Gene Association: PVALB
UniProt Search:
PVALB (PROTEIN_CODING)
Function Description: parvalbumin
found 186 associated metabolites with current gene based on the text mining result from the pubmed database.
griffonin
Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].
Tropoflavin
7,8-dihydroxyflavone is a dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. It has a role as a plant metabolite, a tropomyosin-related kinase B receptor agonist, an antidepressant, an antioxidant and an antineoplastic agent. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
L-Proline
Proline (Pro), also known as L-proline is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Proline is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Proline is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. Proline is derived from the amino acid L-glutamate in which glutamate-5-semialdehyde is first formed by glutamate 5-kinase and glutamate-5-semialdehyde dehydrogenase (which requires NADH or NADPH). This semialdehyde can then either spontaneously cyclize to form 1-pyrroline-5-carboxylic acid, which is reduced to proline by pyrroline-5-carboxylate reductase, or turned into ornithine by ornithine aminotransferase, followed by cyclization by ornithine cyclodeaminase to form proline. L-Proline has been found to act as a weak agonist of the glycine receptor and of both NMDA and non-NMDA ionotropic glutamate receptors. It has been proposed to be a potential endogenous excitotoxin/neurotoxin. Studies in rats have shown that when injected into the brain, proline non-selectively destroys pyramidal and granule cells (PMID: 3409032 ). Therefore, under certain conditions proline can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of proline are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. People with hyperprolinemia type I often do not show any symptoms even though they have proline levels in their blood between 3 and 10 times the normal level. Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems. Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. Hyperprolinemia type II has signs and symptoms that vary in severity and is more likely than type I to involve seizures or intellectual disability. L-proline is pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. It has a role as a micronutrient, a nutraceutical, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a member of compatible osmolytes. It is a glutamine family amino acid, a proteinogenic amino acid, a proline and a L-alpha-amino acid. It is a conjugate base of a L-prolinium. It is a conjugate acid of a L-prolinate. It is an enantiomer of a D-proline. It is a tautomer of a L-proline zwitterion. Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. L-Proline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Proline is a cyclic, nonessential amino acid (actually, an imino acid) in humans (synthesized from glutamic acid and other amino acids), Proline is a constituent of many proteins. Found in high concentrations in collagen, proline constitutes almost a third of the residues. Collagen is the main supportive protein of skin, tendons, bones, and connective tissue and promotes their health and healing. (NCI04) L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. Pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. Flavouring ingredient; dietary supplement L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
Bicuculline
Bicuculline is a benzylisoquinoline alkaloid that is 6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline which is substituted at the 5-pro-S position by a (6R)-8-oxo-6,8-dihydrofuro[3,4-e][1,3]benzodioxol-6-yl group. A light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. It has a role as an agrochemical, a central nervous system stimulant, a GABA-gated chloride channel antagonist, a neurotoxin and a GABAA receptor antagonist. It is an isoquinoline alkaloid, a member of isoquinolines and a benzylisoquinoline alkaloid. Bicuculline is a light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Bicuculline is a natural product found in Fumaria capreolata, Fumaria densiflora, and other organisms with data available. Bicuculline is a light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Since it blocks the inhibitory action of GABA receptors, the action of bicuculline mimics epilepsy. This property is utilized in laboratories across the world in the in vitro study of epilepsy, generally in hippocampal or cortical neurons in prepared brain slices from rodents. This compound is also routinely used to isolate glutamatergic (excitatory amino acid) receptor function. An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. A benzylisoquinoline alkaloid that is 6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline which is substituted at the 5-pro-S position by a (6R)-8-oxo-6,8-dihydrofuro[3,4-e][1,3]benzodioxol-6-yl group. A light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, Fumariaceae, and several Corydalis species. Bicuculline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=485-49-4 (retrieved 2024-07-09) (CAS RN: 485-49-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3]. Bicuculline ((+)-Bicuculline) is A competing neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+ activating potassium (SK) channels and subsequently blocks slow post-hyperpolarization (slow AHP). Bicuculline has anticonvulsant activity. Bicuculline can be used to induce seizures in mice[1][2][3][4]. Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3].
L-Glutamic acid
Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate. L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid. A peptide that is a homopolymer of glutamic acid. L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ... obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C 5H 9NO 4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH 2)−(CH 2)2−COOH, with two carboxyl groups −COOH and one amino group −NH 2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+ 3)−(CH 2)2−COOH. It is encoded by the codons GAA or GAG. The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+ 3)−(CH 2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH 2)−(CH 2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl. The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7] DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
Orientin
Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
3,4-Dihydroxybenzeneacetic acid
3,4-Dihydroxyphenylacetic acid (DOPAC) is a phenolic acid. DOPAC is a neuronal metabolite of dopamine (DA). DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily into DOPAC via aldehyde dehydrogenase (ALDH2). The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Known inhibitors of mitochondrial ALDH2, such as 4-hydroxy-2-nonenal (4HNE) inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. 4HNE is one of the resulting products of oxidative stress, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to Parkinsons disease. In early-onset Parkinson disease, there is markedly reduced activities of both monoamine oxidase (MAO) A and B. The amount of DOPAC, which is produced during dopamine oxidation by MAO, is greatly reduced as a result of increased parkin overexpression. Administration of methamphetamine to animals causes loss of DA terminals in the brain and significant decreases in dopamine and dihydroxyphenylacetic acid (DOPAC) in the striatum. Renal dopamine produced in the residual tubular units may be enhanced during a sodium challenge, thus behaving appropriately as a compensatory natriuretic hormone; however, the renal dopaminergic system in patients afflicted with renal parenchymal disorders should address parameters other than free urinary dopamine, namely the urinary excretion of L-DOPA and metabolites. DOPAC is one of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements. DOPAC exhibits a considerable antiproliferative effect in LNCaP prostate cancer and HCT116 colon cancer cells. The antiproliferative activity of DOPAC may be due to its catechol structure. A similar association of the catechol moiety in the B-ring with antiproliferative activity was demonstrated for flavanones (PMID:16956664, 16455660, 8561959, 11369822, 10443478, 16365058). DOPAC can be found in Gram-positive bacteria (PMID:24752840). 3,4-Dihydroxyphenylacetic acid (DOPAC) is a metabolite of the neurotransmitter dopamine. 3,4-Dihydroxyphenylacetic acid is found in many foods, some of which are alaska blueberry, cauliflower, ucuhuba, and fox grape. 3,4-Dihydroxybenzeneacetic acid is the main neuronal metabolite of dopamine.
