Lupeol (BioDeep_00000000542)

 

Secondary id: BioDeep_00000171905, BioDeep_00000297659

PANOMIX_OTCML-2023 Chemicals and Drugs natural product


代谢物信息卡片


(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

化学式: C30H50O (426.3861)
中文名称: 蛇麻醇酯, 羽扇豆醇, 羽扇醇, 羽扇豆醇酯
谱图信息: 最多检出来源 Viridiplantae(plant) 31.77%

分子结构信息

SMILES: C=C(C)C1CCC2(C)CCC3(C)C(CCC4C5(C)CCC(O)C(C)(C)C5CCC43C)C12
InChI: InChI=1S/C30H50O/c1-19(2)20-11-14-27(5)17-18-29(7)21(25(20)27)9-10-23-28(6)15-13-24(31)26(3,4)22(28)12-16-30(23,29)8/h20-25,31H,1,9-18H2,2-8H3

描述信息

Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane.
Lupeol has been investigated for the treatment of Acne.
Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available.
See also: Calendula Officinalis Flower (part of).
A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables.
D000893 - Anti-Inflammatory Agents
Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].
Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

同义名列表

44 个代谢物同义名

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol; (1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol; lupeol, (3beta,18beta,19beta)-isomer; LUP-20(29)-EN-3-OL, (3-.BETA.)-; Lup-20(29)-en-3-ol, (3.beta.)-; (3-.BETA.)-LUP-20(29)-EN-3-OL; Lup-20(29)-en-3-ol, (3-beta)-; 3.BETA.-HYDROXYLUP-20(29)-ENE; (3b,13|I)-Lup-20(29)-en-3-ol; Lup-20(29)-en-3-ol, (3beta)-; (3-beta)-Lup-20(29)-en-3-ol; 3beta-HYDROXYLUP-20(29)-ENE; Lupeol, analytical standard; (3beta)-lup-20(29)-en-3-ol; Lup-20(29)-en-3-ol, (3b)-; LUP-20(29)-EN-3-.BETA.-OL; 3beta-lup-20(29)-en-3-ol; lup-20(29)-ene-3alpha-ol; Lup-20(29)-en-3.beta.-ol; lupeol, (3alpha)-isomer; Lup-20(29)-en-3-beta-ol; lup-20(29)-en-3beta-ol; 20(29)-Lupen-3beta-ol; Lup-20(29)-en-3b-ol; lup-20(29)-en-3-ol; Triterpene lupeol; Lupeol, >=94\\%; LUPEOL [HSDB]; farganasterol; .beta.-Viscol; LUPEOL [INCI]; Fagarasterol; NCI60_042005; LUPEOL, (+)-; Monogynol B; LUPEOL [MI]; Fagarsterol; beta-Viscol; (+)-Lupeol; Clerodol; Lupenol; lupeol; Lup-20(29)-en-3-ol #; Lupeol



