NCBI Taxonomy: 3702

Arabidopsis thaliana (ncbi_taxid: 3702)

found 500 associated metabolites at species taxonomy rank level.

Ancestor: Arabidopsis

Child Taxonomies: none taxonomy data.

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0422568)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Loganin

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H26O10 (390.1525896)


Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Epicatechin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Isoliquiritigenin

(E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C15H12O4 (256.0735552)


Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.

   

Naringenin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0684702)


Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Thymidine

1-(2-Deoxy-beta-D-ribofuranosyl)-5-methyluracil; 1-(2-Deoxy-beta-D-ribofuranosyl)thymine; Thymine deoxyriboside; 2-Deoxythymidine; 5-Methyldeoxyuridine

C10H14N2O5 (242.09026740000002)


Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

Hesperetin 7-neohesperidoside

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1897614000001)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.09674980000005)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Lupenone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.3704958)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Vanillin

Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473418)


Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Coumarin

2h-1-benzopyran-2-one;coumarin;2h-chromen-2-one;coumarin ;coumarin (2h-1-benzopyran-2-one) (chromen-2-one);2h-1-benzopyran-2-one coumarin 2h-chromen-2-one coumarin coumarin (2h-1-benzopyran-2-one) (chromen-2-one)

C9H6O2 (146.0367776)


Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Sucrose

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-3,4-Dihydroxy-2,(2R,3R,4S,5S,6R)-2-{[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C12H22O11 (342.1162062)


Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Chalconaringenin

2-Propen-1-one, 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-, (2E)-

C15H12O5 (272.0684702)


2,4,4,6-tetrahydroxychalcone is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively. It has a role as a metabolite, an anti-allergic agent and an anti-inflammatory agent. It is a polyphenol and a member of chalcones. It is functionally related to a trans-chalcone. Naringenin chalcone is a natural product found in Populus koreana, Populus tremula, and other organisms with data available. Isolated from tomato fruit cuticles. Chalconaringenin is found in many foods, some of which are cherry tomato, lettuce, greenthread tea, and lemon. A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively. Chalconaringenin is found in garden tomato. Chalconaringenin is isolated from tomato fruit cuticle Naringenin chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5071-40-9 (retrieved 2024-07-12) (CAS RN: 25515-46-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Naringin

(2S)-7-[(2S,4S,5S,3R,6R)-3-((2S,6S,3R,4R,5R)-3,4,5-trihydroxy-6-methyl(2H-3,4, 5,6-tetrahydropyran-2-yloxy))-4,5-dihydroxy-6-(hydroxymethyl)(2H-3,4,5,6-tetra hydropyran-2-yloxy)]-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one

C27H32O14 (580.1791972)


Naringin, also known as naringoside or naringin hydrate, is a flavanone-7-O-glycoside between the flavanone naringenin and the disaccharide neohesperidose. Naringin belongs to the flavonoid family. Flavonoids consist of 15 carbon atoms in 3 rings, 2 of which must be benzene rings connected by a 3 carbon chain. Naringin contains the basic flavonoid structure along with one rhamnose and one glucose unit attached to its aglycone portion, called naringenin, at the 7-carbon position. The steric hindrance provided by the two sugar units makes naringin less potent than its aglycone counterpart, naringenin. Naringin is a bitter tasting compound. Naringin is found, on average, in the highest concentration within a few different foods, such as rosemaries, grapefruit/pummelo hybrids, and grapefruits and in a lower concentration in grape wines, pummelo, and beers. Naringin has also been detected, but not quantified in several different foods, such as citrus, limes, herbs and spices, common oregano, and mandarin orange (clementine, tangerine). Both naringin and hesperetin, which are the aglycones of naringin and hesperidin, occur naturally in citrus fruits. Naringin is the major flavonoid glycoside in grapefruit and gives grapefruit juice its bitter taste. Narinigin exerts a variety of pharmacological effects such as antioxidant activity, blood lipid-lowering, anticarcinogenic activity, and inhibition of selected cytochrome P450 enzymes including CYP3A4 and CYP1A2, which may result in several drug interactions in-vitro. Naringin is a disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, an antineoplastic agent and an anti-inflammatory agent. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a neohesperidoside. It is functionally related to a (S)-naringenin. Naringin is a natural product found in Podocarpus fasciculus, Citrus latipes, and other organisms with data available. See also: Naringenin (related); Drynaria fortunei root (part of). A disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. obtained from citrus fruits, Clymenia polyandra (clymenia) and Origanum vulgare (oregano) IPB_RECORD: 401; CONFIDENCE confident structure Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities. Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities.

   

Cinnamic acid

Cinnamic acid, United States Pharmacopeia (USP) Reference Standard

C9H8O2 (148.0524268)


Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C016 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473418)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Allantoin

(2,5-dioxoimidazolidin-4-yl)urea

C4H6N4O3 (158.0439886)


Allantoin is an imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. It has a role as a vulnerary, a human metabolite, a Saccharomyces cerevisiae metabolite and an Escherichia coli metabolite. It is a member of ureas and an imidazolidine-2,4-dione. It is functionally related to a hydantoin. It is a tautomer of a 1-(5-hydroxy-2-oxo-2,3-dihydroimidazol-4-yl)urea. Allantoin is a substance that is endogenous to the human body and also found as a normal component of human diets. In healthy human volunteers, the mean plasma concentration of allantoin is about 2-3 mg/l. During exercise, the plasma allantoin concentration rapidly increases about two fold and remains elevated. In human muscle, urate is oxidized to allantoin during such exercise. The concentration of allantoin in muscles increases from a resting value of about 5000 ug/kg to about 16000 ug/kg immediately after short-term exhaustive cycling exercise. More specifically, allantoin is a diureide of glyoxylic acid that is produced from uric acid. It is a major metabolic intermediate in most organisms. Allantoin is found in OTC cosmetic products and other commercial products such as oral hygiene products, in shampoos, lipsticks, anti-acne products, sun care products, and clarifying lotions. Allantoin has also demonstrated to ameliorate the wound healing process in some studies. Allantoin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Allantoin is a natural product found in Aristolochia gigantea, Rhinacanthus, and other organisms with data available. Allantoin is a mineral with formula of C4H6N4O3. The corresponding IMA (International Mineralogical Association) number is IMA2020-004a. The IMA symbol is Aan. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard Allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as shampoos, lipsticks, various cosmetic lotions and creams and other cosmetic and pharmaceutical products. Allantoin is a metabolite found in or produced by Saccharomyces cerevisiae. A urea hydantoin that is found in URINE and PLANTS and is used in dermatological preparations. See also: Alcloxa (active moiety of); Comfrey Leaf (part of); Comfrey Root (part of) ... View More ... Allantoin is a chemical compound with formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a diureide of glyoxylic acid. Named after the allantois, an amniote embryonic excretory organ in which it concentrates during development in most mammals except humans and higher apes, it is a product of oxidation of uric acid by purine catabolism. After birth, it is the predominant means by which nitrogenous waste is excreted in the urine of these animals. In humans and higher apes, the metabolic pathway for conversion of uric acid to allantoin is not present, so the former is excreted. Recombinant rasburicase is sometimes used as a drug to catalyze this metabolic conversion in patients. In fish, allantoin is broken down further (into ammonia) before excretion. Allantoin is a major metabolic intermediate in many other organisms including plants and bacteria.; Its chemical formula is C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a diureide of glyoxylic acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. Allantoin is a botanical extract of the comfrey plant and is used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulate growth of healthy tissue. This extract can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a product of the oxidation of uric acid. It is also a product of purine metabolism in most mammals except for higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard, allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as in shampoos, lipsticks, various cosmetic lotions and creams, and other cosmetic and pharmaceutical products. It is also a metabolite of Bacillus (PMID: 18302748) and Streptomyces (PMID: 24292080). An imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. Allantoin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5377-33-3 (retrieved 2024-06-29) (CAS RN: 97-59-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.

   

Aesculetin

6,7-dihydroxychromen-2-one

C9H6O4 (178.0266076)


Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods. Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite. Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot. D020011 - Protective Agents > D000975 - Antioxidants Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt [Raw Data] CB031_Aesculetin_neg_10eV_000010.txt [Raw Data] CB031_Aesculetin_neg_20eV_000010.txt [Raw Data] CB031_Aesculetin_neg_30eV_000010.txt CONFIDENCE standard compound; ML_ID 39 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Tryptamine

2-(1H-indol-3-yl)ethan-1-amine

C10H12N2 (160.1000432)


Tryptamine, also known as TrpN, is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine. Both Clostridium sp. and Ruminococcus sp. have been found to convert tryptophan into tryptamine (PMID: 30120222). Tryptamine is a monoamine compound that is a common precursor molecule to many hormones and neurotransmitters. Biosynthesis generally proceeds from the amino acid tryptophan, with tryptamine acting as a precursor for other compounds. Substitutions to the tryptamine molecule give rise to a group of compounds collectively known as tryptamines. The most well-known tryptamines are serotonin, an important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-wake cycle. Tryptamine has been detected, but not quantified in, several different foods, such as onion-family vegetables, acerola, Japanese walnuts, custard apples, and green zucchinis. This could make tryptamine a potential biomarker for the consumption of these foods. Tryptamine is an aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an aminoalkylindole, an indole alkaloid, an aralkylamino compound and a member of tryptamines. It is a conjugate base of a tryptaminium. Tryptamine is a natural product found in Mus musculus, Prosopis glandulosa, and other organisms with data available. Occurs widely in plants, especies Lens esculenta (lentil) and the fungi Coprinus micaceus (glistening ink cap) An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. KEIO_ID T031

   

Quinic acid

Cyclohexanecarboxylic acid, 1,3,4,5-tetrahydroxy-, (1R-(1-alpha,3-alpha,4-alpha,5-beta))-

C7H12O6 (192.0633852)


Quinic acid, also known as quinate, belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3, 4, and 5, as well as a carboxylic acid at position 1. Quinic acid is a sugar acid. It is also a cyclitol, or cyclic polyol. More specifically, quinic acid is a crystalline acid obtained from cinchona bark, coffee beans, tobacco leaves, carrot leaves, apples, peaches, pears, plums, vegetables, etc. Quinic acid can also be made synthetically by hydrolysis of chlorogenic acid. Quinic acid is implicated in the perceived acidity of coffee. (-)-quinic acid is the (-)-enantiomer of quinic acid. It is a conjugate acid of a (-)-quinate. It is an enantiomer of a (+)-quinic acid. Quinate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quinic acid is a natural product found in Gamblea innovans, Pterocaulon virgatum, and other organisms with data available. An acid which is found in cinchona bark and elsewhere in plants. (From Stedman, 26th ed) Quinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=36413-60-2 (retrieved 2024-07-01) (CAS RN: 36413-60-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee. D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee.

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266076)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Thioctic acid

Viatris brand OF thioctic acid tromethamine

C8H14O2S2 (206.0435184)


Lipoate, also known as lipoic acid or 6,8-thioctate, belongs to lipoic acids and derivatives class of compounds. Those are compounds containing a lipoic acid moiety (or a derivative thereof), which consists of a pentanoic acid (or derivative) attached to the C3 carbon atom of a 1,2-dithiolane ring. Lipoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lipoate can be synthesized from octanoic acid. Lipoate can also be synthesized into lipoamide and lipoyl-AMP. Lipoate can be found in broccoli and spinach, which makes lipoate a potential biomarker for the consumption of these food products. Lipoate may be a unique E.coli metabolite. Lipoate is a non-carcinogenic (not listed by IARC) potentially toxic compound. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products Acquisition and generation of the data is financially supported in part by CREST/JST. D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

linolenate(18:3)

(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.224568)


alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Isoscopoletin

2H-1-Benzopyran-2-one, 6-hydroxy-7-methoxy-

C10H8O4 (192.0422568)


Isoscopoletin is a hydroxycoumarin that is esculetin in which the hydroxy group at position 7 is replaced by a methoxy group. It is the major primary metabolite of scoparone. It has a role as a plant metabolite. It is a hydroxycoumarin and an aromatic ether. It is functionally related to an esculetin. Isoscopoletin is a natural product found in Clausena dunniana, Olea capensis, and other organisms with data available. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2].

   

Nicotinic acid

pyridine-3-carboxylic acid

C6H5NO2 (123.032027)


Nicotinic acid is an odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3\\\\\% solution) 3-3.5. (NTP, 1992) Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate. Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Nicotinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Niacin is a Nicotinic Acid. Niacin, also known as nicotinic acid and vitamin B3, is a water soluble, essential B vitamin that, when given in high doses, is effective in lowering low density lipoprotein (LDL) cholesterol and raising high density lipoprotein (HDL) cholesterol, which makes this agent of unique value in the therapy of dyslipidemia. Niacin can cause mild-to-moderate serum aminotransferase elevations and high doses and certain formulations of niacin have been linked to clinically apparent, acute liver injury which can be severe as well as fatal. Niacin is a water-soluble vitamin belonging to the vitamin B family, which occurs in many animal and plant tissues, with antihyperlipidemic activity. Niacin is converted to its active form niacinamide, which is a component of the coenzymes nicotinamide adenine dinucleotide (NAD) and its phosphate form, NADP. These coenzymes play an important role in tissue respiration and in glycogen, lipid, amino acid, protein, and purine metabolism. Although the exact mechanism of action by which niacin lowers cholesterol is not fully understood, it may act by inhibiting the synthesis of very low density lipoproteins (VLDL), inhibiting the release of free fatty acids from adipose tissue, increasing lipoprotein lipase activity, and reducing the hepatic synthesis of VLDL-C and LDL-C. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan (see below), but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. Nicotinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-67-6 (retrieved 2024-06-29) (CAS RN: 59-67-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

Salicylic acid

2-hydroxybenzoic acid

C7H6O3 (138.0316926)


Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].

   

Arbutin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-hydroxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C12H16O7 (272.0895986)


Hydroquinone O-beta-D-glucopyranoside is a monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite and an Escherichia coli metabolite. It is a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a hydroquinone. Extracted from the dried leaves of bearberry plant in the genus Arctostaphylos and other plants commonly in the Ericaceae family, arbutin is a beta-D-glucopyranoside of [DB09526]. It is found in foods, over-the-counter drugs, and herbal dietary supplements. Most commonly, it is an active ingredient in skincare and cosmetic products as a skin-lightening agent for the prevention of melanin formation in various skin conditions that involve cutaneous hyperpigmentation or hyperactive melanocyte function. It has also been used as an anti-infective for the urinary system as well as a diuretic. Arbutin is available in both natural and synthetic forms; it can be synthesized from acetobromglucose and [DB09526]. Arbutin is a competitive inhibitor of tyrosinase (E.C.1.14.18.1) in melanocytes, and the inhibition of melanin synthesis at non-toxic concentrations was observed in vitro. Arbutin was shown to be less cytotoxic to melanocytes in culture compared to [DB09526]. Arbutin is a natural product found in Grevillea robusta, Halocarpus biformis, and other organisms with data available. See also: Arctostaphylos uva-ursi leaf (part of); Arbutin; octinoxate (component of); Adenosine; arbutin (component of) ... View More ... Arbutin, also known as hydroquinone-O-beta-D-glucopyranoside or P-hydroxyphenyl beta-D-glucopyranoside, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Arbutin is soluble (in water) and a very weakly acidic compound (based on its pKa). Arbutin can be found in a number of food items such as guava, lingonberry, irish moss, and rowal, which makes arbutin a potential biomarker for the consumption of these food products. Arbutin is a glycoside; a glycosylated hydroquinone extracted from the bearberry plant in the genus Arctostaphylos among many other medicinal plants, primarily in the Ericaceae family. Applied topically, it inhibits tyrosinase and thus prevents the formation of melanin. Arbutin is therefore used as a skin-lightening agent. Very tiny amounts of arbutin are found in wheat, pear skins, and some other foods. It is also found in Bergenia crassifolia. Arbutin was also produced by an in vitro culture of Schisandra chinensis . A monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Arbutin is found in apple. Glucoside in pear leaves (Pyrus communis C471 - Enzyme Inhibitor CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6126; ORIGINAL_PRECURSOR_SCAN_NO 6123 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6107; ORIGINAL_PRECURSOR_SCAN_NO 6104 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 811; ORIGINAL_PRECURSOR_SCAN_NO 808 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 806; ORIGINAL_PRECURSOR_SCAN_NO 804 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 813; ORIGINAL_PRECURSOR_SCAN_NO 811 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 832; ORIGINAL_PRECURSOR_SCAN_NO 828 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 817; ORIGINAL_PRECURSOR_SCAN_NO 816 Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3]. Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Inosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-3H-purin-6-one

C10H12N4O5 (268.08076619999997)


Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].

   

Guanosine

2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O5 (283.0916648)


Guanosine (G), also known as 2-amino-inosine, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl sugar moiety. Guanosine consists of a guanine base attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine is a white, crystalline powder with no odor and mild saline taste. It is very soluble in acetic acid, and slightly soluble in water, but insoluble in ethanol, diethyl ether, benzene, and chloroform. Guanosine exists in all living species, ranging from bacteria to plants to humans. High levels of guanosine can be found in clovers, coffee plants, and the pollen of pines. It has been detected, but not quantified in, several different foods, such as leeks, garlic, chicory roots, green bell peppers, and black-eyed peas. Guanosine plays an important role in various biochemical processes including the synthesis of nucleic acids such as RNA and intracellular signal transduction (cGMP). The antiviral drug acyclovir, often used in herpes treatment, and the anti-HIV drug abacavir, are both structurally similar to guanosine. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). In humans, guanosine is involved in intracellular signalling through the adenosine receptors A1R and A2AR (PMID: 31847113). Evidence from rodent and cell models has shown a number of important neurotrophic and neuroprotective effects of guanosine. In particular, it is effective in preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson‚Äôs and Alzheimer‚Äôs diseases (PMID: 27699087). Studies with rodent models of Parkinson‚Äôs disease have shown that guanosine decreases neuronal apoptotic cell death and increases dopaminergic neurons at substantia nigra pars compacta, accompanied by an improvement of motor symptoms in Parkinson‚Äôs disease (i.e. a reduction of bradykinesia). Guanosine promotes neurite arborization, outgrowth, proliferation and differentiation. Systemic administration of guanosine for eight weeks (8 mg/kg) has been shown to stimulate neuroprogenitors proliferation in the subventricular zone (SVZ) in a mouse model of Parkinsonism (PMID: 27699087). The effect of guanosine treatment is accompanied by an increased number of fibroblast growth factor (FGF-2)-positive cells which is an important regulator of neuroprogenitor/stem cell proliferation, survival and differentiation (PMID: 27699087). Guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (PMID: 31847113). Guanosine is a purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a fundamental metabolite. It is a purines D-ribonucleoside and a member of guanosines. It is functionally related to a guanine. Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate) which are factors in signal transduction pathways. Guanosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanosine is a natural product found in Ulva australis, Allium chinense, and other organisms with data available. Guanosine is a purine nucleoside formed from a beta-N9-glycosidic bond between guanine and a ribose ring and is essential for metabolism. Guanosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed) Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). ; The nucleoside guanosine exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. Guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally. (PMID: 16325434); Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a ?-N9-glycosidic bond. Guanosine is found in many foods, some of which are elderberry, malus (crab apple), acerola, and arrowhead. A purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanosine (exact mass = 283.09167) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanosine (exact mass = 283.09167) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.125 CONFIDENCE standard compound; INTERNAL_ID 317 KEIO_ID G015; [MS2] KO008966 Annotation level-2 KEIO_ID G015 Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.

   

Cosmosiin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one;Apigenin 7-Glucoside

C21H20O10 (432.105642)


Cosmosiin, also known as apigenin 7-O-glucoside or apigetrin, is a member of the class of compounds known as flavonoid-7-O-glycosides. Flavonoid-7-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Cosmosiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cosmosiin can be found in a number of food items, such as common thyme, white lupine, common oregano, and orange mint. Cosmosiin can also be found in dandelion coffee and in Teucrium gnaphalodes (Wikipedia). Cosmosiin can also be found plants such as wild celery and anise. Cosmosiin has been shown to exhibit anti-platelet function (PMID: 21834233). Apigenin 7-O-beta-D-glucoside is a glycosyloxyflavone that is apigenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a non-steroidal anti-inflammatory drug, a metabolite and an antibacterial agent. It is a beta-D-glucoside, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an apigenin. It is a conjugate acid of an apigenin 7-O-beta-D-glucoside(1-). It is an enantiomer of an apigenin 7-O-beta-L-glucoside. Cosmosiin is a natural product found in Galeopsis tetrahit, Carex fraseriana, and other organisms with data available. See also: Chamomile (part of). Apiumetrin, also known as 7-O-beta-D-glucosyl-5,7,4-trihydroxyflavone or cosmosiin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apiumetrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apiumetrin can be found in wild celery, which makes apiumetrin a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Annotation level-1 Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

L-Leucine

(2S)-2-amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.052821)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Aesculin

7-hydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-2-one hydrate;Esculin Sesquihydrate

C15H16O9 (340.0794286)


Esculin is a hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside and a hydroxycoumarin. It is functionally related to an esculetin. Esculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P esculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum). Esculin belongs to the family of Glycosyl Compounds. These are carbohydrate derivatives in which a sugar group is bonded through its anmoeric carbonA to another group via a C-, S-,N-,O-, or Se- glycosidic bond. Esculin is a natural product found in Ficus septica, Gardenia jasminoides, and other organisms with data available. A derivative of COUMARIN with molecular formula C15H16O9. See also: Horse Chestnut (part of); Aesculus hippocastanum bark (part of). Aesculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P Aesculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum) Vitamin C2 is generally considered a bioflavanoid, related to vitamin P A hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. Acquisition and generation of the data is financially supported in part by CREST/JST. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

Uridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O6 (244.0695332)


Uridine, also known as beta-uridine or 1-beta-D-ribofuranosylpyrimidine-2,4(1H,3H)-dione, is a member of the class of compounds known as pyrimidine nucleosides. Pyrimidine nucleosides are compounds comprising a pyrimidine base attached to a ribosyl or deoxyribosyl moiety. More specifically, uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Uridine can be synthesized from uracil. It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. Uridine is also a parent compound for other transformation products, including but not limited to, nikkomycin Z, 3-(enolpyruvyl)uridine 5-monophosphate, and 5-aminomethyl-2-thiouridine. Uridine can be found in most biofluids, including urine, breast milk, cerebrospinal fluid (CSF), and blood. Within the cell, uridine is primarily located in the mitochondria, in the nucleus and the lysosome. It can also be found in the extracellular space. As an essential nucleoside, uridine exists in all living species, ranging from bacteria to humans. In humans, uridine is involved in several metabolic disorders, some of which include dhydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and beta-ureidopropionase deficiency. Moreover, uridine is found to be associated with Lesch-Nyhan syndrome, which is an inborn error of metabolism. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine plays a role in the glycolysis pathway of galactose. In humans there is no catabolic process to metabolize galactose. Therefore, galactose is converted to glucose and metabolized via the normal glucose metabolism pathways. More specifically, consumed galactose is converted into galactose 1-phosphate (Gal-1-P). This molecule is a substrate for the enzyme galactose-1-phosphate uridyl transferase which transfers a UDP molecule to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose. Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate blood uridine levels. On the other hand, consumption of RNA-rich foods may lead to high levels of purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout. Uridine is a ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a fundamental metabolite and a drug metabolite. It is functionally related to a uracil. Uridine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Uridine is a Pyrimidine Analog. The chemical classification of uridine is Pyrimidines, and Analogs/Derivatives. Uridine is a natural product found in Ulva australis, Synechocystis, and other organisms with data available. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine has been studied as a rescue agent to reduce the toxicities associated with 5-fluorouracil (5-FU), thereby allowing the administration of higher doses of 5-FU in chemotherapy regimens. (NCI04) Uridine is a metabolite found in or produced by Saccharomyces cerevisiae. A ribonucleoside in which RIBOSE is linked to URACIL. Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a b-N1-glycosidic bond. ; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Uridine is found in many foods, some of which are celery leaves, canola, common hazelnut, and hickory nut. A ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. [Spectral] Uridine (exact mass = 244.06954) and Adenosine (exact mass = 267.09675) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Uridine (exact mass = 244.06954) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Uridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-96-8 (retrieved 2024-06-29) (CAS RN: 58-96-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

Vitexin 6'-O-malonyl 2'-O-xyloside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.105642)


Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Maleic acid

(2Z)-but-2-enedioic acid

C4H4O4 (116.01095839999999)


Maleic acid is a colorless crystalline solid having a faint odor. It is combustible though it may take some effort to ignite. It is soluble in water. It is used to make other chemicals and for dyeing and finishing naturally occurring fibers. Maleic acid is a butenedioic acid in which the double bond has cis- (Z)-configuration. It has a role as a plant metabolite, an algal metabolite and a mouse metabolite. It is a conjugate acid of a maleate(1-) and a maleate. Maleic acid is a natural product found in Populus tremula, Ardisia crenata, and other organisms with data available. Maleic Acid is an organic salt or ester of maleic acid that could be conjugated to free base compounds/drugs to improve the physiochemical properties including stability, solubility and dissolution rate. (NCI) Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions. See also: Surfomer (monomer of); Ferropolimaler (monomer of). Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions. [HMDB]. Maleic acid is found in many foods, some of which are cocoa bean, lovage, roselle, and corn. Maleic acid is a dicarboxylic acid, a molecule with two carboxyl groups. It consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 oC) is also much lower than that of fumaric acid (287 oC). Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. Maleic acid is used in making polyesters for fibre-reinforced laminated moldings and paint vehicles. More specifically it is used in the manufacture of phthalic-type alkyd and polyester resins, surface coatings, copolymers, plasticizers, lubricant additives and agricultural chemicals. It is also found in adhesives and sealants and as a preservative for oils and fats. In the natural world, maleic acid has been identified in ginseng, pineapple, cacao plants, sour cherries and corn. A large number of microbes are able to convert maleic acid to D-malate using the enzyme maleate hydratase (PMID: 1444397). A butenedioic acid in which the double bond has cis- (Z)-configuration. Maleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-16-7 (retrieved 2024-06-29) (CAS RN: 110-16-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes. Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes.