Hyoscyamine
Atropine is a racemate composed of equimolar concentrations of (S)- and (R)-atropine. It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. It has a role as a muscarinic antagonist, an anaesthesia adjuvant, an anti-arrhythmia drug, a mydriatic agent, a parasympatholytic, a bronchodilator agent, a plant metabolite, an antidote to sarin poisoning and a oneirogen. It contains a (S)-atropine and a (R)-atropine. Atropine is an alkaloid originally synthesized from Atropa belladonna. It is a racemic mixture of d-and l-hyoscyamine, of which only l-hyoscyamine is pharmacologically active. Atropine is generally available as a sulfate salt and can be administered by intravenous, subcutaneous, intramuscular, intraosseous, endotracheal and ophthalmic methods. Oral atropine is only available in combination products. Atropine is a competitive, reversible antagonist of muscarinic receptors that blocks the effects of acetylcholine and other choline esters. It has a variety of therapeutic applications, including pupil dilation and the treatment of anticholinergic poisoning and symptomatic bradycardia in the absence of reversible causes. Atropine is a relatively inexpensive drug and is included in the World Health Organization List of Essential Medicines. Atropine is an Anticholinergic and Cholinergic Muscarinic Antagonist. The mechanism of action of atropine is as a Cholinergic Antagonist and Cholinergic Muscarinic Antagonist. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. Atropine is a natural product found in Cyphanthera tasmanica, Anthocercis ilicifolia, and other organisms with data available. Atropine Sulfate is the sulfate salt of atropine, a naturally-occurring alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Atropine is a synthetically-derived form of the endogenous alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2292 INTERNAL_ID 2292; CONFIDENCE Reference Standard (Level 1) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3334 D002491 - Central Nervous System Agents KEIO_ID A080; [MS2] KO008864 KEIO_ID A080 Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
Dopamine
Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061) Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard. Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5] In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9] Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13] Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are: Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20] Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21] Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24] The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26] L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25] Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25] Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25] Degradation Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28] Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30] Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]
3,4-Dihydroxyphenylglycol
3,4-Dihydroxyphenylglycol, also known as DHPG or DOPEG, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxyphenylglycol is an extremely weak basic (essentially neutral) compound. 3,4-Dihydroxyphenylglycol exists in all living organisms, ranging from bacteria to plants to humans. It is a potent antioxidant (PMID: 30007612). In mammals, 3,4-Dihydroxyphenylglycol is the primary metabolite of norepinephrine and is generated through the action of the enzyme monoamine oxidase (MAO). DHPG is then further metabolized by the enzyme Catechol-O-methyltransferase (COMT) to 3-methoxy-4-hydroxyphenylglycol (MHPG). Within humans, 3,4-dihydroxyphenylglycol participates in a number of enzymatic reactions. In particular, 3,4-dihydroxyphenylglycol can be biosynthesized from 3,4-dihydroxymandelaldehyde; which is mediated by the enzyme alcohol dehydrogenase 1A. In addition, 3,4-dihydroxyphenylglycol and guaiacol can be converted into vanylglycol and pyrocatechol through its interaction with the enzyme catechol O-methyltransferase. Outside of the human body, 3,4-dihydroxyphenylglycol is found, on average, in the highest concentration in olives. High levels of DHPG (up to 368 mg/kg of dry weight) have been found in the pulp of natural black olives. This could make 3,4-dihydroxyphenylglycol a potential biomarker for the consumption of olives and olive oil. 3,4-Dihydroxyphenylglycol has been linked to Menkes disease (PMID: 19234788). DHPG level are lower in Menkes patients (3.57 ± 0.40 nM) than healthy infants 8.91 ± 0.77 nM). Menkes disease (also called “kinky hair disease”) is an X-linked recessive neurodevelopmental disorder caused by defects in a gene that encodes a copper-transporting ATPase (ATP7A). Affected infants typically appear healthy at birth and show normal neurodevelopment for 2-3 months. Subsequently there is loss of milestones (e.g., smiling, visual tracking, head control) and death in late infancy or childhood (PMID: 19234788). 3,4-Dihydroxyphenylglycol (DOPEG) is a normal norepinephrine metabolite present in CSF, plasma and urine in humans (PMID 6875564). In healthy individuals there is a tendency for free DOPEG to increase and for conjugated DOPEG to decrease with age; plasmatic DOPEG levels are significantly lower in depressed patients as compared to healthy controls (PMID 6671452). DL-1-(3,4-Dihydroxyphenyl)-1,2-ethanediol is found in olive. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.
(4-Aminobutyl)guanidine
Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. -- Wikipedia; Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is discussed as a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to ?2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Agmatine is found in many foods, some of which are fruits, kohlrabi, carob, and burdock. Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. Agmatine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=306-60-5 (retrieved 2024-07-01) (CAS RN: 306-60-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
D-Alanyl-D-alanine
The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite. Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].
L-Methionine
Methionine (Met), also known as L-methionine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Methionine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Methionine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Methionine is an essential amino acid (there are 9 essential amino acids), meaning the body cannot synthesize it, and it must be obtained from the diet. It is required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, methionine is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340 ). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341 ). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methionine can actually result in death. Longer-term studies in adults have indicated no adverse consequences of moderate fluctuations in dietary methionine intake, but intakes higher than 5 times the normal amount resulted in elevated homocysteine levels. These effects of methionine on homocysteine and vascular function are moderated by supplements of vitamins B-6, B-12, C, and folic acid (PMID: 16702346 ). When present in sufficiently high levels, methionine can act as an atherogen and a metabotoxin. An atherogen is a compound that when present at chronically high levels causes atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methionine are associated with at least ten inborn errors of metabolism, including cystathionine beta-synthase deficiency, glycine N-methyltransferase deficiency, homocystinuria, tyrosinemia, galactosemia, homocystinuria-megaloblastic anemia due to defects in cobalamin metabolism, methionine adenosyltransferase deficiency, methylenetetrahydrofolate reductase deficiency, and S-adenosylhomocysteine (SAH) hydrolase deficiency. Chronically elevated levels of methionine in infants can lead to intellectual disability and othe... [Spectral] L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Methionine (exact mass = 149.05105) and Tyramine (exact mass = 137.08406) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. l-Methionine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-68-3 (retrieved 2024-07-01) (CAS RN: 63-68-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.
N-Methyl-D-aspartic acid
N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. NMDA is a water-soluble endogenous metabolite that plays an important role in the neuroendocrine system of species across Animalia (PMID:18096065). It was first synthesized in the 1960s (PMID:14056452). NMDA is an excitotoxin; this trait has applications in behavioural neuroscience research. The body of work utilizing this technique falls under the term "lesion studies." Researchers apply NMDA to specific regions of an (animal) subjects brain or spinal cord and subsequently test for the behaviour of interest, such as operant behaviour. If the behaviour is compromised, it suggests that the destroyed tissue was part of a brain region that made an important contribution to the normal expression of that behaviour. Examples of antagonists of the NMDA receptor are ketamine, amantadine, dextromethorphan (DXM), riluzole, and memantine. They are commonly referred to as NMDA receptor antagonists (PMID:28877137). N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Baclofen
Baclofen is a gamma-amino-butyric acid (GABA) derivative used as a skeletal muscle relaxant. Baclofen stimulates GABA-B receptors leading to decreased frequency and amplitude of muscle spasms. It is especially useful in treating muscle spasticity associated with spinal cord injury. It appears to act primarily at the spinal cord level by inhibiting spinal polysynaptic afferent pathways and, to a lesser extent, monosynaptic afferent pathways. M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1]. Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].
Clozapine
A tricylic dibenzodiazepine, classified as an atypical antipsychotic agent. It binds several types of central nervous system receptors, and displays a unique pharmacological profile. Clozapine is a serotonin antagonist, with strong binding to 5-HT 2A/2C receptor subtype. It also displays strong affinity to several dopaminergic receptors, but shows only weak antagonism at the dopamine D2 receptor, a receptor commonly thought to modulate neuroleptic activity. Agranulocytosis is a major adverse effect associated with administration of this agent. [PubChem] N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 2841 CONFIDENCE standard compound; INTERNAL_ID 1600 Clozapine (HF 1854) is an antipsychotic used for the research of schizophrenia. Clozapine has high affinity for a number of neuroreceptors. Clozapine is a potent antagonist of dopamine D2 with a Ki of 75 nM. Clozapine inhibits the muscarinic M1 receptor and serotonin 5HT2A receptor with Kis of 9.5 nM and 4 nM, respectively[1][2][3]. Clozapine is also a potent and selective agonist at the muscarinic M4 receptor (EC50=11 nM)[4].
