NCBI Taxonomy: 3735

Moringa oleifera (ncbi_taxid: 3735)

found 153 associated metabolites at species taxonomy rank level.

Ancestor: Moringa

Child Taxonomies: none taxonomy data.

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

L-Tryptophan

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

C11H12N2O2 (204.0899)


Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.1534)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0423)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Fumaric acid

(2E)-but-2-enedioic acid

C4H4O4 (116.011)


Fumaric acid appears as a colorless crystalline solid. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Combustible, though may be difficult to ignite. Used to make paints and plastics, in food processing and preservation, and for other uses. Fumaric acid is a butenedioic acid in which the C=C double bond has E geometry. It is an intermediate metabolite in the citric acid cycle. It has a role as a food acidity regulator, a fundamental metabolite and a geroprotector. It is a conjugate acid of a fumarate(1-). Fumaric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Fumaric acid is a precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase. Fumarate is converted by fumarase to malate. A fumarate is a salt or ester of the organic compound fumaric acid, a dicarboxylic acid. Fumarate has recently been recognized as an oncometabolite. (A15199). As a food additive, fumaric acid is used to impart a tart taste to processed foods. It is also used as an antifungal agent in boxed foods such as cake mixes and flours, as well as tortillas. Fumaric acid is also added to bread to increase the porosity of the final baked product. It is used to impart a sour taste to sourdough and rye bread. In cake mixes, it is used to maintain a low pH and prevent clumping of the flours used in the mix. In fruit drinks, fumaric acid is used to maintain a low pH which, in turn, helps to stabilize flavor and color. Fumaric acid also prevents the growth of E. coli in beverages when used in combination with sodium benzoate. When added to wines, fumaric acid helps to prevent further fermentation and yet maintain low pH and eliminate traces of metallic elements. In this fashion, it helps to stabilize the taste of wine. Fumaric acid can also be added to dairy products, sports drinks, jams, jellies and candies. Fumaric acid helps to break down bonds between gluten proteins in wheat and helps to create a more pliable dough. Fumaric acid is used in paper sizing, printer toner, and polyester resin for making molded walls. Fumaric acid is a dicarboxylic acid. It is a precursor to L-malate in the Krebs tricarboxylic acid (TCA) cycle. It is formed by the oxidation of succinic acid by succinate dehydrogenase. Fumarate is converted by the enzyme fumarase to malate. Fumaric acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by fumarate. Fumaric acid is found to be associated with fumarase deficiency, which is an inborn error of metabolism. It is also a metabolite of Aspergillus. Produced industrially by fermentation of Rhizopus nigricans, or manufactured by catalytic or thermal isomerisation of maleic anhydride or maleic acid. Used as an antioxidant, acidulant, leavening agent and flavouring agent in foods. Present in raw lean fish. Dietary supplement. Used in powdered products since fumaric acid is less hygroscopic than other acids. A precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase (wikipedia). Fumaric acid is also found in garden tomato, papaya, wild celery, and star fruit. Fumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-17-8 (retrieved 2024-07-01) (CAS RN: 110-17-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.

   

4-Hydroxybenzaldehyde

4-hydroxybenzaldehyde

C7H6O2 (122.0368)


4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

4-Hydroxybenzoic acid

4-hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in A√ßa√≠ oil, obtained from the fruit of the a√ßa√≠ palm (Euterpe oleracea), at relatively high concetrations (892¬±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843). Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid DVN38-Z and 2,4-Hexadienoic acid GMZ10-P. The taste is more detectable than for those preservatives. Effectiveness increases with chain length of the alcohol, but for some microorganisms this reduces cell permeability and thus counteracts the increased efficiency. 4-Hydroxybenzoic acid is found in many foods, some of which are chicory, corn, rye, and black huckleberry. 4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate. 4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ... A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. 4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

4-hydroxyphenylacetate

2-(4-hydroxyphenyl)acetic acid

C8H8O3 (152.0473)


p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic.  p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate.  p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-

C15H10O8 (318.0376)