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Shikimic acid

Shikimic acid [3R-(3alpha,4alpha,5beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid

C7H10O5 (174.052821)


Shikimic acid is a cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. It has a role as an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a plant metabolite. It is a cyclohexenecarboxylic acid, a hydroxy monocarboxylic acid and an alpha,beta-unsaturated monocarboxylic acid. It is a conjugate acid of a shikimate. Shikimic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Shikimic acid is a natural product found in Quercus mongolica, Populus tremula, and other organisms with data available. Shikimic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tri-hydroxy cyclohexene carboxylic acid important in biosynthesis of so many compounds that the shikimate pathway is named after it. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical intermediate in plants and microorganisms. Its name comes from the Japanese flower shikimi (the Japanese star anise, Illicium anisatum), from which it was first isolated. Shikimic acid is a precursor for: the aromatic amino acids phenylalanine and tyrosine; indole, indole derivatives and tryptophan; many alkaloids and other aromatic metabolites; tannins; and lignin. In pharmaceutical industry, shikimic acid from chinese star anise is used as a base material for production of Tamiflu (oseltamivir). Although shikimic acid is present in most autotrophic organisms, it is a biosynthetic intermediate and generally found in very low concentrations. A cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 175 KEIO_ID S012 Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.

   

Salicin

2-(Hydroxymethyl)phenyl-beta-D-glucopyranoside, Salicoside, Salicyl alcohol glucoside, Saligenin beta-D-glucoside

C13H18O7 (286.10524780000003)


Salicin, also known as salicoside or delta-salicin, is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It derives from a salicyl alcohol. Salicin belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Salicin exists in all living organisms, ranging from bacteria to humans. Salicin is a bitter tasting compound. Salicin is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It is functionally related to a salicyl alcohol. Salicin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicin is a natural product found in Salix candida, Populus tremula, and other organisms with data available. Salicin is an alcoholic β-glycoside that contains D-glucose. Salicin is an anti-inflammatory agent that is produced from willow bark. Salicin is closely related in chemical make-up to aspirin and has a very similar action in the human body. When consumed by humans, Salicin is metabolized into salicylic acid. [HMDB] An aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Salicin is a natural COX inhibitor. Salicin is a natural COX inhibitor.

   

Raffinose

(2R,3R,4S,5S,6R)-2-((2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yloxy)-6-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triol

C18H32O16 (504.1690272)


Raffinose is a complex carbohydrate. It is a trisaccharide composed of galactose, fructose, and glucose. It can be found in beans, cabbage, brussels sprouts, broccoli, asparagus, other vegetables, and whole grains. Raffinose is hydrolyzed to D-galactose and sucrose by D-galactosidase (D-GAL). D-GAL also hydrolyzes other D-galactosides such as stachyose, verbascose, and galactinol [1-O-(D-galactosyl)-myoinositol], if present. The enzyme does not cleave linked galactose, as in lactose. Raffinose is also known as melitose and may be thought of as galactose and sucrose connected via an alpha(1->6) glycosidic linkage. Thus, raffinose can be broken down into galactose and sucrose via the enzyme alpha-galactosidase. Human intestines do not contain this enzyme. Raffinose is a trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. Raffinose is a trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. It has a role as a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a raffinose family oligosaccharide and a trisaccharide. Raffinose is a natural product found in Teucrium polium, Populus tremula, and other organisms with data available. A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. See also: Oligosaccharide (related). A trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 230 Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].

   

Kaempferitrin

7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside

C27H30O14 (578.163548)


Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol. Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

beta-Lactose

(2R,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.11620619999997)


Beta-lactose is the beta-anomer of lactose. beta-Lactose contains a Lactosylceramide motif and is often attached to a Cer aglycon. beta-Lactose is a natural product found in Hypericum perforatum with data available. A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Beta-Lactose is the beta-pyranose form of the compound lactose [CCD]. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Beta-pyranose form of the compound lactose [CCD] The beta-anomer of lactose. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2]. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2].

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.057906)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Fumaric acid

(2E)-but-2-enedioic acid

C4H4O4 (116.0109584)


Fumaric acid appears as a colorless crystalline solid. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Combustible, though may be difficult to ignite. Used to make paints and plastics, in food processing and preservation, and for other uses. Fumaric acid is a butenedioic acid in which the C=C double bond has E geometry. It is an intermediate metabolite in the citric acid cycle. It has a role as a food acidity regulator, a fundamental metabolite and a geroprotector. It is a conjugate acid of a fumarate(1-). Fumaric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Fumaric acid is a precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase. Fumarate is converted by fumarase to malate. A fumarate is a salt or ester of the organic compound fumaric acid, a dicarboxylic acid. Fumarate has recently been recognized as an oncometabolite. (A15199). As a food additive, fumaric acid is used to impart a tart taste to processed foods. It is also used as an antifungal agent in boxed foods such as cake mixes and flours, as well as tortillas. Fumaric acid is also added to bread to increase the porosity of the final baked product. It is used to impart a sour taste to sourdough and rye bread. In cake mixes, it is used to maintain a low pH and prevent clumping of the flours used in the mix. In fruit drinks, fumaric acid is used to maintain a low pH which, in turn, helps to stabilize flavor and color. Fumaric acid also prevents the growth of E. coli in beverages when used in combination with sodium benzoate. When added to wines, fumaric acid helps to prevent further fermentation and yet maintain low pH and eliminate traces of metallic elements. In this fashion, it helps to stabilize the taste of wine. Fumaric acid can also be added to dairy products, sports drinks, jams, jellies and candies. Fumaric acid helps to break down bonds between gluten proteins in wheat and helps to create a more pliable dough. Fumaric acid is used in paper sizing, printer toner, and polyester resin for making molded walls. Fumaric acid is a dicarboxylic acid. It is a precursor to L-malate in the Krebs tricarboxylic acid (TCA) cycle. It is formed by the oxidation of succinic acid by succinate dehydrogenase. Fumarate is converted by the enzyme fumarase to malate. Fumaric acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by fumarate. Fumaric acid is found to be associated with fumarase deficiency, which is an inborn error of metabolism. It is also a metabolite of Aspergillus. Produced industrially by fermentation of Rhizopus nigricans, or manufactured by catalytic or thermal isomerisation of maleic anhydride or maleic acid. Used as an antioxidant, acidulant, leavening agent and flavouring agent in foods. Present in raw lean fish. Dietary supplement. Used in powdered products since fumaric acid is less hygroscopic than other acids. A precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase (wikipedia). Fumaric acid is also found in garden tomato, papaya, wild celery, and star fruit. Fumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-17-8 (retrieved 2024-07-01) (CAS RN: 110-17-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.

   

4-Hydroxybenzaldehyde

4-hydroxybenzaldehyde

C7H6O2 (122.0367776)


4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

Scopolin

6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one

C16H18O9 (354.0950778)


Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].

   

(+)-taxifolin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O7 (304.05830019999996)


Taxifolin, also known as dihydroquercetin or (+)-taxifolin, is a member of the class of compounds known as flavanonols. Flavanonols are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a hydroxyl group and a ketone at the carbon C2 and C3, respectively. Taxifolin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Taxifolin can be found in a number of food items such as sweet rowanberry, arrowroot, evening primrose, and walnut, which makes taxifolin a potential biomarker for the consumption of these food products. Taxifolin is a flavanonol, a type of flavonoid . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Resveratrol

(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol

C14H12O3 (228.0786402)


Resveratrol is a stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. It has a role as a phytoalexin, an antioxidant, a glioma-associated oncogene inhibitor and a geroprotector. It is a stilbenol, a polyphenol and a member of resorcinols. Resveratrol (3,5,4-trihydroxystilbene) is a polyphenolic phytoalexin. It is a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. It exists as cis-(Z) and trans-(E) isomers. The trans- form can undergo isomerisation to the cis- form when heated or exposed to ultraviolet irradiation. In a 2004 issue of Science, Dr. Sinclair of Harvard University said resveratrol is not an easy molecule to protect from oxidation. It has been claimed that it is readily degraded by exposure to light, heat, and oxygen. However, studies find that Trans-resveratrol undergoes negligible oxidation in normal atmosphere at room temperature. Resveratrol is a plant polyphenol found in high concentrations in red grapes that has been proposed as a treatment for hyperlipidemia and to prevent fatty liver, diabetes, atherosclerosis and aging. Resveratrol use has not been associated with serum enzyme elevations or with clinically apparent liver injury. Resveratrol is a natural product found in Vitis rotundifolia, Vitis amurensis, and other organisms with data available. Resveratrol is a phytoalexin derived from grapes and other food products with antioxidant and potential chemopreventive activities. Resveratrol induces phase II drug-metabolizing enzymes (anti-initiation activity); mediates anti-inflammatory effects and inhibits cyclooxygenase and hydroperoxidase functions (anti-promotion activity); and induces promyelocytic leukemia cell differentiation (anti-progression activity), thereby exhibiting activities in three major steps of carcinogenesis. This agent may inhibit TNF-induced activation of NF-kappaB in a dose- and time-dependent manner. (NCI05) Resveratrol is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. Resveratrol is a polyphenolic phytoalexin. It is also classified as a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. The levels of resveratrol found in food vary greatly. Red wine contains between 0.2 and 5.8 mg/L depending on the grape variety, while white wine has much less. The reason for this difference is that red wine is fermented with grape skins, allowing the wine to absorb the resveratrol, whereas white wine is fermented after the skin has been removed. Resveratrol is also sold as a nutritional supplement. A number of beneficial health effects, such as anti-cancer, antiviral, neuroprotective, anti-aging, anti-inflammatory, and life-prolonging effects have been reported for resveratrol. The fact that resveratrol is found in the skin of red grapes and as a constituent of red wine may explain the "French paradox". This paradox is based on the observation that the incidence of coronary heart disease is relatively low in southern France despite high dietary intake of saturated fats. Resveratrol is thought to achieve these cardioprotective effects by a number of different routes: (1) inhibition of vascular cell adhesion molecule expression; (2) inhibition of vascular smooth muscle cell proliferation; (3) stimulation of endothelial nitric oxide synthase (eNOS) activity; (4) inhibition of platelet aggregation; and (5) inhibition of LDL peroxidation (PMID: 17875315, 14676260, 9678525). Resveratrol is a biomarker for the consumption of grapes and raisins. A stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 IPB_RECORD: 1781; CONFIDENCE confident structure IPB_RECORD: 321; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Cytidine

4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

C9H13N3O5 (243.0855168)


Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

   

Hesperetin

(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-1-benzopyran-4-one (Hesperetin)

C16H14O6 (302.0790344)


Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity. Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-). Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges. Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available. Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt [Raw Data] CB046_Hesperetin_neg_20eV_000014.txt [Raw Data] CB046_Hesperetin_neg_10eV_000014.txt [Raw Data] CB046_Hesperetin_neg_40eV_000014.txt [Raw Data] CB046_Hesperetin_neg_50eV_000014.txt [Raw Data] CB046_Hesperetin_neg_30eV_000014.txt Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   

Syringin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-((E)-3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C17H24O9 (372.14202539999997)


Syringin is a monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a hepatoprotective agent and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a primary alcohol and a dimethoxybenzene. It is functionally related to a trans-sinapyl alcohol. Syringin is a natural product found in Salacia chinensis, Codonopsis lanceolata, and other organisms with data available. See also: Codonopsis pilosula root (part of). A monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Liquiritigenin

4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O4 (256.0735552)


Liquiritigenin is a dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. It has a role as a hormone agonist and a plant metabolite. 5-deoxyflavanone is a solid. This compound belongs to the flavanones. These are compounds containing a flavan-3-one moiety, whose structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. MF101 is a novel estrogen receptor beta (ERβ) selective agonist and unlike currently available hormone therapies, does not activate the estrogen receptor alpha (ERα), known to be implicated in tumor formation. MF101 is an oral drug designed for the treatment of hot flashes and night sweats in peri-menopausal and menopausal women. Liquiritigenin is a natural product found in Dracaena draco, Pterocarpus marsupium, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer and all Leguminosae subspecies Several glycosides, particularly the rutinoside and neohesperidoside, are important in influencing citrus fruit flavour [DFC]. Liquiritigenin is found in many foods, some of which are sorrel, roselle, pepper (c. annuum), and black crowberry. Liquiritigenin is found in alfalfa. Liquiritigenin is isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer, and all Leguminosae species. Several glycosides, particularly rutinoside and neohesperidoside, are important in influencing citrus fruit flavour. A dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.

   

Methoxsalen

Methoxsalen, United States Pharmacopeia (USP) Reference Standard

C12H8O4 (216.0422568)


8-methoxypsoralen is an odorless white to cream-colored crystalline solid. Bitter taste followed by tingling sensation. (NTP, 1992) Methoxsalen is a member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. It has a role as a dermatologic drug, an antineoplastic agent, a photosensitizing agent, a cross-linking reagent and a plant metabolite. It is a member of psoralens and an aromatic ether. It is functionally related to a psoralen. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. Methoxsalen is a Photoactivated Radical Generator and Psoralen. The mechanism of action of methoxsalen is as a Photoabsorption. The physiologic effect of methoxsalen is by means of Photosensitizing Activity. Methoxsalen is a natural product found in Ammi visnaga, Zanthoxylum mayu, and other organisms with data available. Methoxsalen is a naturally occurring substance isolated from the seeds of the plant Ammi majus with photoactivating properties. As a member of the family of compounds known as psoralens or furocoumarins, methoxsalens exact mechanism of action is unknown; upon photoactivation, methoxsalen has been observed to bind covalently to and crosslink DNA. (NCI04) Methoxsalen is only found in individuals that have used or taken this drug. It is a naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. After activation Methoxsalen binds preferentially to the guanine and cytosine moieties of DNA, leading to cross-linking of DNA, thus inhibiting DNA synthesis and function. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. See also: Angelica archangelica root (part of); Ammi majus seed (part of); Angelica keiskei top (part of) ... View More ... Methoxsalen, also known as oxsoralen or 8-methoxypsoralen, belongs to the class of organic compounds known as 8-methoxypsoralens. These are psoralens containing a methoxy group attached at the C8 position of the psoralen group. Methoxsalen is a drug which is used for the treatment of psoriasis and vitiligo. Methoxsalen is a bitter tasting compound. Methoxsalen is found, on average, in the highest concentration within a few different foods, such as parsnips, parsley, and celery stalks and in a lower concentration in wild carrots, carrots, and fennels. Methoxsalen has also been detected, but not quantified, in several different foods, such as figs, green vegetables, corianders, dills, and fruits. Methoxsalen is a potentially toxic compound. A member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. Present in celery, especies the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Isolated from Aegle marmelos (bael) D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents [Raw Data] CBA87_Xanthotoxin_pos_20eV.txt [Raw Data] CBA87_Xanthotoxin_pos_30eV.txt [Raw Data] CBA87_Xanthotoxin_pos_40eV.txt [Raw Data] CBA87_Xanthotoxin_pos_10eV.txt [Raw Data] CBA87_Xanthotoxin_pos_50eV.txt Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Coniferin

(2R,3S,4S,5R,6S)-2-(Hydroxymethyl)-6-(4-((E)-3-hydroxyprop-1-en-1-yl)-2-methoxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C16H22O8 (342.1314612)


Coniferin (CAS: 531-29-3), also known as abietin or coniferoside, belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-fructose, and L-rhamnose. Coniferin is an extremely weak basic (essentially neutral) compound (based on its pKa). Coniferin is a monosaccharide derivative consisting of coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Coniferin is found in asparagus and has been isolated from Scorzonera hispanica (black salsify). Coniferin is a monosaccharide derivative that is coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a plant metabolite. It is a cinnamyl alcohol beta-D-glucoside, an aromatic ether and a monosaccharide derivative. It is functionally related to a coniferol. Coniferin is a natural product found in Salacia chinensis, Astragalus onobrychis, and other organisms with data available. A monosaccharide derivative that is coniferol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Isolated from Scorzonera hispanica (scorzonera) Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1]. Coniferin (Laricin) is a glucoside of coniferyl alcohol. Coniferin inhibits fungal growth and melanization[1].

   

Procyanidin B2

(2R,3R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


Procyanidin B2 is a proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. It has a role as a metabolite and an antioxidant. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (-)-epicatechin. Procyanidin B2 is a natural product found in Begonia fagifolia, Saraca asoca, and other organisms with data available. See also: Cocoa (part of); Primula veris flower (part of). A proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. Present in red wine. Procyanidin B2 is found in many foods, some of which are alcoholic beverages, sherry, bilberry, and yellow zucchini. Procyanidin B2 is found in alcoholic beverages. Procyanidin B2 is present in red wine. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.

   

Sinapic acid

3,5-Dimethoxy-4-hydroxycinnamic acid, 4-Hydroxy-3,5-dimethoxy-cinnamic acid, Sinapinic acid

C11H12O5 (224.06847019999998)


Sinapic acid, also known as sinapinate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Sinapic acid has been detected, but not quantified, in several different foods, such as strawberry guava, purple lavers, common verbena, ryes, and lupines. This could make sinapic acid a potential biomarker for the consumption of these foods. A sinapic acid in which the double bond has trans-configuration. Trans-sinapic acid is a sinapic acid in which the double bond has trans-configuration. It has a role as a MALDI matrix material and a plant metabolite. It is a conjugate acid of a trans-sinapate. Sinapic acid is a matrix for matrix-assisted laser desorption technique for protein MW determination. It is also a constituent of propolis. Sinapic acid is a natural product found in Sida acuta, Limoniastrum guyonianum, and other organisms with data available. A common constituent of plants and fruits. trans-Sinapic acid is found in many foods, some of which are small-leaf linden, redcurrant, malabar spinach, and blackcurrant. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents A sinapic acid in which the double bond has trans-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00014.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00015.jpg CONFIDENCE standard compound; INTERNAL_ID 174 Annotation level-1 Annotation level-2 KEIO_ID S028 Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3]. Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].

   

3,7-Dimethyl-1,6-octadien-3-ol

Linalool, certified reference material, TraceCERT(R)

C10H18O (154.1357578)


3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].

   

3,4-Dihydroxybenzeneacetic acid

3,4-Dihydroxyphenylacetic Acid, Monosodium Salt

C8H8O4 (168.0422568)


3,4-Dihydroxyphenylacetic acid (DOPAC) is a phenolic acid. DOPAC is a neuronal metabolite of dopamine (DA). DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily into DOPAC via aldehyde dehydrogenase (ALDH2). The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Known inhibitors of mitochondrial ALDH2, such as 4-hydroxy-2-nonenal (4HNE) inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. 4HNE is one of the resulting products of oxidative stress, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to Parkinsons disease. In early-onset Parkinson disease, there is markedly reduced activities of both monoamine oxidase (MAO) A and B. The amount of DOPAC, which is produced during dopamine oxidation by MAO, is greatly reduced as a result of increased parkin overexpression. Administration of methamphetamine to animals causes loss of DA terminals in the brain and significant decreases in dopamine and dihydroxyphenylacetic acid (DOPAC) in the striatum. Renal dopamine produced in the residual tubular units may be enhanced during a sodium challenge, thus behaving appropriately as a compensatory natriuretic hormone; however, the renal dopaminergic system in patients afflicted with renal parenchymal disorders should address parameters other than free urinary dopamine, namely the urinary excretion of L-DOPA and metabolites. DOPAC is one of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements. DOPAC exhibits a considerable antiproliferative effect in LNCaP prostate cancer and HCT116 colon cancer cells. The antiproliferative activity of DOPAC may be due to its catechol structure. A similar association of the catechol moiety in the B-ring with antiproliferative activity was demonstrated for flavanones (PMID:16956664, 16455660, 8561959, 11369822, 10443478, 16365058). DOPAC can be found in Gram-positive bacteria (PMID:24752840). 3,4-Dihydroxyphenylacetic acid (DOPAC) is a metabolite of the neurotransmitter dopamine. 3,4-Dihydroxyphenylacetic acid is found in many foods, some of which are alaska blueberry, cauliflower, ucuhuba, and fox grape. 3,4-Dihydroxybenzeneacetic acid is the main neuronal metabolite of dopamine.