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

177 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(6)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(171)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3358 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ANG, ANXA5, BCL2, CASP3, CAT, CCND1, CTNNB1, HPGDS, MTOR, PIK3CA, PTGS2, TYR, VEGFA
Peripheral membrane protein 4 ANXA5, GORASP1, MTOR, PTGS2
Endoplasmic reticulum membrane 3 BCL2, MTOR, PTGS2
Nucleus 7 ANG, BCL2, CASP3, CCND1, CTNNB1, MTOR, VEGFA
cytosol 10 ANG, ANXA5, BCL2, CASP3, CAT, CCND1, CTNNB1, HPGDS, MTOR, PIK3CA
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 2 CCND1, CTNNB1
nucleoplasm 5 CASP3, CCND1, CTNNB1, HPGDS, MTOR
Cell membrane 2 CTNNB1, TNF
Cytoplasmic side 2 GORASP1, MTOR
lamellipodium 2 CTNNB1, PIK3CA
Golgi apparatus membrane 2 GORASP1, MTOR
Synapse 1 CTNNB1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 2 TNF, VEGFA
glutamatergic synapse 2 CASP3, CTNNB1
Golgi apparatus 2 GORASP1, VEGFA
Golgi membrane 3 GORASP1, INS, MTOR
growth cone 1 ANG
lysosomal membrane 2 GAA, MTOR
neuronal cell body 3 ANG, CASP3, TNF
presynaptic membrane 1 CTNNB1
sarcolemma 1 ANXA5
Lysosome 3 GAA, MTOR, TYR
plasma membrane 4 CTNNB1, GAA, PIK3CA, TNF
Membrane 7 ANXA5, BCL2, CAT, CTNNB1, GAA, MTOR, VEGFA
basolateral plasma membrane 1 CTNNB1
caveola 1 PTGS2
extracellular exosome 4 ANXA5, CAT, CTNNB1, GAA
Lysosome membrane 2 GAA, MTOR
endoplasmic reticulum 3 BCL2, PTGS2, VEGFA
extracellular space 6 ANG, IL10, IL4, INS, TNF, VEGFA
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 3 CTNNB1, PIK3CA, TYR
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 2 CTNNB1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 2 CCND1, CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 2 BCL2, CAT
protein-containing complex 4 BCL2, CAT, CTNNB1, PTGS2
intracellular membrane-bounded organelle 4 CAT, GAA, HPGDS, TYR
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TYR
Secreted 6 ANG, GAA, IL10, IL4, INS, VEGFA
extracellular region 9 ANG, ANXA5, CAT, GAA, IL10, IL4, INS, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
mitochondrial matrix 1 CAT
transcription regulator complex 1 CTNNB1
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 2 ANXA5, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 1 ANG
Wnt signalosome 1 CTNNB1
Melanosome membrane 1 TYR
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 CTNNB1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 3 ANXA5, CAT, CTNNB1
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
basement membrane 1 ANG
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
secretory granule 1 VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Chromosome 1 ANG
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 ANG
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
nuclear envelope 1 MTOR
Endomembrane system 2 CTNNB1, MTOR
endosome lumen 1 INS
tertiary granule membrane 1 GAA
Melanosome 1 TYR
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 CTNNB1
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
transport vesicle 1 INS
azurophil granule membrane 1 GAA
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
protein-DNA complex 1 CTNNB1
ficolin-1-rich granule membrane 1 GAA
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
catalase complex 1 CAT
endothelial microparticle 1 ANXA5
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
cyclin D1-CDK6 complex 1 CCND1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Theodora G A Solovou, George Stravodimos, Georgios E Papadopoulos, Vassiliki T Skamnaki, Kalliope Papadopoulou, Demetres D Leonidas. Biochemical and Structural Studies of LjSK1, a Lotus japonicus GSK3β/SHAGGY-like Kinase, Reveal Its Functional Role. Journal of agricultural and food chemistry. 2024 Feb; 72(7):3763-3772. doi: 10.1021/acs.jafc.3c07101. [PMID: 38330914]
  • Adedokun Oluwasegun, Ume Ogochukwu, Ojukwu Ugochukwu, Ismail Mussaddiq, Ayinde Bunyamin. Lupeol: A Triterpenoid Isolated from the Stem Bark of Hymenocardia Acida (tul.) Exhibits a van der Waal Antagonism on the Alpha Subunit of Gastric H+K+Atpase - A Promising Antiulcer Principle. Drug research. 2023 Aug; ?(?):. doi: 10.1055/a-2132-6475. [PMID: 37625445]
  • Wenhui Chu, Pan Wang, Zhe Ma, Lin Peng, Chenyuan Guo, Yongqian Fu, Lingzhi Ding. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. International journal of biological macromolecules. 2023 Jul; 243(?):125310. doi: 10.1016/j.ijbiomac.2023.125310. [PMID: 37315678]
  • Jun Sung Park, Inayat Ur Rehman, Kyonghwan Choe, Riaz Ahmad, Hyeon Jin Lee, Myeong Ok Kim. A Triterpenoid Lupeol as an Antioxidant and Anti-Neuroinflammatory Agent: Impacts on Oxidative Stress in Alzheimer's Disease. Nutrients. 2023 Jul; 15(13):. doi: 10.3390/nu15133059. [PMID: 37447385]
  • Rawah H Elkousy, Zeinab N A Said, Mohamed A Ali, Omnia Kutkat, Salwa A Abu El Wafa. Anti-SARS-CoV-2 in vitro potential of castor oil plant (Ricinus communis) leaf extract: in-silico virtual evidence. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2023 Jul; ?(?):. doi: 10.1515/znc-2023-0075. [PMID: 37401758]
