Cinnamic acid (BioDeep_00000000105)
Secondary id: BioDeep_00000014351, BioDeep_00000017235, BioDeep_00000270977, BioDeep_00000861309, BioDeep_00001867464
natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C9H8O2 (148.0524268)
中文名称: 反式肉桂酸, 肉桂酸
谱图信息:
最多检出来源 Viridiplantae(plant) 45.02%
分子结构信息
SMILES: C1=CC=C(C=C1)C=CC(=O)O
InChI: InChI=1S/C9H8O2/c10-9(11)7-6-8-4-2-1-3-5-8/h1-7H,(H,10,11)/b7-6+
描述信息
Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate.
Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available.
Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade.
Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ...
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID C016
Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells.
Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells.
trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
同义名列表
133 个代谢物同义名
Cinnamic acid, United States Pharmacopeia (USP) Reference Standard; TRANS-CINNAMIC ACID (CONSTITUENT OF CINNAMOMUM CASSIA BARK) [DSC]; InChI=1/C9H8O2/c10-9(11)7-6-8-4-2-1-3-5-8/h1-7H,(H,10,11)/b7-6; CINNAMIC ACID (CONSTITUENT OF CINNAMOMUM VERUM BARK) [DSC]; trans-Cinnamic acid; Phenylacrylic acid;Cinnamylic acid; trans-Cinnamic Acid Zone Refined (number of passes:40); trans-cinnamic acid (trans-3-phenylacrylic acid); trans-Cinnamic acid, natural, >=99\\%, FCC, FG; trans-Cinnamic Acid [Matrix for MALDI-TOF/MS]; 4-09-00-02002 (Beilstein Handbook Reference); cinnamic acid, 14C-labeled cpd (E)-isomer; 3-Phenylacrylic acid; -Phenylacrylic acid; trans-Cinnamic acid, analytical standard; trans-Cinnamic acid, purum, >=99.0\\% (T); cinnamic acid, 3H-labeled cpd (Z)-isomer; cinnamic acid, 3H-labeled cpd (E)-isomer; (E)-cinnamic acid, 2-(14)C-labeled cpd; cinnamic acid, sodium salt(Z)-isomer; cinnamic acid, sodium salt(E)-isomer; 1BE36587-A165-4142-9340-18FFE3E03426; cinnamic acid, zinc salt(E)-isomer; 2-Propenoic acid, 3-phenyl-, (2E)-; cinnamic acid, 2-(13)C-labeled cpd; cinnamic acid, 2-(14)C-labeled cpd; cinnamic acid, 1-(13)C-labeled cpd; cinnamic acid, 3-(14)C-labeled cpd; tritium labeled (Z)-cinnamic acid; cinnamic acid, ion(1-)-(E)-isomer; cinnamic acid, (trans)-(E)-isomer; 2-Propenoic acid, 3-phenyl-, (E)-; tritium labeled (E)-cinnamic acid; cinnamic acid, 1-14C-labeled cpd; trans-Cinnamic acid, >=99\\%, FG; trans-3-Phenyl-2-propenoic acid; cinnamic acid, nickel (+2) salt; tert-.beta.-Phenylacrylic acid; cinnamic acid, 13C-labeled cpd; (2E)-3-phenylprop-2-enoic acid; (2E)-3-Phenyl-2-propenoic acid; cinnamic acid, radical ion(1-); cinnamic acid, 14C-labeled cpd; (2E)-2-Phenyl-2-propenoic acid; cinnamic acid, potassium salt; PHENYLETHYLENECARBOXYLIC ACID; (E)-3-Phenyl-2-propenoic acid; (E)-3-phenylprop-2-enoic acid; Zimtsaeure | trans-Cinnamate; trans-Cinnamic acid, >=99\\%; trans-.beta.-Carboxystyrene; trans-3-Phenyl-2-propenoate; trans-3-Phenylacrylic acid; cinnamic acid, sodium salt; (2E)-3-phenylprop-2-enoate; (2E)-3-Phenyl-2-propenoate; (2E)-2-Phenyl-2-propenoate; 3-phenyl-2E-propenoic acid; 3-Phenyl-2-propenoic acid; (2E)-3-phenylacrylic acid; trans-Cinnamic acid, 97\\%; (E)-3-phenyl-acrylic acid; (E)-3-phenylprop-2-enoate; trans-beta-Carboxystyrene; trans-Cinnamic acid, 99\\%; cinnamic acid, (Z)-isomer; Cinnamic acid(only trans); 3-phenylprop-2-enoic acid; .beta.-Phenylacrylic acid; E-3-phenylpropenoic acid; (E)-3-Phenylacrylic acid; beta-Phenylacrylic acid; Cinnamic acid (natural); Cinnamicacid(onlytrans); Trans-Cinnamic Acid,(S); trans-3-Phenylacrylate; CINNAMIC ACID [USP-RS]; cinnamic acid, ion(1-); Benzylideneacetic acid; 3-Phenylpropenoic acid; TRANS-CINNAMIC-D5 ACID; CINNAMIC ACID [WHO-DD]; trans-b-Carboxystyrene; CINNAMIC ACID (USP-RS); Cinnamic acid, trans-; CINNAMIC ACID (MART.); CINNAMIC ACID [MART.]; Cinnamic Acid Natural; Benzenepropenoic acid; Heparin, lithium salt; CINNAMIC ACID [INCI]; CINNAMIC ACID [FHFI]; (E)-3-Phenylacrylate; 3-Phenylacrylic acid; b-Phenylacrylic acid; Acidum cinnamylicum; CINNAMIC ACID [FCC]; trans cinnamic acid; Cinnamic acid, (E)-; Benzeneacrylic acid; trans-cinnamic acid; Phenylacrylic acid; CINNAMIC ACID [MI]; Kyselina skoricove; 5-Thiazolamine?HCl; cis-cinnamic acid; Cinnamic acid, E-; (E)-Cinnamic acid; E-Z cinnamic acid; trans-Zimtsaeure; sodium cinnamate; UNII-U14A832J8D; CINNAMIC ACIDUM; Cinnamylic acid; trans-Cinnamate; E-cinnamic acid; t-Cinnamic acid; (E)-cinnamate; Cinnamic Acid; Tox21_302137; Tox21_112279; PhCH=CHCO2H; WLN: QV1U1R; U14A832J8D; Zimtsaeure; AI3-23709; cinnamate; AI3-00891; Cinnamic; trans-Cinnamate; β-Phenylacrylic acid; Cinnamic acid; trans-Cinnamate; trans-Cinnamic acid; Cinnamic acid
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:35697
- ChEBI: CHEBI:27386
- KEGG: C00423
- KEGGdrug: D70605
- PubChem: 444539
- Metlin: METLIN63104
- ChEMBL: CHEMBL27246
- Wikipedia: Cinnamic acid
- MeSH: cinnamic acid
- ChemIDplus: 0000140103
- chemspider: 392447
- CAS: 352431-48-2
- CAS: 343338-31-8
- CAS: 621-82-9
- CAS: 140-10-3
- MoNA: PS010501
- MoNA: PS044704
- MoNA: KO000405
- MoNA: KO000404
- MoNA: KO000401
- MoNA: KO000403
- MoNA: PR100513
- MoNA: PR100060
- MoNA: PS044701
- MoNA: KO000402
- medchemexpress: HY-N0610
- ChEBI: CHEBI:15669
- PubChem: 3713
- KNApSAcK: C00000170
- PDB-CCD: TCA
- 3DMET: B00108
- NIKKAJI: J2.024I
- medchemexpress: HY-N0610A
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-782
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-619
- KEGG: C10438
- PubChem: 12623
- KNApSAcK: 27386
- KNApSAcK: 15669
- LOTUS: LTS0097258
- wikidata: Q57826855
- LOTUS: LTS0128130
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
387 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(381)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Phenylpropanoid biosynthesis, initial reactions:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(5)
- Flavanone Biosynthesis:
4-Hydroxycinnamic acid + Adenosine triphosphate + Coenzyme A ⟶ 4-Coumaroyl-CoA + Adenosine monophosphate + Pyrophosphate
- 2-Oxopent-4-enoate Metabolism:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- 2-Oxopent-4-enoate Metabolism 2:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- 2-Oxopent-4-enoate Metabolism:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- 2-Oxopent-4-enoate Metabolism 2:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
PharmGKB(0)
682 个相关的物种来源信息
- 4185 - Acanthaceae: LTS0128130
- 13328 - Achillea: LTS0128130
- 23136 - Adenostoma: LTS0128130
- 32216 - Adenostoma sparsifolium:
- 32216 - Adenostoma sparsifolium: 10.1016/0031-9422(85)80021-2
- 32216 - Adenostoma sparsifolium: 10.1016/S0031-9422(00)80599-3
- 32216 - Adenostoma sparsifolium: LTS0128130
- 68526 - Aegle: LTS0128130
- 68527 - Aegle marmelos: 10.1080/14786410310001608037
- 68527 - Aegle marmelos: LTS0128130
- 175969 - Aeschynanthus bracteatus: 10.1016/J.PHYTOCHEM.2008.05.012
- 155619 - Agaricomycetes: LTS0128130
- 102749 - Ageratina: LTS0128130
- 128583 - Aiouea: LTS0128130
- 1125367 - Aiouea brenesii: 10.1021/NP50040A021
- 1125367 - Aiouea brenesii: LTS0128130
- 25641 - Aloe: -
- 25641 - Aloe: LTS0128130
- 1389495 - Aloe castellorum: 10.1080/14786410802242851
- 1389495 - Aloe castellorum: LTS0128130
- 94326 - Alpinia: 10.5962/BHL.TITLE.133485
- 94326 - Alpinia: LTS0128130
- 125257 - Alpinia formosana: 10.1016/0031-9422(88)83115-7
- 125257 - Alpinia formosana: LTS0128130
- 94327 - Alpinia galanga: 10.1021/JF00026A001
- 94327 - Alpinia galanga: LTS0128130
- 125268 - Alpinia tonkinensis: 10.1080/10286020310001653291
- 125268 - Alpinia tonkinensis: LTS0128130
- 2508388 - Alsidium triquetrum: 10.1016/J.PHYMED.2003.10.009
- 91829 - Altingiaceae: LTS0128130
- 3563 - Amaranthaceae: LTS0128130
- 148670 - Anadenanthera: LTS0128130
- 148671 - Anadenanthera colubrina: 10.1055/S-2004-818920
- 148671 - Anadenanthera colubrina: LTS0128130
- 4614 - Ananas: LTS0128130
- 4615 - Ananas comosus:
- 4615 - Ananas comosus: 10.1271/BBB.60.909
- 4615 - Ananas comosus: 10.1271/BBB.69.189
- 4615 - Ananas comosus: LTS0128130
- 663964 - Anastatica: LTS0128130
- 663965 - Anastatica hierochuntica:
- 663965 - Anastatica hierochuntica: 10.1016/J.BMC.2010.01.046