   

Myristic acid

tetradecanoic acid

C14H28O2 (228.20891880000002)


Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Sinapine

Ethanaminium, 2-(((2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-

[C16H24NO5]+ (310.16543939999997)


Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. IPB_RECORD: 244; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Isofucosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3704958)


Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia. Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research. Isofucosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=481-14-1 (retrieved 2024-10-08) (CAS RN: 481-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

1-Kestose

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C18H32O16 (504.1690272)


1-kestose, also known as 1f-beta-D-fructosylsucrose or [beta-D-fru-(2->1)]2-alpha-D-glup, is a member of the class of compounds known as oligosaccharides. Oligosaccharides are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. 1-kestose is soluble (in water) and a very weakly acidic compound (based on its pKa). 1-kestose can be found in a number of food items such as german camomile, nance, amaranth, and european plum, which makes 1-kestose a potential biomarker for the consumption of these food products. 1-kestose can be found primarily in prostate Tissue, as well as in human prostate tissue. Moreover, 1-kestose is found to be associated with prostate cancer. 1-kestose is a trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose is a natural product found in Taraxacum lapponicum, Arctium umbrosum, and other organisms with data available. 1-Kestose is a fructooligosaccharide. An oligosaccharide is a saccharide polymer containing a small number (typically three to six) of component sugars, also known as simple sugars. They are generally found either O- or N-linked to compatible amino acid side chains in proteins or to lipid moieties. A trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria.

   

Lutein

(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

C40H56O2 (568.4280076)


Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002). Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene. Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available. Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals. A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA. See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ... Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].

   

(S)-Abscisic acid

(2Z,4E)-5-[(1S)-1-Hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl]-3-methyl-2,4-pentadienoic acid

C15H20O4 (264.13615200000004)


(+)-abscisic acid is the naturally occurring (1S)-(+) enantiomer of abscisic acid. It is an important sesquiterpenoid plant hormone which acts as a regulator of plant responses to environmental stresses such as drought and cold. It has a role as a plant hormone and a plant metabolite. It is a conjugate acid of a (+)-abscisate. It is an enantiomer of a (-)-abscisic acid. Abscisic acid is a natural product found in Macaranga triloba, Cuscuta pentagona, and other organisms with data available. Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits. Constituent of cabbage, potato, lemon etc. (S)-Abscisic acid is found in many foods, some of which are common wheat, peach, garden tomato (variety), and yellow wax bean. (S)-Abscisic acid is found in alcoholic beverages. (S)-Abscisic acid is a constituent of cabbage, potato, lemon etc D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D006133 - Growth Substances > D010937 - Plant Growth Regulators Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].

   

Stigmastanol

(3S,5S,8R,9S,10S,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H52O (416.4017942)


Stigmastanol is a 3-hydroxy steroid that is 5alpha-stigmastane which is substituted at the 3beta position by a hydroxy group. It has a role as an anticholesteremic drug and a plant metabolite. It is a 3-hydroxy steroid and a member of phytosterols. It derives from a hydride of a 5alpha-stigmastane. Stigmastanol is a natural product found in Alnus japonica, Dracaena cinnabari, and other organisms with data available. Stigmastanol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and a saturated bond in position 5-6 of the B ring. See also: Saw Palmetto (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C1907 - Drug, Natural Product > C28178 - Phytosterol > C68422 - Saturated Phytosterol D009676 - Noxae > D000963 - Antimetabolites Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2]. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2].

   

Camalexin

3-(1,3-thiazol-2-yl)-1H-indole

C11H8N2S (200.0408168)


Camalexin is an indole phytoalexin that is indole substituted at position 3 by a 1,3-thiazol-2-yl group. It has a role as a metabolite. It is an indole phytoalexin and a member of 1,3-thiazoles. Camalexin is a natural product found in Arabidopsis, Arabidopsis thaliana, and Camelina sativa with data available. Camalexin is found in fats and oils. Camalexin is an alkaloid from the leaves of Camelina sativa (false flax) infected by the fungus Alternaria brassica Alkaloid from the leaves of Camelina sativa (false flax) infected by the fungus Alternaria brassicae. Camalexin is found in fats and oils. An indole phytoalexin that is indole substituted at position 3 by a 1,3-thiazol-2-yl group. D000890 - Anti-Infective Agents Camalexin is a phytoalexin isolated from Camelina sativa (Cruciferae) with antibacterial, antifungal, antiproliferative and anticancer activities. Camalexin can induce reactive oxygen species (ROS) production[1][2][3]. Camalexin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=135531-86-1 (retrieved 2024-08-14) (CAS RN: 135531-86-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H56O2 (568.4280076)


Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Jasmonic acid

Cyclopentaneacetic acid, 3-oxo-2-(2-pentenyl)-, [1R-[1alpha,2beta(Z)]]-

C12H18O3 (210.1255878)


Jasmonic acid is an oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. It has a role as a plant metabolite and a member of jasmonates. It is a conjugate acid of a jasmonate(1-). It is an enantiomer of a (+)-jasmonic acid. Jasmonic acid is a natural product found in Ficus superba, Cleyera japonica, and other organisms with data available. Jasmonic acid is found in apple. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour. Jasmonic acid is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway An oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour [DFC] D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

5-Hydroxyferulic acid

2-Propenoic acid, 3-(3,4-dihydroxy-5-methoxyphenyl)-, (2E)-

C10H10O5 (210.052821)


5-Hydroxyferulic acid (CAS: 1782-55-4), also known as 3-(3,4-dihydroxy-5-methoxy)-2-propenoic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing a cinnamic acid where the benzene ring is hydroxylated. Outside of the human body, 5-hydroxyferulic acid has been detected, but not quantified in, several different foods, such as common salsifies, napa cabbages, sparkleberries, nectarines, and Chinese chestnuts. This could make 5-hydroxyferulic acid a potential biomarker for the consumption of these foods. 5-Hydroxyferulic acid is found in green vegetables. 5-Hydroxyferulic acid is isolated from bamboo (Phyllostachys edulis). 5-hydroxyferulic acid is ferulic acid in which the ring hydrogen at position 5 is substituted by a hydroxy group. It is a hydroxycinnamic acid and a methoxycinnamic acid. It is a conjugate acid of a 5-hydroxyferulate. 5-Hydroxyferulic acid is a natural product found in Arabidopsis thaliana, Sabia japonica, and other organisms with data available. Isolated from bamboo (Phyllostachys edulis). 5-Hydroxyferulic acid is found in many foods, some of which are napa cabbage, chervil, common bean, and saskatoon berry. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3]. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3].

   

Zeatin

InChI=1/C10H13N5O/c1-7(4-16)2-3-11-9-8-10(13-5-12-8)15-6-14-9/h2,5-6,16H,3-4H2,1H3,(H2,11,12,13,14,15)/b7-2

C10H13N5O (219.11200480000002)


Zeatin belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Zeatin is a cytokinin (plant growth hormone) derived from the purine adenine, which occurs in the form of a cis- and a trans-isomer and conjugates. Zeatin was first discovered in immature corn kernels from the genus Zea. Zeatin has also been detected, but not quantified in several different foods, such as figs, rowanberries, red raspberries, garlic, and tree ferns. Zeatin has also been shown to promote the resistance of tobacco against the bacterial pathogen Pseudomonas syringae, in which trans-zeatin has a more prominent effect than cis-zeatin. Zeatin has several anti-ageing effects on human skin fibroblasts. It promotes the growth of lateral buds and, when sprayed on meristems, stimulates cell division to produce bushier plants. Zeatin and its derivatives occur in many plant extracts and are the active ingredient in coconut milk, which causes plant growth. Zeatin is a 6-isopentenylaminopurine. It has a role as a cytokinin. An aminopurine factor in plant extracts that induces cell division. (Grant & Hackhs Chemical Dict, 5th ed) trans-Zeatin is a natural product found in Cichorium intybus, Prunus cerasus, and other organisms with data available. An aminopurine factor in plant extracts that induces cell division. (Grant and Hackhs Chemical Dict, 5th ed) D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Isolated from sweet corn (Zea mays) and numerous other plants Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID Z002; [MS2] KO009317 KEIO_ID Z002 trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.

   

D-Malic acid

(2R)-2-HYDROXYBUTANEDIOIC ACID; 2-HYDROXY-SUCCINIC ACID

C4H6O5 (134.0215226)


(R)-malic acid is an optically active form of malic acid having (R)-configuration. It is a conjugate acid of a (R)-malate(2-). It is an enantiomer of a (S)-malic acid. (R)-Malate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-malate is a natural product found in Vaccinium macrocarpon, Pogostemon cablin, and other organisms with data available. D-Malic acid is found in herbs and spices. This enantiomer of rare occurrence; reported from fruits and leaves of Hibiscus sabdariffa (roselle) although there are many more isolations of malic acid with no opt. rotn. given and some may be of the R-for An optically active form of malic acid having (R)-configuration. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1]. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1].

   

L-Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0320868)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pantothenic acid

(D,+)-N(alpha-gamma-Dihydroxy-beta,beta-dimethylbutyryl)-beta-alanine

C9H17NO5 (219.11066720000002)


(R)-pantothenic acid is a pantothenic acid having R-configuration. It has a role as an antidote to curare poisoning, a human blood serum metabolite and a geroprotector. It is a vitamin B5 and a pantothenic acid. It is a conjugate acid of a (R)-pantothenate. Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Pantothenic acid is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Pantothenic Acid is a water-soluble vitamin ubiquitously found in plants and animal tissues with antioxidant property. Vitamin B5 is a component of coenzyme A (CoA) and a part of the vitamin B2 complex. Vitamin B5 is a growth factor and is essential for various metabolic functions, including the metabolism of carbohydrates, proteins, and fatty acids. This vitamin is also involved in the synthesis of cholesterol, lipids, neurotransmitters, steroid hormones, and hemoglobin. (R)-Pantothenic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE. See also: Broccoli (part of). Pantothenic acid, also called vitamin B5, is a water-soluble vitamin required to sustain life. Pantothenic acid is needed to form coenzyme-A (CoA), and is thus critical in the metabolism and synthesis of carbohydrates, proteins, and fats. Its name is derived from the Greek pantothen meaning "from everywhere" and small quantities of pantothenic acid are found in nearly every food, with high amounts in whole grain cereals, legumes, eggs, meat, and royal jelly. Pantothenic acid is classified as a member of the secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). Pantothenic acid is considered to be soluble (in water) and acidic. (r)-pantothenate, also known as (+)-pantothenic acid or vitamin b5, is a member of the class of compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl) (r)-pantothenate is soluble (in water) and a weakly acidic compound (based on its pKa). (r)-pantothenate can be found in a number of food items such as spirulina, nance, cereals and cereal products, and sparkleberry, which makes (r)-pantothenate a potential biomarker for the consumption of these food products (r)-pantothenate can be found primarily in blood and urine (r)-pantothenate exists in all eukaryotes, ranging from yeast to humans. D018977 - Micronutrients > D014815 - Vitamins A pantothenic acid having R-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P032; [MS2] KO009182 KEIO_ID P032; [MS3] KO009183 KEIO_ID P032 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].

   

Biotin

Biotin, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, >=99\\%

C10H16N2O3S (244.0881586)


Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6] Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate. A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available. Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue. Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ... Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464). Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. [Raw Data] CB004_Biotin_pos_50eV_CB000006.txt [Raw Data] CB004_Biotin_pos_30eV_CB000006.txt [Raw Data] CB004_Biotin_pos_40eV_CB000006.txt [Raw Data] CB004_Biotin_pos_20eV_CB000006.txt [Raw Data] CB004_Biotin_pos_10eV_CB000006.txt [Raw Data] CB004_Biotin_neg_10eV_000006.txt [Raw Data] CB004_Biotin_neg_20eV_000006.txt Biosynthesis Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18] Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24] Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].

   

Flavin adenine dinucleotide

[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl (2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)-2,3,4-trihydroxypentyl dihydrogen diphosphate (non-preferred name)

C27H33N9O15P2 (785.1571288)


FAD is a flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. It has a role as a human metabolite, an Escherichia coli metabolite, a mouse metabolite, a prosthetic group and a cofactor. It is a vitamin B2 and a flavin adenine dinucleotide. It is a conjugate acid of a FAD(3-). A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide is approved for use in Japan under the trade name Adeflavin as an ophthalmic treatment for vitamin B2 deficiency. Flavin adenine dinucleotide is a natural product found in Bacillus subtilis, Eremothecium ashbyi, and other organisms with data available. FAD is a metabolite found in or produced by Saccharomyces cerevisiae. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) Flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. FAD, also known as adeflavin or flamitajin b, belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. FAD is a drug which is used to treat eye diseases caused by vitamin b2 deficiency, such as keratitis and blepharitis. FAD exists in all living species, ranging from bacteria to humans. In humans, FAD is involved in the metabolic disorder called the medium chain acyl-coa dehydrogenase deficiency (mcad) pathway. Outside of the human body, FAD has been detected, but not quantified in several different foods, such as other bread, passion fruits, asparagus, kelps, and green bell peppers. It is a flavoprotein in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) [HMDB]. FAD is found in many foods, some of which are common sage, kiwi, spearmint, and ceylon cinnamon. A flavin adenine dinucleotide in which the substituent at position 10 of the flavin nucleus is a 5-adenosyldiphosphoribityl group. FAD. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=146-14-5 (retrieved 2024-07-01) (CAS RN: 146-14-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Flavin adenine dinucleotide (FAD) is a redox cofactor, more specifically a prosthetic group of a protein, involved in several important enzymatic reactions in metabolism.

   

Adenosine triphosphate

({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O13P3 (506.9957476)


Adenosine triphosphate, also known as atp or atriphos, is a member of the class of compounds known as purine ribonucleoside triphosphates. Purine ribonucleoside triphosphates are purine ribobucleotides with a triphosphate group linked to the ribose moiety. Adenosine triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine triphosphate can be found in a number of food items such as lichee, alpine sweetvetch, pecan nut, and black mulberry, which makes adenosine triphosphate a potential biomarker for the consumption of these food products. Adenosine triphosphate can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and saliva, as well as throughout most human tissues. Adenosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine triphosphate is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(16:0/18:4(6Z,9Z,12Z,15Z)), carteolol action pathway, phosphatidylethanolamine biosynthesis PE(20:3(5Z,8Z,11Z)/15:0), and carfentanil action pathway. Adenosine triphosphate is also involved in several metabolic disorders, some of which include lysosomal acid lipase deficiency (wolman disease), phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), propionic acidemia, and the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, adenosine triphosphate is found to be associated with rachialgia, neuroinfection, stroke, and subarachnoid hemorrhage. Adenosine triphosphate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Adenosine triphosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine triphosphate (ATP) is a complex organic chemical that participates in many processes. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts to either the di- or monophosphates, respectively ADP and AMP. Other processes regenerate ATP such that the human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA . ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis (DrugBank). Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB). ATP is an adenosine 5-phosphate in which the 5-phosphate is a triphosphate group. It is involved in the transportation of chemical energy during metabolic pathways. It has a role as a nutraceutical, a micronutrient, a fundamental metabolite and a cofactor. It is an adenosine 5-phosphate and a purine ribonucleoside 5-triphosphate. It is a conjugate acid of an ATP(3-). An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine-5-triphosphate is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Adenosine Triphosphate is an adenine nucleotide comprised of three phosphate groups esterified to the sugar moiety, found in all living cells. Adenosine triphosphate is involved in energy production for metabolic processes and RNA synthesis. In addition, this substance acts as a neurotransmitter. In cancer studies, adenosine triphosphate is synthesized to examine its use to decrease weight loss and improve muscle strength. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (A3367, A3368, A3369, A3370, A3371). Adenosine triphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (PMID: 15490415, 15129319, 14707763, 14696970, 11157473). 5′-ATP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-65-5 (retrieved 2024-07-01) (CAS RN: 56-65-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Isonicotinic acid

Pyridine-4-carboxylic Acid; Nicotinic Acid Imp. E (EP); Isonicotinic Acid; Isoniazid Impurity A; Nicotinic Acid Impurity E

C6H5NO2 (123.032027)


Isonicotinic acid is a pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. It has a role as a human metabolite and an algal metabolite. It is a conjugate acid of an isonicotinate. Isonicotinic acid is a natural product found in Aloe africana, Chlamydomonas reinhardtii, and other organisms with data available. Heterocyclic acids that are derivatives of 4-pyridinecarboxylic acid (isonicotinic acid). Isonicotinic acid is a metabolite of isoniazid. Isonicotinic acid is an organic compound with a carboxyl group on a pyridine ring. It is an isomer of nicotinic acid. The carboxyl group for isonicotinic acid is on the 4-position instead of the 3-position for nicotinic acid (Wikipedia). A pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I017 Isonicotinic acid is a metabolite of Isoniazid. Isoniazid is converted to Isonicotinic acid by hydrazinolysis, with the Isoniazid to Isonicotinic acid biotransformation also to be catalyzed by cytochrome P450 (CYP) enzymes, e.g., CYP2C[1].

   

Galactose

(3R,4S,5R,6R)-6-(Hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol

C6H12O6 (180.0633852)


D-galactopyranose is a galactopyranose having D-configuration. It has a role as an Escherichia coli metabolite and a mouse metabolite. It is a D-galactose and a galactopyranose. D-Galactose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-Galactose is a natural product found in Vigna subterranea, Lilium tenuifolium, and other organisms with data available. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

Fructose

(2R,3S,4S,5R)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol

C6H12O6 (180.0633852)


A D-fructopyranose in which the anomeric centre has beta-configuration. Fructose, a member of a group of carbohydrates known as simple sugars, or monosaccharides. Fructose, along with glucose, occurs in fruits, honey, and syrups; it also occurs in certain vegetables. It is a component, along with glucose, of the disaccharide sucrose, or common table sugar. Phosphate derivatives of fructose (e.g., fructose-1-phosphate, fructose-1,6-diphosphate) are important in the metabolism of carbohydrates. D-fructopyranose is a fructopyranose having D-configuration. It has a role as a sweetening agent. It is a fructopyranose, a D-fructose and a cyclic hemiketal. D-Fructose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-Fructose is a natural product found in Gentiana orbicularis, Colchicum schimperi, and other organisms with data available. A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Fructose is a levorotatory monosaccharide and an isomer of glucose. Although fructose is a hexose (6 carbon sugar), it generally exists as a 5-member hemiketal ring (a furanose). D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose.

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0476762)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

beta-Myrcene

InChI=1/C10H16/c1-5-10(4)8-6-7-9(2)3/h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1251936)


7-Methyl-3-methylene-1,6-octadiene, also known as beta-Myrcene or myrcene is an acyclic monoterpene. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. beta-Myrcene is a significant component of the essential oil of several plants, including allspice, bay, cannabis, hops, houttuynia, lemon grass, mango, myrcia, verbena, west indian bay tree, and cardamom. It is also the main component of wild thyme, the leaves of which contain up to 40\\\\% by weight of myrcene. Industrially, it is produced mainly semi-synthetically from myrcia, from which it gets its name. Myrcene has been detected as a volatile component in cannabis plant samples (PMID:26657499 ) and its essential oils (PMID:6991645 ). beta-Myrcene is the most abundant monoterpene in Cannabis and it has analgesic, anti-inflammatory, antibiotic, and antimutagenic activities. beta-Myrcene is a flavouring agent and it is used in the perfumery industry. It has a pleasant odor but is rarely used directly. It is a key intermediate in the production of several fragrances such as menthol, citral, citronellol, citronellal, geraniol, nerol, and linalool. Myrcene, [liquid] appears as a yellow oily liquid with a pleasant odor. Flash point below 200 °F. Insoluble in water and less dense than water. Beta-myrcene is a monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, an anabolic agent, a fragrance, a flavouring agent and a volatile oil component. Myrcene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. 7-Methyl-3-methylene-1,6-octadiene is found in allspice. 7-Methyl-3-methylene-1,6-octadiene is found in many essential oils, e.g. hop oil. 7-Methyl-3-methylene-1,6-octadiene is a flavouring agent. Myrcene is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Caraway Oil (part of); Mandarin oil (part of); Juniper Berry Oil (part of) ... View More ... A monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. Found in many essential oils, e.g. hop oil. Flavouring agent Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.11620619999997)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

4-hydroxyphenylacetate

2-(4-hydroxyphenyl)acetic acid

C8H8O3 (152.0473418)


p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic.  p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate.  p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

Melezitose

(2R,3R,4S,5S,6R)-2-[(2S,3S,4R,5R)-4-hydroxy-2,5-bis(hydroxymethyl)-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydrofuran-3-yl]oxy-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C18H32O16 (504.1690272)


Melezitose, also spelled melicitose, is a nonreducing trisaccharide sugar that is produced by many plant sap eating insects, including aphids such as Cinara pilicornis by an enzyme reaction. This is beneficial to the insects, as it reduces the stress of osmosis by reducing their own water potential. The melezitose is part of the honeydew which acts as an attractant for ants and also as a food for bees. This is useful to the lice as they have a symbiotic relationship with ants. Melezitose can be partially hydrolyzed to glucose and turanose the latter of which is an isomer of sucrose (Wikipedia). Melezitose is a trisaccharide produced by insects such as aphids. It has a role as an animal metabolite. Melezitose is a natural product found in Pogostemon cablin, Arabidopsis thaliana, and Drosophila melanogaster with data available. A trisaccharide produced by insects such as aphids. Constituent of honey Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 231 D-(+)-Melezitose can be used to identify clinical isolates of indole-positive and indole-negative Klebsiella spp.