  • Nathalie Tanko Metiefeng, Alfred Ngenge Tamfu, Maurice Fotsing Tagatsing, Turibio Kuiate Tabopda, Selcuk Kucukaydin, Martin Noah Mbane, Alex de Theodore Atchade, Emmanuel Talla, Celine Henoumont, Sophie Laurent, El Hassane Anouar, Rodica Mihaela Dinica. In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith. Molecules (Basel, Switzerland). 2023 Jun; 28(12):. doi: 10.3390/molecules28124802. [PMID: 37375357]
  • Hirokazu Takahashi, Chisato Abo, Hayato Suzuki, Jutapat Romsuk, Takao Oi, Asako Yanagawa, Tomoka Gorai, Yukari Tomisaki, Mana Jitsui, Satoshi Shimamura, Hitoshi Mori, Akito Kaga, Masao Ishimoto, Hikaru Seki, Toshiya Muranaka, Mikio Nakazono. Triterpenoids in aerenchymatous phellem contribute to internal root aeration and waterlogging adaptability in soybeans. The New phytologist. 2023 Jun; ?(?):. doi: 10.1111/nph.18975. [PMID: 37270736]
  • Sojung Bae, Na-Hee Jeong, Young-Ae Choi, Byungheon Lee, Yong Hyun Jang, Soyoung Lee, Sang-Hyun Kim. Lupeol alleviates atopic dermatitis-like skin inflammation in 2,4-dinitrochlorobenzene/Dermatophagoides farinae extract-induced mice. BMC pharmacology & toxicology. 2023 04; 24(1):27. doi: 10.1186/s40360-023-00668-9. [PMID: 37098554]
  • Hanen Enneb, Khaled Athmouni, Rahma Thabet, Habib Ayadi. Phytochemical Compounds of Euphorbia bivonae Extract and Their Cytotoxicity Effects on the Lethality of Brine Shrimp Artemia salina and Embryonic Kidney (HEK293) Cells. Chemistry & biodiversity. 2023 Apr; ?(?):e202201135. doi: 10.1002/cbdv.202201135. [PMID: 37026603]
  • Homa Fatma, Mohd Jameel, Kafil Akhtar, Mairaj Ahmed Ansari, Hifzur R Siddique. Implication of Lupeol in compensating Sorafenib-induced perturbations of redox homeostasis: A preclinical study in mouse model. Life sciences. 2023 Apr; ?(?):121647. doi: 10.1016/j.lfs.2023.121647. [PMID: 37011877]
  • Jyoti Mamgain, A Mujib, Rukaya Syeed, Bushra Ejaz, Moien Qadir Malik, Yashika Bansal. Genome size and gas chromatography-mass spectrometry (GC-MS) analysis of field-grown and in vitro regenerated Pluchea lanceolata plants. Journal of applied genetics. 2023 Feb; 64(1):1-21. doi: 10.1007/s13353-022-00727-7. [PMID: 36175751]
  • Anuj Kumar Sharma, Rajaneesh Kumar Chaudhary, Swetza Singh, Akash Ved, Karuna Shanker Shukla, Anita Singh, Manjul Pratap Singh, Mayank Kulshreshtha. HPTLC Studies, in silico Docking Studies, and Pharmacological Evaluation of Elaeocarpus ganitrus as a Gastroprotective Agent. Central nervous system agents in medicinal chemistry. 2023; 23(1):13-31. doi: 10.2174/1871524923666230412080313. [PMID: 37394979]
  • Mariachiara Spennato, Ottavia Maria Roggero, Simona Varriale, Fioretta Asaro, Angelo Cortesi, Jan Kašpar, Enrico Tongiorgi, Cinzia Pezzella, Lucia Gardossi. Neuroprotective Properties of Cardoon Leaves Extracts against Neurodevelopmental Deficits in an In Vitro Model of Rett Syndrome Depend on the Extraction Method and Harvest Time. Molecules (Basel, Switzerland). 2022 Dec; 27(24):. doi: 10.3390/molecules27248772. [PMID: 36557905]
  • Ana Bárbara D Pereira, José Hugo de Sousa Gomes, Aline Carvalho Pereira, Rodrigo Maia de Pádua, Steyner F Côrtes, Marcelo Martins Sena, Fernão Castro Braga. Definition of chemical markers for Hancornia speciosa Gomes by chemometric analysis based on the chemical composition of extracts, their vasorelaxant effect and α-glucosidase inhibition. Journal of ethnopharmacology. 2022 Dec; 299(?):115692. doi: 10.1016/j.jep.2022.115692. [PMID: 36084818]
  • Komalatha Nakkala, Kirti S Laddha. Development of a validated high-performance thin-layer chromatography method for quantification of lupeol from different parts of Bauhinia acuminata. Biomedical chromatography : BMC. 2022 Oct; 36(10):e5448. doi: 10.1002/bmc.5448. [PMID: 35837756]
  • Karunamoorthy Vasanth, Guha Chowdhury Minakshi, Karthick Velu, Tanu Priya, R Mohan Kumar, Ilango Kaliappan, Govind Prasad Dubey. Anti-adipogenic β-sitosterol and lupeol from Moringa oleifera suppress adipocyte differentiation through regulation of cell cycle progression. Journal of food biochemistry. 2022 08; 46(8):e14170. doi: 10.1111/jfbc.14170. [PMID: 35403718]
  • Jing-Chun Zhou, Bin Wu, Jing-Jing Zhang, Wei Zhang. Lupeol triggers oxidative stress, ferroptosis, apoptosis and restrains inflammation in nasopharyngeal carcinoma via AMPK/NF-κB pathway. Immunopharmacology and immunotoxicology. 2022 Aug; 44(4):621-631. doi: 10.1080/08923973.2022.2072328. [PMID: 35486494]
  • Tiebing Song, Renhong Shi, Annamalai Vijayalakshmi, Bin Lei. Protective effect of lupeol on arthritis induced by type II collagen via the suppression of P13K/AKT signaling pathway in Sprague dawley rats. Environmental toxicology. 2022 Jul; 37(7):1814-1822. doi: 10.1002/tox.23529. [PMID: 35446470]
  • Melis Coremen, Ismet Burcu Turkyilmaz, Huseyin Us, Ayca Sezen Us, Sefa Celik, Aysen E Ozel, Omur Karabulut Bulan, Refiye Yanardag. Lupeol inhibits pesticides induced hepatotoxicity via reducing oxidative stress and inflammatory markers in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2022 Jun; 164(?):113068. doi: 10.1016/j.fct.2022.113068. [PMID: 35483487]
  • Riaz Ahmad, Amjad Khan, Inayat Ur Rehman, Hyeon Jin Lee, Ibrahim Khan, Myeong Ok Kim. Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. International journal of molecular sciences. 2022 May; 23(11):. doi: 10.3390/ijms23116086. [PMID: 35682768]