(R)-Amphetamine
==(R)==-Amphetamine is an enantiomer of amphetamine that is urinary metabolite from selegeline (drug used for the treatment of early-stage Parkinsons disease, depression and senile dementia). ==(R)==-Amphetamine as stereoisomer is not considered psychoactive and has little abuse potential. The stimulatory effect on locomotor activity and dopamine synthesis may be contributed to by the action of R-methamphetamine. If anyone is prescribed and takes selegiline, they can and will test positive for amphetamine/methamphetamine on most drug tests. [HMDB] (R)-amphetamine is an enantiomer of amphetamine that is urinary metabolite from selegeline (drug used for the treatment of early-stage Parkinsons disease, depression and senile dementia). (R)-amphetamine as stereoisomer is not considered psychoactive and has little abuse potential. The stimulatory effect on locomotor activity and dopamine synthesis may be contributed to by the action of R-methamphetamine. If anyone is prescribed and takes selegiline, they can and will test positive for amphetamine/methamphetamine on most drug tests. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Diazepam
Diazepam is a benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of gamma-aminobutyric acid activity. It is used in the treatment of severe anxiety disorders, as a hypnotic in the short-term management of insomnia, as a sedative and premedicant, as an anticonvulsant, and in the management of alcohol withdrawal syndrome. (From Martindale, The Extra Pharmacopoeia, 30th ed, p589). Diazepam, first marketed as Valium by Hoffmann-La Roche, is a benzodiazepine derivative drug. It is commonly used for treating anxiety, insomnia, seizures including status epilepticus, muscle spasms (such as in cases of tetanus), restless legs syndrome, alcohol withdrawal, benzodiazepine withdrawal and Ménières disease. Diazepam is found in potato and common wheat. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2626 CONFIDENCE standard compound; INTERNAL_ID 4084 CONFIDENCE standard compound; INTERNAL_ID 1608 CONFIDENCE standard compound; INTERNAL_ID 8560
Ketamine
Ketamine is only found in individuals that have used or taken this drug. It is a cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (receptors, N-methyl-D-aspartate) and may interact with sigma receptors. [PubChem]Ketamine has several clinically useful properties, including analgesia and less cardiorespiratory depressant effects than other anaesthetic agents, it also causes some stimulation of the cardiocascular system. Ketamine has been reported to produce general as well as local anaesthesia. It interacts with N-methyl-D-aspartate (NMDA) receptors, opioid receptors, monoaminergic receptors, muscarinic receptors and voltage sensitive Ca ion channels. Unlike other general anaesthetic agents, ketamine does not interact with GABA receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2826 KEIO_ID K005; [MS2] KO009114 KEIO_ID K005 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Quinolinic acid
Quinolinic acid, also known as quinolinate, belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. It is also classified as a pyridine-2,3-dicarboxylic acid, which is a dicarboxylic acid with a pyridine backbone. Quinolinic acid is a colorless solid. In plants, it is the biosynthetic precursor to nicotine. Quinolinic acid is found in all organisms, from microbes to plants to animals. Quinolinic acid can be biosynthesized via aspartic acid in plants. Oxidation of aspartate by the enzyme aspartate oxidase gives iminosuccinate, containing the two carboxylic acid groups that are found in quinolinic acid. Condensation of iminosuccinate with glyceraldehyde-3-phosphate, mediated by quinolinate synthase, affords quinolinic acid Quinolinic acid is also a downstream product of the kynurenine pathway, which metabolizes the amino acid tryptophan ((PMID: 22678511). The kynurenine/tryptophan degradation pathway is important for its production of the coenzyme nicotinamide adenine dinucleotide (NAD+) and produces several neuroactive intermediates including quinolinic acid, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA). In animals quinolinic acid acts as an NMDA receptor agonist and has a possible role in neurodegenerative disorders (PMID: 22678511). It also acts as a neurotoxin, gliotoxin, proinflammatory mediator, and pro-oxidant molecule (PMID: 22248144). Quinolinic acid can act as an endogenous brain excitotoxin when released by activated macrophages (PMID: 15013955). Within the brain, quinolinic acid is only produced by activated microglia and macrophages. Quinolinic acid is unable to pass through the blood-brain barrier (BBB) and must be produced within the brain by microglial cells or macrophages that have passed the BBB (PMID: 22248144). While quinolinic acid cannot pass through the BBB, kynurenic acid, tryptophan and 3-hydroxykynurenine can and can subsequently act as precursors to the production of quinolinic acid in the brain (PMID: 22248144). Quinolinic acid has potent neurotoxic effects. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders and neurodegenerative diseases in the brain including ALS, Alzheimer’s disease, brain ischemia, Parkinson’s disease, Huntington’s disease and AIDS-dementia. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Indeed, levels of quinolinic acid in the CSF of AIDS patients suffering from AIDS-dementia can be up to twenty times higher than normal (PMID: 10936623). Quinolinic acid levels are increased in the brains of children infected with a range of bacterial infections of the central nervous system (CNS), of poliovirus patients, and of Lyme disease with CNS involvement patients. In addition, raised quinolinic acid levels have been found in traumatic CNS injury patients, patients suffering from cognitive decline with ageing, hyperammonaemia patients, hypoglycaemia patients, and systemic lupus erythematosus patients. Quinolinic acid has also been detected, but not quantified in, several different foods, such as Ceylon cinnamons, pitanga, Oregon yampahs, red bell peppers, and durians. This could make quinolinic acid a potential biomarker for the consumption of these foods. Quinolinic acid, also known as pyridine-2,3-dicarboxylate or 2,3-pyridinedicarboxylic acid, is a member of the class of compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. Quinolinic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Quinolinic acid can be found in a number of food items such as coconut, pistachio, chinese chives, and common bean, which makes quinolinic acid a potential biomarker for the consumption of these food products. Quinolinic acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Quinolinic acid exists in all living species, ranging from bacteria to humans. In humans, quinolinic acid is involved in a couple of metabolic pathways, which include nicotinate and nicotinamide metabolism and tryptophan metabolism. Moreover, quinolinic acid is found to be associated with malaria, anemia, cNS tumors, and aIDS. Quinolinic acid has a potent neurotoxic effect. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders, neurodegenerative processes in the brain, as well as other disorders. Within the brain, quinolinic acid is only produced by activated microglia and macrophages . Quinolinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=89-00-9 (retrieved 2024-07-09) (CAS RN: 89-00-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2]. Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].
Thiabendazole
Thiabendazole is active against a variety of nematodes and is the drug of choice for strongyloidiasis. It has CNS side effects and hepatototoxic potential. (From Smith and Reynard, Textbook of Pharmacology, 1992, p919)The precise mode of action of thiabendazole on the parasite is unknown, but it most likely inhibits the helminth-specific enzyme fumarate reductase. Thiabendazole is also used as a postharvest treatment for bananas, plantains and oranges. Registered in Canada for control of silver scurf in stored potatoes Thiabendazole is a fungicide and parasiticide. Thiabendazole is also a chelating agent, which means that it is used medicinally to bind metals in cases of metal poisoning, such as lead poisoning, mercury poisoning or antimony poisoning. Thiabendazole is vermicidal and/or vermifugal against Ascaris lumbricoides ("common roundworm"), Strongyloides stercoralis (threadworm), Necator americanus, Ancylostoma duodenale (hookworm), Trichuris trichiura (whipworm), Ancylostoma braziliense (dog and cat hookworm), Toxocara canis, Toxocara cati (ascarids), and Enterobius vermicularis (pinworm). Thiabendazole also suppresses egg and/or larval production and may inhibit the subsequent development of those eggs or larvae which are passed in the feces CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5826; ORIGINAL_PRECURSOR_SCAN_NO 5824 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5833; ORIGINAL_PRECURSOR_SCAN_NO 5831 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5856; ORIGINAL_PRECURSOR_SCAN_NO 5854 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5860; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5848; ORIGINAL_PRECURSOR_SCAN_NO 5844 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5840; ORIGINAL_PRECURSOR_SCAN_NO 5838 Anthelmintic, pre- and postharvest fungicide, also freq. for vet. use. It is used as a postharvest treatment for bananas, plantains and oranges. Registered in Canada for control of silver scurf in stored potatoes D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CA - Benzimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent CONFIDENCE standard compound; INTERNAL_ID 8788 INTERNAL_ID 2860; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4015 CONFIDENCE standard compound; INTERNAL_ID 1066 CONFIDENCE standard compound; INTERNAL_ID 2860 KEIO_ID T028 Thiabendazole is an orally available benzimidazole fungicide with repellent and anticancer activities. Thiabendazole can result in developmental malformations. Thiabendazole can be used for modeling[1][2][3][4][5].