- 663965 - Anastatica hierochuntica: 10.1016/S0960-894X(03)00088-X
- 663965 - Anastatica hierochuntica: LTS0128130
- 175693 - Andrographis: LTS0128130
- 175694 - Andrographis paniculata: 10.1016/J.PHYTOCHEM.2004.05.008
- 175694 - Andrographis paniculata: LTS0128130
- 122528 - Andryala: LTS0128130
- 268004 - Andryala pinnatifida: 10.1016/S0031-9422(82)85069-3
- 268004 - Andryala pinnatifida: LTS0128130
- 54925 - Anigozanthos: LTS0128130
- 95948 - Anigozanthos preissii: 10.1002/1099-1565(200101/02)12:1<43::AID-PCA546>3.0.CO;2-Z
- 95948 - Anigozanthos preissii: LTS0128130
- 22140 - Annonaceae: LTS0128130
- 4037 - Apiaceae: LTS0128130
- 4056 - Apocynaceae: LTS0128130
- 3701 - Arabidopsis: LTS0128130
- 3702 - Arabidopsis thaliana: 10.2307/3869512
- 3702 - Arabidopsis thaliana: LTS0128130
- 4454 - Araceae: LTS0128130
- 193560 - Aragoa: LTS0128130
- 2675989 - Aragoa lucidula: 10.1055/S-0028-1097783
- 2675989 - Aragoa lucidula: LTS0128130
- 4050 - Araliaceae: LTS0128130
- 12947 - Aristolochia: LTS0128130
- 143780 - Aristolochia elegans: 10.1016/J.BMC.2003.10.031
- 143780 - Aristolochia elegans: LTS0128130
- 325095 - Aristolochia littoralis: 10.1016/J.BMC.2003.10.031
- 16727 - Aristolochiaceae: LTS0128130
- 4219 - Artemisia: LTS0128130
- 205369 - Artemisia judaica: 10.1080/10412905.1990.9697881
- 205369 - Artemisia judaica: LTS0128130
- 2867270 - Artemisia pallens: 10.1002/PCA.564
- 2867270 - Artemisia pallens: LTS0128130
- 6656 - Arthropoda: LTS0128130
- 40552 - Asparagaceae: LTS0128130
- 4685 - Asparagus: LTS0128130
- 4686 - Asparagus officinalis:
- 4686 - Asparagus officinalis: 10.1271/BBB1961.46.821
- 4686 - Asparagus officinalis: LTS0128130
- 51383 - Asphodelaceae: LTS0128130
- 4210 - Asteraceae: LTS0128130
- 2781881 - Astianthus: LTS0128130
- 2781882 - Astianthus viminalis: 10.1055/S-2006-959424
- 2781882 - Astianthus viminalis: LTS0128130
- 2 - Bacteria: LTS0128130
- 25674 - Balanophora: LTS0128130
- 2906540 - Balanophora abbreviata: LTS0128130
- 29813 - Balanophora fungosa: 10.1248/CPB.57.1352
- 29813 - Balanophora fungosa: LTS0128130
- 1128104 - Balanophora tobiracola: 10.1016/0031-9422(80)83209-2
- 1128104 - Balanophora tobiracola: LTS0128130
- 25673 - Balanophoraceae: LTS0128130
- 255932 - Balantiopsidaceae: LTS0128130
- 121882 - Balsamorhiza: LTS0128130
- 230209 - Balsamorhiza sagittata: 10.1016/S0031-9422(00)83116-7
- 230209 - Balsamorhiza sagittata: LTS0128130
- 5204 - Basidiomycota: LTS0128130
- 3805 - Bauhinia: LTS0128130
- 228520 - Bauhinia glauca: 10.1016/J.BMCL.2015.05.089
- 3504 - Betula: LTS0128130
- 3505 - Betula pendula: 10.1007/BF00575727
- 3505 - Betula pendula: LTS0128130
- 38787 - Betula pubescens: 10.1016/0305-1978(94)00092-U
- 38787 - Betula pubescens: LTS0128130
- 3514 - Betulaceae: LTS0128130
- 24079 - Bignoniaceae: LTS0128130
- 78706 - Bletilla: LTS0128130
- 78707 - Bletilla striata: 10.1016/0031-9422(83)85044-4
- 78707 - Bletilla striata: LTS0128130
- 78707 - Bletilla striata (Thunb. ) Reichb.f.: -
- 78707 - Bletilla Striata (Thunb.Ex A.Murray)Rchb.F.: -
- 48555 - Boschniakia Rossica Herba: -
- 6658 - Branchiopoda: LTS0128130
- 3705 - Brassica: LTS0128130
- 3708 - Brassica napus:
- 3708 - Brassica napus: 10.1007/BF02671339
- 3708 - Brassica napus: 10.1016/J.FOODCHEM.2006.08.014
- 3708 - Brassica napus: LTS0128130
- 3711 - Brassica rapa: 10.1007/BF02671339
- 3700 - Brassicaceae: LTS0128130
- 4613 - Bromeliaceae: LTS0128130
- 3208 - Bryophyta: LTS0128130
- 2007181 - Bryothamnion: LTS0128130
- 2008661 - Bryothamnion triquetrum: 10.1016/J.PHYMED.2003.10.009
- 2008661 - Bryothamnion triquetrum: LTS0128130
- 4441 - Camellia: LTS0128130
- 4442 - Camellia sinensis: 10.1248/CPB.55.598
- 4442 - Camellia sinensis: LTS0128130
- 13392 - Cananga: LTS0128130
- 13393 - Cananga odorata: 10.1002/JCCS.199900084
- 13393 - Cananga odorata: LTS0128130
- 3481 - Cannabaceae: LTS0128130
- 3482 - Cannabis: LTS0128130
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0128130
- 4200 - Caprifoliaceae: LTS0128130
- 4071 - Capsicum: LTS0128130
- 4072 - Capsicum annuum: 10.1271/BBB.58.1141
- 4072 - Capsicum annuum: LTS0128130
- 40321 - Capsicum annuum var. annuum: 10.1021/JF00024A024
- 40321 - Capsicum annuum var. annuum: LTS0128130
- 22922 - Ceanothus: LTS0128130
- 54785 - Ceanothus velutinus: 10.1016/S0031-9422(00)97178-4
- 54785 - Ceanothus velutinus: LTS0128130
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 228520 - Cheniella glauca: 10.1016/J.BMCL.2015.05.089
- 1804623 - Chenopodiaceae: LTS0128130
- 3558 - Chenopodium: LTS0128130
- 3559 - Chenopodium album: 10.1007/BF01984952
- 3559 - Chenopodium album: LTS0128130
- 7711 - Chordata: LTS0128130
- 13428 - Cinnamomum: LTS0128130
- 119260 - Cinnamomum aromaticum:
- 119260 - Cinnamomum aromaticum: 10.1016/S0021-9673(01)86814-X
- 119260 - Cinnamomum aromaticum: 10.1021/JF020751F
- 119260 - Cinnamomum aromaticum: 10.1021/NP900031Q
- 119260 - Cinnamomum aromaticum: 10.1089/10966200360716599
- 119260 - Cinnamomum aromaticum: 10.1248/BPB1978.12.693
- 119260 - Cinnamomum aromaticum: 10.1248/CPB.37.363
- 119260 - Cinnamomum aromaticum: 10.4268/CJCMM20151816
- 119260 - Cinnamomum aromaticum: LTS0128130
- 1155220 - Cinnamomum iners:
- 128608 - Cinnamomum verum:
- 128608 - Cinnamomum verum: 10.1016/0021-9673(88)90035-0
- 128608 - Cinnamomum verum: LTS0128130
- 69450 - Cistaceae: LTS0128130
- 2706 - Citrus: LTS0128130
- 171249 - Citrus limonia: LTS0128130
- 2711 - Citrus sinensis: 10.1016/S0003-2670(00)00937-5
- 2711 - Citrus sinensis: 10.1021/JF9605097
- 2711 - Citrus sinensis: LTS0128130
- 13442 - Coffea:
- 13442 - Coffea: 10.1021/JF0615247
- 13442 - Coffea: LTS0128130
- 4459 - Colocasia: LTS0128130
- 199218 - Colocasia antiquorum: 10.1021/JF100323Q
- 199218 - Colocasia antiquorum: LTS0128130
- 4460 - Colocasia esculenta: 10.1021/JF100323Q
- 4460 - Colocasia esculenta: LTS0128130
- 41837 - Conocephalaceae: LTS0128130
- 41838 - Conocephalum: LTS0128130
- 41839 - Conocephalum conicum: 10.1016/0031-9422(96)83287-0
- 41839 - Conocephalum conicum: LTS0128130
- 4118 - Convolvulaceae: LTS0128130
- 246543 - Cordia curassavica: 10.1080/10412905.1990.9697864
- 1561080 - Cordiaceae: LTS0128130
- 87658 - Corymbia: LTS0128130
- 87660 - Corymbia maculata: 10.1002/CHIN.200047190
- 87660 - Corymbia maculata: LTS0128130
- 3781 - Crassulaceae: LTS0128130
- 22027 - Cryptocarya: LTS0128130
- 2580221 - Cryptocarya amygdalina: 10.1002/JCCS.200200041
- 2580221 - Cryptocarya amygdalina: LTS0128130
- 3655 - Cucumis: LTS0128130
- 3659 - Cucumis sativus: 10.1007/BF02065988
- 3659 - Cucumis sativus: LTS0128130
- 3650 - Cucurbitaceae: LTS0128130
- 6668 - Daphnia: LTS0128130
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0128130
- 77658 - Daphniidae: LTS0128130
- 4038 - Daucus: LTS0128130
- 4039 - Daucus carota:
- 4039 - Daucus carota: 10.1515/ZNC-1983-5-613
- 4039 - Daucus carota: LTS0128130
- 3270 - Dicksonia: LTS0128130
- 361549 - Dicksonia gigantea: 10.1248/CPB.32.4620
- 361549 - Dicksonia gigantea: LTS0128130
- 2071583 - Dicksonia karsteniana: 10.1248/CPB.32.4620
- 2071583 - Dicksonia karsteniana: LTS0128130
- 461339 - Dicksonia sellowiana: 10.1248/CPB.32.4620
- 461339 - Dicksonia sellowiana: LTS0128130
- 3269 - Dicksoniaceae: LTS0128130
- 167916 - Duranta: LTS0128130
- 167917 - Duranta erecta: 10.1248/CPB.44.429
- 167917 - Duranta erecta: LTS0128130
- 1561073 - Ehretiaceae: LTS0128130
- 139931 - Engelhardia: LTS0128130
- 139932 - Engelhardia roxburghiana: 10.1016/J.PHYTOCHEM.2007.01.018
- 139932 - Engelhardia roxburghiana: LTS0128130
- 3387 - Ephedra: LTS0128130
- 3389 - Ephedra distachya:
- 3389 - Ephedra distachya: 10.1016/0031-9422(92)80021-6
- 3389 - Ephedra distachya: 10.1016/0031-9422(92)80167-D
- 3389 - Ephedra distachya: LTS0128130
- 173280 - Ephedra equisetina: 10.1007/BF00563959
- 173280 - Ephedra equisetina: LTS0128130
- 3386 - Ephedraceae: LTS0128130
- 13054 - Epilobium: LTS0128130
- 33136 - Epilobium dodonaei: 10.1016/S0021-9673(97)01259-4
- 4345 - Ericaceae: LTS0128130
- 244311 - Erigeron Breviscapus: -
- 3932 - Eucalyptus: LTS0128130
- 1711139 - Eucalyptus andrewsii: LTS0128130
- 2759 - Eukaryota: LTS0128130
- 3990 - Euphorbia: LTS0128130