Myricetin, also known as cannabiscetin or myricetol, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, myricetin is considered to be a flavonoid lipid molecule. A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. Myricetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Myricetin is found, on average, in the highest concentration within a few different foods, such as common walnuts, carobs, and fennels and in a lower concentration in welsh onions, yellow bell peppers, and jutes. Myricetin has also been detected, but not quantified in several different foods, such as napa cabbages, sesames, mixed nuts, lichee, and garden cress. Myricetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. It has a role as a cyclooxygenase 1 inhibitor, an antineoplastic agent, an antioxidant, a plant metabolite, a food component, a hypoglycemic agent and a geroprotector. It is a hexahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a myricetin(1-). Myricetin is a natural product found in Ficus auriculata, Visnea mocanera, and other organisms with data available. Myricetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Quercetin (related). Flavanol found in a wide variety of foodstuffs especially in red table wine, bee pollen, bilberries, blueberries, bog whortleberries, broad beans, Chinese bajberry, corn poppy leaves, cranberries, crowberries, blackcurrants, dock leaves, fennel, grapes, parsley, perilla, rutabaga, dill weed and tea (green and black). Glycosides are also widely distributed. Potential nutriceutical showing anti-HIV activity A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB066_Myricetin_pos_30eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_20eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_40eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_50eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_10eV_CB000028.txt [Raw Data] CB066_Myricetin_neg_10eV_000019.txt [Raw Data] CB066_Myricetin_neg_40eV_000019.txt [Raw Data] CB066_Myricetin_neg_50eV_000019.txt [Raw Data] CB066_Myricetin_neg_20eV_000019.txt [Raw Data] CB066_Myricetin_neg_30eV_000019.txt Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

Syringic acid

InChI=1/C9H10O5/c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10/h3-4,10H,1-2H3,(H,11,12

C9H10O5 (198.0528)


Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563). Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate. Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available. Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max) A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID S018 Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

4-Hydroxybenzeneacetonitrile

4-Hydroxybenzylcyanide, 14C-labeled

C8H7NO (133.0528)


Isolated from white mustard (Brassica alba) as a dec. product of 4-Hydroxybenzyl glucosinolate KZZ54-K. 4-Hydroxybenzeneacetonitrile is found in many foods, some of which are cucumber, strawberry, black-eyed pea, and jute. 4-Hydroxybenzeneacetonitrile is found in herbs and spices. 4-Hydroxybenzeneacetonitrile is isolated from white mustard (Brassica alba) as a decomposition product of 4-Hydroxybenzyl glucosinolate KZZ54-K 4-Hydroxybenzyl cyanide is an endogenous metabolite. 4-Hydroxybenzyl cyanide is an endogenous metabolite.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-). Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available. Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species. A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.

   

Docosahexaenoic acid

Methylparaben, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473)


Methylparaben is a 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. It has a role as a plant metabolite, an antimicrobial food preservative, a neuroprotective agent and an antifungal agent. Methylparaben is used in allergenic testing. Methylparaben is a Standardized Chemical Allergen. The physiologic effect of methylparaben is by means of Increased Histamine Release, and Cell-mediated Immunity. Methylparaben is a natural product found in Zanthoxylum beecheyanum, Rhizophora apiculata, and other organisms with data available. Methylparaben is found in alcoholic beverages. Methylparaben is an antimicrobial agent, preservative, flavouring agent. Methylparaben is a constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben has been shown to exhibit anti-microbial function Methylparaben belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid. (A3204). See also: Butylparaben; ethylparaben; methylparaben (component of) ... View More ... Methylparaben, also known as methyl 4-hydroxybenzoate or p-carbomethoxyphenol, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. Methylparaben is an antimicrobial agent, preservative, and flavouring agent. methylparaben has been detected, but not quantified, in a few different foods, such as alcoholic beverages, saffrons, and fruits (particularly blueberries). It is also a constituent of cloudberry, yellow passion fruit, white wine, botrytized wine, and Bourbon vanilla. Methylparaben is the most frequently used antimicrobial preservative in cosmetics. A 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. Antimicrobial agent, preservative, flavouring agent. Constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben is found in saffron, alcoholic beverages, and fruits. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

Niazinin

O-Methyl (4-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)benzyl)carbamothioate

C15H21NO6S (343.109)


Niazinin is a glucosinolate and a naturally occurring thiocarbamate. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The trans and cis rotamers of niazinin (niazinin A and niazinin B, respectively) differ in the orientation of the NH group with respect to sulfur. Niazinin is a natural product found in Moringa oleifera with data available.

   

Niazirin

2-(4-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)acetonitrile

C14H17NO5 (279.1107)


Niazirin is a nitrile glycoside that has been isolated from the leaves of Moringa oleifera (horseradish tree). Niazirin is found in brassicas. Constituent of the leaves of the horseradish tree (Moringa oleifera, Moringaceae). Niazirin is found in brassicas.

   

Niazicinin

(2S,3R,4S,5R,6S)-4,5-dihydroxy-6-(4-{[(methoxycarbonyl)amino]methyl}phenoxy)-2-methyloxan-3-yl acetate

C17H23NO8 (369.1424)


Niazicinin is a glucosinolate and a naturally occurring carbamate. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The trans rotamer is named niazicinin A.