  • Eric Carly Nono Nono, Jean Paul Tsopmejio, Jean Momeni, Tsopjio Francine Nkouam, Jean Pierre Abdou, Mouhamat Iqbal Choudhary, Augustin Ephrem Nkengfack. A new flavone and a newly synthesized alkaloid from Lippia rugosa A. Chev (Verbenaceae). Natural product research. 2022 Mar; ?(?):1-9. doi: 10.1080/14786419.2022.2051706. [PMID: 35289687]
  • Ateeq Ahmad, Pirzada J A Siddiqui, Shahina Fayyaz, Kehkashan Khan, Erum Y Iqbal, Munawwer Rasheed, Wajeeha Muzafar, Shaheen Faizi. Bioassay Directed Fractionation of Petroleum Ether Extract of Aerial Parts of Ceriops tagal: Isolation of Lupeol as the Nematicidal Agent against Cyst Nematode Heterodera zeae. Chemistry & biodiversity. 2022 Mar; 19(3):e202100759. doi: 10.1002/cbdv.202100759. [PMID: 35001512]
  • Anders Rehfeld, Christian Marcus Pedersen. Lupeol and pristimerin do not inhibit activation of the human sperm CatSper Ca(2+)-channel. F1000Research. 2022; 11(?):222. doi: 10.12688/f1000research.109279.2. [PMID: 36016990]
  • Vanessa Rocha Machado, Amanda Virtuoso Jacques, Natália Stefanes Marceli, Maique Weber Biavatti, Maria Cláudia Santos-Silva. Anti-leukemic activity of semisynthetic derivatives of lupeol. Natural product research. 2021 Nov; 35(22):4494-4501. doi: 10.1080/14786419.2020.1737051. [PMID: 32178533]
  • Alana Shunnarah, Robin Tumlinson, Angela I Calderón. Natural Products with Potential for Nonhormonal Male Contraception. Journal of natural products. 2021 10; 84(10):2762-2774. doi: 10.1021/acs.jnatprod.1c00565. [PMID: 34633803]
  • Aleksandra Ostapiuk, Łukasz Kurach, Maciej Strzemski, Jacek Kurzepa, Anna Hordyjewska. Evaluation of Antioxidative Mechanisms In Vitro and Triterpenes Composition of Extracts from Silver Birch (Betula pendula Roth) and Black Birch (Betula obscura Kotula) Barks by FT-IR and HPLC-PDA. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154633. [PMID: 34361786]
  • Ramona Daniela Pârvănescu Pană, Claudia-Geanina Watz, Elena-Alina Moacă, Lavinia Vlaia, Iasmina Marcovici, Ioana Gabriela Macașoi, Florin Borcan, Ioana Olariu, Georgeta Coneac, George-Andrei Drăghici, Zorin Crăiniceanu, Daniela Flondor Ionescu, Alexandra Enache, Cristina Adriana Dehelean. Oleogel Formulations for the Topical Delivery of Betulin and Lupeol in Skin Injuries-Preparation, Physicochemical Characterization, and Pharmaco-Toxicological Evaluation. Molecules (Basel, Switzerland). 2021 Jul; 26(14):. doi: 10.3390/molecules26144174. [PMID: 34299450]
  • Emanuelle M B M da Silva Landim, Ana Lúcia T G Ruiz, João E de Carvalho, Armando M Pomini, Lindamir H Pastorini, Silvana M Oliveira Santin. Antiproliferative activity and chemical constituents of Lonchocarpus cultratus (Fabaceae). Natural product research. 2021 Jun; 35(12):2056-2059. doi: 10.1080/14786419.2019.1647427. [PMID: 31401870]
  • Veena S Patel, Usmangani K Chhalotiya, Sandip B Patel, Jivani Nuruddin. Simultaneous Quantification of Betulinic Acid, Lupeol, and β-Sitosterol in Madhuca longifolia Methanolic Extract of Bark by Liquid Chromatography-Tandem Mass Spectrometric Method. Journal of AOAC International. 2021 May; 104(2):498-505. doi: 10.1093/jaoacint/qsaa128. [PMID: 33615381]
  • Donghai Li, Cheng Pan, Jianjun Lu, Wajid Zaman, Huayan Zhao, Jixing Zhang, Shiyou Lü. Lupeol Accumulation Correlates with Auxin in the Epidermis of Castor. Molecules (Basel, Switzerland). 2021 May; 26(10):. doi: 10.3390/molecules26102978. [PMID: 34067825]
  • Shabnam Javed, Zaid Mahmood, Khalid Mohammed Khan, Satyajit D Sarker, Arshad Javaid, Iqra Haider Khan, Amna Shoaib. Lupeol acetate as a potent antifungal compound against opportunistic human and phytopathogenic mold Macrophomina phaseolina. Scientific reports. 2021 04; 11(1):8417. doi: 10.1038/s41598-021-87725-7. [PMID: 33875698]
  • Sha Huang, Chan Mo, Ting Zeng, Yuqi Lai, Chuying Zhou, Shunwen Xie, Limei Chen, Yuhua Wang, Yuyao Chen, Shaohui Huang, Lei Gao, Zhiping Lv. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging. 2021 03; 13(5):6592-6605. doi: 10.18632/aging.202409. [PMID: 33707345]
  • Ziming Wang, Yu Wang, Tao Yu, Zhiwei Hu, Yang Wang. An LC-ESI/MS/MS method for the determination of lupeol via precolumn derivatization and its application to pharmacokinetic studies in rat plasma. Biomedical chromatography : BMC. 2021 Mar; 35(3):e5005. doi: 10.1002/bmc.5005. [PMID: 33067801]
  • Heesu Kim, Dong Gun Lee. Lupeol-induced nitric oxide elicits apoptosis-like death within Escherichia coli in a DNA fragmentation-independent manner. The Biochemical journal. 2021 02; 478(4):855-869. doi: 10.1042/bcj20200925. [PMID: 33522568]
  • Kai Liu, Xumin Zhang, Long Xie, Mao Deng, Huijuan Chen, Jiawen Song, Jiaying Long, Xiaofang Li, Jia Luo. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacological research. 2021 02; 164(?):105373. doi: 10.1016/j.phrs.2020.105373. [PMID: 33316380]
  • Ivan Chóez-Guaranda, José García, Carolina Sánchez, Carlos Pesantes, José Flores, Patricia Manzano. Identification of lupeol produced by Vernonanthura patens (Kunth) H. Rob. leaf callus culture. Natural product research. 2021 Feb; 35(3):503-507. doi: 10.1080/14786419.2019.1636239. [PMID: 31282206]
  • Watunyoo Buakaew, Rungnapa Pankla Sranujit, Chanai Noysang, Yordhathai Thongsri, Pachuen Potup, Nitra Nuengchamnong, Nungruthai Suphrom, Kanchana Usuwanthim. Phytochemical Constituents of Citrus hystrix DC. Leaves Attenuate Inflammation via NF-κB Signaling and NLRP3 Inflammasome Activity in Macrophages. Biomolecules. 2021 01; 11(1):. doi: 10.3390/biom11010105. [PMID: 33466926]