Trimeprazine
Trimeprazine is only found in individuals that have used or taken this drug. It is a phenothiazine derivative that is used as an antipruritic. [PubChem]Trimeprazine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D003879 - Dermatologic Agents > D000982 - Antipruritics
Zolpidem
Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. In the United States, recreational use may be less common than in countries where the drug is available as a less expensive generic. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. Like most addictive drugs, a tolerance in the zolpidem user develops and increases all the more quickly the longer she or he has been regularly taking it. Under the influence of the drug it is common to take more zolpidem than is necessary due to either forgetting that one has already taken a pill (elderly users are particularly at risk here), or knowingly taking more than the prescribed dosage. Users with a predilection for abuse are advised to keep additional zolpidem in a safe place that is unlikely to be remembered or accessed while intoxicated to avoid this risk. A trustworthy friend or relative is the best defense if such people are available; otherwise, a box or cupboard locked with a combination padlock is a good defense against this tendency, as the abovementioned side-effects can easily prevent a user from operating such a lock while under the drugs influence; Zolpidem is a prescription drug used for the short-term treatment of insomnia. It works quickly (usually within 15 minutes) and has a short half-life (2-3 hours). Some trade names of zolpidem are Ambien, Stilnox, Stilnoct, Hypnogen or Myslee. Its hypnotic effects are similar to those of the benzodiazepines, but it is classified as an imidazopyridine, and the anticonvulsant and muscle relaxant effects only appear at 10 and 20 times the dose required for sedation, respectively. For that reason, it has never been approved for either muscle relaxation or seizure prevention. Such drastically increased doses are more likely to induce one or more negative side effects, including hallucinations and/or amnesia. (See below.); Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. In the United States, recreational use may be less common than in countries where the drug is available as a less expensive generic. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. Like most addictive drugs, a tolerance in the zolpidem user develops and increases all the more quickly the longer she or he has been regularly taking it. Under the influence of the drug it is common to take more zolpidem than is necessary due to either forgetting that one has already taken a pill (elderly users are particularly at risk here), or knowingly taking more than the prescribed dosage. Users with a predilection for abuse are advised to keep additional zolpidem in a safe place that is unlikely to be remembered or accessed while intoxicated to avoid this risk. A trustworthy friend or relative is the best defense if such people are available; Recreational zolpidem use is speculated to lead to tolerance and dependence much more quickly than prescribed use. Recreational use is rising, as demonstrated by the use of street names for the pill, such as: A (which is most likely due to the imprint on the Ambien CR brand of zolpidem, which consists of a capital A along with a tilde, which looks roughly like A~, as well as for sedative and calming effects, A+ is a street name for Adderall, named so because of its stimulant effects) and zombie pills (because of the waking sleep/sensory deprivation effect some users have reported experiencing). Another buzz term for Ambien is tic-tacs, referring to the shape and color of commonly abused 10mg tablets; Zolpidem is a prescription drug used for the short-term treatment of insomnia. It works quickly (usually within 15 minutes) and has a short half-life (2-3 hours). Its hypnotic eff... Zolpidem (sold under the brand names Ambien, Ambien CR, Stilnox, and Sublinox) is a prescription medication used for the treatment of insomnia, as well as some brain disorders. It is a short-acting nonbenzodiazepine hypnotic of the imidazopyridine class that potentiates gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, by binding to GABAA receptors at the same location as benzodiazepines. It works quickly (usually within 15 minutes) and has a short half-life (two to three hours). Zolpidem has not adequately demonstrated effectiveness in maintaining sleep (unless delivered in a controlled-release form); however, it is effective in initiating sleep. Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Trifluoperazine
Trifluoperazine is only found in individuals that have used or taken this drug. It is a phenothiazine with actions similar to chlorpromazine. It is used as an antipsychotic and an antiemetic. [PubChem]Trifluoperazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics KEIO_ID T122; [MS2] KO009263 KEIO_ID T122
Trenbolone
A 3-oxo-Delta(4) steroid that is estra-4,9,11-triene carrying an oxo group at position 3 and a hydroxy group at position 17beta. It is a synthetic anabolic steroid used for muscle growth in livestock. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid CONFIDENCE standard compound; INTERNAL_ID 2824 CONFIDENCE standard compound; INTERNAL_ID 8746 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8822; ORIGINAL_PRECURSOR_SCAN_NO 8819 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8842; ORIGINAL_PRECURSOR_SCAN_NO 8840 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4804; ORIGINAL_PRECURSOR_SCAN_NO 4803 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8845; ORIGINAL_PRECURSOR_SCAN_NO 8842 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8903; ORIGINAL_PRECURSOR_SCAN_NO 8901 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4774; ORIGINAL_PRECURSOR_SCAN_NO 4772 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4794 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4815 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8823; ORIGINAL_PRECURSOR_SCAN_NO 8820 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4832 CONFIDENCE standard compound; INTERNAL_ID 787; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8866; ORIGINAL_PRECURSOR_SCAN_NO 8863
Flumazenil
Flumazenil is only found in individuals that have used or taken this drug.Flumazenil, an imidazobenzodiazepine derivative, antagonizes the actions of benzodiazepines on the central nervous system. Flumazenil competitively inhibits the activity at the benzodiazepine recognition site on the GABA/benzodiazepine receptor complex, thereby reversing the effects of benzodiazepine on the central nervous system. Flumazenil is a weak partial agonist in some animal models of activity, but has little or no agonist activity in man. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D020011 - Protective Agents > D000931 - Antidotes Flumazenil is a competitive GABAA receptor antagonist, used in the treatment of benzodiazepine overdoses.
Loxapine
Loxapine is only found in individuals that have used or taken this drug. It is an antipsychotic agent used in schizophrenia. [PubChem]Loxapine is a dopamine antagonist, and also a serotonin 5-HT2 blocker. The exact mode of action of Loxapine has not been established, however changes in the level of excitability of subcortical inhibitory areas have been observed in several animal species in association with such manifestations of tranquilization as calming effects and suppression of aggressive behavior. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Loxapine is an orally active dopamine inhibitor, 5-HT receptor antagonist and also a dibenzoxazepine anti-psychotic agent[1][4].
MDMA
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3613 CONFIDENCE standard compound; INTERNAL_ID 1712 D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Pilocarpine
Pilocarpine is only found in individuals that have used or taken this drug. It is a slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. [PubChem]Pilocarpine is a cholinergic parasympathomimetic agent. It increase secretion by the exocrine glands, and produces contraction of the iris sphincter muscle and ciliary muscle (when given topically to the eyes) by mainly stimulating muscarinic receptors. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2265 Pilocarpine is a selective M3-type muscarinic acetylcholine receptor (M3 muscarinic receptor) agonist.
Nimodipine
Nimodipine is a 1,4-dihydropyridine calcium channel blocker. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, nimodipine prevents calcium-dependent smooth muscle contraction and subsequent vasoconstriction. Compared to other calcium channel blocking agents, nimodipine exhibits greater effects on cerebral circulation than on peripheral circulation. Nimodipine is used to as an adjunct to improve the neurologic outcome following subarachnoid hemorrhage from ruptured intracranial aneurysm. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Oxycodone
Oxycodone is only found in individuals that have used or taken this drug. It is a semisynthetic derivative of codeine that acts as a narcotic analgesic more potent and addicting than codeine. [PubChem]Oxycodone acts as a weak agonist at mu, kappa, and delta opioid receptors within the central nervous system (CNS). Oxycodone primarily affects mu-type opioid receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as oxycodone also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (kappa-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (mu and delta receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Cocaine
Cocaine, also known as coke, is an alkaloid ester obtained from the leaves of the coca plant (PMID: 20857618). It is a weakly alkaline compound and can therefore combine with acidic compounds to form white salts or powders (which is how it is typically sold and consumed). Cocaine is a strong stimulant that is most frequently used as a recreational drug. It is the second most frequently used illegal drug globally, after cannabis. The stimulant and hunger suppression properties of cocaine and coca leaf extracts have been known for thousands of years by indigenous groups in central and South America. The coca leaf was, and still is, chewed almost universally by some indigenous communities. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This inhibition leads to a number of mental and physical effects that may include loss of contact with reality, an intense feeling of happiness, periods of agitation, along with a rapid heart rate, sweating, and dialated pupils. Cocaine is highly addictive due to its effect on the reward pathway in the brain (PMID: 22856655). Cocaine addiction occurs through overexpression of the FosB protein in the nucleus accumbens of the brain, which results in altered transcriptional regulation in neurons within the nucleus accumbens. Cocaine is harmful. Its use increases the risk of stroke, myocardial infarction, lung problems (in those who smoke it), blood infections, and sudden cardiac death. Medically, cocaine is infrequently used as a local anesthetic and vasoconstrictor to cause loss of feeling or numbness before certain medical procedures (e.g., biopsy, stitches, wound cleaning) (PMID: 28956316). Topical cocaine is occasionally used as a local numbing agent to help with painful procedures in the mouth or nose. Cocaine is now predominantly used for nasal and lacrimal duct surgery. It works quickly to numb certain areas of the body (e.g., nose, ear, or throat) about 1-2 minutes after application. Cocaine functions as an anesthesia by reversibly binding to and inactivating sodium channels, thereby inhibiting excitation of nerve endings or by blocking conduction in peripheral nerves. Cocaine and its major metabolites are only found in individuals that have used or taken this drug. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BC - Esters of benzoic acid S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2817 EAWAG_UCHEM_ID 2817; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 1619 D049990 - Membrane Transport Modulators
N-PHENYL-1-NAPHTHYLAMINE
CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens
Haloperidol
A phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. (From AMA Drug Evaluations Annual, 1994, p279) CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7649; ORIGINAL_PRECURSOR_SCAN_NO 7647 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7684; ORIGINAL_PRECURSOR_SCAN_NO 7682 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7681; ORIGINAL_PRECURSOR_SCAN_NO 7680 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7678; ORIGINAL_PRECURSOR_SCAN_NO 7677 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7604; ORIGINAL_PRECURSOR_SCAN_NO 7602 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7639; ORIGINAL_PRECURSOR_SCAN_NO 7638 D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3566 CONFIDENCE standard compound; INTERNAL_ID 1122 Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.