   

Niazicin

(2S,3R,4S,5R,6S)-4,5-Dihydroxy-6-[4-({[methoxy(sulphanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetic acid

C17H23NO7S (385.1195)


Niazicin is a glucosinolate and a naturally occurring thiocarbamate. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The trans and cis rotamers of niazicin (niazicin A and niazicin B, respectively) differ in the orientation of the NH group with respect to sulfur. Constituent of Moringa oleifera (horseradish tree). Niazicin A is found in fats and oils, herbs and spices, and green vegetables.

   

4-[(4'-O-Acetyl-alpha-L-rhamnosyloxy)benzyl]isothiocyanate

(2S,3R,4S,5R,6S)-4,5-dihydroxy-6-[4-(isothiocyanatomethyl)phenoxy]-2-methyloxan-3-yl acetate

C16H19NO6S (353.0933)


4-[(4-O-Acetyl-alpha-L-rhamnosyloxy)benzyl]isothiocyanate is a glucosinolate that has been isolated from the seeds and leaves of Moringa oleifera (horseradish tree) and the seeds of Moringa peregrina. It is also found in herbs and spices. Constituent of seeds of Moringa oleifera (horseradish tree) and Moringa peregrina. 4-Hydroxybenzyl isothiocyanate 4-acetylrhamnoside is found in herbs and spices.

   

Niazidin

[(4-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]carbamothioyl cyanate

C15H18N2O6S (354.0886)


Constituent of the fresh pods of Moringa oleifera (horseradish tree). Niazidin is found in fats and oils, herbs and spices, and green vegetables. Niazidin is a glycoside that has been isolated from the fresh pods of Moringa oleifera (horseradish tree). Niazidin is found in fats and oils.

   

4-Hydroxybenzyl isothiocyanate rhamnoside

2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxane-3,4,5-triol

C14H17NO5S (311.0827)


4-Hydroxybenzyl isothiocyanate rhamnoside is found in herbs and spices. 4-Hydroxybenzyl isothiocyanate rhamnoside is a constituent of seeds and other parts of Moringa oleifera (horseradish tree), Moringa peregrina and Moringa stenopetala. Constituent of seeds and other parts of Moringa oleifera (horseradish tree), Moringa peregrina and Moringa stenopetala. 4-Hydroxybenzyl isothiocyanate rhamnoside is found in herbs and spices. Moringin is a potent and selective TRPA1 ion channel natural agonist with an EC50 of 3.14 μM. Moringin does not activate or activates very weakly the vanilloids somatosensory channels TRPV1, TRPV2, TRPV3 and TRPV4, and the melastatin cooling receptor TRPM8. Moringin has hypoglycemic, antimicrobial, anti-inflammatory, anticancer and neuroprotection activities[1][2].

   

Niaziminin

(2S,3R,4S,5R,6S)-6-(4-{[(ethoxymethanethioyl)amino]methyl}phenoxy)-4,5-dihydroxy-2-methyloxan-3-yl acetate

C18H25NO7S (399.1352)


Niaziminin is a glucosinolate and a naturally occurring thiocarbamate. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The trans and cis rotamers of niaziminin (niaziminin A and niaziminin B, respectively) differ in the orientation of the NH group with respect to sulfur. Niaziminin is the 4-O-acetyl derivative of niazimicin.

   

Benzyl beta-primeveroside

2-(benzyloxy)-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C18H26O10 (402.1526)


Benzyl beta-primeveroside is found in tea. Benzyl beta-primeveroside is an aroma precursor from Oolong tea leaves (Camellia sinensis). Aroma precursor from Oolong tea leaves (Camellia sinensis). Benzyl beta-primeveroside is found in tea.

   

4-(4'-O-Acetyl-alpha-L-rhamnosyloxy)benzaldehyde

(2S,3R,4S,5R,6S)-6-(4-formylphenoxy)-4,5-dihydroxy-2-methyloxan-3-yl acetate

C15H18O7 (310.1052)


4-(4-O-Acetyl-alpha-L-rhamnosyloxy)benzaldehyde has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils as well as in herbs and spices. Isolated from Moringa oleifera (horseradish tree). 1-Pentadecanecarboxylic acid is found in fats and oils and herbs and spices.

   

Niazimin

(2S,3R,4S,5R,6S)-6-(4-{[(ethoxycarbonyl)amino]methyl}phenoxy)-4,5-dihydroxy-2-methyloxan-3-yl acetate

C18H25NO8 (383.158)


Niazimin is a glucosinolate and a naturally occurring carbamate. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The cis and trans rotamers of niazimin (niazimin A and niazimin B, respectively) differ in the orientation of the NH group with respect to the carbonyl group. Constituent of Moringa oleifera (horseradish tree). Niazimin A is found in fats and oils, herbs and spices, and green vegetables.