  • Rudson J Holanda, Candida Deves, Leandro S Moreira-Dill, Cesar L Guimarães, Leonardo K B Marttinelli, Carla F C Fernandes, Patrícia S M Medeiros, Soraya S Pereira, Eduardo R Honda, Rodrigo G Stábeli, Diógenes S Santos, Andreimar M Soares, Luiz H Pereira da Silva. Plasmodium falciparum purine nucleoside phosphorylase as a model in the search for new inhibitors by high throughput screening. International journal of biological macromolecules. 2020 Dec; 165(Pt B):1832-1841. doi: 10.1016/j.ijbiomac.2020.10.062. [PMID: 33075341]
  • Bo-Jia Liu, Qing Ning, Rong-Ling Zhong, Zhi Xia, Zi-Yu Jiang, Jie Song, Ying-Jie Wei. [Effect of lupeol on invasion and metastasis of human hepatoma HepG2 and SK-HEP-1 cells and its mechanism]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2020 Dec; 45(24):6028-6035. doi: 10.19540/j.cnki.cjcmm.20200901.403. [PMID: 33496144]
  • Jing-Fang Zhang, Wan-Chao Zhong, Yan-Cheng Li, Yun-Qing Song, Gui-Yang Xia, Gui-Hua Tian, Guang-Bo Ge, Sheng Lin. Bioactivity-Guided Discovery of Human Carboxylesterase Inhibitors from the Roots of Paeonia lactiflora. Journal of natural products. 2020 10; 83(10):2940-2949. doi: 10.1021/acs.jnatprod.0c00464. [PMID: 32951423]
  • Amandeep Singh, Hayat Mohammad Mukhtar, Hardeep Kaur, Lakhvir Kaur. Investigation of antiplasmodial efficacy of lupeol and ursolic acid isolated from Ficus benjamina leaves extract. Natural product research. 2020 Sep; 34(17):2514-2517. doi: 10.1080/14786419.2018.1540476. [PMID: 30600705]
  • Khadijah A Jabal, Hossam M Abdallah, Gamal A Mohamed, Ibrahim A Shehata, Mohammad Y Alfaifi, Serag Eldin I Elbehairi, Abdulrahman A Koshak, Sabrin R M Ibrahim. Perisomalien A, a new cytotoxic scalarane sesterterpene from the fruits of Periploca somaliensis. Natural product research. 2020 Aug; 34(15):2167-2172. doi: 10.1080/14786419.2019.1577842. [PMID: 30835538]
  • Songyot Anuchapreeda, Riki Anzawa, Natsima Viriyaadhammaa, Waranya Neimkhum, Wantida Chaiyana, Siriporn Okonogi, Toyonobu Usuki. Isolation and biological activity of agrostophillinol from kaffir lime (Citrus hystrix) leaves. Bioorganic & medicinal chemistry letters. 2020 07; 30(14):127256. doi: 10.1016/j.bmcl.2020.127256. [PMID: 32527555]
  • Julie A Lawrence, Zhongping Huang, Sivaprakash Rathinavelu, Jin-Feng Hu, Eliane Garo, Michael Ellis, Vanessa L Norman, Ronald Buckle, Russell B Williams, Courtney M Starks, Gary R Eldridge. Optimized plant compound with potent anti-biofilm activity across gram-negative species. Bioorganic & medicinal chemistry. 2020 03; 28(5):115229. doi: 10.1016/j.bmc.2019.115229. [PMID: 32033878]
  • Sri Wahdaningsih, Subagus Wahyuono, Sugeng Riyanto, Retno Murwanti. Terpenoid-lupeol of red dragon fruit (Hylocereus polyrhizus) and its immunomodulatory activity. Pakistan journal of pharmaceutical sciences. 2020 Mar; 33(2):505-510. doi: . [PMID: 32276891]
  • C Emade Kwene, Anastasie E Tih, Bintou Abderamane, Rapheal T Ghogomu. Two new phenolic glycosides from the leaves of Garcinia epunctata Stapf. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2020 Jan; 75(1-2):51-56. doi: 10.1515/znc-2018-0217. [PMID: 32053496]
  • Sarmistha Saha, Elisabetta Profumo, Anna Rita Togna, Rachele Riganò, Luciano Saso, Brigitta Buttari. Lupeol Counteracts the Proinflammatory Signalling Triggered in Macrophages by 7-Keto-Cholesterol: New Perspectives in the Therapy of Atherosclerosis. Oxidative medicine and cellular longevity. 2020; 2020(?):1232816. doi: 10.1155/2020/1232816. [PMID: 33062133]
  • Akram Taleghani, Seyed Ahmad Emami, Zahra Tayarani-Najaran. Artemisia: a promising plant for the treatment of cancer. Bioorganic & medicinal chemistry. 2020 01; 28(1):115180. doi: 10.1016/j.bmc.2019.115180. [PMID: 31784199]
  • Afef Ladhari, Joseph Chappell. Unravelling triterpene biosynthesis through functional characterization of an oxidosqualene cyclase (OSC) from Cleome arabica L. Plant physiology and biochemistry : PPB. 2019 Nov; 144(?):73-84. doi: 10.1016/j.plaphy.2019.09.035. [PMID: 31561200]
  • Jiajian Huang, Wenlong Zha, Tianyue An, Hua Dong, Ying Huang, Dong Wang, Rongmin Yu, Lixin Duan, Xueli Zhang, Reuben J Peters, Zhubo Dai, Jiachen Zi. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid. Applied microbiology and biotechnology. 2019 Sep; 103(17):7029-7039. doi: 10.1007/s00253-019-10004-z. [PMID: 31309269]
  • Sayyada Khatoon, Saba Irshad, Madan Mohan Pandey, Subha Rastogi, Ajay Kumar Singh Rawat. A Validated HPTLC Densitometric Method for Determination of Lupeol, β-Sitosterol and Rotenone in Tephrosia purpurea: A Seasonal Study. Journal of chromatographic science. 2019 Aug; 57(8):688-696. doi: 10.1093/chromsci/bmz041. [PMID: 31251318]
  • Nibedita Pradhan, Sabnam Parbin, Chahat Kausar, Swayamsiddha Kar, Shradha Mawatwal, Laxmidhar Das, Moonmoon Deb, Dipta Sengupta, Rohan Dhiman, Samir Kumar Patra. Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2019 Aug; 130(?):161-173. doi: 10.1016/j.fct.2019.05.016. [PMID: 31112703]