   

Putrescine

1,4-Diaminobutane, puriss., >=99.0\\% (GC)

C4H12N2 (88.1000432)


Putrescine is a four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. It has a role as a fundamental metabolite and an antioxidant. It is a conjugate base of a 1,4-butanediammonium. Putrescine is a toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a solid. This compound belongs to the polyamines. These are compounds containing more than one amine group. Known drug targets of putrescine include putrescine-binding periplasmic protein, ornithine decarboxylase, and S-adenosylmethionine decarboxylase proenzyme. Putrescine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 1,4-Diaminobutane is a natural product found in Eupatorium cannabinum, Populus tremula, and other organisms with data available. Putrescine is a four carbon diamine produced during tissue decomposition by the decarboxylation of amino acids. Polyamines, including putrescine, may act as growth factors that promote cell division; however, putrescine is toxic at high doses. Putrescine is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. (A3286, A3287). Putrescine is a metabolite found in or produced by Saccharomyces cerevisiae. A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. (PMID:15009201, 16364196). Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. Putrescine can be found in Citrobacter, Corynebacterium, Cronobacter and Enterobacter (PMID:27872963) (https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12099). Putrescine is an organic chemical compound related to cadaverine; both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. The two compounds are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. They are also found in semen and some microalgae, together with related molecules like spermine and spermidine. A four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID B001

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Nonacosane

Nonacosane; Celidoniol, deoxy- (7CI); n-Nonacosane

C29H60 (408.469476)


Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Gamma-Linolenic acid

(6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid

C18H30O2 (278.224568)


Gamma-linolenic acid is a C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an omega-6 fatty acid and a linolenic acid. It is a conjugate acid of a gamma-linolenate. Gamolenic acid, or gamma-linolenic acid (γ-Linolenic acid) or GLA, is an essential fatty acid (EFA) comprised of 18 carbon atoms with three double bonds that is most commonly found in human milk and other botanical sources. It is an omega-6 polyunsaturated fatty acid (PUFA) also referred to as 18:3n-6; 6,9,12-octadecatrienoic acid; and cis-6, cis-9, cis-12- octadecatrienoic acid. Gamolenic acid is produced minimally in the body as the delta 6-desaturase metabolite of [DB00132]. It is converted to [DB00154], a biosynthetic precursor of monoenoic prostaglandins such as PGE1. While Gamolenic acid is found naturally in the fatty acid fractions of some plant seed oils, [DB11358] and [DB11238] are rich sources of gamolenic acid. Evening primrose oil has been investigated for clinical use in menopausal syndrome, diabetic neuropathy, and breast pain, where gamolenic acid is present at concentrations of 7-14\\\\\%. Gamolenic acid may be found in over-the-counter dietary supplements. Gamolenic acid is also found in some fungal sources and also present naturally in the form of triglycerides. Various clinical indications of gamolenic acid have been studied, including rheumatoid arthritis, atopic eczema, acute respiratory distress syndrome, asthma, premenstrual syndrome, cardiovascular disease, ulcerative colitis, ADHD, cancer, osteoporosis, diabetic neuropathy, and insomnia. gamma-Linolenic acid is a natural product found in Anemone cylindrica, Eurhynchium striatum, and other organisms with data available. Gamolenic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 6th, 9th and 12th positions from the methyl end, with all double bonds in the cis- configuration. An omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted to dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1. (From Merck Index, 11th ed) gamma-Linolenic acid, also known as 18:3n6 or GLA, belongs to the class of organic compounds known as linoleic acids and derivatives. These are derivatives of linoleic acid. Linoleic acid is a polyunsaturated omega-6 18-carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. gamma-Linolenic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Linolenic acid is an omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted into dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1 (PubChem). A C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12. gamma-Linolenic acid or GLA (γ-linolenic acid) (INN: gamolenic acid) is an n−6, or omega-6, fatty acid found primarily in seed oils. When acting on GLA, arachidonate 5-lipoxygenase produces no leukotrienes and the conversion by the enzyme of arachidonic acid to leukotrienes is inhibited. GLA is obtained from vegetable oils such as evening primrose (Oenothera biennis) oil (EPO), blackcurrant seed oil, borage seed oil, and hemp seed oil. GLA is also found in varying amounts in edible hemp seeds, oats, barley,[3] and spirulina.[4] Normal safflower (Carthamus tinctorius) oil does not contain GLA, but a genetically modified GLA safflower oil available in commercial quantities since 2011 contains 40\\\% GLA.[5] Borage oil contains 20\\\% GLA, evening primrose oil ranges from 8\\\% to 10\\\% GLA, and black-currant oil contains 15–20\\\%.[6] The human body produces GLA from linoleic acid (LA). This reaction is catalyzed by Δ6-desaturase (D6D), an enzyme that allows the creation of a double bond on the sixth carbon counting from the carboxyl terminus. LA is consumed sufficiently in most diets, from such abundant sources as cooking oils and meats. However, a lack of GLA can occur when there is a reduction of the efficiency of the D6D conversion (for instance, as people grow older or when there are specific dietary deficiencies) or in disease states wherein there is excessive consumption of GLA metabolites.[7] From GLA, the body forms dihomo-γ-linolenic acid (DGLA). This is one of the body's three sources of eicosanoids (along with AA and EPA.) DGLA is the precursor of the prostaglandin PGH1, which in turn forms PGE1 and the thromboxane TXA1. Both PGE11 and TXA1 are anti-inflammatory; thromboxane TXA1, unlike its series-2 variant, induces vasodilation, and inhibits platelet[8] consequently, TXA1 modulates (reduces) the pro-inflammatory properties of the thromboxane TXA2. PGE1 has a role in regulation of immune system function and is used as the medicine alprostadil. Unlike AA and EPA, DGLA cannot yield leukotrienes. However, it can inhibit the formation of pro-inflammatory leukotrienes from AA.[9] Although GLA is an n−6 fatty acid, a type of acid that is, in general, pro-inflammatory[citation needed], it has anti-inflammatory properties. (See discussion at Essential fatty acid interactions: The paradox of dietary GLA.) Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].

   

Obtusifoliol

(3S,4S,5S,10S,13R,14R,17R)-4,10,13,14-Tetramethyl-17-((R)-6-methyl-5-methyleneheptan-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.386145)


Obtusifoliol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, obtusifoliol is considered to be a sterol lipid molecule. Obtusifoliol is found, on average, in the highest concentration within evening primroses. Obtusifoliol has also been detected, but not quantified in, several different foods, such as common chokecherries, jicama, pepper (C. frutescens), avocado, and pecan nuts. This could make obtusifoliol a potential biomarker for the consumption of these foods. Obtusifoliol is an intermediate in the biosynthesis of cholesterol: in a reaction catalyzed by the enzyme CYP51A1 (EC 1.14.13.70, sterol 14-demethylase) (PMID: 9559662). CYP51A1 is a housekeeping enzyme essential for the viability of mammals, an essential step in cholesterol biosynthesis. Sterol 14-demethylation occurs in all organisms exhibiting de novo sterol biosynthesis and CYP51A1 has been conserved throughout evolution (PMID: 8797093). Obtusifoliol is an intermediate in the biosynthesis of cholesterol, in a reaction catalyzed by the enzyme CYP51A1 (EC 1.14.13.70, sterol 14-demethylase). (PMID: 9559662); CYP51A1 is a housekeeping enzyme essential for viability of mammals, essential step in cholesterol biosynthesis; sterol 14-demethylation occurs in all organism exhibiting de novo sterol biosynthesis, and CYP51A1 has been conserved throughout evolution. (PMID: 8797093). Obtusifoliol is found in many foods, some of which are jews ear, mamey sapote, star fruit, and tinda. Obtusifoliol is a natural product found in Euphorbia chamaesyce, Euphorbia nicaeensis, and other organisms with data available. Obtusifoliol is a specific CYP51 inhibitor, Obtusifoliol shows the affinity with Kd values of 1.2 μM and 1.4 μM for Trypanosoma brucei (TB) and human CYP51, respectively[1]. Obtusifoliol is a specific CYP51 inhibitor, Obtusifoliol shows the affinity with Kd values of 1.2 μM and 1.4 μM for Trypanosoma brucei (TB) and human CYP51, respectively[1].

   

Epi-alpha-amyrin

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.

   

Caffeoyl-CoA

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enethioate

C30H42N7O19P3S (929.1468972000001)


Caffeoyl-CoA is an acyl CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of caffeic acid. It is functionally related to a caffeic acid. It is a conjugate acid of a caffeoyl-CoA(4-). An acyl CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of caffeic acid.

   

Indole-3-carboxaldehyde

1H-indole-3-carbaldehyde

C9H7NO (145.0527612)


Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

2-Hydroxycinnamic acid

(2E)-3-(2-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473418)


2-coumaric acid, also known as o-coumaric acid, is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. It is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acids: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. 2-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 2-Hydroxycinnamic acid exists in all living organisms, ranging from bacteria to humans. 2-Hydroxycinnamic acid has been found in a few different foods, such as corns, hard wheats, and olives and in a lower concentration in pomegranates, american cranberries, and peanuts. 2-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as carrots, soy beans, ryes, rye bread, and turmerics. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. o-Coumaric acid is found in many foods, some of which are common wheat, date, bilberry, and corn. 2-coumaric acid is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. 2-Hydroxycinnamic acid is a natural product found in Mikania glomerata, Coffea arabica, and other organisms with data available. See also: Ipomoea aquatica leaf (part of). The trans-isomer of 2-coumaric acid. o-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=583-17-5 (retrieved 2024-07-01) (CAS RN: 583-17-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-

C15H10O8 (318.037566)


Myricetin, also known as cannabiscetin or myricetol, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, myricetin is considered to be a flavonoid lipid molecule. A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. Myricetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Myricetin is found, on average, in the highest concentration within a few different foods, such as common walnuts, carobs, and fennels and in a lower concentration in welsh onions, yellow bell peppers, and jutes. Myricetin has also been detected, but not quantified in several different foods, such as napa cabbages, sesames, mixed nuts, lichee, and garden cress. Myricetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. It has a role as a cyclooxygenase 1 inhibitor, an antineoplastic agent, an antioxidant, a plant metabolite, a food component, a hypoglycemic agent and a geroprotector. It is a hexahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a myricetin(1-). Myricetin is a natural product found in Ficus auriculata, Visnea mocanera, and other organisms with data available. Myricetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Quercetin (related). Flavanol found in a wide variety of foodstuffs especially in red table wine, bee pollen, bilberries, blueberries, bog whortleberries, broad beans, Chinese bajberry, corn poppy leaves, cranberries, crowberries, blackcurrants, dock leaves, fennel, grapes, parsley, perilla, rutabaga, dill weed and tea (green and black). Glycosides are also widely distributed. Potential nutriceutical showing anti-HIV activity A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB066_Myricetin_pos_30eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_20eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_40eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_50eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_10eV_CB000028.txt [Raw Data] CB066_Myricetin_neg_10eV_000019.txt [Raw Data] CB066_Myricetin_neg_40eV_000019.txt [Raw Data] CB066_Myricetin_neg_50eV_000019.txt [Raw Data] CB066_Myricetin_neg_20eV_000019.txt [Raw Data] CB066_Myricetin_neg_30eV_000019.txt Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

2-Aminobenzoic acid

Anthranilic acid, calcium (2:1) salt

C7H7NO2 (137.0476762)


2-Aminobenzoic acid, also known as anthranilic acid or O-aminobenzoate, belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. Within humans, 2-aminobenzoic acid participates in a number of enzymatic reactions. In particular, 2-aminobenzoic acid and formic acid can be biosynthesized from formylanthranilic acid through its interaction with the enzyme kynurenine formamidase. In addition, 2-aminobenzoic acid and L-alanine can be biosynthesized from L-kynurenine through its interaction with the enzyme kynureninase. It is a substrate of enzyme 2-Aminobenzoic acid hydroxylase in benzoate degradation via hydroxylation pathway (KEGG). In humans, 2-aminobenzoic acid is involved in tryptophan metabolism. Outside of the human body, 2-Aminobenzoic acid has been detected, but not quantified in several different foods, such as mamey sapotes, prairie turnips, rowals, natal plums, and hyacinth beans. This could make 2-aminobenzoic acid a potential biomarker for the consumption of these foods. 2-Aminobenzoic acid is a is a tryptophan-derived uremic toxin with multidirectional properties that can affect the hemostatic system. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. 2-Aminobenzoic acid is an organic compound. It is a substrate of enzyme anthranilate hydroxylase [EC 1.14.13.35] in benzoate degradation via hydroxylation pathway (KEGG). [HMDB]. Anthranilic acid is found in many foods, some of which are butternut squash, sunflower, ginger, and hyssop. Acquisition and generation of the data is financially supported in part by CREST/JST. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 8844 CONFIDENCE standard compound; INTERNAL_ID 8009 CONFIDENCE standard compound; INTERNAL_ID 115 KEIO_ID A010

   

Serotonin

3-(b-Aminoethyl)-5-hydroxyindole

C10H12N2O (176.0949582)


Serotonin or 5-hydroxytryptamine (5-HT) is a molecule that belongs to the class of compounds known as indoleamines. An indoleamine consists of an indole ring that bears an amino group or an alkyl amino group attached to the indole ring. Serotonin has an aminoethyl at position 2 and a hydroxyl group at position 5 of the indole ring. Serotonin exists in all living organisms, ranging from bacteria to plants to humans. In mammals, serotonin functions as a monoamine neurotransmitter, a biochemical messenger and regulator. It is synthesized from the essential amino acid L-Tryptophan. Approximately 90\\\\% of the human bodys total serotonin is located in the enterochromaffin cells in the GI tract, where it regulates intestinal movements. About 8\\\\% is found in platelets and 1–2\\\\% in the CNS. Serotonin in the nervous system acts as a local transmitter at synapses, and as a paracrine or hormonal modulator of circuits upon diffusion, allowing a wide variety of "state-dependent" behavioral responses to different stimuli. Serotonin is widely distributed in the nervous system of vertebrates and invertebrates and some of its behavioral effects have been preserved along evolution. Such is the case of aggressive behavior and rhythmic motor patterns, including those responsible for feeding. In vertebrates, which display a wider and much more sophisticated behavioral repertoire, serotonin also modulates sleep, the arousal state, sexual behavior, and others. Deficiencies of the serotonergic system causes disorders such as depression, obsessive-compulsive disorder, phobias, posttraumatic stress disorder, epilepsy, and generalized anxiety disorder. Serotonin has three different modes of action in the nervous system: as transmitter, acting locally at synaptic boutons; upon diffusion at a distance from its release sites, producing paracrine (also called volume) effects, and by circulating in the blood stream, producing hormonal effects. The three modes can affect a single neuronal circuit. (PMID: 16047543). Serotonin is also a microbial metabolite that can be found in the feces and urine of mammals. Urinary serotonin is produced by Candida, Streptococcus, Escherichia, and Enterococcus (PMID: 24621061). In plants, serotonin was first found and reported in a legume called Mucuna pruriens. The greatest concentration of serotonin in plants has been found in walnuts and hickory. In pineapples, banana, kiwi fruit, plums and tomatoes the concentration of serotonin is around 3 to 30 mg/kg. Isolated from bananas and other fruitsand is also from cotton (Gossypium hirsutum) [DFC]. Serotonin is found in many foods, some of which are common pea, eggplant, swiss chard, and dill. Serotonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-67-9 (retrieved 2024-07-01) (CAS RN: 50-67-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

2'-Deoxycytidine-5'-monophosphoric acid

{[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H14N3O7P (307.0569344)


Deoxycytidine monophosphate (dCMP), also known as deoxycytidylic acid or deoxycytidylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide, and one of the four monomers that make up DNA. In a DNA double helix, it will base pair with deoxyguanosine monophosphate. dCMP belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Deficiency of the enzyme deoxycytidine kinase (EC2.7.1.74) is associated with resistance to antiviral and anticancer chemotherapeutic agents, whereas increased enzyme activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. dCMP exists in all living species, ranging from bacteria to humans. Within humans, dCMP participates in a number of enzymatic reactions. In particular, dCMP can be converted to dCDP by the enzyme UMP-CMP kinase 2. In addition, dCMP can be converted into deoxycytidine, which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In humans, dCMP is involved in the metabolic disorder called ump synthase deficiency (orotic aciduria). Outside of the human body, dCMP has been detected, but not quantified in several different foods, such as turnips, garlics, agaves, garden onions, and italian sweet red peppers. dCMP is a deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite.

   

2-hydroxyphenylacetate

ortho-Hydroxyphenylacetic acid

C8H8O3 (152.0473418)


ortho-Hydroxyphenylacetic acid, also known as (o-hydroxyphenyl)acetate or 2-hydroxybenzeneacetic acid, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(Hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. ortho-Hydroxyphenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). ortho-Hydroxyphenylacetic acid can be found in a number of food items such as natal plum, lemon verbena, half-highbush blueberry, and parsley, which makes ortho-hydroxyphenylacetic acid a potential biomarker for the consumption of these food products. ortho-Hydroxyphenylacetic acid can be found primarily in blood, feces, and urine. Moreover, ortho-hydroxyphenylacetic acid is found to be associated with phenylketonuria, which is an inborn error of metabolism. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases (EC 1.14.13.-) in the pathway styrene degradation (KEGG). ortho-Hydroxyphenylacetic acid is also a microbial metabolite. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases [EC 1.14.13.-] in the pathway styrene degradation. (KEGG) [HMDB]. 2-Hydroxyphenylacetic acid is found in many foods, some of which are rambutan, common oregano, burbot, and wild leek. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 155 INTERNAL_ID 155; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 46 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).

   

2-Isopropylmalic acid

(2S)-2-Hydroxy-2-(1-methylethyl)butanedioic acid

C7H12O5 (176.0684702)


2-Isopropylmalic acid (CAS: 3237-44-3), also known as 3-carboxy-3-hydroxyisocaproic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. 2-Isopropylmalic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-Isopropylmalic acid is an alpha-hydroxy organic acid regularly occurring in the urine of healthy individuals (PMID: 2338430, 544608), and in hemofiltrates (PMID: 7251751). 2-Isopropylmalic acid is elevated during fasting and diabetic ketoacidosis (PMID: 1591279). It is also a metabolite found in Acetobacter (PMID: 6035258). α-Isopropylmalate (α-IPM) is the leucine biosynthetic precursor in Yeast[1]. α-Isopropylmalate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3237-44-3 (retrieved 2024-08-26) (CAS RN: 3237-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

6-Hydroxynicotinic acid

1,6-dihydro-6-oxo-3-Pyridinecarboxylic acid

C6H5NO3 (139.02694200000002)


6-Hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells (PMID:3926801, 15759292). 6-hydroxynicotinic acid can also be found in Achromobacter and Serratia. 6-hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells. (PMID: 3926801, 15759292) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H015 6-Hydroxynicotinic acid is an endogenous metabolite.

   

1,5-anhydroglucitol (1,5-AG)

(2R,3S,4R,5S)-2-(hydroxymethyl)oxane-3,4,5-triol

C6H12O5 (164.0684702)


1,5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules, and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycaemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose. (PMID: 18088226, 12166605, 7783360, 8940824) [HMDB] 1, 5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose (PMID:18088226, 12166605, 7783360, 8940824). 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.

   

2-Oxo-4-methylthiobutanoic acid

2-Keto-4-methylthiobutyric acid, monosodium salt

C5H8O3S (148.0194138)


2-oxo-4-methylthiobutanoate, also known as 2-keto-4-methylthiobutyric acid, 2-keto-4-methylthiobutyrate or 4-(methylsulfanyl)-2-oxobutanoic acid, is a member of the class of compounds known as thia- fatty acids. Thia-fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoate is a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoate can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoate can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoate can be found in a number of food items such as cloves, highbush blueberries, common beets, and cashew nuts. 2-oxo-4-methylthiobutanoate can be found in urine. Within the cell, 2-oxo-4-methylthiobutanoate is primarily located in the cytoplasm and in the membrane. 2-oxo-4-methylthiobutanoate has been found in all living species, from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoate is found to be involved in several metabolic disorders, some of those are S-adenosylhomocysteine (SAH) hydrolase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), methionine adenosyltransferase deficiency, and glycine N-methyltransferase deficiency. 4-Methylthio-2-oxobutanoic acid is the direct precursor of methional, which is a potent inducer of apoptosis in a BAF3 murine lymphoid cell line which is interleukin-3 (IL3)-dependent (PMID: 7848263). 2-oxo-4-methylthiobutanoic acid, also known as 2-keto-4-methylthiobutyrate or 4-methylthio-2-oxobutanoate, is a member of the class of compounds known as thia fatty acids. Thia fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoic acid is considered to be a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoic acid can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoic acid can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoic acid can be found in a number of food items such as leek, hickory nut, brussel sprouts, and giant butterbur, which makes 2-oxo-4-methylthiobutanoic acid a potential biomarker for the consumption of these food products. 2-oxo-4-methylthiobutanoic acid can be found primarily in urine. 2-oxo-4-methylthiobutanoic acid exists in all living species, ranging from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoic acid is involved in the methionine metabolism. 2-oxo-4-methylthiobutanoic acid is also involved in several metabolic disorders, some of which include s-adenosylhomocysteine (SAH) hydrolase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, glycine n-methyltransferase deficiency, and cystathionine beta-synthase deficiency.

   

3-Hydroxyisovaleric acid

beta-Hydroxy-beta-methylbutyric acid

C5H10O3 (118.062991)


3-Hydroxyisovaleric acid is a normal human metabolite excreted in the urine. It is a byproduct of the leucine degradation pathway. Production of 3-hydroxyisovaleric acid begins with the conversion of 3-methylcrotonyl-CoA into 3-methylglutaconyl-CoA in the mitochondria by the biotin-dependent enzyme methylcrotonyl-CoA carboxylase. Biotin deficiencies, certain lifestyle habits (smoking), or specific genetic conditions can reduce methylcrotonyl-CoA carboxylase activity. This reduction can lead to a buildup of 3-methylcrotonyl-CoA, which is converted into 3-hydroxyisovaleryl-CoA by the enzyme enoyl-CoA hydratase. Increased concentrations of 3-methylcrotonyl-CoA and 3-hydroxyisovaleryl-CoA can lead to a disruption of the esterified CoA:free CoA ratio, and ultimately to mitochondrial toxicity. Detoxification of these metabolic end products occur via the transfer of the 3-hydroxyisovaleryl moiety to carnitine forming 3-hydroxyisovaleric acid-carnitine or 3HIA-carnitine, which is then transferred across the inner mitochondrial membrane where 3-hydroxyisovaleric acid is released as the free acid (PMID: 21918059). 3-Hydroxyisovaleric acid has been found to be elevated in smokers and in subjects undergoing long-term anticonvulsant therapy with carbamazepine and/or phenytoin. These levels are elevated due to impairment of renal reclamation of biotin. Levels may also be increased from prolonged consumption of raw egg-whites (PMID: 16895887, 9523856, 15447901, 9176832) (OMIM: 210210, 253270, 600529, 253260, 246450, 210200, 238331). When present in sufficiently high levels, 3-hydroxyisovaleric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-hydroxyisovaleric acid are associated with at least a dozen inborn errors of metabolism, including 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, 3-methylglutaconic aciduria type I, biotinidase deficiency and isovaleric aciduria, dihydrolipoamide dehydrogenase deficiency, 3-methylcrotonyl-CoA carboxylase 1 deficiency, 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, late-onset multiple carboxylase deficiency, holocarboxylase synthetase deficiency, and 3-methylcrotonyl-CoA carboxylase 2 deficiency. 3-Hydroxyisovaleric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-Hydroxyisovaleric acid is a normal human metabolite excreted in the urine. Elevated levels of this compound are found in several inherited disorders such as Dihydrolipoamide dehydrogenase Deficiency, 3-Methylcrotonyl-CoA carboxylase 1 deficiency, 3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-hydroxy-3-methylglutaryl -CoA lyase Deficiency, Biotinidase deficiency multiple carboxylase deficiency late-onset , Late onset multiple carboxylase deficiency, HolMcarboxylase synthetase deficiency, 3-Methylcrotonyl-CoA carboxylase 2 deficiency. 3-Hydroxyisovaleric acid is also elevated in smokers, in subjects undergoing long-term anticonvulsant therapy with carbamazepine and/or phenytoin. These levels are elevated due to impairment of renal reclamation of biotin. Levels may also be increased from prolonged consumption of raw egg-whites (PMID: 16895887, 9523856, 15447901, 9176832)(OMIM: 210210, 253270, 600529, 253260, 246450, 210200, 238331) [HMDB] 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2]. 3-Hydroxyisovaleric acid is a normal endogenous metabolite excreted in the urine. The urinary excretion of 3-hydroxyisovaleric acid is early and sensitive indicator of biotin deficiency[1][2].