   

4-Hydroxyphenylacetonitrile triacetylrhamnoside

(2S,3S,4R,5R,6S)-4,5-bis(acetyloxy)-6-[4-(cyanomethyl)phenoxy]-2-methyloxan-3-yl acetate

C20H23NO8 (405.1424)


4-Hydroxyphenylacetonitrile triacetylrhamnoside is a fully acetylated nitrile glycoside. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. 4-Hydroxyphenylacetonitrile triacetylrhamnoside is found in brassicas. Constituent of the leaves of the horseradish tree (Moringa oleifera, Moringaceae). 4-Hydroxyphenylacetonitrile triacetylrhamnoside is found in brassicas.

   

O-Methyl-4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]carbamate

(2S,3S,4R,5R,6S)-4,5-bis(acetyloxy)-6-(4-{[(methoxycarbonyl)amino]methyl}phenoxy)-2-methyloxan-3-yl acetate

C21H27NO10 (453.1635)


O-Methyl-4-[(2,3,4-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]carbamate is a fully acetylated carbamate glycoside. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The trans and cis rotamers differ in the orientation of the NH group with respect to the carbonyl group.

   

O-Ethyl-4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]carbamate

(2S,3S,4R,5R,6S)-4,5-bis(acetyloxy)-6-(4-{[(ethoxycarbonyl)amino]methyl}phenoxy)-2-methyloxan-3-yl acetate

C22H29NO10 (467.1791)


O-Ethyl-4-[(2,3,4-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]carbamate is a fully acetylated carbamate glycoside. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables.

   

Niazimicin

N-[(4-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarbothioamide

C16H23NO6S (357.1246)


Niazimicin is a glucosinolate and a naturally occurring thiocarbamate. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The trans and cis rotamers of niazimicin (niazimicin A and niazimicin B, respectively) differ in the orientation of the NH group with respect to sulfur. Constituent of Moringa oleifera (horseradish tree) (Moringaceae). Niazimicin A is found in fats and oils, herbs and spices, and green vegetables.

   

O-Methyl-4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]thiocarbamate

(2S,3S,4R,5R,6S)-4,5-bis(acetyloxy)-6-(4-{[(methoxymethanethioyl)amino]methyl}phenoxy)-2-methyloxan-3-yl acetate

C21H27NO9S (469.1406)


O-Methyl-4-[(2,3,4-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]thiocarbamate is a fully acetylated thiocarbamate glycoside. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. The trans and cis rotamers differ in the orientation of the NH group with respect to sulfur.

   

cis-Caffeic acid

(2Z)-3-(3,4-Dihydroxyphenyl)-2-propenoic acid

C9H8O4 (180.0423)


Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

O-Ethyl-4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]thiocarbamate

(2S,3R,4R,5S,6S)-4,5-Bis(acetyloxy)-2-[4-({[ethoxy(sulphanyl)methylidene]amino}methyl)phenoxy]-6-methyloxan-3-yl acetic acid

C22H29NO9S (483.1563)


O-Ethyl-4-[(2,3,4-tri-O-acetyl-alpha-L-rhamnosyloxy)benzyl]thiocarbamate is a fully acetylated thiocarbamate glycoside. It has been isolated from the leaves of Moringa oleifera (horseradish tree). It is found in fats and oils, herbs and spices, and green vegetables. Constituent of Moringa oleifera (horseradish tree) (Moringaceae). N-[(4-hydroxyphenyl)methyl]ethoxycarbothioamide 4-(tri-acetylrhamnoside) is found in fats and oils, herbs and spices, and green vegetables.

   

Niazirinin

(2S,3R,4S,5R,6S)-6-[4-(cyanomethyl)phenoxy]-4,5-dihydroxy-2-methyloxan-3-yl acetate

C16H19NO6 (321.1212)


Niazirinin is a nitrile glycoside that has been isolated from the leaves of Moringa oleifera (horseradish tree). Niazirin is found in brassicas. Constituent of the leaves of the horseradish tree (Moringa oleifera, Moringaceae). Niazirinin is found in brassicas.

   

7-Glucosyl-luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


   

9-Arabinofuranosyladenine

2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


   

4-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybenzaldehyde

4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzaldehyde

C13H16O7 (284.0896)


   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.1534)


   

4-Hydroxybenzoic acid glucoside

4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid

C13H16O8 (300.0845)


4-hydroxybenzoic acid glucoside is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. 4-hydroxybenzoic acid glucoside is soluble (in water) and a weakly acidic compound (based on its pKa). 4-hydroxybenzoic acid glucoside can be found in a number of food items such as highbush blueberry, jostaberry, caraway, and carrot, which makes 4-hydroxybenzoic acid glucoside a potential biomarker for the consumption of these food products.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

4-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybenzaldehyde

4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzaldehyde

C13H16O7 (284.0896)


Helicid (Helicide) is a major constituent of Helicia nilgirica Bedd. Helicid has been used to treat psychoneurosis for its analgesic properties[1]. Helicid (Helicide) is a major constituent of Helicia nilgirica Bedd. Helicid has been used to treat psychoneurosis for its analgesic properties[1].