  • Laxman Khatal, Harinath More. Development and validation of a liquid chromatography-tandem mass spectrometry method for quantification of Lupeol in plasma and its application to pharmacokinetic study in rats. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2019 Jul; 1121(?):58-65. doi: 10.1016/j.jchromb.2019.05.008. [PMID: 31108322]
  • Marco Müller, Medisa Murić, Lisa Glanz, Walter Vetter. Improving the resolution of overlapping peaks by heartcut two-dimensional countercurrent chromatography with the same solvent system in both dimensions. Journal of chromatography. A. 2019 Jul; 1596(?):142-151. doi: 10.1016/j.chroma.2019.03.012. [PMID: 30922718]
  • Zhao Chen, Dongmei Sun, Xiaoli Bi, Wenhui Luo, Aili Xu, Weitao Chen, Jieyi Jiang, Dake Cai, Haoliang Guo, Lizhong Cao. Selection and evaluation of quality markers from Yinlan capsule and its LXRα-mediated therapy for hyperlipidemia. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Jun; 59(?):152896. doi: 10.1016/j.phymed.2019.152896. [PMID: 30978649]
  • Mekhala Dk Vithana, Zora Singh, Stuart K Johnson. Regulation of the levels of health promoting compounds: lupeol, mangiferin and phenolic acids in the pulp and peel of mango fruit: a review. Journal of the science of food and agriculture. 2019 Jun; 99(8):3740-3751. doi: 10.1002/jsfa.9628. [PMID: 30723909]
  • Stéphane Zingue, Dieudonnée Mireille Ntsa, Chantal Beatrice Magne Nde, Thomas Michel, Derek Tantoh Ndinteh, Colin Clyne, Dieudonné Njamen. Lupeol, the major compound of the dichloromethane extract of Millettia macrophylla Benth (Fabaceae), displays estrogenic effects in ovariectomized rats. Phytotherapy research : PTR. 2019 Apr; 33(4):949-957. doi: 10.1002/ptr.6288. [PMID: 30693996]
  • Rui Liu, Corrine C Dobson, Brian C Foster, Tony Durst, Pablo Sanchez, John T Arnason, Cory S Harris. Effect of an anxiolytic botanical containing Souroubea sympetala and Platanus occidentalis on in-vitro diazepam human cytochrome P450-mediated metabolism. The Journal of pharmacy and pharmacology. 2019 Mar; 71(3):429-437. doi: 10.1111/jphp.13045. [PMID: 30467864]
  • Abraham Giacoman-Martínez, Francisco J Alarcón-Aguilar, Alejandro Zamilpa, Sergio Hidalgo-Figueroa, Gabriel Navarrete-Vázquez, Rebeca García-Macedo, Rubén Román-Ramos, Julio C Almanza-Pérez. Triterpenoids from Hibiscus sabdariffa L. with PPARδ/γ Dual Agonist Action: In Vivo, In Vitro and In Silico Studies. Planta medica. 2019 Mar; 85(5):412-423. doi: 10.1055/a-0824-1316. [PMID: 30650453]
  • Manuel Humberto Cháirez-Ramírez, Jose Alberto Gallegos-Infante, Martha Rocio Moreno-Jiménez, Ruben Francisco González-Laredo, Nuria Elizabeth Rocha-Guzmán. Absorption and distribution of lupeol in CD-1 mice evaluated by UPLC-APCI+ -MS/MS. Biomedical chromatography : BMC. 2019 Mar; 33(3):e4432. doi: 10.1002/bmc.4432. [PMID: 30419143]
  • Weibo Qiao, Zilin Zhou, Qin Liang, Isidore Mosongo, Changfu Li, Yansheng Zhang. Improving lupeol production in yeast by recruiting pathway genes from different organisms. Scientific reports. 2019 02; 9(1):2992. doi: 10.1038/s41598-019-39497-4. [PMID: 30816209]
  • Sarah D'Adamo, Gino Schiano di Visconte, Gavin Lowe, Joanna Szaub-Newton, Tracey Beacham, Andrew Landels, Michael J Allen, Andrew Spicer, Michiel Matthijs. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. Plant biotechnology journal. 2019 01; 17(1):75-87. doi: 10.1111/pbi.12948. [PMID: 29754445]
  • Arif Malik, Uzma Jamil, Tariq Tahir Butt, Sulayman Waquar, Siew Hua Gan, Hassan Shafique, Tassadaq Hussain Jafar. In silico and in vitro studies of lupeol and iso-orientin as potential antidiabetic agents in a rat model. Drug design, development and therapy. 2019; 13(?):1501-1513. doi: 10.2147/dddt.s176698. [PMID: 31123393]
  • Waleed Javed Hashmi, Hammad Ismail, Furrukh Mehmood, Bushra Mirza. Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and lupeol against STZ + AlCl3 induced rats model. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2018 Dec; 26(2):179-190. doi: 10.1007/s40199-018-0223-3. [PMID: 30353379]
  • Shashi Chauhan, Aditi Sharma, Navneet Kumar Upadhyay, Gajender Singh, Uma Ranjan Lal, Rohit Goyal. In-vitro osteoblast proliferation and in-vivo anti-osteoporotic activity of Bombax ceiba with quantification of Lupeol, gallic acid and β-sitosterol by HPTLC and HPLC. BMC complementary and alternative medicine. 2018 Aug; 18(1):233. doi: 10.1186/s12906-018-2299-1. [PMID: 30086745]
  • Ming-Cheng Chen, Hsi-Hsien Hsu, Yuan-Yuan Chu, Sue-Fei Cheng, Chia-Yao Shen, Yi-Jiun Lin, Ray-Jade Chen, Vijaya Padma Viswanadha, Yueh-Min Lin, Chih-Yang Huang. Lupeol alters ER stress-signaling pathway by downregulating ABCG2 expression to induce Oxaliplatin-resistant LoVo colorectal cancer cell apoptosis. Environmental toxicology. 2018 May; 33(5):587-593. doi: 10.1002/tox.22544. [PMID: 29436100]
  • Olumuyiwa O Ogunlaja, Roshila Moodley, Moganavelli Singh, Himansu Baijnath, Sreekanth B Jonnalagadda. Cytotoxic activity of the bioactive principles from Ficus burtt-davyi. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2018 Apr; 53(4):261-275. doi: 10.1080/03601234.2017.1410385. [PMID: 29278988]
  • Mekhala Dk Vithana, Zora Singh, Stuart K Johnson. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit. Journal of the science of food and agriculture. 2018 Mar; 98(4):1460-1468. doi: 10.1002/jsfa.8614. [PMID: 28786116]