Chlorothiazide
Chlorothiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with actions and uses similar to those of hydrochlorothiazide. (From Martindale, The Extra Pharmacopoeia, 30th ed, p812)As a diuretic, chlorothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like chlorothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of chlorothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3256 D049990 - Membrane Transport Modulators
Propylthiouracil
Propylthiouracil is only found in individuals that have used or taken this drug. It is a thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534)Propylthiouracil binds to thyroid peroxidase and thereby inhibits the conversion of iodide to iodine. Thyroid peroxidase normally converts iodide to iodine (via hydrogen peroxide as a cofactor) and also catalyzes the incorporation of the resulting iodide molecule onto both the 3 and/or 5 positions of the phenol rings of tyrosines found in thyroglobulin. Thyroglobulin is degraded to produce thyroxine (T4) and tri-iodothyronine (T3), which are the main hormones produced by the thyroid gland. Therefore propylthiouracil effectively inhibits the production of new thyroid hormones. H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations > H03BA - Thiouracils D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C885 - Antithyroid Agent D009676 - Noxae > D000963 - Antimetabolites KEIO_ID P055 Propylthiouracil (6-n-Propylthiouracil), a thioamide antithyroid agent, is an orally active thyroperoxidase and type-1 deiodinase (DIO1) inhibitor. Propylthiouracil can be used for the Graves disease and hyperthyroidism research[1].
Vigabatrin
Vigabatrin is only found in individuals that have used or taken this drug. It is an analogue of gamma-aminobutyric acid. It is an irreversible inhibitor of 4-aminobutyrate transaminase, the enzyme responsible for the catabolism of gamma-aminobutyric acid. (From Martindale The Extra Pharmacopoeia, 31st ed)It is believed that vigabatrin increases brain concentrations of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in the CNS, by irreversibly inhibiting enzymes that catabolize GABA (gamma-aminobutyric acid transaminase GABA-T) or block the reuptake of GABA into glia and nerve endings. Vigabatrin may also work by suppressing repetitive neuronal firing through inhibition of voltage-sensitive sodium channels. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3626 D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
MG(0:0/20:4(5Z,8Z,11Z,14Z)/0:0)
MG(0:0/20:4(5Z,8Z,11Z,14Z)/0:0), also known as 2-arachidonoylglycerol (2-AG), is a unique molecular species of monoacylglycerol isolated in 1995 from rat brain and canine gut as an endogenous ligand for the cannabinoid receptors. 2-AG is rapidly formed from arachidonic acid-containing phospholipids through increased phospholipid metabolism, such as enhanced inositol phospholipid turnover, in various tissues and cells upon stimulation. 2-AG binds to the cannabinoid receptors CB1 and CB2 and exhibits a variety of cannabimimetic activities in vitro and in vivo. 2-AG is an endogenous cannabinoid (endocannabinoid). Endocannabinoids are a class of fatty acid derivatives defined by their ability to interact with the specific cannabinoid receptors that were originally identified as the targets of delta9-tetrahydocannabinol (delta9-THC), the psychoactive component of cannabis. Endocannabinoids have been implicated in a growing number of important physiological and behavioral events. Endocannabinoids are amides, esters, and ethers of long-chain polyunsaturated fatty acids, which act as new lipidic mediators. 2-AG is one of the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of delta9-THC, the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA and 2-AG at their receptors is limited by cellular uptake through an anandamide membrane transporter (AMT), followed by intracellular degradation. A fatty acid amide hydrolase (FAAH) is the main AEA hydrolase, whereas a monoacylglycerol lipase (MAGL) is critical in degrading 2-AG (PMID: 16515464, 16278487, 16678907). 2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated in 1995 from rat brain and canine gut as an endogenous ligand for the cannabinoid receptors. 2-AG is rapidly formed from arachidonic acid-containing phospholipids through increased phospholipid metabolism, such as enhanced inositol phospholipid turnover, in various tissues and cells upon stimulation. 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. 2-Arachidonylglycerol is an endogenous cannabinoid (endocannabinoid). Endocannabinoids are a class of fatty acid derivatives defined by their ability to interact with the specific cannabinoid receptors that were originally identified as the targets of Delta9-tetrahydocannabinol (Delta9-THC), the psychoactive component of cannabis. Endocannabinoids have been implicated in a growing number of important physiological and behavioral events. Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which act as new lipidic mediators. 2-AG is one of the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of (-)-Delta9-tetrahydrocannabinol (THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA and 2-AG at their receptors is limited by cellular uptake through an anandamide membrane transporter (AMT), followed by intracellular degradation. A fatty acid amide hydrolase (FAAH) is the main AEA hydrolase, whereas a monoacylglycerol lipase (MAGL) is critical in degrading 2-AG. (PMID: 16515464, 16278487, 16678907) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists
Acetovanillone
Acetovanillone, also known as 4-hydroxy-3-methoxyacetophenone or acetoguaiacon, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Acetovanillone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Acetovanillone is a faint, sweet, and vanillin tasting compound found in corn and garden onion, which makes acetovanillone a potential biomarker for the consumption of these food products. Acetovanillone may be a unique S.cerevisiae (yeast) metabolite. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].
Sebacic acid
Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD), also known as glutaric aciduria type II (GAII), a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. Sebacic acid is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. Sebacic acid is a white flake or powdered crystal slightly soluble in water that has been proposed as an alternative energy substrate in total parenteral nutrition. Sebacic Acid was named from the Latin sebaceus (tallow candle) or sebum (tallow) in reference to its use in the manufacture of candles. Sebacic acid and its derivatives such as azelaic acid have a variety of industrial uses as plasticizers, lubricants, hydraulic fluids, cosmetics, candles, etc. It is used in the synthesis of polyamide and alkyd resins. It is also used as an intermediate for aromatics, antiseptics and painting materials (PMID: 10556649, 1738216, 8442769, 12706375). Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4109; ORIGINAL_PRECURSOR_SCAN_NO 4104 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4130 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4118; ORIGINAL_PRECURSOR_SCAN_NO 4114 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4129 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4099; ORIGINAL_PRECURSOR_SCAN_NO 4095 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4127; ORIGINAL_PRECURSOR_SCAN_NO 4123 Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID S017 Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.
Glucoraphanin
Glucoraphanin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucoraphanin has been detected, but not quantified in, several different foods, such as radish, common cabbages, Brassicas, Chinese cabbages, and cabbages. This could make glucoraphanin a potential biomarker for the consumption of these foods. Isolated from radish (Raphanus sativus) and Brassica species seeds or tops. Glucoraphanin is found in many foods, some of which are broccoli, white cabbage, cauliflower, and chinese cabbage. Acquisition and generation of the data is financially supported in part by CREST/JST. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.