   

4-Hydroxyphenylacetic acid

p-Hydroxyphenyl acetic acid

C8H8O3 (152.0473)


4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Hirsutrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Isolated from Gossypium hirsutum (cotton) and other plant subspecies Isoastragalin is found in fats and oils. Isolated from liquorice (Glycyrrhiza glabra). Acetylastragalin is found in herbs and spices. Widespread occurrence in plant world, e.g. Pinus sylvestris (Scotch pine) and fruits of Scolymus hispanicus (Spanish salsify). Kaempferol 3-galactoside is found in many foods, some of which are horseradish, almond, peach, and tea.

   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.1534)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Adenosine

Adenosine

C10H13N5O4 (267.0967)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Caffeate

(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0423)


D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0423)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)- (9CI)

C15H10O8 (318.0376)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.783 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.784 Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

L-Tryptophan

L-Tryptophane

C11H12N2O2 (204.0899)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QIVBCDIJIAJPQS-VIFPVBQESA-N_STSL_0010_L-Tryptophan_8000fmol_180410_S2_LC02_MS02_83; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 5 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.178 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.176 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.170 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.171 L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

4-hydroxybenzoate

4-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

p-Hydroxybenzaldehyde

p-Hydroxybenzaldehyde

C7H6O2 (122.0368)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

p-Hydroxybenzoic acid

p-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Fumaric Acid

(2Z)-2-Butenedioic acid

C4H4O4 (116.011)


Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.

   

Syringic acid

Syringic acid

C9H10O5 (198.0528)


Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

4-Hydroxybenzaldehyde

4-Hydroxybenzaldehyde

C7H6O2 (122.0368)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

Methylparaben

Prodelphinidin trimer GC-C-C

C8H8O3 (152.0473)


Prodelphinidin trimer gc-c-c is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Prodelphinidin trimer gc-c-c is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Prodelphinidin trimer gc-c-c can be found in beer, which makes prodelphinidin trimer gc-c-c a potential biomarker for the consumption of this food product. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 CONFIDENCE standard compound; INTERNAL_ID 2371 Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

Niazicinin A

4,5-dihydroxy-6-(4-{[(methoxycarbonyl)amino]methyl}phenoxy)-2-methyloxan-3-yl acetate

C17H23NO8 (369.1424)


   

4-Hydroxybenzyl isothiocyanate rhamnoside

2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxane-3,4,5-triol

C14H17NO5S (311.0827)


Moringin is a potent and selective TRPA1 ion channel natural agonist with an EC50 of 3.14 μM. Moringin does not activate or activates very weakly the vanilloids somatosensory channels TRPV1, TRPV2, TRPV3 and TRPV4, and the melastatin cooling receptor TRPM8. Moringin has hypoglycemic, antimicrobial, anti-inflammatory, anticancer and neuroprotection activities[1][2].

   

4-Hydroxybenzyl isothiocyanate 4''-acetylrhamnoside

4,5-dihydroxy-6-[4-(isothiocyanatomethyl)phenoxy]-2-methyloxan-3-yl acetate

C16H19NO6S (353.0933)


   

Niazirin

2-{4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}acetonitrile

C14H17NO5 (279.1107)


   

Niazirinin

6-[4-(cyanomethyl)phenoxy]-4,5-dihydroxy-2-methyloxan-3-yl acetate

C16H19NO6 (321.1212)


   

1-Pentadecanecarboxylic acid

6-(4-formylphenoxy)-4,5-dihydroxy-2-methyloxan-3-yl acetate

C15H18O7 (310.1052)


   

Baxgp

2-(benzyloxy)-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C18H26O10 (402.1526)


   

AI3-63211

InChI=1\C9H8O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1-5,10-11H,(H,12,13)\b4-2

C9H8O4 (180.0423)


D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Cedar acid

InChI=1\C9H10O5\c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10\h3-4,10H,1-2H3,(H,11,12

C9H10O5 (198.0528)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

FR-0985

4-08-00-00251 (Beilstein Handbook Reference)

C7H6O2 (122.0368)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

4-HPA

InChI=1\C8H8O3\c9-7-3-1-6(2-4-7)5-8(10)11\h1-4,9H,5H2,(H,10,11

C8H8O3 (152.0473)


D009676 - Noxae > D002273 - Carcinogens 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

Abiol

InChI=1\C8H8O3\c1-11-8(10)6-2-4-7(9)5-3-6\h2-5,9H,1H

C8H8O3 (152.0473)


D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

CHEBI:16667

ACETIC ACID,(4-HYDROXYPHENYL),NITRILE 4-HYDROXY-BENZYLCYANIDE

C8H7NO (133.0528)


4-Hydroxybenzyl cyanide is an endogenous metabolite. 4-Hydroxybenzyl cyanide is an endogenous metabolite.