  • Yao Yuan, Jiewei Wu, Bailin Li, Jia Niu, Haibo Tan, Shengxiang Qiu. Regulation of Signaling Pathways Involved in the Anti-proliferative and Apoptosis-inducing Effects of M22 against Non-small Cell Lung Adenocarcinoma A549 Cells. Scientific reports. 2018 01; 8(1):992. doi: 10.1038/s41598-018-19368-0. [PMID: 29343765]
  • S M Zahid Hosen, Maruf Rubayed, Raju Dash, Md Junaid, Sarmistha Mitra, Muhammad Shaiful Alam, Rupantar Dey. Prospecting and Structural Insight into the Binding of Novel Plant-Derived Molecules of Leea indica as Inhibitors of BACE1. Current pharmaceutical design. 2018; 24(33):3972-3979. doi: 10.2174/1381612824666181106111020. [PMID: 30398111]
  • Karem H Alzoubi, Nasab Q Rawashdeh, Omar F Khabour, Tamam El-Elimat, Hanan Albataineh, Hamzeh M Al-Zghool, Feras Q Alali. Evaluation of the Effect of Moringa peregrina Extract on Learning and Memory: Role of Oxidative Stress. Journal of molecular neuroscience : MN. 2017 Dec; 63(3-4):355-363. doi: 10.1007/s12031-017-0986-x. [PMID: 29082469]
  • Juan Xiong, Jiang Wan, Jie Ding, Pei-Pei Wang, Guang-Lei Ma, Jia Li, Jin-Feng Hu. Camellianols A-G, Barrigenol-like Triterpenoids with PTP1B Inhibitory Effects from the Endangered Ornamental Plant Camellia crapnelliana. Journal of natural products. 2017 11; 80(11):2874-2882. doi: 10.1021/acs.jnatprod.7b00241. [PMID: 29064696]
  • Yan Song, Lan Pan, Wenjie Li, Yingying Si, Di Zhou, Chengjian Zheng, Xiaofang Hao, Xinyue Jia, Yuemei Jia, Minghui Shi, Xiaoguang Jia, Ning Li, Yue Hou. Natural neuro-inflammatory inhibitors from Caragana turfanensis. Bioorganic & medicinal chemistry letters. 2017 10; 27(20):4765-4769. doi: 10.1016/j.bmcl.2017.08.047. [PMID: 28911817]
  • Antu Das, Junaid Jibran Jawed, Manash C Das, Padmani Sandhu, Utpal C De, Biswanath Dinda, Yusuf Akhter, Surajit Bhattacharjee. Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa. International journal of antimicrobial agents. 2017 Oct; 50(4):512-522. doi: 10.1016/j.ijantimicag.2017.04.022. [PMID: 28669838]
  • Bhoopathy Prabhu, Annamalai Sivakumar, Doraisami Balakrishnan, Sivapatham Sundaresan. Effect of lupeol on antioxidants and xenobiotic enzymes in N-Butyl-N-(4-hydroxybutyl) nitrosamine induced bladder carcinogenesis in experimental rats. Journal of experimental therapeutics & oncology. 2017 Sep; 11(2):139-416. doi: . [PMID: 28976137]
  • Francesca Esposito, Manuela Mandrone, Claudia Del Vecchio, Ilaria Carli, Simona Distinto, Angela Corona, Mariacaterina Lianza, Dario Piano, Massimo Tacchini, Elias Maccioni, Filippo Cottiglia, Elisa Saccon, Ferruccio Poli, Cristina Parolin, Enzo Tramontano. Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of Lupeol mode of action. Pathogens and disease. 2017 08; 75(6):. doi: 10.1093/femspd/ftx065. [PMID: 28637198]
  • Szu-Ping Huang, Tzu-Ming Ho, Chih-Wen Yang, Ya-Ju Chang, Jie-Fu Chen, Ning-Sing Shaw, Jia-Cherng Horng, Shih-Lan Hsu, Ming-Yuan Liao, Li-Chen Wu, Ja-An Annie Ho. Chemopreventive Potential of Ethanolic Extracts of Luobuma Leaves (Apocynum venetum L.) in Androgen Insensitive Prostate Cancer. Nutrients. 2017 Aug; 9(9):. doi: 10.3390/nu9090948. [PMID: 28846663]
  • Manuel A Ruiz-Rodríguez, Angelo Vedani, Ana L Flores-Mireles, Manuel H Cháirez-Ramírez, José A Gallegos-Infante, Rubén F González-Laredo. In Silico Prediction of the Toxic Potential of Lupeol. Chemical research in toxicology. 2017 08; 30(8):1562-1571. doi: 10.1021/acs.chemrestox.7b00070. [PMID: 28654752]
  • Maria Fernanda Pessano Fialho, Indiara Brusco, Evelyne da Silva Brum, Mariana Piana, Aline Augusti Boligon, Gabriela Trevisan, Sara Marchesan Oliveira. Buddleja thyrsoides Lam. crude extract presents antinociceptive effect on an arthritic pain model in mice. The Biochemical journal. 2017 08; 474(17):2993-3010. doi: 10.1042/bcj20170008. [PMID: 28739601]
  • Tasmia Tahsin, Jean Duplex Wansi, Afaf Al-Groshi, Andrew Evans, Lutfun Nahar, Claire Martin, Satyajit Dey Sarker. Cytotoxic Properties of the Stem Bark of Citrus reticulata Blanco (Rutaceae). Phytotherapy research : PTR. 2017 Aug; 31(8):1215-1219. doi: 10.1002/ptr.5842. [PMID: 28568378]
  • Daniel Crístian Ferreira Soares, Diogo Coelho de Paula Oliveira, Luciola Silva Barcelos, Alan Sales Barbosa, Lorena Carla Vieira, Danyelle M Townsend, Domenico Rubello, André Luis Branco de Barros, Lucienir Pains Duarte, Armando Silva-Cunha. Antiangiogenic activity of PLGA-Lupeol implants for potential intravitreal applications. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Aug; 92(?):394-402. doi: 10.1016/j.biopha.2017.05.093. [PMID: 28558353]
  • C R R Araújo, R R Silva, T M Silva, J A Takahashi, P A Sales-Junior, N A V Dessimoni-Pinto, E M Souza-Fagundes, A J Romanha, S M F Murta, A F C Alcântara. Constituents from stem barks of Luehea ochrophylla Mart and evaluation of their antiparasitic, antimicrobial, and antioxidant activities. Natural product research. 2017 Aug; 31(16):1948-1953. doi: 10.1080/14786419.2016.1266346. [PMID: 27966397]
  • Fernando C Silva, Vanessa G Rodrigues, Lucienir P Duarte, Ivana S Lula, Ruben D Sinisterra, Sidney A Vieira-Filho, Rodrigo A L Rodrigues, Erna G Kroon, Patrícia L Oliveira, Luiz M Farias, Paula P Magalhães, Grácia D F Silva. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol. Anais da Academia Brasileira de Ciencias. 2017 Jul; 89(3):1555-1564. doi: 10.1590/0001-3765201720160046. [PMID: 28954173]