- 1333928 - Euphorbia micractina: 10.1021/NP900305J
- 1333928 - Euphorbia micractina: LTS0128130
- 212310 - Euphorbia tithymaloides: 10.1016/J.FITOTE.2005.08.020
- 212310 - Euphorbia tithymaloides: LTS0128130
- 3977 - Euphorbiaceae: LTS0128130
- 4414 - Euryale ferox Salisb.: -
- 3803 - Fabaceae: LTS0128130
- 2806 - Florideophyceae: LTS0128130
- 3746 - Fragaria:
- 3746 - Fragaria: 10.1021/JF60199A018
- 3746 - Fragaria: LTS0128130
- 64940 - Fragaria moschata: 10.1002/RECL.19390580805
- 64940 - Fragaria moschata: LTS0128130
- 4751 - Fungi: LTS0128130
- 13538 - Gaultheria: LTS0128130
- 157505 - Gaultheria borneensis: 10.1002/CBDV.200800270
- 157505 - Gaultheria borneensis: LTS0128130
- 174247 - Gaultheria itoana: 10.1002/CBDV.200800270
- 174247 - Gaultheria itoana: LTS0128130
- 38851 - Gentiana lutea: 10.1371/JOURNAL.PONE.0212062
- 4027 - Geraniaceae: LTS0128130
- 69062 - Globularia: LTS0128130
- 1533088 - Globularia alypum:
- 1533088 - Globularia alypum: 10.1002/ARDP.19032410405
- 1533088 - Globularia alypum: 10.1002/ARDP.19082460403
- 1533088 - Globularia alypum: 10.1007/S10600-008-9119-7
- 1533088 - Globularia alypum: LTS0128130
- 3372 - Gnetopsida: LTS0128130
- 261082 - Goniothalamus: LTS0128130
- 1602035 - Goniothalamus amuyon:
- 1602035 - Goniothalamus amuyon: 10.1021/NP020441R
- 1602035 - Goniothalamus amuyon: 10.1021/NP030235Z
- 1602035 - Goniothalamus amuyon: LTS0128130
- 270108 - Goniothalamus tenuifolius: 10.1007/BF02969393
- 270108 - Goniothalamus tenuifolius: LTS0128130
- 57113 - Goupia: LTS0128130
- 39314 - Goupia glabra: 10.1002/EJOC.200300284
- 39314 - Goupia glabra: LTS0128130
- 216853 - Goupiaceae: LTS0128130
- 1745064 - Grazielia: LTS0128130
- 225212 - Gymnophyton: LTS0128130
- 665695 - Gymnophyton isatidicarpum: 10.1021/NP50005A016
- 665695 - Gymnophyton isatidicarpum: LTS0128130
- 42052 - Gynerium: LTS0128130
- 42053 - Gynerium sagittatum: 10.1016/J.PHYTOCHEM.2007.03.007
- 42053 - Gynerium sagittatum: LTS0128130
- 54924 - Haemodoraceae: LTS0128130
- 335160 - Halimium: LTS0128130
- 335161 - Halimium umbellatum: LTS0128130
- 71051 - Haplopappus: LTS0128130
- 147773 - Haplopappus foliosus: 10.1016/S0305-1978(99)00080-0
- 147773 - Haplopappus foliosus: LTS0128130
- 4183 - Harpagophytum: LTS0128130
- 222879 - Harpagophytum procumbens: 10.1021/NP0601612
- 222879 - Harpagophytum procumbens: LTS0128130
- 1503107 - Harpagophytum zeyheri: 10.1055/S-2003-43225
- 1503107 - Harpagophytum zeyheri: LTS0128130
- 9604 - Hominidae: LTS0128130
- 9605 - Homo: LTS0128130
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: LTS0128130
- 52831 - Hoya: 10.1016/S0031-9422(00)82606-0
- 52831 - Hoya: LTS0128130
- 141487 - Hoya australis: 10.1016/S0031-9422(00)82606-0
- 141487 - Hoya australis: LTS0128130
- 52832 - Hoya bella: 10.1016/S0031-9422(00)82606-0
- 52832 - Hoya bella: LTS0128130
- 206228 - Hoya cinnamomifolia: 10.1016/S0031-9422(00)82606-0
- 206228 - Hoya cinnamomifolia: LTS0128130
- 1167121 - Hoya coronaria: 10.1016/S0031-9422(00)82606-0
- 1167121 - Hoya coronaria: LTS0128130
- 206229 - Hoya crassipes: 10.1016/S0031-9422(00)82606-0
- 206229 - Hoya crassipes: LTS0128130
- 206232 - Hoya diversifolia: 10.1016/S0031-9422(00)82606-0
- 206232 - Hoya diversifolia: LTS0128130
- 2058639 - Hoya fraterna: 10.1016/S0031-9422(00)82606-0
- 2058639 - Hoya fraterna: LTS0128130
- 2058643 - Hoya imperialis: 10.1016/S0031-9422(00)82606-0
- 2058643 - Hoya imperialis: LTS0128130
- 365762 - Hoya lacunosa: 10.1016/S0031-9422(00)82606-0
- 365762 - Hoya lacunosa: LTS0128130
- 99298 - Hoya lanceolata: LTS0128130
- 2058646 - Hoya latifolia: 10.1016/S0031-9422(00)82606-0
- 2058646 - Hoya latifolia: LTS0128130
- 945165 - Hoya longifolia: 10.1016/S0031-9422(00)82606-0
- 945165 - Hoya longifolia: LTS0128130
- 1167151 - Hoya macrophylla: 10.1016/S0031-9422(00)82606-0
- 1167151 - Hoya macrophylla: LTS0128130
- 206240 - Hoya multiflora: 10.1016/S0031-9422(00)82606-0
- 206240 - Hoya multiflora: LTS0128130
- 206243 - Hoya obovata: 10.1016/S0031-9422(00)82606-0
- 206243 - Hoya obovata: LTS0128130
- 945170 - Hoya pottsii: 10.1016/S0031-9422(00)82606-0
- 945170 - Hoya pottsii: LTS0128130
- 1167174 - Hoya pseudolanceolata: 10.1016/S0031-9422(00)82606-0
- 1167174 - Hoya pseudolanceolata: LTS0128130
- 2058661 - Hoya shepherdii: 10.1016/S0031-9422(00)82606-0
- 2058661 - Hoya shepherdii: LTS0128130
- 365776 - Hoya tsangii: 10.1016/S0031-9422(00)82606-0
- 3486 - Humulus lupulus: 10.3390/NU11061377
- 13097 - Illicium: LTS0128130
- 124774 - Illicium fargesii: 10.1248/CPB.56.1201
- 124774 - Illicium fargesii: LTS0128130
- 1202800 - Illicium simonsii: 10.1248/CPB.56.1201
- 124778 - Illicium verum: 10.1021/NP50043A024
- 124778 - Illicium verum: LTS0128130
- 50557 - Insecta: LTS0128130
- 41589 - Inula: LTS0128130
- 1548589 - Inula grandis: 10.1007/BF00564453
- 1548589 - Inula grandis: LTS0128130
- 4119 - Ipomoea: LTS0128130
- 89648 - Ipomoea leptophylla: 10.1021/NP030197J
- 89648 - Ipomoea leptophylla: LTS0128130
- 204130 - Isodon: LTS0128130
- 425908 - Isodon japonicus: 10.1271/BBB.59.1780
- 425908 - Isodon japonicus: LTS0128130
- 255933 - Isotachis: LTS0128130
- 588648 - Isotachis japonica: 10.1016/S0031-9422(00)81055-9
- 588648 - Isotachis japonica: LTS0128130
- 180498 - Jatropha curcas: -
- 16714 - Juglandaceae: LTS0128130
- 186771 - Jungermanniopsida: LTS0128130
- 97748 - Kaempferia: LTS0128130
- 97750 - Kaempferia galanga: 10.1016/0031-9422(93)80020-S
- 97750 - Kaempferia galanga: LTS0128130
- 23012 - Kalanchoe: LTS0128130
- 2338863 - Kalanchoe deficiens: 10.1016/J.TET.2008.01.090
- 2937989 - Kalanchoe spathulata: LTS0128130
- 165307 - Lagotis: LTS0128130
- 1310066 - Lagotis yunnanensis:
- 1310066 - Lagotis yunnanensis: 10.1016/S0367-326X(03)00056-X
- 1310066 - Lagotis yunnanensis: 10.4028/WWW.SCIENTIFIC.NET/AMR.554-556.1845
- 1310066 - Lagotis yunnanensis: LTS0128130
- 4136 - Lamiaceae: LTS0128130
- 3433 - Lauraceae: LTS0128130
- 69911 - Leucophyllum: LTS0128130
- 1382326 - Leucophyllum ambiguum:
- 1382326 - Leucophyllum ambiguum: 10.1021/ACS.JNATPROD.9B00759
- 1382326 - Leucophyllum ambiguum: 10.1021/NP020346I
- 1382326 - Leucophyllum ambiguum: LTS0128130
- 4447 - Liliopsida: LTS0128130
- 32129 - Lindsaea: LTS0128130
- 641172 - Lindsaea javanensis: 10.1248/CPB.31.3865
- 641172 - Lindsaea javanensis: LTS0128130
- 32128 - Lindsaeaceae: LTS0128130
- 4398 - Liquidambar: LTS0128130
- 63360 - Liquidambar orientalis: 10.1016/0027-5107(92)90067-C
- 63360 - Liquidambar orientalis: LTS0128130
- 63360 - Liquidambar orientalis Mill.: -
- 49606 - Lonicera: LTS0128130
- 105884 - Lonicera japonica: LTS0128130
- 105884 - Lonicera japonica: NA
- 41601 - Lychnophora: LTS0128130
- 594549 - Lychnophora ericoides: 10.1007/S10600-005-0179-7
- 594549 - Lychnophora ericoides: LTS0128130
- 437899 - Lychnophora pinaster: 10.1007/S10600-005-0179-7
- 437899 - Lychnophora pinaster: LTS0128130
- 112863 - Lycium barbarum L.: -
- 112883 - Lycium chinense Mill.: -
- 85856 - Magnolia denudata: 10.3390/MOLECULES23071558
- 3403 - Magnolia liliiflora: 10.3390/MOLECULES23071558
- 3398 - Magnoliopsida: LTS0128130
- 3750 - Malus domestica: 10.1021/JF020028P
- 283210 - Malus pumila: 10.1021/JF020028P
- 3629 - Malvaceae: LTS0128130
- 40674 - Mammalia: LTS0128130
- 24647 - Mandragora: LTS0128130
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 389206 - Mandragora autumnalis: LTS0128130
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: LTS0128130
- 654128 - Marasmiaceae: LTS0128130
- 3195 - Marchantiophyta: LTS0128130
- 186770 - Marchantiopsida: LTS0128130
- 235739 - Marsypopetalum: LTS0128130
- 1052074 - Marsypopetalum crassum: 10.1021/NP060323U
- 1052074 - Marsypopetalum crassum: LTS0128130
- 1462929 - Marsypopetalum modestum: 10.1021/NP060323U
- 3877 - Medicago: LTS0128130
- 3879 - Medicago sativa:
- 3879 - Medicago sativa: 10.1002/PCA.2800040309
- 3879 - Medicago sativa: 10.1104/PP.101.3.847
- 3879 - Medicago sativa: LTS0128130
- 43708 - Melia: LTS0128130
- 155640 - Melia azedarach: 10.1055/S-0028-1097188
- 155640 - Melia azedarach: LTS0128130
- 43707 - Meliaceae: LTS0128130
- 39338 - Melissa officinalis: 10.1007/S00425-010-1206-X