   

4-Hydroxybenzyl cyanide

(4-Hydroxyphenyl)acetonitrile

C8H7NO (133.0528)


A hydroxynitrile that is phenylacetonitrile substituted by a hydroxy group at position 4. 4-Hydroxybenzyl cyanide is an endogenous metabolite. 4-Hydroxybenzyl cyanide is an endogenous metabolite.

   

4-(Rhamnosyloxy)phenylacetonitrile

4-(Rhamnosyloxy)phenylacetonitrile

C14H17NO5 (279.1107)


   
   

4-(4-O-Acetyl-alpha-L-rhamnosyloxy)benzaldehyde

4-(4-O-Acetyl-alpha-L-rhamnosyloxy)benzaldehyde

C15H18O7 (310.1052)


   

(Z)-N-[(4-Hydroxyphenyl)methyl]ethoxycarbothioamide 4-(tri-acetylrhamnoside)

(Z)-N-[(4-Hydroxyphenyl)methyl]ethoxycarbothioamide 4-(tri-acetylrhamnoside)

C22H29NO9S (483.1563)


   

O-ethyl N-[[4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphenyl]methyl]carbamothioate

O-ethyl N-[[4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphenyl]methyl]carbamothioate

C16H23NO6S (357.1246)


   

(4-Methoxybenzyl)thiocarbamic acid 4-O-(tri-O-acetyl-alpha-L-rhamnopyranoside)

(4-Methoxybenzyl)thiocarbamic acid 4-O-(tri-O-acetyl-alpha-L-rhamnopyranoside)

C21H27NO9S (469.1406)


   

4-Hydroxybenzyl isothiocyanate 4-acetylrhamnoside

4-Hydroxybenzyl isothiocyanate 4-acetylrhamnoside

C16H19NO6S (353.0933)


   

6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-4,5-dihydroxy-2-methyloxan-3-yl acetate

6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-4,5-dihydroxy-2-methyloxan-3-yl acetate

C18H25NO7S (399.1352)


   

(2s,3s,4r,5r,6s)-4,5-bis(acetyloxy)-6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

(2s,3s,4r,5r,6s)-4,5-bis(acetyloxy)-6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

C22H29NO9S (483.1563)


   

3-(acetyloxy)-2-{[5,7-dihydroxy-2-(4-methoxyphenyl)-4-oxochromen-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)oxan-4-yl acetate

3-(acetyloxy)-2-{[5,7-dihydroxy-2-(4-methoxyphenyl)-4-oxochromen-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)oxan-4-yl acetate

C26H26O13 (546.1373)


   

n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

C15H21NO7 (327.1318)


   

(2s,3r,4r,5s,6s)-4,5-bis(acetyloxy)-2-[4-(cyanomethyl)phenoxy]-6-methyloxan-3-yl acetate

(2s,3r,4r,5s,6s)-4,5-bis(acetyloxy)-2-[4-(cyanomethyl)phenoxy]-6-methyloxan-3-yl acetate

C20H23NO8 (405.1424)


   

4,5-dihydroxy-2-{[5-hydroxy-2-(4-methoxyphenyl)-4-oxo-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]chromen-3-yl]oxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-3-yl 3,4,5-trihydroxybenzoate

4,5-dihydroxy-2-{[5-hydroxy-2-(4-methoxyphenyl)-4-oxo-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]chromen-3-yl]oxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-3-yl 3,4,5-trihydroxybenzoate

C41H46O23 (906.243)


   

(2s,3r,4r,5r,6s)-4,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-3-yl acetate

(2s,3r,4r,5r,6s)-4,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-3-yl acetate

C16H19NO6S (353.0933)


   

n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)ethoxycarboximidic acid

n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)ethoxycarboximidic acid

C16H23NO7 (341.1474)


   

(2s)-n-[(2s)-1-(acetyloxy)-3-phenylpropan-2-yl]-2-{[hydroxy(phenyl)methylidene]amino}-3-phenylpropanimidic acid

(2s)-n-[(2s)-1-(acetyloxy)-3-phenylpropan-2-yl]-2-{[hydroxy(phenyl)methylidene]amino}-3-phenylpropanimidic acid