Diacetoxyscirpenol
Diacetoxyscirpenol is a constituent of Fusarium species Mycotoxin D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Constituent of Fusarium subspecies Mycotoxin C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents
Tiagabine
Tiagabine is an anti-convulsive medication. It is also used in the treatment for panic disorder as are a few other anticonvulsants. Though the exact mechanism by which tiagabine exerts its effect on the human body is unknown, it does appear to operate as a selective GABA reuptake inhibitor. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators
Phencyclidine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D004791 - Enzyme Inhibitors
Pentetrazol
R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AB - Respiratory stimulants D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D07409
Pregnanolone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
γ-Aminobutyric acid
gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter found in the nervous systems of widely divergent species, including humans. It is the chief inhibitory neurotransmitter in the vertebrate central nervous system. In vertebrates, GABA acts at inhibitory synapses in the brain. It acts by binding to specific transmembrane receptors in the plasma membrane of both pre- and postsynaptic neurons. This binding causes the opening of ion channels to allow either the flow of negatively-charged chloride ions into the cell or positively-charged potassium ions out of the cell. This will typically result in a negative change in the transmembrane potential, usually causing hyperpolarization. Three general classes of GABA receptor are known (PMID: 10561820). These include GABA-A and GABA-C ionotropic receptors, which are ion channels themselves, and GABA-B metabotropic receptors, which are G protein-coupled receptors that open ion channels via intermediaries known as G proteins (PMID: 10561820). Activation of the GABA-B receptor by GABA causes neuronal membrane hyperpolarization and a resultant inhibition of neurotransmitter release. In addition to binding sites for GABA, the GABA-A receptor has binding sites for benzodiazepines, barbiturates, and neurosteroids. GABA-A receptors are coupled to chloride ion channels. Therefore, activation of the GABA-A receptor induces increased inward chloride ion flux, resulting in membrane hyperpolarization and neuronal inhibition (PMID: 10561820). After release into the synapse, free GABA that does not bind to either the GABA-A or GABA-B receptor complexes can be taken up by neurons and glial cells. Four different GABA membrane transporter proteins (GAT-1, GAT-2, GAT-3, and BGT-1), which differ in their distribution in the CNS, are believed to mediate the uptake of synaptic GABA into neurons and glial cells. The GABA-A receptor subtype regulates neuronal excitability and rapid changes in fear arousal, such as anxiety, panic, and the acute stress response (PMID: 10561820). Drugs that stimulate GABA-A receptors, such as the benzodiazepines and barbiturates, have anxiolytic and anti-seizure effects via GABA-A-mediated reduction of neuronal excitability, which effectively raises the seizure threshold. GABA-A antagonists produce convulsions in animals and there is decreased GABA-A receptor binding in a positron emission tomography (PET) study of patients with panic disorder. Neurons that produce GABA as their output are called GABAergic neurons and have chiefly inhibitory action at receptors in the vertebrate. Medium spiny neurons (MSNs) are a typical example of inhibitory CNS GABAergic cells. GABA has been shown to have excitatory roles in the vertebrate, most notably in the developing cortex. Organisms synthesize GABA from glutamate using the enzyme L-glutamic acid decarboxylase and pyridoxal phosphate as a cofactor (PMID: 12467378). It is worth noting that this involves converting the principal excitatory neurotransmitter (glutamate) into the principal inhibitory one (GABA). Drugs that act as agonists of GABA receptors (known as GABA analogs or GABAergic drugs), or increase the available amount of GABA typically have relaxing, anti-anxiety, and anti-convulsive effects. GABA is found to be deficient in cerebrospinal fluid and the brain in many studies of experimental and human epilepsy. Benzodiazepines (such as Valium) are useful in status epilepticus because they act on GABA receptors. GABA increases in the brain after administration of many seizure medications. Hence, GABA is clearly an antiepileptic nutrient. Inhibitors of GAM metabolism can also produce convulsions. Spasticity and involuntary movement syndromes, such as Parkinsons, Friedreichs ataxia, tardive dyskinesia, and Huntingtons chorea, are all marked by low GABA when amino acid levels are studied. Trials of 2 to 3 g of GABA given orally have been effective in various epilepsy and spasticity syndromes. Agents that elevate GABA are als... Gamma-aminobutyric acid, also known as gaba or 4-aminobutanoic acid, belongs to gamma amino acids and derivatives class of compounds. Those are amino acids having a (-NH2) group attached to the gamma carbon atom. Thus, gamma-aminobutyric acid is considered to be a fatty acid lipid molecule. Gamma-aminobutyric acid is soluble (in water) and a weakly acidic compound (based on its pKa). Gamma-aminobutyric acid can be synthesized from butyric acid. Gamma-aminobutyric acid is also a parent compound for other transformation products, including but not limited to, (1S,2S,5S)-2-(4-glutaridylbenzyl)-5-phenylcyclohexan-1-ol, 4-(methylamino)butyric acid, and pregabalin. Gamma-aminobutyric acid can be found in a number of food items such as watercress, sour cherry, peach, and cardoon, which makes gamma-aminobutyric acid a potential biomarker for the consumption of these food products. Gamma-aminobutyric acid can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), blood, and feces, as well as throughout most human tissues. Gamma-aminobutyric acid exists in all living species, ranging from bacteria to humans. In humans, gamma-aminobutyric acid is involved in a couple of metabolic pathways, which include glutamate metabolism and homocarnosinosis. Gamma-aminobutyric acid is also involved in few metabolic disorders, which include 2-hydroxyglutric aciduria (D and L form), 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency, hyperinsulinism-hyperammonemia syndrome, and succinic semialdehyde dehydrogenase deficiency. Moreover, gamma-aminobutyric acid is found to be associated with alzheimers disease, hyper beta-alaninemia, tuberculous meningitis, and hepatic encephalopathy. Gamma-aminobutyric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. gamma-Aminobutyric acid (γ-Aminobutyric acid) (GABA ) is the chief inhibitory neurotransmitter in the mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. In humans, GABA is also directly responsible for the regulation of muscle tone . Chronically high levels of GABA are associated with at least 5 inborn errors of metabolism including: D-2-Hydroxyglutaric Aciduria, 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency, GABA-Transaminase Deficiency, Homocarnosinosis and Succinic semialdehyde dehydrogenase deficiency (T3DB). [Spectral] 4-Aminobutanoate (exact mass = 103.06333) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D018682 - GABA Agents KEIO_ID A002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2].
Beta-Guanidinopropionic acid
Beta-Guanidinopropionic acid is analog of creatine and is reported to decrease phosphocreatine and ATP content in animal tissues in vivo. Acquisition and generation of the data is financially supported in part by CREST/JST. A human metabolite taken as a putative food compound of mammalian origin [HMDB] C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism KEIO_ID G039
Tocainide
Tocainide is only found in individuals that have used or taken this drug. It is an antiarrhythmic agent which exerts a potential- and frequency-dependent block of sodium channels. [PubChem]Tocainide acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. Tocainide binds preferentially to the inactive state of the sodium channels.The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Glyceraldehyde
DL-Glyceraldehyde is a monosaccharide. DL-Glyceraldehyde is the simplest aldose. DL-Glyceraldehyde can be used for various biochemical studies[1].
DAMGO
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins KEIO_ID A226; [MS2] KO008836 KEIO_ID A226; [MS3] KO008837 KEIO_ID A226 DAMGO is a μ-opioid receptor (μ-OPR ) selective agonist with a Kd of 3.46 nM for native μ-OPR[1].
MET-enkephalin
A pentapeptide comprising L-tyrosine, glycine, glycine, L-phenylalanine and L-methionine residues joined in sequence by peptide linkages. It is an endogenous opioid peptide with antitumor, analgesic, and immune-boosting properties. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, DrugBank C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins C308 - Immunotherapeutic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor. Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor.
Digenin
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].
Pantetheine 4'-phosphate
Pantetheine 4-phosphate, or 4-phosphopantetheine, is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. 4-phosphopantetheine is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. [HMDB]
5-O-(1-Carboxyvinyl)-3-phosphoshikimate
Ethyl carbamate
Ethyl carbamate, also known as aethylurethan or uretan, belongs to the class of organic compounds known as carboximidic acids and derivatives. Carboximidic acids and derivatives are compounds containing a carboximidic group, with the general formula R-C(=NR1)OR2. Ethyl carbamate has been detected, but not quantified, in alcoholic beverages. This could make ethyl carbamate a potential biomarker for the consumption of these foods. Ethyl carbamate is formally rated as a probable carcinogen (by IARC 2A) and is also a potentially toxic compound. It is readily absorbed from the gastrointestinal tract and the skin. It also tends to induce specific mutations in the Kras oncogene in codon 61 of exon 2 including A:T transversions and A-->G transitions in the second base and A-->T transversions in the third base. Urethane, formerly marketed as an inactive ingredient in Profenil injection, was determined to be carcinogenic and was removed from the Canadian, US, and UK markets in 1963. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. In case of contact with eyes, irrigate opened eyes for several minutes under running water. Metabolism is mediated by cytochrome P450 2E1. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1]. Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1].
amsacrine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D000970 - Antineoplastic Agents
Biotin amide
The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927). Late-onset multiple carboxylase deficiency (MCD) with biotinidase deficiency is caused by mutation in the biotinidase gene. MCD is an autosomal recessive metabolic disorder characterized primarily by cutaneous and neurologic abnormalities. Symptoms result from the patients inability to reutilize biotin, a necessary nutrient. (OMIM 253260). The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927)
METHYLAZOXYMETHANOL
D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens
(2S,4R,5S)-Muscarine
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Main toxic constituent of the fly fungus Amanita muscaria and various Inocybe specie
(R)-Methylphosphonofluoridic acid 1,2,2-trimethylpropyl ester
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors
Ethosuximide
Ethosuximide is only found in individuals that have used or taken this drug. It is an anticonvulsant especially useful in the treatment of absence seizures unaccompanied by other types of seizures. [PubChem]Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
Isoflurane
Isoflurane is only found in individuals that have used or taken this drug. It is a stable, non-explosive inhalation anesthetic, relatively free from significant side effects. [PubChem]Isoflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Isoflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. Also appears to bind the D subunit of ATP synthase and NADH dehydogenase. Isoflurane also binds to the GABA receptor, the large conductance Ca2+ activated potassium channel, the glutamate receptor and the glycine receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Sertindole
Sertindole, a neuroleptic, is one of the newer antipsychotic medications available. Serdolect is developed by the Danish pharmaceutical company H. Lundbeck. Like the other atypical antipsychotics, it has activity at dopamine and serotonin receptors in the brain. It is used in the treatment of schizophrenia. It is classified chemically as a phenylindole derivative. It was first marketed in 1996 in several European countries before being withdrawn two years later because of numerous cardiac adverse effects. It has once again been approved and should soon be available on the French and Australian market. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].
beta-Caryophyllene
beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.