- 121078 - Mespilodaphne quixos: 10.1016/0378-8741(81)90038-6
- 33208 - Metazoa: LTS0128130
- 3673 - Momordica charantia: 10.3390/MOLECULES23020469
- 3487 - Moraceae: LTS0128130
- 190583 - Morella: LTS0128130
- 262757 - Morella rubra: 10.1271/BBB.90697
- 262757 - Morella rubra: LTS0128130
- 3497 - Morus: LTS0128130
- 3498 - Morus alba: 10.1002/PTR.4803
- 66392 - Morus australis: 10.1002/PTR.4803
- 66392 - Morus australis: LTS0128130
- 66393 - Morus bombycis: 10.1002/PTR.4803
- 66393 - Morus bombycis: LTS0128130
- 248361 - Morus indica: 10.1002/PTR.4803
- 3509 - Myrica: LTS0128130
- 26766 - Myricaceae: LTS0128130
- 3931 - Myrtaceae: LTS0128130
- 39173 - Ocimum: LTS0128130
- 204141 - Ocimum americanum: 10.1007/BF02907824
- 204141 - Ocimum americanum: LTS0128130
- 39350 - Ocimum basilicum:
- 39350 - Ocimum basilicum: 10.1007/BF02907824
- 39350 - Ocimum basilicum: 10.1080/10412905.1995.9698501
- 39350 - Ocimum basilicum: 10.1300/J044V01N04_05
- 39350 - Ocimum basilicum: LTS0128130
- 63801 - Ocotea: LTS0128130
- 128668 - Ocotea odorifera: 10.1016/0378-8741(81)90038-6
- 128668 - Ocotea odorifera: LTS0128130
- 121078 - Ocotea quixos: 10.1016/0378-8741(81)90038-6
- 4145 - Olea: LTS0128130
- 4146 - Olea europaea:
- 4146 - Olea europaea: 10.1002/JSSC.200390053
- 4146 - Olea europaea: 10.1016/B978-0-12-374420-3.00099-1
- 4146 - Olea europaea: 10.1016/J.FOODCHEM.2006.08.014
- 4146 - Olea europaea: 10.1016/S0308-8146(98)00146-0
- 4146 - Olea europaea: 10.1016/S0963-9969(00)00072-7
- 4146 - Olea europaea: 10.1021/JF00035A076
- 4146 - Olea europaea: 10.1021/JF980049C
- 4146 - Olea europaea: LTS0128130
- 4144 - Oleaceae: LTS0128130
- 3934 - Onagraceae: LTS0128130
- 32171 - Onychium: LTS0128130
- 238830 - Onychium contiguum: 10.1016/0031-9422(74)85048-X
- 238830 - Onychium contiguum: LTS0128130
- 164276 - Onychium lucidum: 10.1016/0031-9422(74)85048-X
- 164276 - Onychium lucidum: LTS0128130
- 4747 - Orchidaceae: LTS0128130
- 39174 - Origanum: LTS0128130
- 39352 - Origanum vulgare:
- 39352 - Origanum vulgare: 10.1007/BF00574347
- 39352 - Origanum vulgare: 10.1007/BF00598278
- 39352 - Origanum vulgare: LTS0128130
- 4033 - Oxalidaceae: LTS0128130
- 4034 - Oxalis: LTS0128130
- 53809 - Oxalis pes-caprae: 10.1002/CBDV.200800179
- 53809 - Oxalis pes-caprae: LTS0128130
- 59438 - Ozothamnus: LTS0128130
- 125742 - Ozothamnus diosmifolius: 10.1016/S0031-9422(00)84791-3
- 125742 - Ozothamnus diosmifolius: LTS0128130
- 35934 - Parthenium: LTS0128130
- 35935 - Parthenium argentatum: 10.1002/CBER.19110440350
- 35935 - Parthenium argentatum: LTS0128130
- 4180 - Pedaliaceae: LTS0128130
- 4030 - Pelargonium: LTS0128130
- 163034 - Pelargonium incrassatum: 10.1007/BF00579446
- 163034 - Pelargonium incrassatum: LTS0128130
- 48386 - Perilla Frutescens: -
- 61508 - Persicaria: LTS0128130
- 487989 - Persicaria barbata: LTS0128130
- 4101 - Petunia: LTS0128130
- 33119 - Petunia axillaris: 10.1271/BBB.60507
- 33119 - Petunia axillaris: LTS0128130
- 68553 - Phellodendron: LTS0128130
- 68554 - Phellodendron amurense: 10.1021/NP030034V
- 68554 - Phellodendron amurense: LTS0128130
- 697203 - Phellodendron amurense var. wilsonii: 10.1021/NP030034V
- 697203 - Phellodendron amurense var. wilsonii: LTS0128130
- 354508 - Phellodendron chinense: LTS0128130
- 354509 - Phellodendron chinense var. glabriusculum: 10.1021/NP030034V
- 354509 - Phellodendron chinense var. glabriusculum: LTS0128130
- 233880 - Phyllanthaceae: LTS0128130
- 58880 - Phyllanthus: LTS0128130
- 296036 - Phyllanthus emblica: 10.1002/JCCS.200700228
- 24663 - Physalis: LTS0128130
- 126903 - Physalis peruviana: 10.1016/0031-9422(96)00303-2
- 126903 - Physalis peruviana: LTS0128130
- 260138 - Pimenta: LTS0128130
- 260139 - Pimenta racemosa: 10.1080/10412905.1991.9697952
- 260139 - Pimenta racemosa: LTS0128130
- 3318 - Pinaceae: LTS0128130
- 58019 - Pinopsida: LTS0128130
- 3337 - Pinus: LTS0128130
- 3343 - Pinus lambertiana: 10.1021/JA01143A502
- 3343 - Pinus lambertiana: LTS0128130
- 156152 - Plantaginaceae: LTS0128130
- 26867 - Plantago: LTS0128130
- 101996 - Plantago coronopus: 10.1016/S0031-9422(98)00210-6
- 39414 - Plantago lanceolata: 10.1016/S0031-9422(98)00210-6
- 39414 - Plantago lanceolata: LTS0128130
- 29818 - Plantago major:
- 29818 - Plantago major: 10.1055/S-0028-1099839
- 29818 - Plantago major: 10.1086/325089
- 29818 - Plantago major: LTS0128130
- 33090 - Plants: -
- 204155 - Platostoma: LTS0128130
- 204156 - Platostoma africanum: 10.1055/S-2006-962093
- 204156 - Platostoma africanum: LTS0128130
- 71909 - Pleurocybella: LTS0128130
- 71910 - Pleurocybella porrigens: 10.1248/CPB.54.1213
- 71910 - Pleurocybella porrigens: LTS0128130
- 420628 - Plinia: LTS0128130
- 375264 - Plinia cauliflora: 10.1021/NP0600999
- 375264 - Plinia cauliflora: LTS0128130
- 4479 - Poaceae: LTS0128130
- 4274 - Polygalaceae: LTS0128130
- 3615 - Polygonaceae: LTS0128130
- 241806 - Polypodiopsida: LTS0128130
- 3689 - Populus: LTS0128130
- 73824 - Populus balsamifera: 10.1016/S0021-9673(00)94139-6
- 73824 - Populus balsamifera: LTS0128130
- 1616482 - Populus candicans: 10.1016/S0021-9673(00)94139-6
- 3696 - Populus deltoides: 10.1515/ZNC-1990-0604
- 3696 - Populus deltoides: LTS0128130
- 3691 - Populus nigra: 10.1002/JPS.3080110306
- 3691 - Populus nigra: LTS0128130
- 3694 - Populus trichocarpa: 10.1515/ZNC-1987-9-1004
- 3694 - Populus trichocarpa: LTS0128130
- 3582 - Portulaca: LTS0128130
- 46147 - Portulaca oleracea: 10.1016/0378-8741(93)90067-F
- 46147 - Portulaca oleracea: LTS0128130
- 3581 - Portulacaceae: LTS0128130
- 55487 - Posidonia: LTS0128130
- 55489 - Posidonia oceanica:
- 55489 - Posidonia oceanica: 10.1016/0304-3770(95)00504-8
- 55489 - Posidonia oceanica: 10.1016/S0031-9422(97)01118-7
- 55489 - Posidonia oceanica: LTS0128130
- 55435 - Posidoniaceae: LTS0128130
- 42229 - Prunus avium: 10.1371/JOURNAL.PONE.0121164
- 120289 - Psidium: LTS0128130
- 120290 - Psidium guajava: 10.1016/0031-9422(96)00303-2
- 120290 - Psidium guajava: LTS0128130
- 13819 - Pteridaceae: LTS0128130
- 22663 - Punica granatum: 10.3390/MOLECULES22101606
- 3608 - Rhamnaceae: LTS0128130
- 202994 - Rhodiola: LTS0128130
- 203015 - Rhodiola rosea:
- 203015 - Rhodiola rosea: 10.1002/PTR.1597
- 203015 - Rhodiola rosea: 10.1016/J.PHYMED.2007.10.003
- 203015 - Rhodiola rosea: LTS0128130
- 2803 - Rhodomelaceae: LTS0128130
- 2763 - Rhodophyta: LTS0128130
- 3745 - Rosaceae: LTS0128130
- 24966 - Rubiaceae: LTS0128130
- 32247 - Rubus idaeus: 10.1021/JF020028P
- 23513 - Rutaceae: LTS0128130
- 3688 - Salicaceae: LTS0128130
- 3958 - Santalaceae: LTS0128130
- 4462 - Sauromatum: LTS0128130
- 227256 - Sauromatum giganteum: 10.1007/S10600-014-1163-X
- 227256 - Sauromatum giganteum: LTS0128130
- 13673 - Schisandra: LTS0128130
- 50507 - Schisandra chinensis: 10.1016/S0731-7085(00)00539-2
- 50507 - Schisandra chinensis: LTS0128130
- 16733 - Schisandraceae: LTS0128130
- 508984 - Schnella guianensis: 10.1016/0031-9422(88)80455-2
- 39249 - Scrophularia: LTS0128130
- 476207 - Scrophularia buergeriana: 10.1016/J.PHYTOCHEM.2005.03.023
- 476207 - Scrophularia buergeriana: 10.1016/S0031-9422(00)00110-2
- 476207 - Scrophularia buergeriana: LTS0128130
- 291326 - Scrophularia ningpoensis:
- 291326 - Scrophularia ningpoensis: 10.1016/J.PHYTOCHEM.2005.03.023
- 291326 - Scrophularia ningpoensis: 10.1016/S0031-9422(00)00110-2
- 291326 - Scrophularia ningpoensis: 10.1021/JF9704221
- 291326 - Scrophularia ningpoensis: LTS0128130
- 291326 - Scrophularia ningpoensis Hemsl.: -
- 90363 - Scrophularia nodosa: 10.1016/J.PHYTOCHEM.2005.03.023
- 90363 - Scrophularia nodosa: 10.1016/S0031-9422(00)00110-2
- 90363 - Scrophularia nodosa: LTS0128130
- 4149 - Scrophulariaceae: LTS0128130
- 4139 - Scutellaria: LTS0128130
- 2858926 - Scutellaria grossa:
- 2858926 - Scutellaria grossa: LTS0128130
- 4277 - Securidaca: LTS0128130
- 3091905 - Securidaca inappendiculata: LTS0128130
- 186426 - Selaginella Doederleinii Hieron: -
- 3727 - Sinapis: LTS0128130
- 3728 - Sinapis alba: 10.1007/BF02671339
- 3728 - Sinapis alba: LTS0128130
- 4070 - Solanaceae: LTS0128130
- 4081 - Solanum lycopersicum: 10.1021/JF020028P
- 53736 - Sphagneticola: LTS0128130