C27H28N2O4 (444.2049)


   

1-(cyanooxy)-n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidothioic acid

1-(cyanooxy)-n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidothioic acid

C15H18N2O6S (354.0886)


   

n-[(4-{[5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

n-[(4-{[5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

C17H23NO8 (369.1424)


   

n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methylsulfanylcarboximidic acid

n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methylsulfanylcarboximidic acid

C15H21NO6S (343.109)


   

ethyl 1-sulfanyl-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidate

ethyl 1-sulfanyl-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidate

C16H23NO6S (357.1246)


   

n,n'-dibenzylcarbamimidic acid

n,n'-dibenzylcarbamimidic acid

C15H16N2O (240.1263)


   

n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methylsulfanylcarboximidic acid

n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methylsulfanylcarboximidic acid

C15H21NO6S (343.109)


   

(2r,3s,4s,5r,6r)-2-methyl-6-phenoxyoxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-methyl-6-phenoxyoxane-3,4,5-triol

C12H16O5 (240.0998)


   

4,5-bis(acetyloxy)-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

4,5-bis(acetyloxy)-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

C21H27NO9S (469.1406)


   

3,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-4-yl acetate

3,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-4-yl acetate

C16H19NO6S (353.0933)


   

n-[(4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

n-[(4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

C15H21NO7 (327.1318)


   

2-(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)ethanimidic acid

2-(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)ethanimidic acid

C14H19NO6 (297.1212)


   

benzyl β-d-glucoside

benzyl β-d-glucoside

C13H18O6 (270.1103)


   

[(e)-(3-hydroxy-3-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}butylidene)amino]oxysulfonic acid

[(e)-(3-hydroxy-3-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}butylidene)amino]oxysulfonic acid

C11H21NO10S2 (391.0607)


   

2-(4-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}phenyl)acetonitrile

2-(4-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}phenyl)acetonitrile

C20H27NO10 (441.1635)


   

(2s,3r,4s,5r,6s)-6-(4-{[(2-ethoxy-2-sulfanylideneethylidene)amino]methyl}phenoxy)-4,5-dihydroxy-2-methyloxan-3-yl acetate

(2s,3r,4s,5r,6s)-6-(4-{[(2-ethoxy-2-sulfanylideneethylidene)amino]methyl}phenoxy)-4,5-dihydroxy-2-methyloxan-3-yl acetate

C19H25NO7S (411.1352)


   

(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

C17H23NO7S (385.1195)


   

4,5-dihydroxy-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

4,5-dihydroxy-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

C17H23NO7S (385.1195)


   

methyl 1-sulfanyl-n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidate

methyl 1-sulfanyl-n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidate

C15H21NO6S (343.109)


   

5-hydroxy-3-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2-(4-hydroxyphenyl)-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]chromen-4-one

5-hydroxy-3-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2-(4-hydroxyphenyl)-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]chromen-4-one

C39H50O23 (886.2743)


   

(2s,3r,4r,5s,6s)-3,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-4-yl acetate

(2s,3r,4r,5s,6s)-3,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-4-yl acetate

C16H19NO6S (353.0933)


   

1-(cyanooxy)-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidothioic acid

1-(cyanooxy)-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidothioic acid

C15H18N2O6S (354.0886)


   

2-(4-hydroxyphenyl)ethanimidic acid

2-(4-hydroxyphenyl)ethanimidic acid

C8H9NO2 (151.0633)


   

n-[1-(acetyloxy)-3-phenylpropan-2-yl]-2-{[hydroxy(phenyl)methylidene]amino}-3-phenylpropanimidic acid

n-[1-(acetyloxy)-3-phenylpropan-2-yl]-2-{[hydroxy(phenyl)methylidene]amino}-3-phenylpropanimidic acid

C27H28N2O4 (444.2049)


   

n-[(4-{[(2r,3r,4r,5s,6r)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

n-[(4-{[(2r,3r,4r,5s,6r)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

C17H23NO8 (369.1424)


   

5-(hydroxymethyl)-1-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]pyrrole-2-carbaldehyde

5-(hydroxymethyl)-1-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]pyrrole-2-carbaldehyde

C19H23NO7 (377.1474)


   

2-methyl-6-phenoxyoxane-3,4,5-triol

2-methyl-6-phenoxyoxane-3,4,5-triol

C12H16O5 (240.0998)


   

(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-sulfanyl-n-[(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidate

(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-sulfanyl-n-[(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidate

C20H29NO11S (491.1461)


   

(2s,3s,4r,5r,6s)-4,5-bis(acetyloxy)-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