   

3-Indoleacetonitrile

2-(1H-indol-3-yl)acetonitrile

C10H8N2 (156.0687448)


3-Indoleacetonitrile is a phytoalexin. Phytoalexins are antibiotics produced by plants that are under attack. Phytoalexins tend to fall into several classes including terpenoids, glycosteroids, and alkaloids; however, researchers often find it convenient to extend the definition to include all phytochemicals that are part of the plants defensive arsenal. Phytoalexins produced in plants act as toxins to the attacking organism. They may puncture the cell wall, delay maturation, disrupt metabolism, or prevent the reproduction of the pathogen in question. However, phytoalexins are often targeted to specific predators; a plant that has anti-insect phytoalexins may not have the ability to repel a fungal attack. 3-Indoleacetonitrile is common in cruciferous vegetables such as cabbage, cauliflower, broccoli, and Brussels sprouts. Dietary indoles in cruciferous vegetables induce cytochrome P450 enzymes and have prevented tumours in various animal models. Consumption of Brassica vegetables is associated with a reduced risk of cancer of the alimentary tract in animal models and human populations (PMID:15612779, 15884814, 2342128, 3014947, 3880668, 6334634, 6419397, 6426808, 6584878, 6725517, 6838646, 7123561). Myrosinase-induced hydrolysis product of indole glucosinolates, found in cabbage and other crucifers Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I022 3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.

   

3-Methylxanthine

3-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C6H6N4O2 (166.0490736)


3-methyl-9H-xanthine is a 3-methylxanthine tautomer where the imidazole proton is located at the 9-position. It has a role as a metabolite. It is a tautomer of a 3-methyl-7H-xanthine. 3-Methylxanthine, also known as 3 MX or purine analog, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. 3-Methylxanthine is a caffeine and a theophylline metabolite. (PMID 16870158, 16678550) 3-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1076-22-8 (retrieved 2024-07-02) (CAS RN: 1076-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.

   

3-hydroxy-3-methylglutarate

beta-Hydroxy-beta-methylglutaric acid

C6H10O5 (162.052821)


3-Hydroxymethylglutaric acid is an "off-product" intermediate in the leucine degradation process. It is produced by defective or inefficient versions of 3-hydroxy-3-methylglutaryl-CoA lyase, an enzyme that normally catalyzes the conversion of 3-hydroxy-3-methylglutaryl-CoA to acetyl-CoA and acetoacetate. If this enzyme is defective, 3-hydroxy-3-methylglutaryl-CoA will accumulate in the mitochondria. Increased concentrations of 3-hydroxy-3-methylglutaryl-CoA can lead to a disruption of the esterified CoA:free CoA ratio and ultimately to mitochondrial toxicity. Detoxification of these CoA end products occurs via the transfer of the 3-hydroxymethylglutaryl moiety to carnitine, forming 3-hydroxymethylglutaric-carnitine, which is then transferred across the inner mitochondrial membrane where 3-hydroxymethylglutaric acid is released as the free acid. 3-Hydroxymethylglutaric acid has been found to accumulate in the urine of patients affected by 3-Hydroxy-3-methylglutaric aciduria, a rare inborn error of metabolism (OMIM: 246450). 3-Hydroxy-3-methylglutaric aciduria is caused by significantly reduced enzyme activity of the intramitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase (EC 4.1.3.4), the enzyme that catalyzes the final step of leucine degradation. This enzyme also plays a key role in ketone body formation. The profile of urinary organic acids for individuals with 3-hydroxy-3-methylglutaric aciduria is different from that of the other identified defects of leucine degradation, such as maple syrup urine disease (OMIM: 248600), isovaleric acidemia (OMIM: 243500), and methylcrotonylglycinemia (OMIM: 210200). The urinary organic acid profile of 3-hydroxy-3-methylglutaric aciduria includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic, and 3-methylglutaric acids (PMID: 10916782, 9658458, 3063529). Clinical manifestations of 3-hydroxy-3-methylglutaric aciduria include hepatomegaly, lethargy, coma, and apnea. Biochemically, there is a characteristic absence of ketosis with hypoglycemia, acidosis, hypertransaminasemia, and variable hyperammonemia. Therefore, when present in sufficiently high concentrations, 3-hydroxymethylglutaric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As noted above, chronically high levels of 3-hydroxymethylglutaric acid are associated with the inborn error of metabolism 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. 3-Hydroxymethylglutaric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-hydroxymethylglutaric acid, also known as meglutol or dicrotalic acid, is a member of the class of compounds known as hydroxy fatty acids. Hydroxy fatty acids are fatty acids in which the chain bears a hydroxyl group. 3-hydroxymethylglutaric acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3-hydroxymethylglutaric acid can be synthesized from glutaric acid. 3-hydroxymethylglutaric acid is also a parent compound for other transformation products, including but not limited to, viscumneoside VII, viscumneoside IV, and yanuthone D. 3-hydroxymethylglutaric acid can be found in flaxseed, which makes 3-hydroxymethylglutaric acid a potential biomarker for the consumption of this food product. 3-hydroxymethylglutaric acid can be found primarily in saliva and urine. 3-hydroxymethylglutaric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronically high levels of 3-hydroxymethylglutaric acid are associated with the inborn error of metabolism: 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency (T3DB). Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis. Meglutol is an antilipidemic agent that lowers cholesterol, triglycerides, and serum beta-lipoproteins and phospholipids, and inhibits hydroxymethylglutaryl-CoA reductase activity, which is the rate-limiting enzyme in cholesterol biosynthesis.

   

Adenosine monophosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7P (347.0630824)


Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.

   

Phosphoribosyl pyrophosphate

[({[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C5H13O14P3 (389.9518188)


Phosphoribosyl pyrophosphate, also known as PRPP or PRib-PP, belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Phosphoribosyl pyrophosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). Phosphoribosyl pyrophosphate exists in all living species, ranging from bacteria to humans. Within humans, phosphoribosyl pyrophosphate participates in a number of enzymatic reactions. In particular, guanine and phosphoribosyl pyrophosphate can be biosynthesized from guanosine monophosphate through its interaction with the enzyme adenine phosphoribosyltransferase. In addition, guanine and phosphoribosyl pyrophosphate can be biosynthesized from guanosine monophosphate; which is catalyzed by the enzyme hypoxanthine-guanine phosphoribosyltransferase. In humans, phosphoribosyl pyrophosphate is involved in adenosine deaminase deficiency. Phosphoribosyl pyrophosphate is a pentosephosphate and it is the key substance in the biosynthesis of histidine, tryptophan, and purine and pyrimidine nucleotides. It is formed from ribose 5-phosphate by the enzyme ribose-phosphate diphosphokinase. It plays a role in transferring phosphate groups in several reactions. Phosphoribosyl pyrophosphate (PRPP) is a pentosephosphate. The key substance in the biosynthesis of histidine, tryptophan, and purine and pyrimidine nucleotides. COVID info from COVID-19 Disease Map KEIO_ID P023 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nandrolone

(1S,2R,10R,11S,14S,15S)-14-hydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C18H26O2 (274.1932696)


Nandrolone is a C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of estradiol to resemble testosterone, but it has one less carbon atom at the 19 position (Pubchem). Nandrolone is an anabolic steroid occurring naturally in the human body, albeit in small quantities. Nandrolone is most commonly sold commercially as its decanoate ester (Deca-Durabolin) and less commonly as a phenylpropionate ester (Durabolin). Nandrolone use is indirectly detectable in urine tests by testing for the presence of 19-norandrosterone, a metabolism product of this molecule. The International Olympic Committee has set a limit of 2 ng per ml of urine as the upper limit, beyond which an athlete is suspected of doping (Wikipedia). Nandrolone is a C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of estradiol to resemble testosterone but less one carbon at the 19 position. -- Pubchem; Nandrolone is an anabolic steroid occurring naturally in the human body, albeit in small quantities. Nandrolone is most commonly sold commercially as its decanoate ester (Deca-Durabolin) and less commonly as a phenylpropionate ester (Durabolin). Nandrolone use is indirectly detectable in urine tests by testing for the presence of 19-norandrosterone, a metabolism product of this molecule. The International Olympic Committee has set a limit of 2 ng per ml of urine as the upper limit, beyond which an athlete is suspected of doping. -- Wikipedia [HMDB] A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AB - Estren derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid S - Sensory organs > S01 - Ophthalmologicals

   

Adenosine diphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.029415)


Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

Aconitate [cis or trans]

(1Z)-prop-1-ene-1,2,3-tricarboxylic acid

C6H6O6 (174.0164376)


cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.

   

Mesaconic acid

trans-1-Propene-1,2-dicarboxylic acid

C5H6O4 (130.0266076)


Mesaconic acid, also known as 2-methylfumarate or citronic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Mesaconic acid is a dicarboxylic butenoic acid, with a methyl group in position 2 and the double bound between carbons 2 and 3. Mesaconic acid was first studied for its physical properties in 1874 by Jacobus van ‘t Hoff (https://web.archive.org/web/20051117102410/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/Van\\%27t-Hoff-1874.html). It is now known to be involved in the biosynthesis of vitamin B12 and it is also a competitor inhibitor of the reduction of fumarate. Mesaconic acid is one of several isomeric carboxylic acids obtained from citric acid. Is used as a fire retardant, recent studies revealed this acid is a competitive inhibitor of fumarate reduction. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D003879 - Dermatologic Agents

   

Glycerate

(2R)-2,3-dihydroxypropanoic acid

C3H6O4 (106.0266076)


Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dihydrofolic acid

(2S)-2-[(4-{[(2-amino-4-oxo-1,4,7,8-tetrahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C19H21N7O6 (443.15532460000003)


Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division. It can be targeted with drug analogs to prevent nucleic acid synthesis. Dihydrofolic acid is also known by the name Dihydrofolate - more commonly Vitamin B9. [HMDB] Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division. It can be targeted with drug analogs to prevent nucleic acid synthesis. Dihydrofolic acid is also known by the name Dihydrofolate - more commonly Vitamin B9. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid.

   

Dihydroorotic acid

(S)-2,6-dioxo-hexahydro-Pyrimidine-4-carboxylic acid

C5H6N2O4 (158.0327556)


4,5-Dihydroorotic acid, also known as dihydroorotate or hydroorotate is a pyrimidinemonocarboxylic acid that results from the base-catalysed cyclisation of N-alpha-carbethoxyasparagine. It is classified as a secondary amide, a monocarboxylic acid, a pyrimidinemonocarboxylic acid and a N-acylurea. 4,5-Dihydroorotic acid is a derivative of orotic acid which serves as an intermediate in pyrimidine biosynthesis. 4,5-Dihydroorotic acid exists in all living species, ranging from bacteria to plants to humans. 4,5-Dihydroorotic acid is synthesized by the enzyme known as Dihydroorotase (EC 3.5.2.3) which converts carbamoyl aspartic acid into 4,5-dihydroorotic acid as part of the de novo pyrimidine biosynthesis pathway (PMID: 13163076). 4,5-Dihydroorotic acid is also a substrate for the enzyme known as dihydroorotate dehydrogenase (DHODH). In mammalian species, DHODH catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway, which involves the ubiquinone-mediated oxidation of dihydroorotate to orotate and the reduction of flavin mononucleotide (FMN) to dihydroflavin mononucleotide (FMNH2). Inhibition of DHODH activity with teriflunomide (an immunomodulatory drug) or expression with RNA interference results in reduced ROS generation and consequent apoptosis of transformed skin and prostate epithelial cells. Mutations in the DHOD gene have been shown to cause Miller syndrome, also known as Genee-Wiedemann syndrome, Wildervanck-Smith syndrome or post-axial acrofacial dystosis (PMID: 19915526). 4,5-Dihydroorotic acid is a substrate of the enzyme orotate reductase [EC 1.3.1.14], which is part of the pyrimidine metabolism pathway. (KEGG) Dihydroorotate is oxidized by Dihydroorotate dehydrogenases (DHODs) to orotate. These dehydrogenases use their FMN (flavin mononucleotide) prosthetic group to abstract a hydride equivalent from C6 to deprotonate C5 [HMDB] L-Dihydroorotic acid can reversibly hydrolyze to yield the acyclic L-ureidosuccinic acid by dihydrowhey enzyme[1].

   

Hypoxanthine

1,7-Dihydro-6H-purine-6-one

C5H4N4O (136.03850939999998)


Hypoxanthine, also known as purine-6-ol or Hyp, belongs to the class of organic compounds known as purines. Purines are a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Hypoxanthine is also classified as an oxopurine, Hypoxanthine is a naturally occurring purine derivative and a reaction intermediate in the metabolism of adenosine and in the formation of nucleic acids by the nucleotide salvage pathway. Hypoxanthine exists in all living species, ranging from bacteria to plants to humans. Hypoxanthine has been detected, but not quantified in, several different foods, such as radish (var.), mountain yams, welsh onions, greenthread tea, and common beets. Hypoxanthine is occasionally found as a constituent of nucleic acids, where it is present in the anticodon of tRNA in the form of its nucleoside inosine. Biologically, hypoxanthine can be formed a number of ways. For instance, it is one of the products of the action of xanthine oxidase on xanthine. However, more frequently xanthine is formed from oxidation of hypoxanthine by xanthine oxidoreductase. The enzyme hypoxanthine-guanine phosphoribosyltransferase converts hypoxanthine into IMP in the nucleotide salvage pathway. Hypoxanthine is also a spontaneous deamination product of adenine. Under normal circumstances hypoxanthine is readily converted to uric acid. In this process, hypoxanthine is first oxidized to xanthine, which is further oxidized to uric acid by xanthine oxidase. Molecular oxygen, the oxidant in both reactions, is reduced to H2O2 and other reactive oxygen species. In humans, uric acid is the final product of purine degradation and is excreted in the urine. Within humans, hypoxanthine participates in a number of other enzymatic reactions. In particular, hypoxanthine and ribose 1-phosphate can be biosynthesized from inosine through its interaction with the enzyme purine nucleoside phosphorylase. Hypoxanthine is also involved in the metabolic disorder called the purine nucleoside phosphorylase deficiency. Purine nucleoside phosphorylase (PNP) deficiency is a disorder of the immune system (primary immunodeficiency) characterized by recurrent infections, neurologic symptoms, and autoimmune disorders. PNP deficiency causes a shortage of white blood cells, called T-cells, that help fight infection. Affected individuals develop neurologic symptoms, such as stiff or rigid muscles (spasticity), uncoordinated movements (ataxia), developmental delay, and intellectual disability. PNP deficiency is associated with an increased risk to develop autoimmune disorders, such as autoimmune hemolytic anemia, idiopathic thrombocytopenic purpura (ITP), autoimmune neutropenia, thyroiditis, and lupus. [Spectral] Hypoxanthine (exact mass = 136.03851) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Occurs widely in plant and animal tissue (CCD). Hypoxanthine is found in many foods, some of which are japanese chestnut, parsnip, okra, and horned melon. Hypoxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=68-94-0 (retrieved 2024-07-02) (CAS RN: 68-94-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.

   

Indoleacetic acid

2-Amino-3-(2-amino-2-carboxy-ethyl)disulfanyl-propanoic acid

C10H9NO2 (175.0633254)


Indoleacetic acid (IAA) is a breakdown product of tryptophan metabolism and is often produced by the action of bacteria in the mammalian gut. Higher levels of IAA are associated with bacteria from Clostridium species including C. stricklandii, C. lituseburense, C. subterminale, and C. putrefaciens (PMID: 12173102). IAA can be found in Agrobacterium, Azospirillum, Bacillus, Bradyrhizobium, Clostridium, Enterobacter, Pantoea, Pseudomonas, Rhizobium (PMID: 12173102, PMID: 17555270, PMID: 12147474, PMID: 19400643, PMID: 9450337, PMID: 21397014) (https://link.springer.com/chapter/10.1007/978-1-4612-3084-7_7) (https://escholarship.org/uc/item/1bf1b5m3). Some endogenous production of IAA in mammalian tissues also occurs. It may be produced by the decarboxylation of tryptamine or the oxidative deamination of tryptophan. IAA frequently occurs at low levels in urine and has been found in elevated levels in the urine of patients with phenylketonuria (PMID: 13610897). IAA has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Using material extracted from human urine, it was discovered by Kogl in 1933 that indoleacetic acid is also an important plant hormone (PMID: 13610897). Specifically, IAA is a member of the group of phytohormones called auxins. IAA is generally considered to be the most important native auxin. Plant cells synthesize IAA from tryptophan (Wikipedia). IAA and some derivatives can be oxidized by horseradish peroxidase (HRP) into cytotoxic species. IAA is only toxic after oxidative decarboxylation; the effect of IAA/HRP is thought to be due in part to the formation of methylene-oxindole, which may conjugate with DNA bases and protein thiols. IAA/HRP could be used as the basis for targeted cancer, a potential new role for plant auxins in cancer therapy (PMID: 11163327). 1h-indol-3-ylacetic acid, also known as (indol-3-yl)acetate or heteroauxin, belongs to indole-3-acetic acid derivatives class of compounds. Those are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 1h-indol-3-ylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 1h-indol-3-ylacetic acid is a mild, odorless, and sour tasting compound and can be found in a number of food items such as sweet bay, chinese bayberry, winter squash, and linden, which makes 1h-indol-3-ylacetic acid a potential biomarker for the consumption of these food products. 1h-indol-3-ylacetic acid can be found primarily in most biofluids, including blood, feces, saliva, and urine, as well as throughout most human tissues. 1h-indol-3-ylacetic acid exists in all living species, ranging from bacteria to humans. In humans, 1h-indol-3-ylacetic acid is involved in the tryptophan metabolism. Moreover, 1h-indol-3-ylacetic acid is found to be associated with appendicitis and irritable bowel syndrome. 1h-indol-3-ylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3375; ORIGINAL_PRECURSOR_SCAN_NO 3371 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3395; ORIGINAL_PRECURSOR_SCAN_NO 3391 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3369; ORIGINAL_PRECURSOR_SCAN_NO 3366 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3385; ORIGINAL_PRECURSOR_SCAN_NO 3380 D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 275; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 2796 CONFIDENCE standard compound; INTERNAL_ID 166 COVID info from COVID-19 Disease Map Corona-virus KEIO_ID I038 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division. 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O7 (316.05830019999996)


Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

L-Histidine

(2S)-2-amino-3-(1H-imidazol-5-yl)propanoic acid

C6H9N3O2 (155.0694734)


Histidine (His), also known as L-histidine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Histidine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Histidine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. Histidine is a unique amino acid with an imidazole functional group. The acid-base properties of the imidazole side chain are relevant to the catalytic mechanism of many enzymes such as proteases. In catalytic triads, the basic nitrogen of histidine abstracts a proton from serine, threonine, or cysteine to activate it as a nucleophile. In a histidine proton shuttle, histidine is used to quickly shuttle protons. It can do this by abstracting a proton with its basic nitrogen to make a positively charged intermediate and then use another molecule to extract the proton from its acidic nitrogen. Histidine forms complexes with many metal ions. The imidazole sidechain of the histidine residue commonly serves as a ligand in metalloproteins. Histidine was first isolated by German physician Albrecht Kossel in 1896. Histidine is an essential amino acid in humans and other mammals. It was initially thought that it was only essential for infants, but longer-term studies established that it is also essential for adults. Infants four to six months old require 33 mg/kg of histidine. It is not clear how adults make small amounts of histidine, and dietary sources probably account for most of the histidine in the body. Histidine is a precursor for histamine and carnosine biosynthesis. Inborn errors of histidine metabolism, including histidinemia, maple syrup urine disease, propionic acidemia, and tyrosinemia I, exist and are marked by increased histidine levels in the blood. Elevated blood histidine is accompanied by a wide range of symptoms, from mental and physical retardation to poor intellectual functioning, emotional instability, tremor, ataxia and psychosis. Histidine and other imidazole compounds have anti-oxidant, anti-inflammatory and anti-secretory properties (PMID: 9605177 ). The efficacy of L-histidine in protecting inflamed tissue is attributed to the capacity of the imidazole ring to scavenge reactive oxygen species (ROS) generated by cells during acute inflammatory response (PMID: 9605177 ). Histidine, when administered in therapeutic quantities is able to inhibit cytokines and growth factors involved in cell and tissue damage (US patent 6150392). Histidine in medical therapies has its most promising trials in rheumatoid arthritis where up to 4.5 g daily have been used effectively in severely affected patients. Arthritis patients have been found to have low serum histidine levels, apparently because of very rapid removal of histidine from their blood (PMID: 1079527 ). Other patients besides arthritis patients that have been found to be low in serum histidine are those with chronic renal failure. Urinary levels of histidine are reduced in pediatric patients with pneumonia (PMID: 2084459 ). Asthma patients exhibit increased serum levels of histidine over normal controls (PMID: 23517038 ). Serum histidine levels are lower and are negatively associated with inflammation and oxidative stress in obese women (PMID: 23361591 ). Histidine supplementation has been shown to reduce insulin resistance, reduce BMI and fat mass and suppress inflammation and oxidative stress in obese women with metabolic syndrome. Histidine appears to suppress pro-inflammatory cytokine expression, possibly via the NF-κB pathway, in adipocytes (PMID: 23361591 ). Low plasma concentrations of histidine are associated with protein-energy... [Spectral] L-Histidine (exact mass = 155.06948) and L-Lysine (exact mass = 146.10553) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Histidine (exact mass = 155.06948) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. Flavouring ingredient; dietary supplement, nutrient L-Histidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=71-00-1 (retrieved 2024-07-01) (CAS RN: 71-00-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.