- 53737 - Sphagneticola trilobata: 10.1002/HLCA.201000301
- 53737 - Sphagneticola trilobata: LTS0128130
- 23224 - Spiraea: LTS0128130
- 409519 - Spiraea salicifolia: 10.1007/S10600-018-2530-9
- 409519 - Spiraea salicifolia: LTS0128130
- 409520 - Spiraea thunbergii: 10.1271/BBB.62.1546
- 409520 - Spiraea thunbergii: LTS0128130
- 29026 - Staphylinidae: LTS0128130
- 1883 - Streptomyces: 10.3390/MD15120389
- 1883 - Streptomyces: LTS0128130
- 1889 - Streptomyces ambofaciens: 10.3390/MD15120389
- 1889 - Streptomyces ambofaciens: LTS0128130
- 68174 - Streptomyces anthocyanicus: 10.1016/J.BIORTECH.2011.10.045
- 1916 - Streptomyces lividans: 10.1016/J.BIORTECH.2011.10.045
- 1916 - Streptomyces lividans: 10.3390/MD15120389
- 1916 - Streptomyces lividans: LTS0128130
- 115828 - Streptomyces maritimus: 10.3390/MD15120389
- 115828 - Streptomyces maritimus: LTS0128130
- 2062 - Streptomycetaceae: LTS0128130
- 35493 - Streptophyta: LTS0128130
- 24051 - Strobilanthes: LTS0128130
- 2054576 - Strobilanthes yunnanensis: 10.1248/CPB.55.1744
- 2054576 - Strobilanthes yunnanensis: LTS0128130
- 13699 - Styrax: -
- 153559 - Styrax tonkinensis (Pierre) Craib ex Hart.: -
- 24208 - Syringa: LTS0128130
- 2563121 - Syringa persica: 10.1016/S0031-9422(02)00024-9
- 2563121 - Syringa persica: LTS0128130
- 58440 - Tarenna: LTS0128130
- 1547788 - Tarenna attenuata: 10.1021/NP0603931
- 1547788 - Tarenna attenuata: LTS0128130
- 25623 - Taxaceae: LTS0128130
- 25628 - Taxus: LTS0128130
- 25629 - Taxus baccata: 10.1016/S0031-9422(00)80522-1
- 25629 - Taxus baccata: LTS0128130
- 46416 - Tetrapanax: LTS0128130
- 46417 - Tetrapanax papyrifer: 10.1021/NP050185T
- 46417 - Tetrapanax papyrifer: LTS0128130
- 27065 - Theaceae: LTS0128130
- 3640 - Theobroma: LTS0128130
- 3641 - Theobroma cacao: 10.1021/JF0615247
- 3641 - Theobroma cacao: LTS0128130
- 58023 - Tracheophyta: LTS0128130
- 40145 - Tricholoma matsutake: 10.1080/00021369.1981.10864530
- 5351 - Tricholomataceae: LTS0128130
- 13749 - Vaccinium: LTS0128130
- 13750 - Vaccinium macrocarpon: 10.1021/JF020055F
- 13750 - Vaccinium macrocarpon: LTS0128130
- 180772 - Vaccinium vitis-idaea: 10.1016/0031-9422(96)00303-2
- 180772 - Vaccinium vitis-idaea: LTS0128130
- 222091 - Varronia: LTS0128130
- 21910 - Verbenaceae: LTS0128130
- 33090 - Viridiplantae: LTS0128130
- 1003255 - Viscaceae: LTS0128130
- 3971 - Viscum: LTS0128130
- 159976 - Viscum coloratum: 10.1248/CPB.54.1063
- 159976 - Viscum coloratum: LTS0128130
- 29760 - Vitis vinifera: 10.1021/JF020028P
- 183097 - Wedelia: LTS0128130
- 67937 - Zanthoxylum: LTS0128130
- 67938 - Zanthoxylum armatum: 10.1007/978-3-642-71425-2_1
- 67938 - Zanthoxylum armatum: LTS0128130
- 4642 - Zingiberaceae: LTS0128130
- 33090 - 安息香: -
- 33090 - 肉桂: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Menglu Wu, Zi-An Deng, Chaoyi Shen, Zhichao Yang, Zihan Cai, Di Wu, Kunsong Chen. Fabrication of antimicrobial PCL/EC nanofibrous films containing natamycin and trans-cinnamic acid by microfluidic blow spinning for fruit preservation.
Food chemistry.
2024 Jun; 442(?):138436. doi:
10.1016/j.foodchem.2024.138436
. [PMID: 38244441] - Micheli Negri Brusamarello, Antonio Pedro Brusamarello, Mário Antônio Alves da Cunha, Cleverson Busso. Biological and phytochemical potential of Baccharis trimera (Less.) DC leaf extract on swine clinical isolates.
Natural product research.
2024 May; 38(10):1799-1805. doi:
10.1080/14786419.2023.2222217
. [PMID: 37292020] - Rong Fan, Zining Liang, Qing Wang, Sizhe Chen, Shiting Huang, Jiansu Liu, Rui Huang, Jie Chen, Feilan Zhao, Wei Huang. Beneficial action of cinnamic acid against ovarian cancer via network pharmacology analysis and the pharmacological activity assessment.
Naunyn-Schmiedeberg's archives of pharmacology.
2024 05; 397(5):2987-2994. doi:
10.1007/s00210-023-02766-1
. [PMID: 37870582] - Yanan Lu, Xue Han. Therapeutic Implications of Phenolic Acids for Ameliorating Inflammatory Bowel Disease.
Nutrients.
2024 Apr; 16(9):. doi:
10.3390/nu16091347
. [PMID: 38732594] - Tarun Kumar Kar, Sananda Sil, Angshita Ghosh, Ananya Barman, Sandip Chattopadhyay. Mitigation of letrozole induced polycystic ovarian syndrome associated inflammatory response and endocrinal dysfunction by Vitex negundo seeds.
Journal of ovarian research.
2024 Apr; 17(1):76. doi:
10.1186/s13048-024-01378-4
. [PMID: 38589892] - O V Ravikumar, Vanitha Marunganathan, Meenakshi Sundaram Kishore Kumar, Magesh Mohan, Mohammed Rafi Shaik, Baji Shaik, Ajay Guru, Khairiyah Mat. Zinc oxide nanoparticles functionalized with cinnamic acid for targeting dental pathogens receptor and modulating apoptotic genes in human oral epidermal carcinoma KB cells.
Molecular biology reports.
2024 Feb; 51(1):352. doi:
10.1007/s11033-024-09289-9
. [PMID: 38400866] - Hanru Liu, Chonglin Cai, Xingjia Zhang, Wenkui Li, Zhiqing Ma, Juntao Feng, Xili Liu, Peng Lei. Discovery of Novel Cinnamic Acid Derivatives as Fungicide Candidates.
Journal of agricultural and food chemistry.
2024 Feb; 72(5):2492-2500. doi:
10.1021/acs.jafc.3c05655
. [PMID: 38271672] - Fábio Florença Cardoso, Guilherme Henrique Marchi Salvador, Walter Luís Garrido Cavalcante, Maeli Dal-Pai, Marcos Roberto de Mattos Fontes. BthTX-I, a phospholipase A2-like toxin, is inhibited by the plant cinnamic acid derivative: chlorogenic acid.
Biochimica et biophysica acta. Proteins and proteomics.
2024 02; 1872(2):140988. doi:
10.1016/j.bbapap.2023.140988
. [PMID: 38142025] - Baoyun Shan, Jian Mo, Jiayi Yang, Xiaochun Qin, Haina Yu. Cloning and functional characterization of a cinnamate 4-hydroxylase gene from the hornwort Anthoceros angustus.
Plant science : an international journal of experimental plant biology.
2024 Jan; 341(?):111989. doi:
10.1016/j.plantsci.2024.111989
. [PMID: 38232819] - Runqin Wang, Xueling Zhang, Xiangyu Meng, Li Yang, Rongrong Xing, Xuan Chen, Shuang Hu. Hydroxyl-rich ferrofluid for efficient liquid phase microextraction of cinnamic acid derivatives in traditional Chinese medicine.
Journal of separation science.
2024 Jan; 47(1):e2300796. doi:
10.1002/jssc.202300796
. [PMID: 38234030] - Mariza Severina de Lima Silva, Marcilene Souza da Silva, Rômulo Carlos Dantas da Cruz, Bruno de Oliveira Veras, Ivone Antonia de Souza, Rafael Matos Ximenes, Thiago Mendonça de Aquino, Alexandre José da Silva Góes. Biological evaluation of 1,3-benzodioxole acids points to 3,4-(methylenedioxy) cinnamic acid as a potential larvicide against Aedes aegypti (Diptera: Culicidae).
Experimental parasitology.
2024 Jan; 256(?):108657. doi:
10.1016/j.exppara.2023.108657
. [PMID: 38043764] - Yao Zhao, Jitao Hu, Yilin Zhang, Han Tao, Linying Li, Yuqing He, Xueying Zhang, Chi Zhang, Gaojie Hong. Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging.
Food research international (Ottawa, Ont.).
2023 Dec; 174(Pt 1):113578. doi:
10.1016/j.foodres.2023.113578
. [PMID: 37986446] - Agata Wilczańska, Barbara Sparzak-Stefanowska, Adam Kokotkiewicz, Anna Jesionek, Aleksandra Królicka, Maria Łuczkiewicz, Mirosława Krauze-Baranowska. Biotechnological strategies for controlled accumulation of flavones in hairy root culture of Scutellaria lateriflora L.
Scientific reports.
2023 11; 13(1):20422. doi:
10.1038/s41598-023-47757-7
. [PMID: 37990031] - Xiaoxue Li, Yue Hu, Bingxin He, Lingyu Li, Yu Tian, Yingjie Xiao, Hai Shang, Zhongmei Zou. Design, synthesis and evaluation of ursodeoxycholic acid-cinnamic acid hybrids as potential anti-inflammatory agents by inhibiting Akt/NF-κB and MAPK signaling pathways.
European journal of medicinal chemistry.
2023 Nov; 260(?):115785. doi:
10.1016/j.ejmech.2023.115785
. [PMID: 37678142] - Fangping Zhong, Qi Zhang, Kejia Chen, Shichao Lan, Wenchao Yang, Xiuhai Gan. Eco-Friendly Cinnamic Acid Derivatives Containing Glycoside Scaffolds as Potential Antiviral Agents.
Journal of agricultural and food chemistry.
2023 Nov; ?(?):. doi:
10.1021/acs.jafc.3c06318
. [PMID: 37943715] - Yu Shi, Lan-Tu Xiong, Hui Li, Wen-Long Li, Dylan O'Neill Rothenberg, Li-Sheng Liao, Xin Deng, Gao-Peng Song, Zi-Ning Cui. Derivative of cinnamic acid inhibits T3SS of Xanthomonas oryzae pv. oryzae through the HrpG-HrpX regulatory cascade.
Bioorganic chemistry.