(2s,3s,4r,5r,6s)-4,5-bis(acetyloxy)-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

C21H27NO9S (469.1406)


   

(2r,3r,4s,5s,6r)-2-(benzyloxy)-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-(benzyloxy)-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C18H26O10 (402.1526)


   

4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}benzoic acid

4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}benzoic acid

C19H26O12 (446.1424)


   

n-[(4-{[(2s,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

n-[(4-{[(2s,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

C18H25NO8 (383.158)


   

2-{[5,7-dihydroxy-2-(4-methoxyphenyl)-4-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl 3,4,5-trihydroxybenzoate

2-{[5,7-dihydroxy-2-(4-methoxyphenyl)-4-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl 3,4,5-trihydroxybenzoate

C29H26O14 (598.1322)


   

4,5-bis(acetyloxy)-6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

4,5-bis(acetyloxy)-6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

C22H29NO9S (483.1563)


   

n-[(4-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

n-[(4-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

C22H29NO10 (467.1791)


   

(2s,3r,4s,5r,6s)-6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-4,5-dihydroxy-2-methyloxan-3-yl acetate

(2s,3r,4s,5r,6s)-6-[4-({[ethoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-4,5-dihydroxy-2-methyloxan-3-yl acetate

C18H25NO7S (399.1352)


   

2-(4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)acetonitrile

2-(4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)acetonitrile

C14H17NO5 (279.1107)


   

methyl 2-(4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)acetate

methyl 2-(4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)acetate

C15H20O7 (312.1209)


   

n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

C16H23NO7 (341.1474)


   

2-{4-[(3,5-dihydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]phenyl}acetonitrile

2-{4-[(3,5-dihydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]phenyl}acetonitrile

C20H27NO10 (441.1635)


   

4-hydroxy-3,5-dimethoxycyclohexane-1-carboxylic acid

4-hydroxy-3,5-dimethoxycyclohexane-1-carboxylic acid

C9H16O5 (204.0998)


   

4,5-bis(acetyloxy)-2-[4-(cyanomethyl)phenoxy]-6-methyloxan-3-yl acetate

4,5-bis(acetyloxy)-2-[4-(cyanomethyl)phenoxy]-6-methyloxan-3-yl acetate

C20H23NO8 (405.1424)


   

n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methoxycarboximidic acid

n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methoxycarboximidic acid

C15H21NO7 (327.1318)


   

methyl 2-{4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}acetate

methyl 2-{4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}acetate

C15H20O7 (312.1209)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

4,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-3-yl acetate

4,5-dihydroxy-2-[4-(isothiocyanatomethyl)phenoxy]-6-methyloxan-3-yl acetate

C16H19NO6S (353.0933)


   

n-[(4-{[(2s,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

n-[(4-{[(2s,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

C17H23NO8 (369.1424)


   

ethyl 1-sulfanyl-n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidate

ethyl 1-sulfanyl-n-[(4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]methanimidate

C16H23NO6S (357.1246)


   

methyl 1-sulfanyl-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidate

methyl 1-sulfanyl-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidate

C15H21NO6S (343.109)


   

3-[(4,5-dihydroxy-5-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]peroxy}-6-{[(2,3,5-trihydroxy-6-methyloxan-4-yl)oxy]methyl}oxan-2-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-7-[(2,3,5-trihydroxy-6-methyloxan-4-yl)oxy]chromen-4-one

3-[(4,5-dihydroxy-5-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]peroxy}-6-{[(2,3,5-trihydroxy-6-methyloxan-4-yl)oxy]methyl}oxan-2-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-7-[(2,3,5-trihydroxy-6-methyloxan-4-yl)oxy]chromen-4-one

C40H52O25 (932.2798)


   

n-[(4-{[(2s,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

n-[(4-{[(2s,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

C21H27NO10 (453.1635)


   

n-[(4-{[(2s,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

n-[(4-{[(2s,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

C22H29NO10 (467.1791)


   

[(3-hydroxy-3-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}butylidene)amino]oxysulfonic acid

[(3-hydroxy-3-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}butylidene)amino]oxysulfonic acid

C11H21NO10S2 (391.0607)


   

(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-[4-({[methoxy(sulfanyl)methylidene]amino}methyl)phenoxy]-2-methyloxan-3-yl acetate

C17H23NO7S (385.1195)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-sulfanyl-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-sulfanyl-n-({4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}methyl)methanimidate

C20H29NO11S (491.1461)


   

n-[(4-{[5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

n-[(4-{[5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}phenyl)methyl]ethoxycarboximidic acid

C18H25NO8 (383.158)


   

n-[(4-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

n-[(4-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}phenyl)methyl]methoxycarboximidic acid

C21H27NO10 (453.1635)