   

Saccharopine

(2S)-2-{[(5S)-5-amino-5-carboxypentyl]amino}pentanedioic acid

C11H20N2O6 (276.13213)


Saccharopine is an intermediate in the degradation of lysine, formed by the condensation of lysine and alpha-ketoglutarate. The saccharopine pathway is the main route for lysine degradation in mammals, and its first two reactions are catalyzed by enzymatic activities known as lysine-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH), which reside on a single bifunctional polypeptide (LOR/SDH) (EC 1.5.1.8). The reactions involved with saccharopine dehydrogenases have very strict substrate specificity for L-lysine, 2-oxoglutarate, and NADPH. LOR/SDH has been detected in a number of mammalian tissues, mainly in the liver and kidney, contributing not only to the general nitrogen balance in the organism but also to the controlled conversion of lysine into ketone bodies. A tetrameric form has also been observed in human liver and placenta. LOR activity has also been detected in brain mitochondria during embryonic development, and this opens up the question of whether or not lysine degradation has any functional significance during brain development. As a result, there is now a new focus on the nutritional requirements for lysine in gestation and infancy. Finally, LOR and/or SDH deficiencies seem to be involved in a human autosomal genetic disorder known as familial hyperlysinemia, which is characterized by serious defects in the functioning of the nervous system and characterized by a deficiency in lysine-ketoglutarate reductase, saccharopine dehydrogenase, and saccharopine oxidoreductase activities. Saccharopinuria (high amounts of saccharopine in the urine) and saccharopinemia (an excess of saccharopine in the blood) are conditions present in some inherited disorders of lysine degradation (PMID: 463877, 10567240, 10772957, 4809305). If present in sufficiently high levels, saccharopine can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Saccharopine is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). Many affected children with organic acidemias experience intellectual disability or delayed development. Amino acid from Saccharomyces cerevisiae and Neurospora crassaand is also found in mushrooms and seeds

   

N-Acetyl-D-cysteine

2-[(1-Hydroxyethylidene)amino]-3-sulphanylpropanoic acid

C5H9NO3S (163.03031239999999)


R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CB - Mucolytics V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7]. Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7].

   

O-Acetylserine

(2S)-3-(acetyloxy)-2-aminopropanoic acid

C5H9NO4 (147.0531554)


O-Acetylserine is an α-amino acid with the chemical formula HO2CCH(NH2)CH2OC(O)CH3. It is an intermediate in the biosynthesis of the common amino acid cysteine in bacteria and plants. O-Acetylserine is biosynthesized by acetylation of the serine by the enzyme serine transacetylase. The enzyme O-acetylserine (thiol)-lyase, using sulfide sources, converts this ester into cysteine, releasing acetate. O-Acetylserine belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-Acetylserine (OASS) is an acylated amino acid derivative. O-Acetylserine exists in all living species, ranging from bacteria to humans. Outside of the human body, O-Acetylserine has been detected, but not quantified in several different foods, such as okra, vaccinium (blueberry, cranberry, huckleberry), rapes, sparkleberries, and lingonberries. This could make O-acetylserine a potential biomarker for the consumption of these foods. O-acetyl-l-serine, also known as L-serine, acetate (ester) or (2s)-3-acetyloxy-2-aminopropanoate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. O-acetyl-l-serine is soluble (in water) and a moderately acidic compound (based on its pKa). O-acetyl-l-serine can be found in a number of food items such as sorrel, summer savory, purslane, and cherimoya, which makes O-acetyl-l-serine a potential biomarker for the consumption of these food products. O-acetyl-l-serine can be found primarily in blood and urine, as well as in human prostate tissue. O-acetyl-l-serine exists in all living species, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. O-Acetylserine (O-Acetyl-L-serine) is an intermediate in the biosynthesis of the amino acid cysteine in bacteria and plants.

   

Orotic acid

2,6-Dioxo-1,2,3,6-tetrahydro-pyrimidine-4-carboxylic acid

C5H4N2O4 (156.0171064)


Orotic acid is classified as a pyrimidinemonocarboxylic acid. That is it is a uracil bearing a carboxy substituent at position C-6. It is also classified as a pyrimidinedione and a carboxylic acid. Orotic acid is a minor dietary constituent. Indeed, until it was realized that it could be synthesized by humans, orotic acid was known as vitamin B-13. The richest dietary sources of orotic acid are cows milk and other dairy products as well as root vegetables such as carrots and beets. Dietary intake probably contributes to a basal rate of orotic acid excretion in urine because fasting decreases excretion by ~50\\\\%. However, it is now apparent that most urinary orotic acid is synthesized in the body, where it arises as an intermediate in the pathway for the synthesis of pyrimidine nucleotides. Orotic acid is converted to UMP by UMP synthase, a multifunctional protein with both orotate phosphoribosyltransferase and orotidylate decarboxylase activity. The most frequently observed inborn error of pyrimidine nucleotide synthesis is a mutation of the multifunctional protein UMP synthase (UMP synthase deficiency or orotic aciduria). This disorder prevents the conversion of orotic acid to UMP, and thus to other pyrimidines. As a result, plasma orotic acid accumulates to high concentrations, and increased quantities appear in the urine. Indeed, urinary orotic acid is so markedly increased in individuals harboring a mutation in UMP synthase that orotic acid crystals can form in the urine. The urinary concentration of orotic acid in individuals suffering from orotic aciduria can be of the order of millimoles of orotic acid per millimole creatinine. By comparison, the urinary level in unaffected individuals is ~ 1 ¬umol/mmol creatinine (PMID: 17513443). Orotic aciduria is characterized by megaloblastic anemia and orotic acid crystalluria that is frequently associated with some degree of physical and mental retardation. These features respond to appropriate pyrimidine replacement therapy and most cases appear to have a good prognosis. When present in sufficiently high levels, orotic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of orotic acid are associated with at least seven inborn errors of metabolism, including argininemia, LPI syndrome (lysinuric protein intolerance), hyperornithinemia-hyperammonemia-homocitrullinuria (HHH), OTC deficiency, citrullinemia type I, purine nucleoside phosphorylase deficiency, and orotic aciduria. Orotic acid is broadly classified as an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Orotic acid, also known as orotate or orotsaeure, is a member of the class of compounds known as pyrimidinecarboxylic acids. Pyrimidinecarboxylic acids are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Orotic acid can be synthesized from uracil. Orotic acid can also be synthesized into dihydroorotic acid. Orotic acid can be found in a number of food items such as okra, atlantic herring, black chokeberry, and prunus (cherry, plum), which makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid can be found primarily in most biofluids, including saliva, amniotic fluid, blood, and urine, as well as in human liver and pancreas tissues. Orotic acid exists in all living species, ranging from bacteria to humans. In humans, orotic acid is involved in the pyrimidine metabolism. Orotic acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, orotic acid is found to be associated with hyperornithinemia-hyperammonemia-homocitrullinuria, orotic aciduria I, ornithine transcarbamylase deficiency, and n-acetylglutamate synthetase deficiency. Orotic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. The compound is manufactured in the body via a mitochondrial enzyme, dihydroorotate dehydrogenase or a cytoplasmic enzyme of pyrimidine synthesis pathway. It is sometimes used as a mineral carrier in some dietary supplements (to increase their bioavailability), most commonly for lithium orotate . Chronically high levels of orotic acid are associated with at least 4 inborn errors of metabolism including: Argininemia, Citrullinemia Type I, Purine nucleoside phosphorylase deficiency and Orotic Aciduria (T3DB). Orotic acid (6-Carboxyuracil), a precursor in biosynthesis of pyrimidine nucleotides and RNA, is released from the mitochondrial dihydroorotate dehydrogenase (DHODH) for conversion to UMP by the cytoplasmic UMP synthase enzyme. Orotic acid is a marker for measurement in routine newborn screening for urea cycle disorders. Orotic acid can induce hepatic steatosis and hepatomegaly in rats[1][2][3].

   

Pyridoxal

3-Hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxaldehyde

C8H9NO3 (167.0582404)


Pyridoxal is a pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. Pyridoxal, also known as pyridoxaldehyde, belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2, 3, 4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal is one form of vitamin B6. Pyridoxal exists in all living species, ranging from bacteria to humans. In humans, pyridoxal is involved in glycine and serine metabolism. Pyridoxal has been detected, but not quantified in several different foods, such as sourdoughs, lichee, arctic blackberries, watercress, and cottonseeds. Some medically relevant bacteria, such as those in the genera Granulicatella and Abiotrophia, require pyridoxal for growth. This nutritional requirement can lead to the culture phenomenon of satellite growth. In in vitro culture, these pyridoxal-dependent bacteria may only grow in areas surrounding colonies of bacteria from other genera ("satellitism") that are capable of producing pyridoxal. Pridoxal has a role as a cofactor, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.

   

Pyridoxamine 5'-phosphate

{[4-(aminomethyl)-5-hydroxy-6-methylpyridin-3-yl]methoxy}phosphonic acid

C8H13N2O5P (248.05620580000001)


Pyridoxamine 5-phosphate belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. Vitamin B6 is a water-soluble vitamin. The three major forms of vitamin B6 are pyridoxine (also known as pyridoxol), pyridoxal, and pyridoxamine, which are all converted in the liver to pyridoxal 5-phosphate (PLP) a cofactor in many reactions of amino acid metabolism. PLP also is necessary for the enzymatic reaction governing the release of glucose from glycogen. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. KEIO_ID P113; [MS3] KO009146 KEIO_ID P113; [MS2] KO009143 KEIO_ID P113

   

Pyridoxine

3-Hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine

C8H11NO3 (169.0738896)


Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

Riboflavin (Vitamin B2)

7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione

C17H20N4O6 (376.138278)


Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide. Riboflavin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-88-5 (retrieved 2024-07-01) (CAS RN: 83-88-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.

   

Spermine

(3-aminopropyl)({4-[(3-aminopropyl)amino]butyl})amine

C10H26N4 (202.2157356)


Spermine, also known as gerontine or musculamine, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. The resultin N-carbamoylputrescine is acted on by a hydrolase to split off urea group, leaving putrescine. The precursor for synthesis of spermine is the amino acid ornithine. The intermediate is spermidine. Spermine is a drug. Spermine exists in all living species, ranging from bacteria to humans. 5-methylthioadenosine and spermine can be biosynthesized from S-adenosylmethioninamine and spermidine through its interaction with the enzyme spermine synthase. Another pathway in plants starts with decarboxylation of L-arginine to produce agmatine. In humans, spermine is involved in spermidine and spermine biosynthesis. Outside of the human body, spermine is found, on average, in the highest concentration in oats. Spermine has also been detected, but not quantified in several different foods, such as sapodilla, mexican groundcherries, cloves, sourdocks, and sunflowers. This could make spermine a potential biomarker for the consumption of these foods. This decarboxylation gives putrescine. The name spermin was first used by the German chemists Ladenburg and Abel in 1888, and the correct structure of spermine was not finally established until 1926, simultaneously in England (by Dudley, Rosenheim, and Starling) and Germany (by Wrede et al.). In one pathway L-glutamine is the precursor to L-ornithine, after which the synthesis of spermine from L-ornithine follows the same pathway as in animals. Spermine is a potentially toxic compound. [Spectral] Spermine (exact mass = 202.21575) and Spermidine (exact mass = 145.1579) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Occurs as phosphate in ox pancreas, yeast and meat products IPB_RECORD: 270; CONFIDENCE confident structure KEIO_ID S011; [MS2] KO009230 KEIO_ID S011 Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects. Spermine (NSC 268508) functions directly as a free radical scabenger to protect DNA from free radical attack. Spermine has antiviral effects.

   

Adipic acid

1,4-Butanedicarboxylic acid

C6H10O4 (146.057906)


Adipic acid is an important inudstrial dicarboxylic acid with about 2.5 billion kilograms produced per year. It is used mainly in the production of nylon. It occurs relatively rarely in nature. It has a tart taste and is also used as an additive and gelling agent in jello or gelatins. It is also used in some calcium carbonate antacids to make them tart. Adipic acid has also been incorporated into controlled-release formulation matrix tablets to obtain pH-independent release for both weakly basic and weakly acidic drugs. Adipic acid in the urine and in the blood is typically exogenous in origin and is a good biomarker of jello consumption. In fact, a condition known as adipic aciduria is actually an artifact of jello consumption (PMID: 1779643). However, certain disorders (such as diabetes and glutaric aciduria type I.) can lead to elevated levels of adipic acid snd other dicarboxcylic acids (such as suberic acid) in urine (PMID: 17520433; PMID: 6778884). Moreover, adipic acid is also found to be associated with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, carnitine-acylcarnitine translocase deficiency, malonyl-Coa decarboxylase deficiency, and medium Chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. Adipic acid is also microbial metabolite found in Escherichia. Constituent of beet juice, pork fat, guava fruit (Psidium guajava), papaya (Carica papaya) and raspberry (Rubus idaeus). Food acidulant Adipic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=124-04-9 (retrieved 2024-07-16) (CAS RN: 124-04-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adipic acid is found to be associated with HMG-CoA lyase deficiency, carnitine-acylcarnitine translocase deficiency, malonyl-Coa decarboxylase deficiency, and medium Chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism.

   

Daidzein

7-hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O4 (254.057906)


Daidzein is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. It has a role as an antineoplastic agent, a phytoestrogen, a plant metabolite, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is a conjugate acid of a daidzein(1-). Daidzein is a natural product found in Pericopsis elata, Thermopsis lanceolata, and other organisms with data available. Daidzein is an isoflavone extract from soy, which is an inactive analog of the tyrosine kinase inhibitor genistein. It has antioxidant and phytoestrogenic properties. (NCI) Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (A3191, A3189). See also: Trifolium pratense flower (part of). Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (PMID:18045128, 17579894). Daidzein is a biomarker for the consumption of soy beans and other soy products. Widespread isoflavone in the Leguminosae, especies Phaseolus subspecies (broad beans, lima beans); also found in soy and soy products (tofu, miso), chick peas (Cicer arietinum) and peanuts (Arachis hypogaea). Nutriceutical with anticancer and bone protective props. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4894; ORIGINAL_PRECURSOR_SCAN_NO 4890 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3572 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4855 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4898; ORIGINAL_PRECURSOR_SCAN_NO 4894 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4884; ORIGINAL_PRECURSOR_SCAN_NO 4881 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2315 IPB_RECORD: 1801; CONFIDENCE confident structure IPB_RECORD: 421; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 8828 CONFIDENCE standard compound; INTERNAL_ID 2874 CONFIDENCE standard compound; INTERNAL_ID 4239 CONFIDENCE standard compound; INTERNAL_ID 4163 CONFIDENCE standard compound; INTERNAL_ID 181 Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator.

   

Thymidine-5'-monophosphoric acid

{[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy}phosphonic acid

C10H15N2O8P (322.0566)


5-Thymidylic acid (conjugate base thymidylate), also known as thymidine monophosphate (TMP), deoxythymidine monophosphate (dTMP), or deoxythymidylic acid (conjugate base deoxythymidylate), is a nucleotide that is used as a monomer in DNA. It is an ester of phosphoric acid with the nucleoside thymidine. dTMP consists of a phosphate group, the pentose sugar deoxyribose, and the nucleobase thymine. Unlike the other deoxyribonucleotides, thymidine monophosphate often does not contain the "deoxy" prefix in its name; nevertheless, its symbol often includes a "d" ("dTMP"). 5-Thymidylic acid belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. The neutral species of 5-Thymidylic acid (2-deoxythymidine 5-monophosphate). 5-Thymidylic acid exists in all living species, ranging from bacteria to humans. Within humans, 5-thymidylic acid participates in a number of enzymatic reactions. In particular, 5-thymidylic acid and dihydrofolic acid can be biosynthesized from dUMP and 5,10-methylene-THF by the enzyme thymidylate synthase. In addition, 5-thymidylic acid can be converted into dTDP; which is catalyzed by the enzyme thymidylate synthase. In humans, 5-thymidylic acid is involved in pyrimidine metabolism. Outside of the human body, 5-Thymidylic acid has been detected, but not quantified in several different foods, such as common buckwheats, corn salad, garden cress, squashberries, and star fruits. 5-thymidylic acid, also known as thymidylate or thymidine 5-phosphate, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. Pyrimidine 2-deoxyribonucleoside monophosphates are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 5-thymidylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-thymidylic acid can be found in a number of food items such as burbot, enokitake, scarlet bean, and garland chrysanthemum, which makes 5-thymidylic acid a potential biomarker for the consumption of these food products. 5-thymidylic acid can be found primarily in feces, as well as in human fibroblasts tissue. 5-thymidylic acid exists in all living species, ranging from bacteria to humans. In humans, 5-thymidylic acid is involved in the pyrimidine metabolism. 5-thymidylic acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Uric acid

2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione

C5H4N4O3 (168.0283394)


Uric acid is a heterocyclic purine derivative that is the final oxidation product of purine metabolism. It is a weak acid distributed throughout the extracellular fluid as sodium urate. Uric acid is produced by the enzyme xanthine oxidase, which oxidizes oxypurines such as xanthine into uric acid. In most mammals, except humans and higher primates, the enzyme uricase further oxidizes uric acid to allantoin. Interestingly, during the Miocene epoch (~15-20 million years ago), two distinct mutations in the primate genome occurred that led to a nonfunctioning uricase gene. Consequently, humans, apes, and certain New World monkeys have much higher uric acid levels (>120 μM) compared with other mammals (<<120 uM). The loss of uricase in higher primates parallels the similar loss of the ability to synthesize ascorbic acid vitamin C. This may be because in higher primates uric acid partially replaces ascorbic acid. Like ascorbic acid, uric acid is an antioxidant. In fact, in primates, uric acid is the major antioxidant in serum and is thought to be a major factor in lengthening life-span and decreasing age-specific cancer rates in humans and other primates (PMID: 6947260). Uric acid is also the end product of nitrogen metabolism in birds and reptiles. In these animal species, it is excreted in feces as a dry mass. In humans and other mammals, the amount of urate in the blood depends on the dietary intake of purines, the level of endogenous urate biosynthesis, and the rate of urate excretion. Several kidney urate transporters are involved in the regulation of plasma urate levels. These include the urate transporter 1 (URAT1), which controls the reabsorption of urate as well as a number of organic ion transporters (OAT), such as OAT1 and OAT3, and the ATP-dependent urate export transporter MRP4. URAT1 is believed to be most critical in the regulation of plasma urate levels. (PMID: 17890445) High levels of plasma uric acid lead to a condition called hyperuricemia while low levels are associated with a condition called hypouricemia. Hyperuricemia has been defined as a uric acid concentration greater than 380 μM, while hypouricemia is generally defined as a urate concentration of less than 120 μM. Hyperuricemia can arise from a number of factors, including both acute and chronic causes. Acute causes of hyperuricemia include the intake of large amounts of alcohol, tumor lysis syndrome and a diet that is rich in purines or proteins. Chronic hyperuricemia can arise from a reduction in the kidney’s glomerular filtration rate, a decrease in the excretion of urate or an increase in overall tubular absorption in the kidneys. Hyperuricemia has been linked to a number of diseases and conditions, including gout, hypertension, cardiovascular disease, myocardial infarction, stroke, and renal disease. Uric acid has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Many of the causes of hyperuricemia are correctable either with lifestyle changes or drugs. Lifestyle changes include reducing weight and reducing the consumption of protein, purines, and alcohol. There are two kinds of drugs that can be used to treat chronic hyperuricemia. Xanthine oxidase inhibitors, such as allopurinol, inhibit the production of urate by blocking urate synthesis. Alternately, uricosuric drugs, such as probenecid, sulfinpyrazone, and benzpromarone, are used to reduce the serum urate concentration through the inhibition of the URAT1 transporter. (PMID: 17890445). Uric acid (especially crystalline uric acid) is also thought to be an essential initiator and amplifier of allergic inflammation for asthma and peanut allergies (PMID: 21474346). Uric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-93-2 (retrieved 2024-07-17) (CAS RN: 69-93-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uric acid, scavenger of oxygen radical, is a very important antioxidant that help maintains the stability of blood pressure and antioxidant stress. Uric acid can remove reactive oxygen species (ROS) such as singlet oxygen and peroxynitrite, inhibiting lipid peroxidation[1][2]. Uric acid, scavenger of oxygen radical, is a very important antioxidant that help maintains the stability of blood pressure and antioxidant stress. Uric acid can remove reactive oxygen species (ROS) such as singlet oxygen and peroxynitrite, inhibiting lipid peroxidation[1][2].