2023 Sep; 141(?):106871. doi:
10.1016/j.bioorg.2023.106871
. [PMID: 37734193] - Farkhondeh Safari, Hamid Hassanpour, Ahmad Alijanpour. Evaluation of hackberry (Celtis australis L.) fruits as sources of bioactive compounds.
Scientific reports.
2023 07; 13(1):12233. doi:
10.1038/s41598-023-39421-x
. [PMID: 37507445] - Yimeng Cui, Peiwei Wang, Mengli Li, Yujue Wang, Xinmiao Tang, Jingang Cui, Yu Chen, Teng Zhang. Cinnamic acid mitigates left ventricular hypertrophy and heart failure in part through modulating FTO-dependent N6-methyladenosine RNA modification in cardiomyocytes.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jul; 165(?):115168. doi:
10.1016/j.biopha.2023.115168
. [PMID: 37453198] - Giuseppe Di Pede, Pedro Mena, Letizia Bresciani, Mariem Achour, Rosa Mª Lamuela, Ramón Estruch, Rikard Landberg, Sabine E Kulling, David Wishart, Ana Rodriguez-Mateos, Michael N Clifford, Alan Crozier, Claudine Manach, Daniele Del Rio. A systematic review and comprehensive evaluation of human intervention studies to unravel the bioavailability of hydroxycinnamic acids.
Antioxidants & redox signaling.
2023 Jun; ?(?):. doi:
10.1089/ars.2023.0254
. [PMID: 37382416] - Kateryna Kukil, Elias Englund, Nick Crang, Elton P Hudson, Pia Lindberg. Laboratory evolution of Synechocystis PCC6803 for phenylpropanoid production.
Metabolic engineering.
2023 Jun; ?(?):. doi:
10.1016/j.ymben.2023.06.014
. [PMID: 37392984] - Zühal Bayrakçeken Güven, Iclal Saracoglu, Akito Nagatsu, Mustafa Abdullah Yilmaz, A Ahmet Basaran. Anti-tyrosinase and antimelanogenic effect of cinnamic acid derivatives from Prunus mahaleb L.: Phenolic composition, isolation, identification and inhibitory activity.
Journal of ethnopharmacology.
2023 Jun; 310(?):116378. doi:
10.1016/j.jep.2023.116378
. [PMID: 36924865] - Aline Costa Santos, Felipe Akihiro Melo Otsuka, Rodrigo Brito Santos, Danielle de Jesus Trindade, Humberto Reis Matos. Antiglycation potential and antioxidant activity of genipap (Genipa americana L.) in oxidative stress mediated by hydrogen peroxide on cell culture.
Natural product research.
2023 Jun; 37(12):2065-2069. doi:
10.1080/14786419.2022.2116700
. [PMID: 36093565] - Nariman E Mahdy, Passent M Abdel-Baki, Ahmed A El-Rashedy, Rana M Ibrahim. Modulatory Effect of Pyrus pyrifolia Fruit and its Phenolics on Key Enzymes against Metabolic Syndrome: Bioassay-Guided Approach, HPLC Analysis, and In Silico Study.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 May; ?(?):. doi:
10.1007/s11130-023-01069-3
. [PMID: 37219720] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Abdullah Mashraqi, Yosra Modafer, Mohamed A Al Abboud, Hanaa M Salama, Emad Abada. HPLC Analysis and Molecular Docking Study of Myoporum serratum Seeds Extract with Its Bioactivity against Pathogenic Microorganisms and Cancer Cell Lines.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28104041
. [PMID: 37241781] - M Amundsen, L Jaakola, K Aaby, I Martinussen, N Kelanne, S Tuominen, O Laaksonen, B Yang, A L Hykkerud. Effect of ripening temperature on the chemical composition of lingonberries (Vaccinium vitis-idaea L.) of northern and southern origin.
Food research international (Ottawa, Ont.).
2023 05; 167(?):112738. doi:
10.1016/j.foodres.2023.112738
. [PMID: 37087220] - Yusen Shen, Jiansheng Wang, Ranjan K Shaw, Xiaoguang Sheng, Huifang Yu, Ferdinando Branca, Honghui Gu. Comparative Transcriptome and Targeted Metabolome Profiling Unravel the Key Role of Phenylpropanoid and Glucosinolate Pathways in Defense against Alternaria brassicicola in Broccoli.
Journal of agricultural and food chemistry.
2023 Apr; 71(16):6499-6510. doi:
10.1021/acs.jafc.2c08486
. [PMID: 37061924] - Pengdong Xie, Yangyang Yang, William Oyom, Tingting Su, Yingbo Tang, Yi Wang, Yongcai Li, Dov Prusky, Yang Bi. Chitooligosaccharide accelerated wound healing in potato tubers by promoting the deposition of suberin polyphenols and lignin at wounds.
Plant physiology and biochemistry : PPB.
2023 Apr; 199(?):107714. doi:
10.1016/j.plaphy.2023.107714
. [PMID: 37119550] - Anita Bułakowska, Jarosław Sławiński, Rafał Hałasa, Anna Hering, Magdalena Gucwa, J Renata Ochocka, Justyna Stefanowicz-Hajduk. An In Vitro Antimicrobial, Anticancer and Antioxidant Activity of N-[(2-Arylmethylthio)phenylsulfonyl]cinnamamide Derivatives.
Molecules (Basel, Switzerland).
2023 Mar; 28(7):. doi:
10.3390/molecules28073087
. [PMID: 37049849] - Linmei Deng, Lifen Luo, Yue Li, Luotao Wang, Junxing Zhang, Bianxian Zi, Chen Ye, Yixiang Liu, Huichuan Huang, Xinyue Mei, Weiping Deng, Xiahong He, Shusheng Zhu, Min Yang. Autotoxic Ginsenoside Stress Induces Changes in Root Exudates to Recruit the Beneficial Burkholderia Strain B36 as Revealed by Transcriptomic and Metabolomic Approaches.
Journal of agricultural and food chemistry.
2023 Mar; 71(11):4536-4549. doi:
10.1021/acs.jafc.3c00311
. [PMID: 36893094] - Bin-Xin Yang, Zhen-Xing Li, Shuai-Shuai Liu, Jie Yang, Pei-Yi Wang, Hong-Wu Liu, Xiang Zhou, Li-Wei Liu, Zhi-Bing Wu, Song Yang. Novel cinnamic acid derivatives as a versatile tool for developing agrochemicals for controlling plant virus and bacterial diseases by enhancing plant defense responses.
Pest management science.
2023 Mar; ?(?):. doi:
10.1002/ps.7433
. [PMID: 36864774] - Yumin Cao, Ning Zhou, Tong Liu, Jinying Zhang, Yongxiang Wang, Bingxian Zhang, Zhenkai Zhang, Weisheng Feng, Xiaoke Zheng. Comparative pharmacokinetic studies of Ephedra herba in common cold and nephrotic syndrome rat models.
Journal of separation science.
2023 Feb; ?(?):e2200895. doi:
10.1002/jssc.202200895
. [PMID: 36823773] - Junying Ma, Xiaoyan Li, Maolin He, Yanwen Li, Wei Lu, Mengyao Li, Bo Sun, Yangxia Zheng. A Joint Transcriptomic and Metabolomic Analysis Reveals the Regulation of Shading on Lignin Biosynthesis in Asparagus.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24021539
. [PMID: 36675053] - Jahir Antonio Barajas-Ramírez, Angel Humberto Cabrera-Ramírez, Victoria Guadalupe Aguilar-Raymundo. Antioxidant Activity, Total Phenolic, Tannin, and Flavonoid Content of Five Plants Used in Traditional Medicine in Penjamo, Guanajuato.
Chemistry & biodiversity.
2023 Jan; 20(1):e202200834. doi:
10.1002/cbdv.202200834
. [PMID: 36447306] - Praveen Khatri, Ling Chen, Istvan Rajcan, Sangeeta Dhaubhadel. Functional characterization of Cinnamate 4-hydroxylase gene family in soybean (Glycine max).
PloS one.
2023; 18(5):e0285698. doi:
10.1371/journal.pone.0285698
. [PMID: 37186600] - Rayudika Aprilia Patindra Purba, Pramote Paengkoum. Exploring the Phytochemical Profiles and Antioxidant, Antidiabetic, and Antihemolytic Properties of Sauropus androgynus Dried Leaf Extracts for Ruminant Health and Production.
Molecules (Basel, Switzerland).
2022 Dec; 27(23):. doi:
10.3390/molecules27238580
. [PMID: 36500671] - Rongfei Lu, Jianwei Xu, Zhen Wang, Shaoyong Zhang, Hailong Wang, Hui Xu, Min Lv. Semisynthesis and Pesticidal Activities of Novel Cholesterol Ester Derivatives Containing Cinnamic Acid-like Fragments.
Molecules (Basel, Switzerland).
2022 Dec; 27(23):. doi:
10.3390/molecules27238437
. [PMID: 36500528] - Anupama Nair, M R Preetha Rani, Palayyan Salin Raj, S Ranjit, K Rajankutty, K G Raghu. Cinnamic acid is beneficial to diabetic cardiomyopathy via its cardioprotective, anti-inflammatory, anti-dyslipidemia, and antidiabetic properties.
Journal of biochemical and molecular toxicology.
2022 Dec; 36(12):e23215. doi:
10.1002/jbt.23215
. [PMID: 36117386] - Liangfeng Liu, Huai Chen, Yixin He, Jianliang Liu, Xue Dan, Lin Jiang, Wei Zhan. Carbon stock stability in drained peatland after simulated plant carbon addition: Strong dependence on deeper soil.
The Science of the total environment.
2022 Nov; 848(?):157539. doi:
10.1016/j.scitotenv.2022.157539
. [PMID: 35908690] - Wenhao Yang, Yu Li, Qian Zhao, Yuting Guo, Yan Dong. Intercropping alleviated the phytotoxic effects of cinnamic acid on the root cell wall structural resistance of faba bean and reduced the occurrence of Fusarium wilt.
Physiologia plantarum.
2022 Nov; 174(6):e13827. doi:
10.1111/ppl.13827
. [PMID: 36403196] - Javier A G Vanegas, Horácio B Pacule, Rebeca M Capitão, Carlos R D Correia, Willian C Terra, Vicente P Campos, Denilson F Oliveira. Methyl Esters of (E)-Cinnamic Acid: Activity against the Plant-Parasitic Nematode Meloidogyne incognita and In Silico Interaction with Histone Deacetylase.
Journal of agricultural and food chemistry.
2022 Jun; 70(22):6624-6633. doi:
10.1021/acs.jafc.1c08142
. [PMID: 35622462] - Fei Luan, Zhili Rao, Lixia Peng, Ziqin Lei, Jiuseng Zeng, Xi Peng, Ruocong Yang, Rong Liu, Nan Zeng. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jun; 100(?):154047. doi:
10.1016/j.phymed.2022.154047
. [PMID: 35320770] - Yin-Peng Bai, Cheng-Jie Yang, Nan Deng, Mi Zhang, Zhi-Jun Zhang, Lei Li, Yong Zhou, Xiong-Fei Luo, Chuan-Rui Xu, Bao-Qi Zhang, Yue Ma, Ying-Qian Liu. Design and synthesis of novel 7-ethyl-10-fluoro-20-O-(cinnamic acid ester)-camptothecin derivatives as potential high selectivity and low toxicity topoisomerase I inhibitors for hepatocellular carcinoma.
