456
. [PMID: 26360813] - G A Achari, R Ramesh. Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester (3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum.
Letters in applied microbiology.
2015 May; 60(5):447-55. doi:
10.1111/lam.12389
. [PMID: 25580768] - Anelise Miotti Tonin, Alexandre Umpierrez Amaral, Estela Natacha Busanello, Juciano Gasparotto, Daniel P Gelain, Niels Gregersen, Moacir Wajner. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?.
Biochimica et biophysica acta.
2014 Sep; 1842(9):1658-67. doi:
10.1016/j.bbadis.2014.06.011
. [PMID: 24946182] - Rui He, Toshiyuki Wakimoto, Yoko Egami, Hiromichi Kenmoku, Takuya Ito, Yoshinori Asakawa, Ikuro Abe. Heterologously expressed β-hydroxyl fatty acids from a metagenomic library of a marine sponge.
Bioorganic & medicinal chemistry letters.
2012 Dec; 22(24):7322-5. doi:
10.1016/j.bmcl.2012.10.082
. [PMID: 23127887] - Simon Ittig, Buko Lindner, Marco Stenta, Pablo Manfredi, Evelina Zdorovenko, Yuriy A Knirel, Matteo dal Peraro, Guy R Cornelis, Ulrich Zähringer. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding.
PLoS pathogens.
2012; 8(5):e1002667. doi:
10.1371/journal.ppat.1002667
. [PMID: 22570611] - Gülsen Tel, Mehmet Oztürk, Mehmet Emin Duru, Mansur Harmandar, Gülaçti Topçu. Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2010 Nov; 48(11):3189-93. doi:
10.1016/j.fct.2010.08.020
. [PMID: 20732375] - Anelise M Tonin, Mateus Grings, Estela N B Busanello, Alana P Moura, Gustavo C Ferreira, Carolina M Viegas, Carolina G Fernandes, Patrícia F Schuck, Moacir Wajner. Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain.
Neurochemistry international.
2010 Jul; 56(8):930-6. doi:
10.1016/j.neuint.2010.03.025
. [PMID: 20381565] - Wendy Maury, Jason P Price, Melinda A Brindley, ChoonSeok Oh, Jeffrey D Neighbors, David F Wiemer, Nickolas Wills, Susan Carpenter, Cathy Hauck, Patricia Murphy, Mark P Widrlechner, Kathleen Delate, Ganesh Kumar, George A Kraus, Ludmila Rizshsky, Basil Nikolau. Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum.
Virology journal.
2009 Jul; 6(?):101. doi:
10.1186/1743-422x-6-101
. [PMID: 19594941] - Akhilesh Kumar Singh, Nirupama Mallick. Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925.
Journal of industrial microbiology & biotechnology.
2009 Mar; 36(3):347-54. doi:
10.1007/s10295-008-0503-x
. [PMID: 19052786] - Madhurima Dhar, Daniel W Sepkovic, Vandana Hirani, Ronald P Magnusson, Jerome M Lasker. Omega oxidation of 3-hydroxy fatty acids by the human CYP4F gene subfamily enzyme CYP4F11.
Journal of lipid research.
2008 Mar; 49(3):612-24. doi:
10.1194/jlr.m700450-jlr200
. [PMID: 18065749] - Scott A Shaffer, Megan D Harvey, David R Goodlett, Robert K Ernst. Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry.
Journal of the American Society for Mass Spectrometry.
2007 Jun; 18(6):1080-92. doi:
10.1016/j.jasms.2007.03.008
. [PMID: 17446084] - Nanette L S Que-Gewirth, Anthony A Ribeiro, Suzanne R Kalb, Robert J Cotter, Dieter M Bulach, Ben Adler, Isabelle Saint Girons, Catherine Werts, Christian R H Raetz. A methylated phosphate group and four amide-linked acyl chains in leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2.
The Journal of biological chemistry.
2004 Jun; 279(24):25420-9. doi:
10.1074/jbc.m400598200
. [PMID: 15044492] - David W Johnson, Minh-Uyen Trinh. Analysis of isomeric long-chain hydroxy fatty acids by tandem mass spectrometry: application to the diagnosis of long-chain 3-hydroxyacyl CoA dehydrogenase deficiency.
Rapid communications in mass spectrometry : RCM.
2003; 17(2):171-5. doi:
10.1002/rcm.889
. [PMID: 12512097] - Benjamin Jeyaretnam, John Glushka, V S Kumar Kolli, Russell W Carlson. Characterization of a novel lipid-A from Rhizobium species Sin-1. A unique lipid-A structure that is devoid of phosphate and has a glycosyl backbone consisting of glucosamine and 2-aminogluconic acid.
The Journal of biological chemistry.
2002 Nov; 277(44):41802-10. doi:
10.1074/jbc.m112140200
. [PMID: 12193590] - A Lipski, E Spieck, A Makolla, K Altendorf. Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity.
Systematic and applied microbiology.
2001 Nov; 24(3):377-84. doi:
10.1078/0723-2020-00049
. [PMID: 11822673] - Y Suda, Y M Kim, T Ogawa, N Yasui, Y Hasegawa, W Kashihara, T Shimoyama, K Aoyama, K Nagata, T Tamura, S Kusumoto. Chemical structure and biological activity of a lipid A component from Helicobacter pylori strain 206.
Journal of endotoxin research.
2001; 7(2):95-104. doi:
"
. [PMID: 11521089] - R P Garg, W Yindeeyoungyeon, A Gilis, T P Denny, D Van Der Lelie, M A Schell. Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system.
Molecular microbiology.
2000 Oct; 38(2):359-67. doi:
10.1046/j.1365-2958.2000.02131.x
. [PMID: 11069661] - A B Flavier, S J Clough, M A Schell, T P Denny. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum.
Molecular microbiology.
1997 Oct; 26(2):251-9. doi:
10.1046/j.1365-2958.1997.5661945.x
. [PMID: 9383151] - A Fjellbirkeland, H Kleivdal, C Joergensen, H Thestrup, H B Jensen. Outer membrane proteins of Methylococcus capsulatus (Bath).
Archives of microbiology.
1997 Aug; 168(2):128-35. doi:
10.1007/s002030050478
. [PMID: 9238104]