   

N-Acetyltryptophan

(2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004374)


N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Stearic acid

1-Heptadecanecarboxylic acid

C18H36O2 (284.2715156)


Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Deoxyinosine

9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

C10H12N4O4 (252.08585119999998)


Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

Guanosine diphosphate

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O11P2 (443.02433)


Guanosine diphosphate, also known as gdp or 5-diphosphate, guanosine, is a member of the class of compounds known as purine ribonucleoside diphosphates. Purine ribonucleoside diphosphates are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate can be found in a number of food items such as strawberry, onion-family vegetables, walnut, and scarlet bean, which makes guanosine diphosphate a potential biomarker for the consumption of these food products. Guanosine diphosphate can be found primarily in blood and cerebrospinal fluid (CSF). Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in several metabolic pathways, some of which include betahistine h1-antihistamine action, fexofenadine h1-antihistamine action, clocinizine h1-antihistamine action, and bepotastine h1-antihistamine action. Guanosine diphosphate is also involved in several metabolic disorders, some of which include adenine phosphoribosyltransferase deficiency (APRT), canavan disease, gout or kelley-seegmiller syndrome, and pyruvate dehydrogenase complex deficiency. Moreover, guanosine diphosphate is found to be associated with epilepsy, subarachnoid hemorrhage, neuroinfection, and stroke. Guanosine diphosphate, abbreviated GDP, is a nucleoside diphosphate. It is an ester of pyrophosphoric acid with the nucleoside guanosine. GDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase guanine . Guanosine diphosphate, also known as 5-GDP or 5-diphosphate, guanosine, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Outside of the human body, Guanosine diphosphate has been detected, but not quantified in several different foods, such as devilfish, java plums, green beans, almonds, and orange mints. Guanosine diphosphate is a purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Gluconic acid

(2R,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanoic acid

C6H12O7 (196.0583002)


Gluconic acid, also known as D-gluconic acid, D-gluconate or (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid (also named dextronic acid), is the C1-oxidized form of D-glucose where the aldehyde group has become oxidized to the corresponding carboxylic acid. Gluconic acid belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. In aqueous solution, gluconic acid exists in equilibrium with the cyclic ester glucono delta-lactone. Gluconic acid occurs naturally in fruit, honey, kombucha tea and wine. The salts of gluconic acid are known as "gluconates". Gluconic acid, gluconate salts, and gluconate esters occur widely in nature because such species arise from the oxidation of glucose. Gluconic acid exists in all living species, ranging from bacteria to plants to humans. The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Glucokinase activity has also been detected in mammals, including humans (PMID: 24896608). Gluconic acid is produced in the gluconate shunt pathway. In the gluconate shunt, glucose is oxidized by glucose dehydrogenase (also called glucose oxidase) to furnish gluconate, the form in which D-gluconic acid is present at physiological pH. Subsequently, gluconate is phosphorylated by the action of gluconate kinase to produce 6-phosphogluconate, which is the second intermediate of the pentose phosphate pathway. This gluconate shunt is mainly found in plants, algae, cyanobacteria and some bacteria, which all use the Entner–Doudoroff pathway to degrade glucose or gluconate; this generates 2-keto-3-deoxygluconate-6-phosphate, which is then cleaved to generate pyruvate and glyceraldehyde 3-phosphate. Glucose dehydrogenase and gluconate kinase activities are also present in mammals, fission yeast, and flies. Gluconic acid has many industrial uses. It is used as a drug as part of electrolyte supplementation in total parenteral nutrition. It is also used in cleaning products where it helps cleaning up mineral deposits. Gluconic acid or Gluconic acid is used to maintain the cation-anion balance on electrolyte solutions. In humans, gluconic acid is involved in the metabolic disorder called the transaldolase deficiency. Gluconic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). [Spectral] D-Gluconic acid (exact mass = 196.0583) and Guanine (exact mass = 151.04941) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, acidity regulator approved in Japan. Component of bottle rinsing formulations Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G031

   

Guanosine triphosphate

({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O14P3 (522.9906626)


Guanosine-5-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only difference being that nucleotides like GTP have phosphates on their ribose sugar. GTP has the guanine nucleobase attached to the 1 carbon of the ribose and it has the triphosphate moiety attached to riboses 5 carbon. GTP is essential to signal transduction, in particular with G-proteins, in second-messenger mechanisms where it is converted to guanosine diphosphate (GDP) through the action of GTPases. Guanosine triphosphate, also known as 5-GTP or H4GTP, belongs to the class of organic compounds known as purine ribonucleoside triphosphates. These are purine ribonucleotides with a triphosphate group linked to the ribose moiety. Thus, a GTP-bound tubulin serves as a cap at the tip of microtubule to protect from depolymerization; and, once the GTP is hydrolyzed, the microtubule begins to depolymerize and shrink rapidly. Guanosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine triphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Guanosine-5-triphosphate (GTP) is a purine nucleoside triphosphate. Outside of the human body, guanosine triphosphate has been detected, but not quantified in several different foods, such as mandarin orange (clementine, tangerine), coconuts, new zealand spinachs, sweet marjorams, and pepper (capsicum). Cyclic guanosine triphosphate (cGTP) helps cyclic adenosine monophosphate (cAMP) activate cyclic nucleotide-gated ion channels in the olfactory system. It also has the role of a source of energy or an activator of substrates in metabolic reactions, like that of ATP, but more specific. It is used as a source of energy for protein synthesis and gluconeogenesis. For instance, a GTP molecule is generated by one of the enzymes in the citric acid cycle. GTP is also used as an energy source for the translocation of the ribosome towards the 3 end of the mRNA. During microtubule polymerization, each heterodimer formed by an alpha and a beta tubulin molecule carries two GTP molecules, and the GTP is hydrolyzed to GDP when the tubulin dimers are added to the plus end of the growing microtubule. The importing of these proteins plays an important role in several pathways regulated within the mitochondria organelle, such as converting oxaloacetate to phosphoenolpyruvate (PEP) in gluconeogenesis. GTP is involved in energy transfer within the cell. Guanosine triphosphate (GTP) is a guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP functions as a carrier of phosphates and pyrophosphates involved in channeling chemical energy into specific biosynthetic pathways. GTP activates the signal transducing G proteins which are involved in various cellular processes including proliferation, differentiation, and activation of several intracellular kinase cascades. Proliferation and apoptosis are regulated in part by the hydrolysis of GTP by small GTPases Ras and Rho. Another type of small GTPase, Rab, plays a role in the docking and fusion of vesicles and may also be involved in vesicle formation. In addition to its role in signal transduction, GTP also serves as an energy-rich precursor of mononucleotide units in the enzymatic biosynthesis of DNA and RNA. [HMDB]. Guanosine triphosphate is found in many foods, some of which are oat, star fruit, lingonberry, and linden. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2'-Deoxyinosine triphosphate

{[hydroxy({[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(6-oxo-6,9-dihydro-3H-purin-9-yl)oxolan-2-yl]methoxy})phosphoryl]oxy})phosphoryl]oxy}phosphonic acid

C10H15N4O13P3 (491.984849)


2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832) [HMDB] 2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pimelic acid

1,5-Pentanedicarboxylic acid

C7H12O4 (160.0735552)


Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

Uridine diphosphate glucose

[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid

C15H24N2O17P2 (566.0550194)


Uridine diphosphate glucose, also known as UDP-glucose or UDP-alpha-D-glucose, belongs to the class of organic compounds known as pyrimidine nucleotide sugars. These are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. Uridine diphosphate glucose exists in all living species, ranging from bacteria to plants to humans. Uridine diphosphate glucose is a key intermediate in carbohydrate metabolism. For instance, UDP-glucose is a precursor of glycogen and can be converted into UDP-galactose and UDP-glucuronic acid, which can then be used as substrates by the enzymes that make polysaccharides containing galactose and glucuronic acid. UDP-glucose can also be used as a precursor for the biosynthesis of sucrose, lipopolysaccharides and glycosphingolipids. Within humans, uridine diphosphate glucose participates in a number of enzymatic reactions. In particular, ceramide (D18:1/18:0) and uridine diphosphate glucose can be converted into glucosylceramide (D18:1/18:0) and uridine 5-diphosphate through the action of the enzyme ceramide glucosyltransferase. In addition, glucosylceramide (D18:1/18:0) and uridine diphosphate glucose can be biosynthesized from lactosylceramide (D18:1/18:0) and uridine 5-diphosphate through its interaction with the enzyme Beta-1,4-galactosyltransferase 6. A key intermediate in carbohydrate metabolism. Serves as a precursor of glycogen, can be metabolized into UDPgalactose and UDPglucuronic acid which can then be incorporated into polysaccharides as galactose and glucuronic acidand is also serves as a precursor of sucrose lipopolysaccharides, and glycosphingolipids.; It is a precursor of glycogen and can be converted into UDP-galactose and UDP-glucuronic acid, which can then be used as substrates by the enzymes that make polysaccharides containing galactose and glucuronic acid.; Uridine diphosphate glucose (uracil-diphosphate glucose, UDP-glucose) is a nucleotide sugar. It is involved in glycosyltransferase reactions in metabolism. Udp-glucose is found in many foods, some of which are skunk currant, black salsify, winter squash, and red algae. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyridoxal 5'-phosphate

Phosphoric acid mono-(4-formyl-5-hydroxy-6-methyl-pyridin-3-ylmethyl) ester

C8H10NO6P (247.024573)


Pyridoxal phosphate, also known as PLP, pyridoxal 5-phosphate or P5P, is the active form of vitamin B6. It is a coenzyme in a variety of enzymatic reactions. Pyridoxal 5-phosphate belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2,3,4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal 5-phosphate is a drug which is used for nutritional supplementation and for treating dietary shortage or imbalance. Pyridoxal 5-phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxal 5-phosphate is involved in glycine and serine metabolism. Outside of the human body, pyridoxal 5-phosphate is found, on average, in the highest concentration within cow milk. Pyridoxal 5-phosphate has also been detected, but not quantified in several different foods, such as soursops, italian sweet red peppers, muscadine grapes, european plums, and blackcurrants. Pyridoxal 5-phosphate, with regard to humans, has been found to be associated with several diseases such as epilepsy, early-onset, vitamin B6-dependent, odontohypophosphatasia, pyridoxamine 5-prime-phosphate oxidase deficiency, and hypophosphatasia. Pyridoxal 5-phosphate has also been linked to the inborn metabolic disorder celiac disease. This is the active form of vitamin B6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (pyridoxamine). -- Pubchem; Pyridoxal-phosphate (PLP, pyridoxal-5-phosphate) is a cofactor of many enzymatic reactions. It is the active form of vitamin B6 which comprises three natural organic compounds, pyridoxal, pyridoxamine and pyridoxine. -- Wikipedia [HMDB]. Pyridoxal 5-phosphate is found in many foods, some of which are linden, kai-lan, nance, and rose hip. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P038 Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.

   

Syringic acid

InChI=1/C9H10O5/c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10/h3-4,10H,1-2H3,(H,11,12

C9H10O5 (198.052821)


Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563). Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate. Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available. Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max) A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID S018 Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

Gibberellin A4

NCGC00380182-01_C19H24O5_(1R,2R,5R,8R,9S,10R,12S)-12-Hydroxy-11-methyl-6-methylene-16-oxo-15-oxapentacyclo[9.3.2.1~5,8~.0~1,10~.0~2,8~]heptadecane-9-carboxylic acid

C19H24O5 (332.1623654)


A C19-gibberellin, initially identified in Gibberella fujikuroi and differing from gibberellin A1 by the substitution of the OH at C-7 (gibbane numbering) by H. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 16

   

Gibberellin A3

(1S,2S,4aR,4bR,7S,9aS,10S,10aR)-2,7-dihydroxy-1-methyl-8-methylidene-13-oxo-1,2,4b,5,6,7,8,9,10,10a-decahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylic acid

C19H22O6 (346.1416312)


Gibberellic acid, also known as gibberellin A3, GA, or GA3, is a very potent hormone whose natural occurrence in plants controls their development. Since GA regulates growth, applications of very low concentrations can have a profound effect while too much will have the opposite effect. Gibberellic acid is a hormone found in plants. Gibberellic acid is a simple gibberellin promoting the growth and elongation of cells. It affects the decomposition of plants. It also helps plants grow if used in small amounts but eventually, plants grow a tolerance for it. Gibberellic acid stimulates the cells of germinating seeds to produce mRNA molecules that code for hydrolytic enzymes. Gibberellic acid is a white powder. (NTP, 1992) Gibberellin A3 is a C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and elongation of cells in plants. Initially identified in Gibberella fujikuroi,it differs from gibberellin A1 in the presence of a double bond between C-3 and C-4. It has a role as a plant metabolite and a mouse metabolite. It is a lactone, a gibberellin monocarboxylic acid, an organic heteropentacyclic compound and a C19-gibberellin. It is a conjugate acid of a gibberellin A3(1-). Gibberellic acid is a natural product found in Cocos nucifera, Prunus cerasus, and other organisms with data available. Gibberellins (GAs) are plant hormones that regulate growth and influence various developmental processes, including stem elongation, germination, dormancy, flowering, sex expression, enzyme induction, and leaf and fruit senescence. Gibberellins is found in many foods, some of which are common wheat, potato, sunflower, and common pea. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3262; ORIGINAL_PRECURSOR_SCAN_NO 3260 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3253; ORIGINAL_PRECURSOR_SCAN_NO 3251 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3271; ORIGINAL_PRECURSOR_SCAN_NO 3269 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3249; ORIGINAL_PRECURSOR_SCAN_NO 3246 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3255; ORIGINAL_PRECURSOR_SCAN_NO 3254 KEIO_ID G074 Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1]. Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1].

   

Geranylgeranyl-PP

{[hydroxy({[(2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C20H36O7P2 (450.1936166)


Geranylgeranyl pyrophosphate, also known as geranylgeranyl-PP or GGPP, is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. This compound belongs to the family of acyclic diterpenes. These are diterpenes (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, GGPP is considered to be an isoprenoid lipid molecule. GGPP is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Geranylgeranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. [HMDB]. Geranylgeranyl-PP is found in many foods, some of which are burdock, longan, calabash, and cloves.

   

Homogentisic acid

2-(2,5-dihydroxyphenyl)acetic acid

C8H8O4 (168.0422568)


Homogentisic acid, also known as melanic acid, is an intermediate in the breakdown or catabolism of tyrosine and phenylalanine. It is generated from the compound p-hydroxyphenylpyruvate through the enzyme p-hydroxyphenylpyruvate dehydrogenase. The resulting homogentisic acid is then broken down into 4-maleylacetoacetate via the enzyme homogentisate 1,2-dioxygenase. Homogentisic acid is also found in other organisms. For instance, it can found in Arbutus unedo (strawberry-tree) honey, in the bacterial plant pathogen Xanthomonas campestris as well as in the yeast Yarrowia lipolytica where it is associated with the production of brown pigments. Homogentisic acid can be oxidatively dimerized to form hipposudoric acid, one of the main constituents of the blood sweat of hippopotamuses. When present in sufficiently high levels, homogentisic acid can function as an osteotoxin and a renal toxin. An osteotoxin is a substance that causes damage to bones and/or joints. A renal toxin causes damage to the kidneys. Chronically high levels of homogentisic acid are associated with alkaptonuria (OMIM: 203500), an inborn error of metabolism. Alkaptonuria is a rare inherited genetic disorder in which the body cannot process the amino acids phenylalanine and tyrosine. It is caused by a mutation in the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5), which leads to an accumulation of homogentisic acid in the blood and tissues. Homogentisic acid and its oxidized form benzoquinone acetic acid are excreted in the urine, giving it an unusually dark color. The accumulating homogentisic acid (and benzoquinone acetic acid) causes damage to cartilage (ochronosis, leading to osteoarthritis) and heart valves as well as precipitating as kidney stones and stones in other organs. More specifically, homogentisic acid can be converted to benzoquinone acetic acid (BQA), and the resulting BQA can be readily converted to polymers that resemble the dark skin pigment melanin. These polymers are deposited in the collagen, a connective tissue protein, of particular tissues such as cartilage. This process is called ochronosis (as the tissue looks ochre); ochronotic tissue is stiffened and unusually brittle, impairing its normal function and causing damage. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae. 2-(3,6-dihydroxyphenyl)acetic acid, also known as homogentisic acid or homogentisate, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. 2-(3,6-dihydroxyphenyl)acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-(3,6-dihydroxyphenyl)acetic acid can be found in a number of food items such as gooseberry, angelica, chinese broccoli, and cucumber, which makes 2-(3,6-dihydroxyphenyl)acetic acid a potential biomarker for the consumption of these food products. 2-(3,6-dihydroxyphenyl)acetic acid can be found primarily in blood, feces, and urine, as well as in human cartilage, connective tissue and kidney tissues. In humans, 2-(3,6-dihydroxyphenyl)acetic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 2-(3,6-dihydroxyphenyl)acetic acid is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, tyrosinemia type 3 (TYRO3), alkaptonuria, and tyrosinemia type 2 (or richner-hanhart syndrome). Moreover, 2-(3,6-dihydroxyphenyl)acetic acid is found to be associated with alkaptonuria. 2-(3,6-dihydroxyphenyl)acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Apart from treatment of the complications (such as pain relief using NSAIDs and joint replacement for the cartilage damage), vitamin C has been used to reduce the ochronosis and lowering of the homogentisic acid levels may be attempted with a low-protein diet. Recently the drug nitisinone has been found to suppress homogentisic acid production. Nitrisinone inhibits the enzyme, 4-hydroxyphenylpyruvate dioxygenase, responsible for converting tyrosine to homogentisic acid, thereby blocking the production and accumulation of homogentisic acid. Nitisinone treatment has been shown to cause a 95\\\\% reduction in plasma and urinary homogentisic acid (T3DB). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 118 KEIO_ID H060 Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.

   

Hydrocinnamic acid

3-Phenylpropionic acid, sodium salt

C9H10O2 (150.068076)


Hydrocinnamic acid, also known as 3-phenylpropanoic acid or dihydrocinnamic acid, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (C6-C3). Phenylpropanoic acid can be prepared from cinnamic acid by hydrogenation. Hydrocinnamic acid is a sweet, balsamic, and cinnamon tasting compound. This compound is used frequently in cosmetic products such as perfumes, bath gels, detergent powders, liquid detergents, fabric softeners, and soaps as it gives off a floral scent. A characteristic reaction of phenylpropanoic acid is its cyclization to indanones. Phenylpropanoic acid is used in the food industry to preserve and maintain the original aroma quality of frozen foods. Phenylpropanoic acid is also added to food for technological purposes in a wide variety including manufacturing, processing, preparation, treatment, packaging, transportation or storage, and food additives. This compound is used as a sweetener as well to sweeten food and can be found in tabletop sweeteners. Hydrocinnamic acid is an analogue of phenylalanine. It is a substrate of the enzyme oxidoreductases [EC 1.14.12.-] in the pathway phenylalanine metabolism (KEGG). 3-Phenylpropanoic acid is found in many foods, some of which are purple laver, quinoa, custard apple, and conch. KEIO_ID P109 Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.

   

Mevalonic acid

beta,delta-Dihydroxy-beta-methylvaleric acid

C6H12O4 (148.0735552)


Mevalonic acid, also known as MVA, mevalonate, or hiochic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. Mevalonic acid is a key organic compound in biochemistry. It is found in most higher organisms ranging from plants to animals. Mevalonic acid is a precursor in the biosynthetic pathway known as the mevalonate pathway that produces terpenes (in plants) and steroids (in animals). Mevalonic acid is the primary precursor of isopentenyl pyrophosphate (IPP), that is in turn the basis for all terpenoids. The production of mevalonic acid by the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, is the rate-limiting step in the biosynthesis of cholesterol (PMID: 12872277). The cholesterol biosynthetic pathway has three major steps: (1) acetate to mevalonate, (2) mevalonate to squalene, and (3) squalene to cholesterol. In the first step, which catalyzed by thiolase, two acetyl-CoA molecules form acetoacetyl-CoA and one CoA molecule is released, then the acetoacetyl-CoA reacts with another molecule of acetyl-CoA and generates 3-hydroxy-3-methylglutaryl-CoA (HMGCoA). The enzyme responsible for this reaction is 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase): In the pathway to synthesize cholesterol, one of the HMG-CoA carboxyl groups undergoes reduction to an alcohol, releasing CoA, leading to the formation of mevalonate, a six carbon compound. This reaction is catalyzed by hydroxy-methylglutaryl-CoA reductase, In the second step (mevalonate to squalene) mevalonate receives a phosphoryl group from ATP to form 5-phosphomevalonate. This compound accepts another phosphate to generate mevalonate-5-pyrophosphate. After a third phosphorylation, the compound is decarboxylated, loses water, and generates isopentenyl pyrophosphate (IPP). Then through successive condensations, IPP forms squalene, a terpene hydrocarbon that contains 30 carbon atoms. By cyclization and other changes, this compound will finally result in cholesterol. Mevalonic acid is found, on average, in the highest concentration within a few different foods, such as apples, corns, and wild carrots and in a lower concentration in garden tomato (var.), pepper (C. frutescens), and cucumbers. Mevalonic acid has also been detected, but not quantified in, several different foods, such as sweet oranges, potato, milk (cow), cabbages, and white cabbages. This could make mevalonic acid a potential biomarker for the consumption of these foods. Plasma concentrations and urinary excretion of MVA are decreased by HMG-CoA reductase inhibitor drugs such as pravastatin, simvastatin, and atorvastatin (PMID: 8808497). Mevalonic acid (MVA) is a key organic compound in biochemistry. The anion of mevalonic acid, the predominant form in biological media, is known as mevalonate. This compound is of major pharmaceutical importance. Drugs, such as the statins, stop the production of mevalonate by inhibiting HMG-CoA reductase. [Wikipedia]. Mevalonic acid is found in many foods, some of which are pepper (c. frutescens), cabbage, wild carrot, and white cabbage.

   

Methylmalonic acid

1,1-Ethanedicarboxylic acid

C4H6O4 (118.0266076)


Methylmalonic acid is a malonic acid derivative, which is a vital intermediate in the metabolism of fat and protein. In particular, the coenzyme A-linked form of methylmalonic acid, methylmalonyl-CoA, is converted into succinyl-CoA by methylmalonyl-CoA mutase in a reaction that requires vitamin B12 as a cofactor. In this way, methylmalonic acid enters the Krebs cycle and is thus part of one of the anaplerotic reactions. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This inborn error of metabolism is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. Methylmalonic acid is also found to be associated with other inborn errors of metabolism, including cobalamin deficiency, cobalamin malabsorption, malonyl-CoA decarboxylase deficiency, and transcobalamin II deficiency. When present in sufficiently high levels, methylmalonic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methylmalonic acid are associated with at least 5 inborn errors of metabolism, including Malonyl CoA decarboxylase deficiency, Malonic Aciduria, Methylmalonate Semialdehyde Dehydrogenase Deficiency, Methylmalonic Aciduria and Methylmalonic Aciduria Due to Cobalamin-Related Disorders. Methylmalonic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. A malonic acid derivative which is a vital intermediate in the metabolism of fat and protein. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This metabolic disease is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. [HMDB] KEIO_ID M014 Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

2-Methylbenzoic acid

2-Toluic acid, sodium salt, 11C-labeled

C8H8O2 (136.0524268)


o-Toluic acid, also 2-methylbenzoic acid, is an aromatic carboxylic acid, with formula (CH3)C6H4(COOH). -- Wikipedia; It is an isomer of p-toluic acid and m-toluic acid. -- Wikipedia KEIO_ID T038 o-Toluic acid (2-Methylbenzoic acid) is a benzoic acid?substituted by a?methyl?group at position 2. O-Toluic acid plays a role as a xenobiotic metabolite.

   

N-acetylmethionine

(2S)-2-Acetamido-4-(methylsulphanyl)butanoic acid

C7H13NO3S (191.0616108)


N-Acetyl-L-methionine or N-Acetylmethionine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylmethionine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylmethionine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-methionine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylmethionine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free methionine can also occur. In particular, N-Acetylmethionine can be biosynthesized from L-methionine and acetyl-CoA by the enzyme methionine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylmethionine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylmethionine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Nutrient supplement used as a source of L-methionine. KEIO_ID A065 N-Acetyl-DL-methionine is an endogenous metabolite. N-Acetyl-L-methionine, a human metabolite, is nutritionally and metabolically equivalent to L-methionine. L-methionine is an indispensable amino acid required for normal growth and development[1].