Biochemical pharmacology.
2022 06; 200(?):115049. doi:
10.1016/j.bcp.2022.115049
. [PMID: 35469784] - Cheng Chen. Anti-atherosclerotic Activity of Para Methoxy Cinnamic Acid in High Fat Diet Induced Hyperlipidemia Model Rats.
Applied biochemistry and biotechnology.
2022 May; 194(5):1911-1924. doi:
10.1007/s12010-021-03735-1
. [PMID: 34997446] - Ayako Kusakabe, Chen Wang, Ya-Ming Xu, István Molnár, S Patricia Stock. Selective Toxicity of Secondary Metabolites from the Entomopathogenic Bacterium Photorhabdus luminescens sonorensis against Selected Plant Parasitic Nematodes of the Tylenchina Suborder.
Microbiology spectrum.
2022 02; 10(1):e0257721. doi:
10.1128/spectrum.02577-21
. [PMID: 35138171] - Kateryna Kukil, Pia Lindberg. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids.
Microbial cell factories.
2022 Jan; 21(1):8. doi:
10.1186/s12934-021-01735-8
. [PMID: 35012528] - Weijie Li, Kexin Wang, Yudong Liu, Hao Wu, Yan He, Congchong Li, Qian Wang, Xiaohui Su, Shikai Yan, Weiwei Su, Yanqiong Zhang, Na Lin. A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis.
Frontiers in immunology.
2022; 13(?):912933. doi:
10.3389/fimmu.2022.912933
. [PMID: 35799788] - Xuemei Xiao, Ju Li, Jian Lyu, Linli Hu, Yue Wu, Zhongqi Tang, Jihua Yu, Alejandro Calderón-Urrea. Grafting-enhanced tolerance of cucumber to toxic stress is associated with regulation of phenolic and other aromatic acids metabolism.
PeerJ.
2022; 10(?):e13521. doi:
10.7717/peerj.13521
. [PMID: 35669966] - Xin Meng, Shilei Luo, Mohammed Mujitaba Dawuda, Xueqin Gao, Shuya Wang, Jianming Xie, Zhongqi Tang, Zeci Liu, Yue Wu, Li Jin, Jian Lyu, Jihua Yu. Exogenous silicon enhances the systemic defense of cucumber leaves and roots against CA-induced autotoxicity stress by regulating the ascorbate-glutathione cycle and photosystem II.
Ecotoxicology and environmental safety.
2021 Dec; 227(?):112879. doi:
10.1016/j.ecoenv.2021.112879
. [PMID: 34649142] - Syed Ali Raza Shah, M Israr Khan, Hira Jawaid, Urooj Qureshi, Zaheer Ul-Haq, M Rahman Hafizur. Nicotinamide-cinnamic acid cocktail exerts pancreatic β-cells survival coupled with insulin secretion through ERK1/2 signaling pathway in an animal model of apoptosis.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2021 Dec; 29(2):483-492. doi:
10.1007/s40199-021-00412-w
. [PMID: 34495496] - Rodrigo da Silva Viana, Fernanda Lima Torres de Aquino, Emiliano Barreto. Effect of trans-cinnamic acid and p-coumaric acid on fibroblast motility: a pilot comparative study of in silico lipophilicity measure.
Natural product research.
2021 Dec; 35(24):5872-5878. doi:
10.1080/14786419.2020.1798664
. [PMID: 32713206] - Pei-Yu Hong, Yi-Hao Huang, GiGi Chin Wen Lim, Yen-Po Chen, Che-Jen Hsiao, Li-Hsien Chen, Jhih-Ying Ciou, Lu-Sheng Hsieh. Production of Trans-Cinnamic Acid by Immobilization of the Bambusa oldhamii BoPAL1 and BoPAL2 Phenylalanine Ammonia-Lyases on Electrospun Nanofibers.
International journal of molecular sciences.
2021 Oct; 22(20):. doi:
10.3390/ijms222011184
. [PMID: 34681846] - Małgorzata Małodobra-Mazur, Dominika Lewoń, Aneta Cierzniak, Marta Okulus, Anna Gliszczyńska. Phospholipid Derivatives of Cinnamic Acid Restore Insulin Sensitivity in Insulin Resistance in 3T3-L1 Adipocytes.
Nutrients.
2021 Oct; 13(10):. doi:
10.3390/nu13103619
. [PMID: 34684619] - Shaobo Wang, Jixiang Chen, Jing Shi, Zhijia Wang, Deyu Hu, Baoan Song. Novel Cinnamic Acid Derivatives Containing the 1,3,4-Oxadiazole Moiety: Design, Synthesis, Antibacterial Activities, and Mechanisms.
Journal of agricultural and food chemistry.
2021 Oct; 69(40):11804-11815. doi:
10.1021/acs.jafc.1c03087
. [PMID: 34597041] - Marlene Costa, Sonia Losada-Barreiro, Fátima Paiva-Martins, Carlos Bravo-Díaz. Effects of Surfactant Volume Fraction on the Antioxidant Efficiency and on The Interfacial Concentrations of Octyl and Tetradecyl p-Coumarates in Corn Oil-in-Water Emulsions.
Molecules (Basel, Switzerland).
2021 Oct; 26(19):. doi:
10.3390/molecules26196058
. [PMID: 34641602] - Maria Valeria Catani, Federica Rinaldi, Valentina Tullio, Valeria Gasperi, Isabella Savini. Comparative Analysis of Phenolic Composition of Six Commercially Available Chamomile (Matricaria chamomilla L.) Extracts: Potential Biological Implications.
International journal of molecular sciences.
2021 Sep; 22(19):. doi:
10.3390/ijms221910601
. [PMID: 34638940] - Bunta Watanabe, Shiori Nishitani, Takao Koeduka. Synthesis of deuterium-labeled cinnamic acids: Understanding the volatile benzenoid pathway in the flowers of the Japanese loquat Eriobotrya japonica.
Journal of labelled compounds & radiopharmaceuticals.
2021 08; 64(10):403-416. doi:
10.1002/jlcr.3933
. [PMID: 34243219] - Acharya Balkrishna, Priyanka Sharma, Monali Joshi, Jyotish Srivastava, Anurag Varshney. Development and validation of a rapid high-performance thin-layer chromatographic method for quantification of gallic acid, cinnamic acid, piperine, eugenol, and glycyrrhizin in Divya-Swasari-Vati, an ayurvedic medicine for respiratory ailments.
Journal of separation science.
2021 Aug; 44(16):3146-3157. doi:
10.1002/jssc.202100096
. [PMID: 34101986] - Gulnigar Ablikim, Khayrulla Bobakulov, Jun Li, Nigary Yadikar, H A Aisa. Two new glucoside derivatives of truxinic and cinnamic acids from Lavandula angustifolia mill.
Natural product research.
2021 Aug; 35(15):2526-2534. doi:
10.1080/14786419.2019.1684283
. [PMID: 31674207] - Keren Wang, Jian Shi, Yi Zhou, Ying He, Jing Mi, Jing Yang, Shuang Liu, Xiangcheng Tang, Wenmin Liu, Zhenghuai Tan, Zhipei Sang. Design, synthesis and evaluation of cinnamic acid hybrids as multi-target-directed agents for the treatment of Alzheimer's disease.
Bioorganic chemistry.
2021 07; 112(?):104879. doi:
10.1016/j.bioorg.2021.104879
. [PMID: 33915461] - Anna Płowuszyńska, Anna Gliszczyńska. Recent Developments in Therapeutic and Nutraceutical Applications of p-Methoxycinnamic Acid from Plant Origin.
Molecules (Basel, Switzerland).
2021 Jun; 26(13):. doi:
10.3390/molecules26133827
. [PMID: 34201697] - Nathalie D Lackus, Axel Schmidt, Jonathan Gershenzon, Tobias G Köllner. A peroxisomal β-oxidative pathway contributes to the formation of C6-C1 aromatic volatiles in poplar.
Plant physiology.
2021 06; 186(2):891-909. doi:
10.1093/plphys/kiab111
. [PMID: 33723573] - Hui Jiang, Jian Liu, Yanling Wang, Leijing Chen, Hui Liu, Zhen Wang, Bin Wang. Screening the Q-markers of TCMs from RA rat plasma using UHPLC-QTOF/MS technique for the comprehensive evaluation of Wu-Wei-Wen-Tong Capsule.
Journal of mass spectrometry : JMS.
2021 May; 56(5):e4711. doi:
10.1002/jms.4711
. [PMID: 33764633] - Masayuki Yamaga, Hiroko Tani, Miyu Nishikawa, Keisuke Fukaya, Shin-Ichi Ikushiro, Kaeko Murota. Pharmacokinetics and metabolism of cinnamic acid derivatives and flavonoids after oral administration of Brazilian green propolis in humans.
Food & function.
2021 Mar; 12(6):2520-2530. doi:
10.1039/d0fo02541k
. [PMID: 33688872] - Haiyan Li, Yunxiang Ma, Xudong Gao, Guopeng Chen, Zhipeng Wang. Probing the structure-antioxidant activity relationships of four cinnamic acids porous starch esters.
Carbohydrate polymers.
2021 Mar; 256(?):117428. doi:
10.1016/j.carbpol.2020.117428
. [PMID: 33483017] - Yolanda Carmona-Jiménez, Miguel Palma, Dominico A Guillén-Sánchez, M Valme García-Moreno. Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential.
Biomolecules.
2021 02; 11(2):. doi:
10.3390/biom11020227
. [PMID: 33562786] - Behzad Zolfaghari, Zeinab Yazdiniapour, Masoud Sadeghi, Mahtab Akbari, Raffaele Troiano, Virginia Lanzotti. Cinnamic acid derivatives from welsh onion (Allium fistulosum) and their antibacterial and cytotoxic activities.
Phytochemical analysis : PCA.
2021 Jan; 32(1):84-90. doi:
10.1002/pca.2924
. [PMID: 32023359] - Chika I Chukwuma, Samson S Mashele, Shasank S Swain. Antidiabetic and Antioxidative Properties of Novel Zn(II)-cinnamic Acid Complex.
Medicinal chemistry (Shariqah (United Arab Emirates)).
2021; 17(8):913-925. doi:
10.2174/1573406416666200929143257
. [PMID: 32990538] - Xing-Nuo Li, Lu-Xia Hua, Tao-Shun Zhou, Ke-Bo Wang, Yuan-Yuan Wu, Mahmoud Emam, Xiao-Ze Bao, Jun Chen, Bin Wei. Cinnamic acid derivatives: inhibitory activity against Escherichia coli β-glucuronidase and structure-activity relationships.
Journal of enzyme inhibition and medicinal chemistry.
2020 Dec; 35(1):1372-1378. doi:
10.1080/14756366.2020.1780225
. [PMID: 32571102] - Joshua VanderWeide, Sergio Tombesi, Simone D Castellarin, Paolo Sabbatini. Canopy architecture and fruit microclimate, not ripening-related phytohormones, control phenylpropanoid accumulation in response to early leaf removal in 'Merlot' (Vitis vinifera L.) grapevines.
Plant physiology and biochemistry : PPB.
2020 Dec; 157(?):291-302. doi:
10.1016/j.plaphy.2020.10.027
. [PMID: 33157421] - Eirini Chainoglou, Argyris Siskos, Eleni Pontiki, Dimitra Hadjipavlou-Litina. Hybridization of Curcumin Analogues with Cinnamic Acid Derivatives as Multi-Target Agents Against Alzheimer's Disease Targets.