Ibotenic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites. Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites.
Melitten
Cyclacillin
Cyclacillin is only found in individuals that have used or taken this drug. It is a cyclohexylamido analog of penicillanic acid. [PubChem]The bactericidal activity of cyclacillin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cyclacillin is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334
6-Cyano-7-nitroquinoxaline-2,3-dione
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].
alpha-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLEPROPIONIC ACID
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].
Gaboxadol
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].
Fampridine
D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker N - Nervous system Same as: D04127
2-Amino-5-phosphonopentanoic acid
DL-AP5 (2-APV) is a competitive NMDA (N-methyl-D-aspartate) receptor antagonist. DL-AP5 shows significantly antinociceptive activity. DL-AP5 specifically blocks on channels in the rabbit retina[1][2][3].
Gabazine
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists
Retigabine
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569
4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
Tropolone
Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
DL-Glutamate
DL-Glutamate, also known as E or DL-glutamic acid, belongs to the class of organic compounds known as glutamic acid and derivatives. Glutamic acid and derivatives are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). DL-Glutamate exists in all living organisms, ranging from bacteria to humans. DL-Glutamate is found, on average, in the highest concentration within a few different foods, such as red bell peppers, milk (cow), and wheats and in a lower concentration in eggplants, romaine lettuces, and nanking cherries. DL-Glutamate has also been detected, but not quantified, in a few different foods, such as apples, broccoli, and lettuces. Glutamic acid (abbreviated as Glu or E) is one of the 20 proteinogenic amino acids. It is a non-essential amino acid. Glutamic acid is found in many foods, some of which are garden onion, orange bell pepper, oat, and cucumber. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
Methionine enkephalin
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, DrugBank C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins C308 - Immunotherapeutic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor. Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor.
Baclofen
M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID B013; [MS2] KO008869 KEIO_ID B013 Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].
Apocynin
Apocynin is an aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an antirheumatic drug, a peripheral nervous system drug, an EC 1.6.3.1. [NAD(P)H oxidase (H2O2-forming)] inhibitor and a plant metabolite. It is a member of acetophenones, a methyl ketone and an aromatic ketone. Acetovanillone has been used in trials studying the treatment of Bronchial Asthma and Chronic Obstructive Pulmonary Disease. Acetovanillone is a natural product found in Iris tectorum, Apocynum cannabinum, and other organisms with data available. Acetovanillone is a metabolite found in or produced by Saccharomyces cerevisiae. An aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].
Amsacrine
Aminoacridine derivative that is a potent intercalating antineoplastic agent. It is effective in the treatment of acute leukemias and malignant lymphomas, but has poor activity in the treatment of solid tumors. It is frequently used in combination with other antineoplastic agents in chemotherapy protocols. It produces consistent but acceptable myelosuppression and cardiotoxic effects. [PubChem] C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D000970 - Antineoplastic Agents
3a-Hydroxy-5b-pregnane-20-one
3alpha-Hydroxy-5beta-pregnane-20-one is an intermediate in C21-Steroid hormone metabolism. 3alpha-Hydroxy-5beta-pregnane-20-one is converted from 5beta-Pregnane-3,20-dione via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50). It is then converted to Pregnanediol via the enzyme 3alpha(or 20beta)-hydroxysteroid dehydrogenase (EC 1.1.1.53). [HMDB] 3alpha-Hydroxy-5beta-pregnane-20-one is an intermediate in C21-Steroid hormone metabolism. 3alpha-Hydroxy-5beta-pregnane-20-one is converted from 5beta-Pregnane-3,20-dione via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50). It is then converted to Pregnanediol via the enzyme 3alpha(or 20beta)-hydroxysteroid dehydrogenase (EC 1.1.1.53). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Amphetamine
Amphetamine is a chiral compound. The racemic mixture can be divided into its optical antipodes: levo- and dextro-amphetamine. Amphetamine is the parent compound of its own structural class, comprising a broad range of psychoactive derivatives, e.g., MDMA (Ecstasy) and the N-methylated form, methamphetamine. Amphetamine is a homologue of phenethylamine. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Pregnanolone
Pregnanolone, also known as eltanolone or 3alpha-hydroxy-5beta-pregnan-20-one, belongs to the class of organic compounds known as gluco/mineralocorticoids, progestogens, and derivatives. These are steroids with a structure based on a hydroxylated prostane moiety. Pregnanolone is considered to be practically insoluble (in water) and basic. Pregnanolone is an endogenous inhibitory neurosteroid that is produced in the body from progesterone. It is closely related to allopregnanolone, which has similar properties (Wikipedia). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Neurogard
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents
3,4-Methylenedioxymethamphetamine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)
3,4-dihydroxyphenylacetic acid
3,4-Dihydroxybenzeneacetic acid is the main neuronal metabolite of dopamine.
Ipomic acid
Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.
3,4-Dihydroxybenzeneacetic acid
3,4-Dihydroxyphenylacetic acid (DOPAC) is a phenolic acid. DOPAC is a neuronal metabolite of dopamine (DA). DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily into DOPAC via aldehyde dehydrogenase (ALDH2). The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Known inhibitors of mitochondrial ALDH2, such as 4-hydroxy-2-nonenal (4HNE) inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. 4HNE is one of the resulting products of oxidative stress, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to Parkinsons disease. In early-onset Parkinson disease, there is markedly reduced activities of both monoamine oxidase (MAO) A and B. The amount of DOPAC, which is produced during dopamine oxidation by MAO, is greatly reduced as a result of increased parkin overexpression. Administration of methamphetamine to animals causes loss of DA terminals in the brain and significant decreases in dopamine and dihydroxyphenylacetic acid (DOPAC) in the striatum. Renal dopamine produced in the residual tubular units may be enhanced during a sodium challenge, thus behaving appropriately as a compensatory natriuretic hormone; however, the renal dopaminergic system in patients afflicted with renal parenchymal disorders should address parameters other than free urinary dopamine, namely the urinary excretion of L-DOPA and metabolites. DOPAC is one of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements. DOPAC exhibits a considerable antiproliferative effect in LNCaP prostate cancer and HCT116 colon cancer cells. The antiproliferative activity of DOPAC may be due to its catechol structure. A similar association of the catechol moiety in the B-ring with antiproliferative activity was demonstrated for flavanones (PMID:16956664, 16455660, 8561959, 11369822, 10443478, 16365058). DOPAC can be found in Gram-positive bacteria (PMID:24752840). (3,4-dihydroxyphenyl)acetic acid is a dihydroxyphenylacetic acid having the two hydroxy substituents located at the 3- and 4-positions. It is a metabolite of dopamine. It has a role as a human metabolite. It is a dihydroxyphenylacetic acid and a member of catechols. It is functionally related to a phenylacetic acid. It is a conjugate acid of a (3,4-dihydroxyphenyl)acetate. 3,4-Dihydroxyphenylacetic acid is a natural product found in Liatris elegans, Tragopogon orientalis, and other organisms with data available. A deaminated metabolite of LEVODOPA. 3,4-Dihydroxyphenylacetic acid (DOPAC) is a metabolite of the neurotransmitter dopamine. 3,4-Dihydroxyphenylacetic acid is found in many foods, some of which are alaska blueberry, cauliflower, ucuhuba, and fox grape. 3,4-Dihydroxybenzeneacetic acid is the main neuronal metabolite of dopamine.
Glucoraphanin
A thia-glucosinolic acid that is glucoerucin in which the sulfur atom of the methyl thioether group has been oxidised to the corresponding sulfoxide. Acquisition and generation of the data is financially supported by the Max-Planck-Society Glucoraphanin is under investigation in clinical trial NCT01879878 (Pilot Study Evaluating Broccoli Sprouts in Advanced Pancreatic Cancer [POUDER Trial]). Glucoraphanin is a natural product found in Arabidopsis thaliana, Brassica, and Raphanus sativus with data available. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.
Lutexin
Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
clozapine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent CONFIDENCE standard compound; INTERNAL_ID 8610 CONFIDENCE standard compound; INTERNAL_ID 1600 Clozapine (HF 1854) is an antipsychotic used for the research of schizophrenia. Clozapine has high affinity for a number of neuroreceptors. Clozapine is a potent antagonist of dopamine D2 with a Ki of 75 nM. Clozapine inhibits the muscarinic M1 receptor and serotonin 5HT2A receptor with Kis of 9.5 nM and 4 nM, respectively[1][2][3]. Clozapine is also a potent and selective agonist at the muscarinic M4 receptor (EC50=11 nM)[4].