  • Nadja Mannowetz, Melissa R Miller, Polina V Lishko. Regulation of the sperm calcium channel CatSper by endogenous steroids and plant triterpenoids. Proceedings of the National Academy of Sciences of the United States of America. 2017 05; 114(22):5743-5748. doi: 10.1073/pnas.1700367114. [PMID: 28507119]
  • Khalid Ghazanfar, Khan Mubashir, Showkat A Dar, Tazeen Nazir, Iqra Hameed, Bashir A Ganai, Seema Akbar, Akbar Masood. Gentiana kurroo Royle attenuates the metabolic aberrations in diabetic rats; Swertiamarin, swertisin and lupeol being the possible bioactive principles. Journal of complementary & integrative medicine. 2017 Apr; 14(3):. doi: 10.1515/jcim-2017-0002. [PMID: 28731312]
  • Juan Carlos Romero-Benavides, Ana Lucía Ruano, Ronal Silva-Rivas, Paola Castillo-Veintimilla, Sara Vivanco-Jaramillo, Natalia Bailon-Moscoso. Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies. European journal of medicinal chemistry. 2017 Mar; 129(?):209-217. doi: 10.1016/j.ejmech.2017.02.005. [PMID: 28231520]
  • Siti-Noor-Adnalizawati Adnan, Nazlina Ibrahim, Wan Ahmad Yaacob. Transcriptome analysis of methicillin-resistant Staphylococcus aureus in response to stigmasterol and lupeol. Journal of global antimicrobial resistance. 2017 03; 8(?):48-54. doi: 10.1016/j.jgar.2016.10.006. [PMID: 27992774]
  • Syed Ghazanfar Ali, Mohammad Azam Ansari, Haris M Khan, Mohammad Jalal, Abbas Ali Mahdi, Swaranjit Singh Cameotra. Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. Journal of basic microbiology. 2017 Mar; 57(3):193-203. doi: 10.1002/jobm.201600175. [PMID: 27874198]
  • Stephen S Nyandoro, Joan J E Munissi, Msim Kombo, Clarence A Mgina, Fangfang Pan, Amra Gruhonjic, Paul Fitzpatrick, Yu Lu, Bin Wang, Kari Rissanen, Máté Erdélyi. Flavonoids from Erythrina schliebenii. Journal of natural products. 2017 02; 80(2):377-383. doi: 10.1021/acs.jnatprod.6b00839. [PMID: 28112509]
  • Kelly Marie Steinberg, Samon Shrestha, Noura S Dosoky, Lianet Monzote, Abel Piñón, William A Haber, William N Setzer. Cytotoxic and Antileishmanial Components from the Bark Extract of Ruyschiaphylladenia from Monteverde, Costa Rica. Natural product communications. 2017 Jan; 12(1):1-2. doi: ". [PMID: 30549810]
  • Hemant Devidas Une, Gaurav Mahesh Doshi. Carissa congesta Wight and Benincasa hispida (Thunb.) Cogn. as budding immunomodulatory agents. Indian journal of experimental biology. 2016 Oct; 54(10):650-658. doi: ". [PMID: 30084565]
  • Raviraj Anand Devkar, Shilpee Chaudhary, Sahithi Adepu, Seena Kanniparambil Xavier, Kodangala Subraya Chandrashekar, Manganahalli Manjunath Setty. Evaluation of antiurolithiatic and antioxidant potential of Lepidagathis prostrata: A Pashanbhed plant. Pharmaceutical biology. 2016 Jul; 54(7):1237-45. doi: 10.3109/13880209.2015.1066397. [PMID: 26171886]
  • Amit Kumar Srivastava, Sanjay Mishra, Wahid Ali, Yogeshwer Shukla. Protective effects of lupeol against mancozeb-induced genotoxicity in cultured human lymphocytes. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Jun; 23(7):714-24. doi: 10.1016/j.phymed.2016.03.010. [PMID: 27235710]
  • B Prabhu, D Balakrishnan, S Sundaresan. Antiproliferative and anti-inflammatory properties of diindolylmethane and lupeol against N-butyl-N-(4-hydroxybutyl) nitrosamine induced bladder carcinogenesis in experimental rats. Human & experimental toxicology. 2016 Jun; 35(6):685-92. doi: 10.1177/0960327115597985. [PMID: 26251508]
  • Patrícia de Brum Vieira, Nícolas Luiz Feijó Silva, Gloria Narjara Santos da Silva, Denise Brentan Silva, Norberto Peporine Lopes, Simone Cristina Baggio Gnoatto, Márcia Vanusa da Silva, Alexandre José Macedo, Jaume Bastida, Tiana Tasca. Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis. Bioorganic & medicinal chemistry letters. 2016 May; 26(9):2229-36. doi: 10.1016/j.bmcl.2016.03.061. [PMID: 27020521]
  • Tina Wardecki, Philipp Werner, Maria Thomas, Markus F Templin, Gudula Schmidt, Johanna M Brandner, Irmgard Merfort. Influence of Birch Bark Triterpenes on Keratinocytes and Fibroblasts from Diabetic and Nondiabetic Donors. Journal of natural products. 2016 Apr; 79(4):1112-23. doi: 10.1021/acs.jnatprod.6b00027. [PMID: 27002382]
  • Wei-Hsun Wang, Hui-Yen Chuang, Chien-Hui Chen, Wun-Ke Chen, Jeng-Jong Hwang. Lupeol acetate ameliorates collagen-induced arthritis and osteoclastogenesis of mice through improvement of microenvironment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016 Apr; 79(?):231-40. doi: 10.1016/j.biopha.2016.02.010. [PMID: 27044833]
  • Laila Jafri, Samreen Saleem, Tamara P Kondrytuk, Ihsan-ul Haq, Nazif Ullah, John M Pezzuto, Bushra Mirza. Hedera nepalensis K. Koch: A Novel Source of Natural Cancer Chemopreventive and Anticancerous Compounds. Phytotherapy research : PTR. 2016 Mar; 30(3):447-53. doi: 10.1002/ptr.5546. [PMID: 26692176]
  • Vanessa G Alves, Elisa A da Rosa, Laura L M de Arruda, Bruno A Rocha, Ciomar A Bersani Amado, Silvana M O Santin, Armando M Pomini, Cleuza C da Silva. Acute toxicity, antiedematogenic activity, and chemical constituents of Palicourea rigida Kunth. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2016 Mar; 71(3-4):39-43. doi: 10.1515/znc-2015-0036. [PMID: 26927220]