Molecules (Basel, Switzerland).
2020 Oct; 25(21):. doi:
10.3390/molecules25214958
. [PMID: 33114751] - Saed Abbasi, Yusuke Sato, Kazuaki Kajimoto, Hideyoshi Harashima. New Design Strategies for Controlling the Rate of Hydrophobic Drug Release from Nanoemulsions in Blood Circulation.
Molecular pharmaceutics.
2020 10; 17(10):3773-3782. doi:
10.1021/acs.molpharmaceut.0c00542
. [PMID: 32881529] - Jingrong Wang, Zhengda Zhang, Jinghua Wu, Xiaoyun Han, Gefu Wang-Pruski, Zhizhong Zhang. Genome-wide identification, characterization, and expression analysis related to autotoxicity of the GST gene family in Cucumis melo L.
Plant physiology and biochemistry : PPB.
2020 Oct; 155(?):59-69. doi:
10.1016/j.plaphy.2020.06.046
. [PMID: 32739875] - Young Soo Jang, Hyun-Yong Kim, Guanglei Zuo, Eun Hee Lee, Sung Kwon Kang, Soon Sung Lim. Constituents from Solidago virgaurea var. gigantea and their inhibitory effect on lipid accumulation.
Fitoterapia.
2020 Oct; 146(?):104683. doi:
10.1016/j.fitote.2020.104683
. [PMID: 32634454] - Xu Pang, Jian-Yuan Zhao, Yu-Jia Wang, Wei Zheng, Jie Zhang, Xiao-Juan Chen, Shan Cen, Li-Yan Yu, Bai-Ping Ma. Steroidal glycosides, homoisoflavanones and cinnamic acid derivatives from Polygonatum odoratum and their inhibitory effects against influenza A virus.
Fitoterapia.
2020 Oct; 146(?):104689. doi:
10.1016/j.fitote.2020.104689
. [PMID: 32726589] - Julia Wohl, Maike Petersen. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase.
Plant cell reports.
2020 Sep; 39(9):1129-1141. doi:
10.1007/s00299-020-02552-w
. [PMID: 32405654] - Zeinab Abdulwanis Mohamed, Enas Mohamed Eliaser, Mohammed Sani Jaafaru, Norshariza Nordin, Costas Ioannides, Ahmad Faizal Abdull Razis. Neuroprotective Effects of 7-Geranyloxycinnamic Acid from Melicope lunu ankenda Leaves.
Molecules (Basel, Switzerland).
2020 Aug; 25(16):. doi:
10.3390/molecules25163724
. [PMID: 32824120] - Jiaoli Ding, Jing Liu, Zhipeng Zhang, Jie Guo, Maojun Cheng, Yang Wan, Rikang Wang, Yuanying Fang, Zhiyu Guan, Yi Jin, Sai-Sai Xie. Design, synthesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacetylase inhibitors with anticancer activities.
Bioorganic chemistry.
2020 08; 101(?):104023. doi:
10.1016/j.bioorg.2020.104023
. [PMID: 32650178] - Sandopu Sravan Kumar, Monisha Arya, Paramesha Mahadevappa, Parvatam Giridhar. Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L.
Journal of photochemistry and photobiology. B, Biology.
2020 Aug; 209(?):111937. doi:
10.1016/j.jphotobiol.2020.111937
. [PMID: 32570057] - Jie Cai, Fansen Zeng, Shiyu Zheng, Xiaoxue Huang, Jingyi Zhang, Ping Zhang, Peng Fei. Preparation of Lipid-Soluble Bilberry Anthocyanins through Acylation with Cinnamic Acids and their Antioxidation Activities.
Journal of agricultural and food chemistry.
2020 Jul; 68(28):7467-7473. doi:
10.1021/acs.jafc.0c01912
. [PMID: 32551628] - Huiyan Ma, Yu Chen, Jinhui Chen, Yunqiu Zhang, Tian Zhang, He He. Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan island.
Scientific reports.
2020 07; 10(1):11332. doi:
10.1038/s41598-020-68234-5
. [PMID: 32647288] - Qun Yu, Liuping Fan, Jiajing Duan, Nan Yu, Na Li, Qingqing Zhu, Nana Wang. Ultrasound and heating treatments improve the antityrosinase ability of polyphenols.
Food chemistry.
2020 Jul; 317(?):126415. doi:
10.1016/j.foodchem.2020.126415
. [PMID: 32087518] - Michael N Clifford, Asimina Kerimi, Gary Williamson. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans.
Comprehensive reviews in food science and food safety.
2020 07; 19(4):1299-1352. doi:
10.1111/1541-4337.12518
. [PMID: 33337099] - Wei-Jia Cheng, Jin-Wei Zhou, Ping-Ping Zhang, Huai-Zhi Luo, Shi Tang, Jun-Jian Li, Shi-Ming Deng, Ai-Qun Jia. Quorum sensing inhibition and tobramycin acceleration in Chromobacterium violaceum by two natural cinnamic acid derivatives.
Applied microbiology and biotechnology.
2020 Jun; 104(11):5025-5037. doi:
10.1007/s00253-020-10593-0
. [PMID: 32248442] - Pengcheng Huang, Yinghong Tang, Chang Li, Huifen Zhou, Li Yu, Haitong Wan, Yu He. Correlation study between the pharmacokinetics of seven main active ingredients of Mahuang decoction and its pharmacodynamics in asthmatic rats.
Journal of pharmaceutical and biomedical analysis.
2020 May; 183(?):113144. doi:
10.1016/j.jpba.2020.113144
. [PMID: 32070931] - Angelica E Graminha, João Honorato, Liany Luna Dulcey, Luani Rezende Godoy, Marília F Barbosa, Marcia R Cominetti, Antonio C Menezes, Alzir A Batista. Evaluation of the biological potential of ruthenium(II) complexes with cinnamic acid.
Journal of inorganic biochemistry.
2020 05; 206(?):111021. doi:
10.1016/j.jinorgbio.2020.111021
. [PMID: 32163810] - Shahla Amani, Mehdi Mohebodini, Shahram Khademvatan, Morad Jafari. Agrobacterium rhizogenes mediated transformation of Ficus carica L. for the efficient production of secondary metabolites.
Journal of the science of food and agriculture.
2020 Mar; 100(5):2185-2197. doi:
10.1002/jsfa.10243
. [PMID: 31901132] - Lanting Zeng, Xiaoqin Wang, Haibo Tan, Yinyin Liao, Ping Xu, Ming Kang, Fang Dong, Ziyin Yang. Alternative Pathway to the Formation of trans-Cinnamic Acid Derived from l-Phenylalanine in Tea (Camellia sinensis) Plants and Other Plants.
Journal of agricultural and food chemistry.
2020 Mar; 68(11):3415-3424. doi:
10.1021/acs.jafc.9b07467
. [PMID: 32078319] - Hai Shang, Lingyu Li, Liyan Ma, Yu Tian, Hongmei Jia, Tao Zhang, Meng Yu, Zhongmei Zou. Design and Synthesis of Molecular Hybrids of Sophora Alkaloids and Cinnamic Acids as Potential Antitumor Agents.
Molecules (Basel, Switzerland).
2020 Mar; 25(5):. doi:
10.3390/molecules25051168
. [PMID: 32150948] - Maria Medvedeva, Kseniya Barinova, Aleksandra Melnikova, Pavel Semenyuk, Vasillii Kolmogorov, Petr Gorelkin, Alexander Erofeev, Vladimir Muronetz. Naturally occurring cinnamic acid derivatives prevent amyloid transformation of alpha-synuclein.
Biochimie.
2020 Mar; 170(?):128-139. doi:
10.1016/j.biochi.2020.01.004
. [PMID: 31945397] - Yanju Wang, Fangcheng He, Sikai Wu, Yuqin Luo, Rong Wu, Deyu Hu, Baoan Song. Design, synthesis, anti-TMV activity, and preliminary mechanism of cinnamic acid derivatives containing dithioacetal moiety.
Pesticide biochemistry and physiology.
2020 Mar; 164(?):115-121. doi:
10.1016/j.pestbp.2020.01.002
. [PMID: 32284116] - Zhenyu Wang, Shenghan Ge, Shiyang Li, Huiting Lin, Shaoling Lin. Anti-obesity effect of trans-cinnamic acid on HepG2 cells and HFD-fed mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Mar; 137(?):111148. doi:
10.1016/j.fct.2020.111148
. [PMID: 31982449] - Mariam Abotaleb, Alena Liskova, Peter Kubatka, Dietrich Büsselberg. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer.
Biomolecules.
2020 02; 10(2):. doi:
10.3390/biom10020221
. [PMID: 32028623] - Shashank Sagar Saini, Mariam Gaid, Debabrata Sircar. Benzoate-CoA ligase contributes to the biosynthesis of biphenyl phytoalexins in elicitor-treated pear cell cultures.
Plant cell reports.
2020 Feb; 39(2):207-215. doi:
10.1007/s00299-019-02484-0
. [PMID: 31713663] - Xuemei Huang, Penglong Wang, Tong Li, Xuehao Tian, Wenbo Guo, Bing Xu, Guangrui Huang, Desheng Cai, Fei Zhou, Hao Zhang, Haimin Lei. Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus.
ACS applied materials & interfaces.
2020 Jan; 12(1):227-237. doi:
10.1021/acsami.9b17722
. [PMID: 31829617] - Wenqi Qian, Weilin Wu, Yun Kang, Yaqin Wang, Ping Yang, Yuanrong Deng, Chengjie Ni, Jianming Huang. Comprehensive identification of minor components and bioassay-guided isolation of an unusual antioxidant from Azolla imbricata using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with multicomponent knockout and bioactivity evaluation.
Journal of chromatography. A.
2020 Jan; 1609(?):460435. doi:
10.1016/j.chroma.2019.460435
. [PMID: 31515075] - Thomas Buxton, Shiori Takahashi, Akpe-Mary Eddy Doh, Joshua Baffoe-Ansah, Ebenezer Oduro Owusu, Chul-Sa Kim. Insecticidal activities of cinnamic acid esters isolated from Ocimum gratissimum L. and Vitellaria paradoxa Gaertn leaves against Tribolium castaneum Hebst (Coleoptera: Tenebrionidae).
Pest management science.
2020 Jan; 76(1):257-267. doi:
10.1002/ps.5509
. [PMID: 31180169] - Panagiotis Theodosis-Nobelos, Georgios Papagiouvanis, Maria Pantelidou, Panos N Kourounakis, Chrysoula Athanasekou, Eleni A Rekka. Design, Synthesis and Study of Nitrogen Monoxide Donors as Potent Hypolipidaemic and Anti-Inflammatory Agents.
Molecules (Basel, Switzerland).
2019 Dec; 25(1):. doi:
10.3390/molecules25010019
. [PMID: 31861583] - Daniel Chavarria, Carlos Fernandes, Brandon Aguiar, Tiago Silva, Jorge Garrido, Fernando Remião, Paulo J Oliveira, Eugenio Uriarte, Fernanda Borges. Insights into the Discovery of Novel Neuroprotective Agents: A Comparative Study between Sulfanylcinnamic Acid Derivatives and Related Phenolic Analogues.
Molecules (Basel, Switzerland).
2019 Dec; 24(23):. doi:
10.3390/molecules24234405
. [PMID: 31810314]