   

Phenylpyruvate

2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto)

C9H8O3 (164.0473418)


Phenylpyruvic acid is a keto-acid that is an intermediate or catabolic byproduct of phenylalanine metabolism. It has a slight honey-like odor. Levels of phenylpyruvate are normally very low in blood or urine. High levels of phenylpyruvic acid can be found in the urine of individuals with phenylketonuria (PKU), an inborn error of metabolism. PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid. In particular, excessive phenylalanine can be metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. Phenylpyruvic acid is also a microbial metabolite, it can be produced by Lactobacillus plantarum (PMID: 9687465). Flavouring ingredient Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

Uridine 5'-monophosphate

{[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O9P (324.03586580000007)


Uridine 5-monophosphate (UMP), also known as uridylic acid or uridylate, belongs to the class of organic compounds known as pyrimidine ribonucleoside monophosphates. These are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. UMP consists of a phosphate group, a pentose sugar ribose, and the nucleobase uracil; hence, it is a ribonucleotide monophosphate. Uridine 5-monophosphate exists in all living species, ranging from bacteria to plants to humans. UMP is a nucleotide that is primarily used as a monomer in RNA biosynthesis. Uridine monophosphate is formed from Orotidine 5-monophosphate (orotidylic acid) in a decarboxylation reaction catalyzed by the enzyme orotidylate decarboxylase. Within humans, uridine 5-monophosphate participates in a number of enzymatic reactions. In particular, uridine 5-monophosphate can be converted into uridine 5-diphosphate through the action of the enzyme UMP-CMP kinase. In addition, uridine 5-monophosphate can be biosynthesized from uridine 5-diphosphate through its interaction with the enzyme soluble calcium-activated nucleotidase 1. In brain research studies, uridine monophosphate has been used as a convenient delivery compound for uridine. Uridine is present in many foods, mainly in the form of RNA. Non-phosphorylated uridine is not bioavailable beyond first-pass metabolism. In a study, gerbils fed a combination of uridine monophosphate, choline, and docosahexaenoic acid (DHA) were found to have significantly improved performance in running mazes over those not fed the supplements, implying an increase in cognitive function (PMID: 18606862). 5′-UMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-97-9 (retrieved 2024-07-02) (CAS RN: 58-97-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].

   

Xanthosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-9H-purine-2,6-diol

C10H12N4O6 (284.07568119999996)


Xanthosine, also known as xanthine riboside, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine exists in all living species, ranging from bacteria to plants to humans. In plants xanthosine is the biosynthetic precursor to 7-methylxanthosine which is produced by the action of the enzyme known as 7-methylxanthosine synthase. 7-Methylxanthosine in turn is the precursor to theobromine (the active alkaloid in chocolate), which in turn is the precursor to caffeine, the active alkaloid in coffee and tea. Within humans, xanthosine participates in a number of enzymatic reactions. In particular, xanthosine can be biosynthesized from xanthylic acid; which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In addition, xanthosine can be converted into xanthine and ribose 1-phosphate; which is mediated by the enzyme purine nucleoside phosphorylase. Xanthosine monophosphate (XMP) is an intermediate in purine metabolism, formed from IMP (inosine monophosphate). Biological Source: Production by guanine-free mutants of bacteria e.g. Bacillus subtilis, Aerobacter aerogenesand is also reported from seeds of Trifolium alexandrinum Physical Description: Prismatic cryst. (H2O) (Chemnetbase) The deamination product of guanosine; Xanthosine monophosphate is an intermediate in purine metabolism, formed from IMP, and forming GMP.; Xanthylic acid can be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism, as recommended to ensure optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Xanthosine is found in many foods, some of which are calabash, rambutan, apricot, and pecan nut. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 126 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].

   

Arachidate (20:0)

n-Eicosanoic acid

C20H40O2 (312.302814)


Arachidic acid, also known as icosanoic acid, is a saturated fatty acid with a 20-carbon chain. It is a minor constituent of butter, perilla oil, peanut oil, corn oil, and cocoa butter. It also constitutes 7.08\\\\% of the fats from the fruit of the durian species Durio graveolens. The salts and esters of arachidic acid are known as arachidates. Its name derives from the Latin arachis that means peanut. It can be formed by the hydrogenation of arachidonic acid. The reduction of arachidic acid yields arachidyl alcohol. Arachidic acid is used for the production of detergents, photographic materials and lubricants. Arachidic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Arachidic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Adenosine phosphosulfate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]sulfonic acid

C10H14N5O10PS (427.01989940000004)


Adenosine phosphosulfate, also known as adenylylsulfate or adenosine sulfatophosphate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine phosphosulfate exists in all living species, ranging from bacteria to humans. Within humans, adenosine phosphosulfate participates in a number of enzymatic reactions. In particular, adenosine phosphosulfate can be biosynthesized from sulfate through the action of the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In addition, adenosine phosphosulfate can be converted into phosphoadenosine phosphosulfate; which is catalyzed by the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In humans, adenosine phosphosulfate is involved in sulfate/sulfite metabolism. Outside of the human body, Adenosine phosphosulfate has been detected, but not quantified in several different foods, such as chia, yardlong beans, swiss chards, sapodilla, and chicory leaves. This could make adenosine phosphosulfate a potential biomarker for the consumption of these foods. An adenosine 5-phosphate having a sulfo group attached to one the phosphate OH groups. Adenosine phosphosulfate (also known as APS) is the initial compound formed by the action of ATP sulfurylase (or PAPS synthetase) on sulfate ions after sulfate uptake. PAPS synthetase 1 is a bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3-phosphoadenylylsulfate (PAPS). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. [HMDB]. Adenosine phosphosulfate is found in many foods, some of which are muskmelon, garlic, caraway, and peach (variety).

   

Glycerol 3-phosphate

alpha-Glycerophosphoric acid, 1,2,3-propanetriol-1-(18)O,3-(dihydrogen phosphate)-labeled

C3H9O6P (172.0136744)


Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072

   

Erythritol

1,2,3,4-Butanetetrol,(2R,3R)-rel-

C4H10O4 (122.057906)


Erythritol is a sugar alcohol (or polyol), used as a food additive and sugar substitute. It is naturally occurring and is made from corn using enzymes and fermentation. Its formula is C4H10O4, or HO(CH2)(CHOH)2(CH2)OH; specifically, one particular stereoisomer with that formula. Erythritol is 60–70\\\\\% as sweet as sucrose (table sugar), yet it is almost noncaloric and does not affect blood sugar or cause tooth decay. Erythritol occurs widely in nature and has been found to occur naturally in several foods including wine, sake, beer, watermelon, pear, grape, and soy sauce. Evidence indicates that erythritol also exists endogenously in the tissues and body fluids of humans and animals. Erythritol is absorbed from the proximal intestine by passive diffusion in a manner similar to that of many low molecular weight organic molecules which do not have associated active transport systems. The rate of absorption is related to their molecular size. It passes through the intestinal membranes at a faster rate than larger molecules such as mannitol or glucose. In diabetics, erythritol has also been shown to be rapidly absorbed and excreted unchanged in the urine. Following absorption, ingested erythritol is rapidly distributed throughout the body and has been reported to occur in hepatocytes, pancreatic cells, and vascular smooth muscle cells. Erythritol also has been reported to cross the human placenta and to pass slowly from the plasma into the brain and cerebrospinal fluid (PMID:9862657). Erythritol is found to be associated with ribose-5-phosphate isomerase deficiency, which is an inborn error of metabolism. Bulk sweetener with good taste props. Not metabolised, excreted unchanged in urine. Less sweet than sucrose. Use not yet permitted in most countries (1997). GRAS status for use as a sweetener, thickener, stabiliser, humectant, etc. in food meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].

   

Glucaric acid

(2S,3S,4S,5R)-2,3,4,5-tetrahydroxyhexanedioic acid

C6H10O8 (210.03756600000003)


Glucaric acid, also known as glucarate or D-saccharic acid, belongs to the class of organic compounds known as glucuronic acid derivatives. Glucuronic acid derivatives are compounds containing a glucuronic acid moiety (or a derivative), which consists of a glucose moiety with the C6 carbon oxidized to a carboxylic acid. Glucaric acid is a sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. D-glucaric acid is found in fruits, vegetables, and mammals. The highest concentrations of glucaric acid are found in grapefruits, apples, oranges, and cruciferous vegetables (PMID: 18772850). Glucaric acid is produced through the oxidation of glucose. Cytochrome P450 is thought to be responsible for the production of D-glucaric acid in vivo (PMID: 3779687). In mammals, D-glucaric acid and D-glucaro-l,4-lactone are also known end-products of the D-glucuronic acid pathway (PMID: 18772850). Glucaric is available as a dietary supplement in the form of calcium D-glucarate and has been studied for therapeutic purposes including cholesterol reduction and cancer chemotherapy (PMID: 9101079). D-Glucaric acid has a potential use as a building block for a number of polymers, including new nylons and hyperbranched polyesters. D-glucaric acid produced from D-glucose has been successfully utilized to produce a hydroxylated nylon. A sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. [HMDB] KEIO_ID S025

   

α-D-Glucose-1-phosphate

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate

C6H13O9P (260.0297178)


Glucose 1-phosphate (also called cori ester) is a glucose molecule with a phosphate group on the 1-carbon. It can exist in either the α- or β-anomeric form. Glucose 1-phosphate belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. Glucose 1-phosphate is the direct product of the reaction in which glycogen phosphorylase cleaves off a molecule of glucose from a greater glycogen structure. It cannot travel down many metabolic pathways and must be interconverted by the enzyme phosphoglucomutase in order to become glucose 6-phosphate. Free glucose 1-phosphate can also react with UTP to form UDP-glucose. It can then return to the greater glycogen structure via glycogen synthase. *Found widely in both plants and animals. A precursor of starch in plants and of glycogen in animals. [CCD] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map KEIO_ID G020 Corona-virus KEIO_ID G115 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tyramine

alpha-(4-Hydroxyphenyl)-beta-aminoethane

C8H11NO (137.0840596)


Tyramine is a monoamine compound derived from the amino acid tyrosine. Tyramine is metabolized by the enzyme monoamine oxidase. In foods, it is often produced by the decarboxylation of tyrosine during fermentation or decay. Foods containing considerable amounts of tyramine include fish, chocolate, alcoholic beverages, cheese, soy sauce, sauerkraut, and processed meat. A large dietary intake of tyramine can cause an increase in systolic blood pressure of 30 mmHg or more. Tyramine acts as a neurotransmitter via a G protein-coupled receptor with high affinity for tyramine called TA1. The TA1 receptor is found in the brain as well as peripheral tissues including the kidney. An indirect sympathomimetic, Tyramine can also serve as a substrate for adrenergic uptake systems and monoamine oxidase so it prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine is a biomarker for the consumption of cheese [Spectral] Tyramine (exact mass = 137.08406) and L-Methionine (exact mass = 149.05105) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Tyramine (exact mass = 137.08406) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents IPB_RECORD: 267; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 5105 D049990 - Membrane Transport Modulators KEIO_ID T008 Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].

   

Pyroglutamic acid

(S)-(-)-gamma-Butyrolactam-gamma-carboxylic acid

C5H7NO3 (129.0425912)


Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent

   

Uracil

1,2,3,4-tetrahydropyrimidine-2,4-dione

C4H4N2O2 (112.0272764)


Uracil, also known as U, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Uracil is a common naturally occurring pyrimidine found in RNA. It base pairs with adenine and is replaced by thymine in DNA. Uracil is one of the four nucleobases in RNA that are represented by the letters A, G, C and U. Methylation of uracil produces thymine. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid. Originally discovered in 1900, uracil was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. Uracil exists in all living species, ranging from bacteria to plants to humans. Uracils use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as an allosteric regulator and a coenzyme for many important biochemical reactions. Uracil (via the nucleoside uridine) can be phosphorylated by various kinases to produce UMP, UDP and UTP. UDP and UTP regulate carbamoyl phosphate synthetase II (CPSase II) activity in animals. Uracil is also involved in the biosynthesis of polysaccharides and in the transport of sugars containing aldehydes. Within humans, uracil participates in a number of enzymatic reactions. In particular, uracil and ribose 1-phosphate can be biosynthesized from uridine; which is mediated by the enzyme uridine phosphorylase 2. In addition, uracil can be converted into dihydrouracil through the action of the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. Uracil is rarely found in DNA, and this may have been an evolutionary change to increase genetic stability. This is because cytosine can deaminate spontaneously to produce uracil through hydrolytic deamination. Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine reacts with uracil, it produces 5-fluorouracil. 5-Fluorouracil is an anticancer drug (antimetabolite) that mimics uracil during the nucleic acid (i.e. RNA) synthesis and transcription process. Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA replication enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. Uracil is a common and naturally occurring pyrimidine derivative. Originally discovered in 1900, it was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-22-8 (retrieved 2024-07-01) (CAS RN: 66-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.

   

16-Hydroxyhexadecanoic acid

16-hydroxyhexadecanoic acid

C16H32O3 (272.2351322)


16-Hydroxyhexadecanoic acid, also known as 16-hydroxypalmitic acid, is a hydroxylated fatty acid where the terminal (omega) carbon has been hydroxylated. In animal tissues, a family of enzymes termed cytochromes P450s are involved in fatty acid oxidation, hydroxylating with high specificity at the energetically unfavourable terminal (omega) or omega-1 carbons. Hydroxy fatty acids primarily come from the consumption of plant products (vegetables or fruits) or cow’s milk. Omega hydroxy fatty acids are found in the structure of suberin, a lipid polyester present in plant cell walls, and of cutin, a lipid polyester which is a component of the plant cuticle. These apoplastic structures are important plant-environment interfaces that act as barriers limiting water and nutrient loss and protecting plants from radiation and pathogens. 16-Hydroxyhexadecanoic acid and 18-hydroxystearic acid are particularly abundant in cutin in the plant cuticle. 16-Hydroxyhexadecanoic acid has been proposed as a biomarker of beer consumption. 16-hydroxy-hexadecanoic acid, also known as 16-hydroxypalmitic acid or 16-oh 16:0, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 16-hydroxy-hexadecanoic acid is considered to be a fatty acid lipid molecule. 16-hydroxy-hexadecanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 16-hydroxy-hexadecanoic acid can be synthesized from hexadecanoic acid. 16-hydroxy-hexadecanoic acid is also a parent compound for other transformation products, including but not limited to, (3R)-3,16-dihydroxypalmitic acid, oscr#28, and 16-hydroxyhexadecanoyl-CoA. 16-hydroxy-hexadecanoic acid can be found in a number of food items such as other cereal product, hyacinth bean, red rice, and elliotts blueberry, which makes 16-hydroxy-hexadecanoic acid a potential biomarker for the consumption of these food products.

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2558664)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

L-Lactic acid

1-Hydroxyethane 1-carboxylic acid

C3H6O3 (90.0316926)


Lactic acid is an organic acid. It is a chiral molecule, consisting of two optical isomers, L-lactic acid and D-lactic acid, with the L-isomer being the most common in living organisms. Lactic acid plays a role in several biochemical processes and is produced in the muscles during intense activity. In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal. This is governed by a number of factors, including monocarboxylate transporters, lactate concentration, the isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1-2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion. There are some indications that lactate, and not glucose, is preferentially metabolized by neurons in the brain of several mammalian species, including mice, rats, and humans. Glial cells, using the lactate shuttle, are responsible for transforming glucose into lactate, and for providing lactate to the neurons. Lactate measurement in critically ill patients has been traditionally used to stratify patients with poor outcomes. However, plasma lactate levels are the result of a finely tuned interplay of factors that affect the balance between its production and its clearance. When the oxygen supply does not match its consumption, organisms adapt in many different ways, up to the point when energy failure occurs. Lactate, being part of the adaptive response, may then be used to assess the severity of the supply/demand imbalance. In such a scenario, the time to intervention becomes relevant: early and effective treatment may allow tissues and cells to revert to a normal state, as long as the oxygen machinery (i.e. mitochondria) is intact. Conversely, once the mitochondria are deranged, energy failure occurs even in the presence of normoxia. The lactate increase in critically ill patients may, therefore, be viewed as an early marker of a potentially reversible state (PMID: 16356243). When present in sufficiently high levels, lactic acid can act as an oncometabolite, an immunosuppressant, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumor growth and survival. An immunosuppressant reduces or arrests the activity of the immune system. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of lactic acid are associated with at least a dozen inborn errors of metabolism, including 2-methyl-3-hydroxybutyryl CoA dehydrogenase deficiency, biotinidase deficiency, fructose-1,6-diphosphatase deficiency, glycogen storage disease type 1A (GSD1A) or Von Gierke disease, glycogenosis type IB, glycogenosis type IC, glycogenosis type VI, Hers disease, lactic acidemia, Leigh syndrome, methylmalonate semialdehyde dehydrogenase deficiency, pyruvate decarboxylase E1 component deficiency, pyruvate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency, and short chain acyl CoA dehydrogenase deficiency (SCAD deficiency). Locally high concentrations of lactic acid or lactate are found near many tumors due to the upregulation of lactate dehydrogenase (PMID: 15279558). Lactic acid produced by tumors through aerobic glycolysis acts as an immunosuppressant and tumor promoter (PMID: 23729358). Indeed, lactic acid has been found to be a key player or regulator in the development and malignant progression of a variety of cancers (PMID: 22084445). A number of studies have demonstrated that malignant transformation is associated with an increase in aerobic cellular lactate excretion. Lactate concentrations in various carcinomas (e.g. uterine cervix, head and neck, colorectal regi... Occurs in the juice of muscular tissue, bile etc. Flavour ingredient, food antioxidant. Various esters are also used in flavourings L-Lactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-33-4 (retrieved 2024-07-01) (CAS RN: 79-33-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.

   

Glucose

(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 226 KEIO_ID G002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402172)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

Caproic acid

Hexanoic acid, sodium salt, 1-(11)C-labeled

C6H12O2 (116.08372519999999)


Caproic acid, also known as hexanoic acid or C6:0, is a medium-chain fatty acid. Medium-chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6 to 12 carbons, which can form medium-chain triglycerides. Caproic acid is a colourless oily liquid that smells like cheese with an overlying waxy or barnyard odor like that of goats or other barnyard animals. Its name comes from the Latin word capra, meaning "goat". Two other fatty acids are named after goats: caprylic acid (C8) and capric acid (C10). Along with caproic acid, they account for 15\\% of the fat in goats milk. Caproic acid is a fatty acid found naturally in various animal fats and oils. While generally more abundant in animals, caproic acid is found in all organisms ranging from bacteria to plants to animals. Caproic acid is one of the chemicals that gives the decomposing fleshy seed coat of the ginkgo fruit its characteristic unpleasant odor. It is also one of the components of vanilla and cheese. Industrially, the primary use of caproic acid is in the manufacture of its esters for use as artificial flavors and in the manufacture of hexyl derivatives, such as hexylphenols. Caproic acid has been associated with medium chain acyl-CoA dehydrogenase deficiency, which is an inborn error of metabolism. As a relatively volatile organic compound, caproic acid has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). Present in apple, wine grapes, butter, licorice and cheeses, e.g. blue cheeses, Cheddar cheese, Swiss cheese, feta cheese, gruyere de comte cheese, etcand is) also present in a few essential oils and fruital aromas. Secondary product of butyric acid fermentation. Flavouring ingredient KEIO_ID C035

   

Hexadecanedioic acid

N-Tetradecane-omega,omega-dicarboxylic acid

C16H30O4 (286.214398)


Hexadecanedioic acid, also known as thapsic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Hexadecanedioic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in the liver (PMID: 4372285). It has antitumor activity (PMID: 14987827). Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in liver (PMID 4372285). It has an antitumor activity (PMID 14987827). Hexadecanedioic acid is found in sweet cherry and potato. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

Caprate (10:0)

decanoic acid

C10H20O2 (172.14632200000003)


Capric acid, also known as decanoic acid is a C10 saturated fatty acid. It is a member of the series of fatty acids found in oils and animal fats. The names of caproic, caprylic, and capric acids are all derived from the word caper (Latin for goat). These fatty acids are light yellowish transparent oily liquids with a sweaty, unpleasant aroma that is reminiscent of goats. Capric acid is used in the manufacture of esters for artificial fruit flavors and perfumes. It is also used as an intermediate in chemical syntheses. Capric acid is used in organic synthesis and industrially in the manufacture of perfumes, lubricants, greases, rubber, dyes, plastics, food additives and pharmaceuticals. Capric acid occurs naturally in coconut oil (about 10\\\\\\%) and palm kernel oil (about 4\\\\\\%), otherwise it is uncommon in typical seed oils. It is found in the milk of various mammals and to a lesser extent in other animal fats. Capric acid, caproic acid (a C6:0 fatty acid) and caprylic acid (a C8:0 fatty acid) account for about 15\\\\\\% of the fatty acids in goat milk fat (PMID 16747831). Capric acid may be responsible for the mitochondrial proliferation associated with the ketogenic diet, which may occur via PPARgamma receptor agonism and the targeting of genes involved in mitochondrial biogenesis (PMIDL 24383952). Widespread in plant oils and as glycerides in seed oilsand is also present in apple, apricot, banana, morello cherry, citrus fruits, cheese, butter, white wine, Japanese whiskey, peated malt, wort and scallops. It is used as a defoamer, lubricant and citrus fruit coating. Salts (Na, K, Mg, Ca, Al) used as binders, emulsifiers and anticaking agents in food manuf. Decanoic acid is found in many foods, some of which are radish (variety), meatball, phyllo dough, and american shad. Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Carbendazim

Kid pest project (carbendazim) (see also carbendazim)

C9H9N3O2 (191.06947340000002)


CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5355; ORIGINAL_PRECURSOR_SCAN_NO 5354 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5355; ORIGINAL_PRECURSOR_SCAN_NO 5353 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5335; ORIGINAL_PRECURSOR_SCAN_NO 5333 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5352; ORIGINAL_PRECURSOR_SCAN_NO 5350 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5299; ORIGINAL_PRECURSOR_SCAN_NO 5297 CONFIDENCE standard compound; INTERNAL_ID 581; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5335; ORIGINAL_PRECURSOR_SCAN_NO 5330 C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; EAWAG_UCHEM_ID 278 Systemic agricultural and horticultural fungicid CONFIDENCE standard compound; INTERNAL_ID 8792 CONFIDENCE standard compound; INTERNAL_ID 2861 CONFIDENCE standard compound; INTERNAL_ID 4050 D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides KEIO_ID C170

   

AICAR

{[(2R,3S,4R,5R)-5-(5-amino-4-carbamoyl-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H15N4O8P (338.062748)


Aicar, also known as 5-phosphoribosyl-5-amino-4-imidazolecarboxamide or 5-aminoimidazole-4-carboxamide ribotide, is a member of the class of compounds known as 1-ribosyl-imidazolecarboxamides. 1-ribosyl-imidazolecarboxamides are organic compounds containing the imidazole ring linked to a ribose ring through a 1-2 bond. Aicar is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Aicar can be found in a number of food items such as safflower, greenthread tea, common pea, and wild leek, which makes aicar a potential biomarker for the consumption of these food products. Aicar can be found primarily in saliva, as well as in human skeletal muscle tissue. Aicar exists in all living species, ranging from bacteria to humans. In humans, aicar is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. Aicar is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, purine nucleoside phosphorylase deficiency, xanthinuria type II, and gout or kelley-seegmiller syndrome. AICAR also known as ZMP is an analog of AMP that is capable of stimulating AMP-dependent protein kinase activity(AMPK). AICAR is an intermediate in the generation of inosine monophosphate. AICAR is being clinically used to treat and protect against cardiac ischemic injury. AICAR can enter cardiac cells to inhibit adenosine kinase and adenosine deaminase. It enhances the rate of nucleotide re-synthesis increasing adenosine generation from adenosine monophosphate only during conditions of myocardial ischemia. AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus KEIO_ID A133 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776204)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.