7,8-Dihydroxyflavone
7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
Kainic acid
Kainic acid is a dicarboxylic acid, a pyrrolidinecarboxylic acid, a L-proline derivative and a non-proteinogenic L-alpha-amino acid. It has a role as an antinematodal drug and an excitatory amino acid agonist. It is a conjugate acid of a kainate(1-). (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].
Tropolone
Tropolone is a cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. It has a role as a bacterial metabolite, a toxin and a fungicide. It is a cyclic ketone, an enol and an alpha-hydroxy ketone. It derives from a hydride of a cyclohepta-1,3,5-triene. A seven-membered aromatic ring compound. It is structurally related to a number of naturally occurring antifungal compounds (ANTIFUNGAL AGENTS). A cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
propylthiouracil
H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations > H03BA - Thiouracils D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C885 - Antithyroid Agent D009676 - Noxae > D000963 - Antimetabolites CONFIDENCE standard compound; INTERNAL_ID 324; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2811; ORIGINAL_PRECURSOR_SCAN_NO 2809 CONFIDENCE standard compound; INTERNAL_ID 324; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2808; ORIGINAL_PRECURSOR_SCAN_NO 2807 CONFIDENCE standard compound; INTERNAL_ID 324; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2807; ORIGINAL_PRECURSOR_SCAN_NO 2805 CONFIDENCE standard compound; INTERNAL_ID 324; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2876; ORIGINAL_PRECURSOR_SCAN_NO 2874 INTERNAL_ID 324; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2811; ORIGINAL_PRECURSOR_SCAN_NO 2808 CONFIDENCE standard compound; INTERNAL_ID 324; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2811; ORIGINAL_PRECURSOR_SCAN_NO 2808 CONFIDENCE standard compound; INTERNAL_ID 2385 CONFIDENCE standard compound; INTERNAL_ID 1224 CONFIDENCE standard compound; INTERNAL_ID 1166 Propylthiouracil (6-n-Propylthiouracil), a thioamide antithyroid agent, is an orally active thyroperoxidase and type-1 deiodinase (DIO1) inhibitor. Propylthiouracil can be used for the Graves disease and hyperthyroidism research[1].
Benzeneethanamine, a-methyl-
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1540 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2822
ketamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1586
oxycodone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1602 IPB_RECORD: 1423; CONFIDENCE confident structure
thiabendazole
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CA - Benzimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3180 Thiabendazole is an orally available benzimidazole fungicide with repellent and anticancer activities. Thiabendazole can result in developmental malformations. Thiabendazole can be used for modeling[1][2][3][4][5].
Pilocarpine
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Pilocarpine is a selective M3-type muscarinic acetylcholine receptor (M3 muscarinic receptor) agonist.
flumazenil
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D020011 - Protective Agents > D000931 - Antidotes Flumazenil is a competitive GABAA receptor antagonist, used in the treatment of benzodiazepine overdoses.
nimodipine
C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
haloperidol
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.
Orientin
Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). A C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
Dopamine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Catechol in which the hydrogen at position 4 is substituted by a 2-aminoethyl group. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VYFYYTLLBUKUHU_STSL_0097_Dopamine_2000fmol_180430_S2_LC02_MS02_90; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
N-Methyl-D-aspartic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists
quinolinic acid
A pyridinedicarboxylic acid that is pyridine substituted by carboxy groups at positions 2 and 3. It is a metabolite of tryptophan. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2]. Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].
Sebacic acid
An alpha,omega-dicarboxylic acid that is the 1,8-dicarboxy derivative of octane. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.
4-Aminobutyric acid
A gamma-amino acid that is butanoic acid with the amino substituent located at C-4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D018682 - GABA Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; BTCSSZJGUNDROE_STSL_0138_4-Aminobutyric acid_8000fmol_180506_S2_LC02_MS02_259; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2]. γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2].
3,4-Dihydroxyphenylglycol
A tetrol composed of ethyleneglycol having a 3,4-dihydroxyphenyl group at the 1-position. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.
diazepam
A 1,4-benzodiazepinone that is 1,3-dihydro-2H-1,4-benzodiazepin-2-one substituted by a chloro group at position 7, a methyl group at position 1 and a phenyl group at position 5. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D005765 - Gastrointestinal Agents > D000932 - Antiemetics
loxapine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Loxapine is an orally active dopamine inhibitor, 5-HT receptor antagonist and also a dibenzoxazepine anti-psychotic agent[1][4].
Tiagabine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators
tocainide
C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
trifluoperazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics
zolpidem
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
cocaine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BC - Esters of benzoic acid S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics A tropane alkaloid obtained from leaves of the South American shrub Erythroxylon coca. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
PHENCYCLIDINE
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D004791 - Enzyme Inhibitors
vigabatrin
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D004791 - Enzyme Inhibitors Vigabatrin (γ-Vinyl-GABA), an inhibitory neurotransmitter GABA vinyl-derivative, is an orally active and irreversible GABA transaminase inhibitor. Vigabatrin is an antiepileptic agent, which acts by increasing GABA levels in the brain by inhibiting the catabolism of GABA by GABA transaminase[1][2][3].
trimeprazine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D003879 - Dermatologic Agents > D000982 - Antipruritics
ethosuximide
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
Merfect
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CA - Benzimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Thiabendazole is an orally available benzimidazole fungicide with repellent and anticancer activities. Thiabendazole can result in developmental malformations. Thiabendazole can be used for modeling[1][2][3][4][5].
caryophyllene
A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.
MG 20:4
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists
Dalfampridine
D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker N - Nervous system Same as: D04127
Retigabine
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators
apocynin
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].
Pentetrazol
R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AB - Respiratory stimulants D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D07409
Cyclacillin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
gaboxadol
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].
Bicculine
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3]. Bicuculline ((+)-Bicuculline) is A competing neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+ activating potassium (SK) channels and subsequently blocks slow post-hyperpolarization (slow AHP). Bicuculline has anticonvulsant activity. Bicuculline can be used to induce seizures in mice[1][2][3][4]. Bicuculline ((+)-Bicuculline; d-Bicuculline), as a convulsant alkaloid, is a competitive neurotransmitter GABAA receptor antagonist (IC50=2 μM). Bicuculline also blocks Ca2+-activated potassium (SK) channels and subsequently blocks the slow afterhyperpolarization (slow AHP) [1][2][3].
CORFREE M1
Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.
Dopamin
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents
Uretan
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1]. Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1].
Eltanolone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)
4-methylsulfinylbutyl glucosinolate is a member of the class of compounds known as alkylglucosinolates. Alkylglucosinolates are organic compounds containing a glucosinolate moiety that carries an alkyl chain. 4-methylsulfinylbutyl glucosinolate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 4-methylsulfinylbutyl glucosinolate can be found in a number of food items such as sweet cherry, japanese chestnut, macadamia nut (m. tetraphylla), and oriental wheat, which makes 4-methylsulfinylbutyl glucosinolate a potential biomarker for the consumption of these food products.
urethane
A carbamate ester obtained by the formal condensation of ethanol with carbamic acid. It has been found in alcoholic beverages. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1]. Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1].
muscimol
A member of the class of isoxazoles that is 1,2-oxazol-3(2H)-one substituted by an aminomethyl group at position 5. It has been isolated from mushrooms of the genus Amanita. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Acrylonitrile
A nitrile that is hydrogen cyanide in which the hydrogen has been replaced by an ethenyl group. D009676 - Noxae > D002273 - Carcinogens
3,4-methylenedioxymethamphetamine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
chlorothiazide
C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators
isoflurane
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
SOMAN
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors
DL-Glutamic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
SERTINDOLE
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].
Gabazine
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists
D-23129
C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics D049990 - Membrane Transport Modulators Same as: D09569
Ciclacillin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334
N-Methyl-D-aspartate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists An aspartic acid derivative having an N-methyl substituent and D-configuration.
2-arachidonoylglycerol
An endocannabinoid and an endogenous agonist of the cannabinoid receptors (CB1 and CB2). It is an ester formed from omega-6-arachidonic acid and glycerol. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists
DL-AP5
The 5-phosphono derivative of 2-aminopentanoic acid; acts as an N-methyl-D-aspartate receptor antagonist. DL-AP5 (2-APV) is a competitive NMDA (N-methyl-D-aspartate) receptor antagonist. DL-AP5 shows significantly antinociceptive activity. DL-AP5 specifically blocks on channels in the rabbit retina[1][2][3].
N-PHENYL-1-NAPHTHYLAMINE
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens
Ibotenic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites. Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites.
(RS)-AMPA
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].
CNQX
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].
GYKI 52466
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents